JP6246454B2 - Cu-Ni-Si alloy and method for producing the same - Google Patents

Cu-Ni-Si alloy and method for producing the same Download PDF

Info

Publication number
JP6246454B2
JP6246454B2 JP2011241269A JP2011241269A JP6246454B2 JP 6246454 B2 JP6246454 B2 JP 6246454B2 JP 2011241269 A JP2011241269 A JP 2011241269A JP 2011241269 A JP2011241269 A JP 2011241269A JP 6246454 B2 JP6246454 B2 JP 6246454B2
Authority
JP
Japan
Prior art keywords
annealing
rolling
crystal grains
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011241269A
Other languages
Japanese (ja)
Other versions
JP2013095977A (en
Inventor
真之 長野
真之 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011241269A priority Critical patent/JP6246454B2/en
Publication of JP2013095977A publication Critical patent/JP2013095977A/en
Application granted granted Critical
Publication of JP6246454B2 publication Critical patent/JP6246454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コネクタ、端子、リレー、スイッチ等の導電性ばね材として好適な、優れた曲げ加工性および応力緩和特性を備えたCu−Ni−Si系合金に関する。   The present invention relates to a Cu—Ni—Si alloy having excellent bending workability and stress relaxation characteristics suitable as a conductive spring material for connectors, terminals, relays, switches and the like.

近年、電子機器の小型化に伴い、電気・電子部品の小型化が進んでいる。そして、これら部品に使用される銅合金には良好な強度及び導電率が要求される。
さらに、材料には良好な曲げ加工性が要求される。良好な曲げ加工性とは、材料を端子等にプレス成型した際、曲げ部に割れが生じないことだけでなく、その曲げ表面に生じるシワも小さいことが要求される。これは、プレス品を表面検査した際、曲げシワが大きいとNG判定となり製品歩留が大きく低下するからである。
また、例えばエンジンルームに使用される車載用端子では、通電による発熱だけでなく、その使用環境によって端子は加熱されるため、材料には良好な応力緩和特性が求められる。これは、応力緩和特性が悪いと端子のバネ部にへたりが生じ接触不良が発生するからである。
In recent years, with the miniaturization of electronic devices, the miniaturization of electrical and electronic components has been progressing. And the copper alloy used for these components is required to have good strength and electrical conductivity.
Furthermore, the material is required to have good bending workability. Good bending workability is required not only to cause no cracking in the bent portion when the material is press-molded into a terminal or the like, but also to reduce wrinkles generated on the bent surface. This is because, when the surface of the press product is inspected, if the bending wrinkle is large, an NG determination is made and the product yield is greatly reduced.
Further, for example, in-vehicle terminals used in an engine room are not only generated by energization, but are heated depending on the usage environment, and therefore, a material is required to have good stress relaxation characteristics. This is because if the stress relaxation characteristic is poor, the spring portion of the terminal will sag and contact failure will occur.

これらの要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、高い強度及び導電率を有するコルソン合金等の析出強化型銅合金が使用され、その需要は増加しつつある。コルソン合金の中でもCu−Ni−Si系合金は高強度と比較的高い導電率を兼ね備えている合金系であり、その強化機構は、Cuマトリックス中にNi−Si系の金属間化合物粒子が析出することにより強度及び導電率を向上させたものである。
そして、上述したように、Cu−Ni−Si系合金にも良好な曲げ加工性及び応力緩和特性が望まれる。
In response to these demands, instead of conventional solid solution strengthened copper alloys such as phosphor bronze and brass, precipitation strengthened copper alloys such as a Corson alloy having high strength and electrical conductivity are used, and the demand is increasing. Among the Corson alloys, Cu—Ni—Si based alloys are alloy systems having both high strength and relatively high electrical conductivity, and the strengthening mechanism is that Ni—Si based intermetallic compound particles are precipitated in the Cu matrix. Thus, the strength and conductivity are improved.
And as above-mentioned, the favorable bending workability and stress relaxation characteristic are desired also for Cu-Ni-Si type alloy.

Cu−Ni−Si系合金の曲げ加工性又は/及び応力緩和特性の改善方法として、特許文献1〜3に記載されているように結晶方位を制御する方法がある。特許文献1では{001}<100>の面積率を50%以上とすることで、特許文献2では{001}<100>の面積率を50%以上とし、且つ層状境界を有さないことで曲げ加工性を改善している。特許文献3では材料表面の{001}<100>の面積率をW0、材料の深さ方向に対して1/4の位置の{001}<100>の面積率をW4としたとき、W0/W4を0.8〜1.5、W0を5〜48%とすること、且つ結晶粒径を12〜100μmとすることで曲げ加工性と応力緩和特性を改善している。   As a method for improving the bending workability and / or stress relaxation characteristics of a Cu—Ni—Si based alloy, there is a method of controlling the crystal orientation as described in Patent Documents 1 to 3. In Patent Document 1, the area ratio of {001} <100> is set to 50% or more. In Patent Document 2, the area ratio of {001} <100> is set to 50% or more, and there is no layered boundary. Bending workability is improved. In Patent Document 3, when the area ratio of {001} <100> on the surface of the material is W0 and the area ratio of {001} <100> at a position 1/4 with respect to the depth direction of the material is W4, W0 / Bendability and stress relaxation characteristics are improved by setting W4 to 0.8 to 1.5, W0 to 5 to 48%, and crystal grain size to 12 to 100 μm.

特開2006−283059号公報JP 2006-283059 A 特開2006−152392号公報JP 2006-152392 A WO2011/068121WO2011 / 068121

しかしながら、特許文献1及び2では良好な曲げ加工性が得られるものの、その結晶粒径は10μm以下と微細であるため応力緩和特性は悪い。一方、特許文献3では良好な応力緩和特性は得られるものの、その結晶粒径が12〜100μmと粗大であるため、曲げ加工後の材料表面に発生するシワが大きく、コネクタ等に使用される材料として良好な曲げ加工性を有しているとは言えない。
そこで、本発明はCu−Ni−Si系合金の曲げ加工性及び応力緩和特性を改善することを目的とした。
However, although Patent Documents 1 and 2 provide good bending workability, the crystal grain size is as fine as 10 μm or less, so the stress relaxation characteristics are poor. On the other hand, in Patent Document 3, although good stress relaxation characteristics can be obtained, since the crystal grain size is as coarse as 12 to 100 μm, wrinkles generated on the surface of the material after bending are large, and materials used for connectors and the like It cannot be said that it has good bending workability.
Accordingly, an object of the present invention is to improve bending workability and stress relaxation characteristics of a Cu—Ni—Si based alloy.

曲げ変形を受けた材料の表面にはすべり変形が起こるため材料表面には窪みが生じ、これが曲げシワとして観察される。そのすべり変形は優先的に結晶粒界で生じるため、結晶粒が粗大であると局所的な窪みが生じ、その曲げシワは大きくなる。従って、曲げシワを小さくするためには結晶粒を微細化すれば良い。
一方、外力を受けた材料を加熱するとその材料には変形が生じる。これは外力によって導入された転位の移動によるものと考えられ、その転位密度が高いほど変形しやすい。材料の結晶粒が微細であると転位密度は高くなり応力緩和特性は悪くなる。従って、良好な応力緩和特性を得るためには結晶粒を粗大化すれば良い。
本発明者は鋭意研究を重ねた結果、微細な結晶粒と粗大な結晶粒とを混在させることにより、良好な曲げ加工性と応力緩和特性を兼ね備えることを見出した。
Slip deformation occurs on the surface of the material that has undergone bending deformation, so that a depression is formed on the material surface, which is observed as bending wrinkles. Since the slip deformation preferentially occurs at the crystal grain boundary, if the crystal grain is coarse, a local depression occurs and the bending wrinkle becomes large. Therefore, in order to reduce bending wrinkles, the crystal grains may be refined.
On the other hand, when a material subjected to external force is heated, the material is deformed. This is thought to be due to the movement of dislocations introduced by external force, and the higher the dislocation density, the easier it is to deform. If the crystal grains of the material are fine, the dislocation density increases and the stress relaxation characteristics deteriorate. Therefore, in order to obtain good stress relaxation characteristics, the crystal grains may be coarsened.
As a result of intensive studies, the present inventor has found that a combination of fine crystal grains and coarse crystal grains has both good bending workability and stress relaxation characteristics.

以上の知見を背景にして完成した本発明は一側面において、1.0〜4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、圧延平行断面における単位面積当たりの結晶粒個数に対して、結晶粒径が10μm以下の結晶粒個数の割合が15%以上、20μm以上の結晶粒個数の割合が15%以上である曲げ加工性及び応力緩和特性に優れたCu−Ni−Si系合金である。   In one aspect, the present invention completed on the basis of the above findings contains 1.0 to 4.5 mass% Ni and 0.2 to 1.0 mass% Si, with the balance being copper and inevitable impurities. Bending in which the ratio of the number of crystal grains having a crystal grain size of 10 μm or less is 15% or more and the ratio of the number of crystal grains having a diameter of 20 μm or more is 15% or more with respect to the number of crystal grains per unit area in a rolled parallel section It is a Cu—Ni—Si based alloy excellent in workability and stress relaxation characteristics.

本発明に係るCu−Ni−Si系合金は一実施形態において、Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005〜2.5質量%含有する。   In one embodiment, the Cu—Ni—Si alloy according to the present invention has a total amount of at least one of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Co, Cr, and Ag. 005 to 2.5% by mass.

また、本発明は別の一側面において、1.0〜4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、前記インゴットを温度800〜1000℃で厚み5〜20mm程度まで熱間圧延した後、加工度30〜99%の冷間圧延を行い、軟化度0.25〜0.75の熱処理(予備焼鈍)を行った後、加工度7〜50%及び歪速度2×10-4(1/秒)以下の冷間圧延を行い、次いで、700〜900℃で5〜300秒間の溶体化処理を行った後、時効処理冷間圧延及び歪取り焼鈍の順で行う方法であり、前記軟化度はSと表記したとき次式で示される本発明のCu−Ni−Si系合金の製造方法である:
S=(σ0−σ)/(σ0−σ900
(σ0は予備焼鈍前の引張強さであり、σ及びσ900はそれぞれ予備焼鈍後及び900℃で焼鈍後の引張強さである)。
In another aspect of the present invention, an ingot containing 1.0 to 4.5% by mass of Ni and 0.2 to 1.0% by mass of Si, the balance being made of copper and inevitable impurities is produced. The ingot is hot-rolled at a temperature of 800 to 1000 ° C. to a thickness of about 5 to 20 mm, then cold-rolled with a workability of 30 to 99%, and a heat treatment (pre-annealing) with a softening degree of 0.25 to 0.75. ) , Followed by cold rolling at a workability of 7 to 50% and a strain rate of 2 × 10 −4 (1 / second) or less, and then a solution treatment at 700 to 900 ° C. for 5 to 300 seconds. and then, an aging treatment, a method of performing cold rolling and strain relief annealing in this order this method of manufacturing a Cu-Ni-Si alloy of the present invention the softening degree represented by the following equation when expressed as S Is:
S = (σ 0 −σ) / (σ 0 −σ 900 )
0 is the tensile strength before pre-annealing, and σ and σ 900 are the tensile strength after pre-annealing and after annealing at 900 ° C., respectively).

本発明に係るCu−Ni−Si系合金の製造方法は一実施形態において、前記インゴットが、Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005〜2.5質量%含有する。   In one embodiment of the method for producing a Cu—Ni—Si alloy according to the present invention, the ingot is one of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Co, Cr, and Ag. The total amount of seeds or more is 0.005 to 2.5% by mass.

本発明は更に別の一側面において、上記銅合金を備えた伸銅品である。   In still another aspect of the present invention, a copper product having the copper alloy is provided.

本発明は更に別の一側面において、上記銅合金を備えた電子機器部品である。   In another aspect of the present invention, there is provided an electronic device component including the copper alloy.

コネクタ、端子、リレー、スイッチ等の導電性ばね材として好適な曲げ加工性及び応力緩和特性を兼ね備えたCu−Ni−Si系合金及びその製造方法を提供することができる。   It is possible to provide a Cu—Ni—Si based alloy having bending workability and stress relaxation characteristics suitable as conductive spring materials for connectors, terminals, relays, switches and the like, and a method for producing the same.

本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を示すグラフである。It is a graph which shows the relationship between the annealing temperature when the alloy which concerns on this invention is annealed at various temperatures, and tensile strength. 実施例における応力緩和試験の説明図である。It is explanatory drawing of the stress relaxation test in an Example. 実施例における応力緩和試験の説明図である。It is explanatory drawing of the stress relaxation test in an Example.

(1)Ni、Si濃度
Ni及びSiは、時効処理を行うことにより、Ni2Si等の金属間化合物として析出する。この化合物は強度を向上させ、析出することによりCuマトリックス中に固溶したNi及びSiが減少するため導電率が向上する。しかしながら、Ni濃度が1.0質量%(以下%と表記する)未満又はSi濃度が0.2%未満になると所望の強度が得られず、反対にNi濃度が4.5%を超えると又はSi濃度が1.0%を超えると熱間加工性が劣化する。このため、本発明に係るCu−Ni−Si系合金では、Niの添加量は1.0〜4.5%とし、Siの添加量は0.2〜1.0%としている。さらに、Niの添加量は1.2〜4.0%が好ましく、Siの添加量は0.25〜0.9%が好ましい。
(1) Ni and Si concentrations Ni and Si are precipitated as intermetallic compounds such as Ni 2 Si by performing an aging treatment. This compound improves the strength, and by precipitation, Ni and Si dissolved in the Cu matrix are reduced, so that the conductivity is improved. However, when the Ni concentration is less than 1.0% by mass (hereinafter referred to as “%”) or the Si concentration is less than 0.2%, the desired strength cannot be obtained, and conversely, when the Ni concentration exceeds 4.5%, or If the Si concentration exceeds 1.0%, the hot workability deteriorates. For this reason, in the Cu-Ni-Si based alloy according to the present invention, the addition amount of Ni is set to 1.0 to 4.5%, and the addition amount of Si is set to 0.2 to 1.0%. Furthermore, the addition amount of Ni is preferably 1.2 to 4.0%, and the addition amount of Si is preferably 0.25 to 0.9%.

(2)その他の添加元素
Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Co、Cr及びAgの添加は強度上昇に寄与する。さらにZnはSnめっきの耐熱剥離性の向上に、Mgは応力緩和特性の向上に、Zr、Cr、Mnは熱間加工性の向上に効果がある。Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Co、Cr及びAgの濃度が総量で0.005%未満であると上記の効果は得られず、反対に2.5%を超えると導電率が著しく低下して電気・電子部品材料として使用できない。このため、本発明に係るCu−Ni−Si系合金では、これらの元素を総量で0.005〜2.5%含有することが好ましく、0.1〜2.0%含有することがより好ましい。
(2) Other additive elements Addition of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Co, Cr, and Ag contributes to an increase in strength. Furthermore, Zn is effective in improving the heat-resistant peelability of Sn plating, Mg is effective in improving stress relaxation characteristics, and Zr, Cr, and Mn are effective in improving hot workability. If the total concentration of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Co, Cr and Ag is less than 0.005%, the above effect cannot be obtained. If it exceeds 1, the electrical conductivity will be significantly lowered and it will not be possible to use it as an electrical / electronic component material. For this reason, in the Cu-Ni-Si based alloy according to the present invention, these elements are preferably contained in a total amount of 0.005 to 2.5%, more preferably 0.1 to 2.0%. .

(3)結晶粒
銅合金の圧延平行方向に沿う断面(圧延平行断面)における単位面積当たりの結晶粒個数に対して、結晶粒径が10μm以下の結晶粒個数の割合が15%以上、20μm以上の結晶粒個数の割合が15%以上とすることにより、良好な曲げ加工性及び応力緩和特性が得られる。好ましくは、いずれの結晶粒個数の割合も20%以上である。結晶粒径が10μm以下の結晶粒個数の割合が15%未満であると曲げ加工後の曲げシワが大きくなり、20μm以上の結晶粒個数の割合が15%未満であると応力緩和特性が低下する。また、好ましくは、結晶粒径が10μm以下の結晶粒個数の割合が18%以上、20μm以上の結晶粒個数の割合が18%以上である。
(3) Crystal grains The ratio of the number of crystal grains having a crystal grain size of 10 μm or less to the number of crystal grains per unit area in a cross section (rolling parallel cross section) along the rolling parallel direction of the copper alloy is 15% or more and 20 μm or more. When the ratio of the number of crystal grains is 15% or more, good bending workability and stress relaxation characteristics can be obtained. Preferably, the ratio of the number of any crystal grains is 20% or more. If the ratio of the number of crystal grains having a crystal grain size of 10 μm or less is less than 15%, bending wrinkles after bending will increase, and if the ratio of the number of crystal grains having a grain size of 20 μm or more is less than 15%, the stress relaxation characteristics will deteriorate. . Preferably, the ratio of the number of crystal grains having a crystal grain size of 10 μm or less is 18% or more, and the ratio of the number of crystal grains having a crystal grain size of 20 μm or more is 18% or more.

(4)製造方法
本発明の製造方法としては、まず溶解炉で電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、第一の冷間圧延、熱処理(予備焼鈍)、第二の冷間圧延、溶体化処理、時効処理、第三の冷間圧延の順で所望の厚み及び特性を有する条や箔に仕上げる。熱処理(予備焼鈍)、溶体化処理及び時効処理後には、加熱時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。時効処理と第三の冷間圧延との順序を入れ替えてもよい。また、高強度化のために、溶体化処理と時効との間に冷間圧延を行ってもよい。さらに、第三の冷間圧延によるばね限界値の低下を回復させるために第三の冷間圧延後に歪取り焼鈍を行ってもよい。
本発明では、前記結晶粒を得るために、溶体化処理の前に、熱処理(以下、予備焼鈍に統一する。)及び比較的低加工度且つ低歪速度の第二の冷間圧延を行う。予備焼鈍は、軟化度Sが0.25〜0.75になる条件で行う。
図1に本発明に係るCu−Ni−Si系合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を例示する。熱電対を取り付けた試料を所定の温度に加熱した炉に投入し、熱電対で測定される試料温度が所定の温度に到達したときに、試料を炉から取り出して水冷し、引張強さを測定したものである。試料到達温度が500〜700℃の間で再結晶が進行し引張強さが急激に低下している。高温側での引張強さの緩やかな低下は、再結晶粒の成長によるものである。
予備焼鈍における軟化度Sを次式で定義する。
S=(σ0−σ)/(σ0−σ900
ここで、σ0は予備焼鈍前の引張強さであり、σ及びσ900はそれぞれ予備焼鈍後及び900℃で焼鈍後の引張強さである。900℃という温度は、本発明に係るCu−Ni−Si系合金を900℃で焼鈍すると安定して完全再結晶することから、再結晶後の引張強さを知るための基準温度として採用している。
Sが0.25〜0.75の範囲外になると、10μm以下の結晶粒個数の割合が15%未満又は/且つ20μm以下の結晶粒個数の割合が15%未満となる。
予備焼鈍の温度、時間及び冷却速度は特に制約されず、Sを上記範囲に調整することが肝要である。一般的には、連続焼鈍炉を用いる場合には炉温400〜700℃で5秒間〜10分間の範囲、バッチ焼鈍炉を用いる場合には炉温350〜600℃で30分間〜20時間の範囲で行われる。
なお、軟化度Sの0.25〜0.75への調整は、次の手順により行うことができる。
(1)予備焼鈍前の材料の引張り試験強さ(σ0)を測定する。
(2)予備焼鈍前の材料を900℃で焼鈍する。具体的には、熱電対を取り付けた材料を950℃の管状炉に挿入し、熱電対で測定される試料温度が900℃に到達したときに、試料を炉から取り出して水冷する。
(3)上記900℃焼鈍後の材料の引張強さ(σ900)を求める。
(4)例えば、σ0が800MPa、σ900が300MPaの場合、軟化度0.25及び0.75に相当する引張強さは、それぞれ675MPa及び425MPaである。
(5)焼鈍後の引張強さが425〜675MPaとなるように、焼鈍条件を決定する。
なお、上記工程(2)における「熱電対で測定される試料温度が900℃に到達したときに、試料を炉から取り出して水冷する」は、具体的には、例えば試料を炉内でワイヤーに吊しておき、900℃に到達した時点でワイヤーを切断して下方に設けておいた水槽内に落とすことで水冷するものや、試料温度が900℃に到達した直後に手作業により炉内から素早く取り出して水槽に漬けること等により行う。
上記焼鈍の後、溶体化処理に先立ち、加工度Rを7〜50%とする第二の冷間圧延を行う。加工度R(%)は、
R=(t0−t)/t0×100
(t0:圧延前の板厚、t:圧延後の板厚)
で定義する。
加工度Rがこの範囲から外れると10μm以下の結晶粒個数の割合が15%未満又は/且つ20μm以下の結晶粒個数の割合が15%未満となる。
さらに、10μm以下の結晶粒個数の割合を15%以上に制御するために、第二の冷間圧延の歪速度を2×10-4(1/秒)以下に制御する。本発明の歪速度とは、圧延速度/ロール接触弧長として特定され、歪速度を低下させるためには、圧延速度を遅くする、圧延のパス回数を増やしロール接触弧長を長くする等が効果的である。歪速度の下限値は、結晶粒径の点からは制限されないが、1×10-5(1/秒)を下回るような圧延を行うと、その圧延時間が長く工業的には好ましくない。一般的な工業における圧延の歪速度は4×10-4(1/秒)以上である。
本発明に係る合金の製造方法を工程順に列記すると次のようになる。
(1)インゴットの鋳造
(2)熱間圧延(温度800〜1000℃、厚み5〜20mm程度まで)
(3)冷間圧延(加工度30〜99%)
(4)予備焼鈍(軟化度S=0.25〜0.75)
(5)冷間圧延(加工度7〜50%、歪速度2×10-4(1/秒)以下)
(6)溶体化処理(700〜900℃で5〜300秒間)
(7)冷間圧延(加工度1〜60%)
(8)時効処理(350〜550℃で2〜20時間)
(9)冷間圧延(加工度1〜50%)
(10)歪取り焼鈍(300〜700℃で5秒〜10時間)
ここで、冷間圧延(3)の加工度は30〜99%とすることが好ましい。予備焼鈍(4)で部分的に再結晶粒を生成させるためには、冷間圧延(3)で歪を導入しておく必要があり、30%以上の加工度で有効な歪が得られる。一方、加工度が99%を超えると、圧延材のエッジ等に割れが発生し、圧延中の材料が破断することがある。
冷間圧延(7)及び(9)は高強度化のために任意に行うものであり、圧延加工度の増加とともに強度が増加する反面、曲げ性が低下する。冷間圧延(7)及び(9)の加工度によらず、本発明の効果は得られる。ただし、冷間圧延(7)及び(9)におけるそれぞれの加工度が上記上限値を超えることは曲げ性の点から好ましくなく、それぞれの加工度が上記下限値を下回ることは高強度化の効果の点から好ましくない。
歪取り焼鈍(10)は、冷間圧延(9)を行う場合にこの冷間圧延で低下するばね限界値等を回復させるために任意に行うものである。歪取り焼鈍(10)の有無に関わらず、本発明の効果は得られる。歪取り焼鈍(10)は行ってもよいし行わなくてもよい。
なお、工程(2)、(6)及び(8)については、Cu−Ni−Si系合金の一般的な製造条件を選択すればよい。
本発明に係るCu−Ni−Si系合金は種々の伸銅品、例えば板、条に加工することができ、更に、本発明に係るCu−Ni−Si系合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ等の電子機器部品等に使用することができる。
また、本発明に係るCu−Ni−Si系合金の最終板厚(製品板厚)は特に限定されないが、一般的に上記製品用途の場合、0.05〜1.0mmである。
(4) Manufacturing method As a manufacturing method of this invention, first, raw materials, such as electrolytic copper, Ni, Si, are melt | dissolved in a melting furnace, and the molten metal of a desired composition is obtained. Then, this molten metal is cast into an ingot. Thereafter, strips having desired thickness and characteristics in the order of hot rolling, first cold rolling, heat treatment (pre-annealing) , second cold rolling, solution treatment, aging treatment, and third cold rolling. And finish in foil. After heat treatment (pre-annealing) , solution treatment, and aging treatment, pickling or polishing of the surface may be performed in order to remove the surface oxide film generated during heating. The order of the aging treatment and the third cold rolling may be switched. In order to increase the strength, cold rolling may be performed between the solution treatment and aging. Furthermore, strain relief annealing may be performed after the third cold rolling in order to recover the decrease in the spring limit value due to the third cold rolling.
In the present invention, it performed in order to obtain the crystal grains, prior to solution treatment, heat treatment (hereinafter, unified to the preliminary annealing.) And a relatively low degree of processing and the second cold rolling of low distortion rate. The preliminary annealing is performed under the condition that the softening degree S is 0.25 to 0.75.
FIG. 1 illustrates the relationship between the annealing temperature and the tensile strength when the Cu—Ni—Si based alloy according to the present invention is annealed at various temperatures. A sample with a thermocouple attached is placed in a furnace heated to a specified temperature, and when the sample temperature measured by the thermocouple reaches the specified temperature, the sample is removed from the furnace and cooled with water, and the tensile strength is measured. It is what. Recrystallization progresses when the sample arrival temperature is 500 to 700 ° C., and the tensile strength rapidly decreases. The gradual decrease in tensile strength on the high temperature side is due to the growth of recrystallized grains.
The softening degree S in the pre-annealing is defined by the following equation.
S = (σ 0 −σ) / (σ 0 −σ 900 )
Here, σ 0 is the tensile strength before pre-annealing, and σ and σ 900 are the tensile strength after pre-annealing and after annealing at 900 ° C., respectively. The temperature of 900 ° C is adopted as a reference temperature for knowing the tensile strength after recrystallization because the Cu-Ni-Si alloy according to the present invention is stably recrystallized when annealed at 900 ° C. Yes.
When S is outside the range of 0.25 to 0.75, the ratio of the number of crystal grains of 10 μm or less is less than 15% and / or the ratio of the number of crystal grains of 20 μm or less is less than 15%.
The temperature, time and cooling rate of the pre-annealing are not particularly limited, and it is important to adjust S to the above range. Generally, when a continuous annealing furnace is used, the furnace temperature ranges from 400 to 700 ° C. for 5 seconds to 10 minutes, and when a batch annealing furnace is used, the furnace temperature ranges from 350 to 600 ° C. for 30 minutes to 20 hours. Done in
The softening degree S can be adjusted to 0.25 to 0.75 by the following procedure.
(1) Measure the tensile test strength (σ 0 ) of the material before pre-annealing.
(2) The material before preliminary annealing is annealed at 900 ° C. Specifically, the material to which the thermocouple is attached is inserted into a tubular furnace at 950 ° C., and when the sample temperature measured by the thermocouple reaches 900 ° C., the sample is taken out of the furnace and cooled with water.
(3) Obtain the tensile strength (σ 900 ) of the material after annealing at 900 ° C.
(4) For example, when σ 0 is 800 MPa and σ 900 is 300 MPa, the tensile strengths corresponding to the softening degrees of 0.25 and 0.75 are 675 MPa and 425 MPa, respectively.
(5) The annealing conditions are determined so that the tensile strength after annealing is 425 to 675 MPa.
In the above step (2), “when the sample temperature measured by the thermocouple reaches 900 ° C., the sample is taken out of the furnace and water-cooled” is specifically, for example, the sample is wired in the furnace. When suspended, the wire is cut when it reaches 900 ° C. and dropped into a water tank provided below, or immediately after the sample temperature reaches 900 ° C. by hand from inside the furnace. Take it out quickly by immersing it in a water tank.
After the annealing, prior to the solution treatment, second cold rolling is performed with a workability R of 7 to 50%. Degree of processing R (%)
R = (t 0 −t) / t 0 × 100
(T 0 : thickness before rolling, t: thickness after rolling)
Define in.
When the workability R is out of this range, the ratio of the number of crystal grains of 10 μm or less is less than 15% and / or the ratio of the number of crystal grains of 20 μm or less is less than 15%.
Furthermore, in order to control the ratio of the number of crystal grains of 10 μm or less to 15% or more, the strain rate of the second cold rolling is controlled to 2 × 10 −4 (1 / second) or less. The strain rate of the present invention is specified as rolling speed / roll contact arc length, and in order to lower the strain rate, it is effective to slow the rolling speed, increase the number of rolling passes, and lengthen the roll contact arc length. Is. The lower limit of the strain rate is not limited from the viewpoint of the crystal grain size, but rolling that is less than 1 × 10 −5 (1 / second) is not industrially preferable because the rolling time is long. The strain rate of rolling in a general industry is 4 × 10 −4 (1 / second) or more.
It is as follows when the manufacturing method of the alloy which concerns on this invention is listed in process order.
(1) Ingot casting (2) Hot rolling (temperature 800-1000 ° C, thickness 5-20mm)
(3) Cold rolling (working degree 30-99%)
(4) Pre-annealing (degree of softening S = 0.25 to 0.75)
(5) Cold rolling (working degree 7 to 50%, strain rate 2 × 10 −4 (1 / second) or less)
(6) Solution treatment (700 to 900 ° C. for 5 to 300 seconds)
(7) Cold rolling (working degree 1-60%)
(8) Aging treatment (2 to 20 hours at 350 to 550 ° C.)
(9) Cold rolling (working degree 1-50%)
(10) Strain relief annealing (at 300 to 700 ° C. for 5 seconds to 10 hours)
Here, it is preferable that the workability of cold rolling (3) is 30 to 99%. In order to generate recrystallized grains partially by pre-annealing (4), it is necessary to introduce strain by cold rolling (3), and effective strain can be obtained at a workability of 30% or more. On the other hand, if the degree of work exceeds 99%, cracks may occur at the edges of the rolled material and the material being rolled may break.
Cold rolling (7) and (9) is optionally performed to increase the strength, and the strength increases as the degree of rolling process increases, but the bendability decreases. The effects of the present invention can be obtained regardless of the degree of cold rolling (7) and (9). However, it is not preferable from the viewpoint of bendability that the respective working degrees in the cold rolling (7) and (9) exceed the above upper limit value, and the fact that each working degree is below the above lower limit effect of increasing the strength. From the point of view, it is not preferable.
The strain relief annealing (10) is optionally performed in order to recover the spring limit value and the like which are lowered by the cold rolling when the cold rolling (9) is performed. The effect of the present invention can be obtained regardless of the presence or absence of strain relief annealing (10). The strain relief annealing (10) may or may not be performed.
In addition, what is necessary is just to select the general manufacturing conditions of a Cu-Ni-Si type alloy about process (2), (6), and (8).
The Cu—Ni—Si based alloy according to the present invention can be processed into various copper products, for example, plates and strips. Further, the Cu—Ni—Si based alloy according to the present invention includes a lead frame, a connector, and a pin. It can be used for electronic equipment parts such as terminals, relays and switches.
Moreover, the final plate thickness (product plate thickness) of the Cu—Ni—Si based alloy according to the present invention is not particularly limited, but is generally 0.05 to 1.0 mm in the case of the above product use.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

(実施例1)
Cu−2.7質量%Ni−0.58質量%Si−0.5質量%Sn−0.4質量%Zn合金を実験材料とし、予備焼鈍、軽圧延の加工度及び歪速度と各結晶粒個数の割合との関係、さらに各結晶粒個数の割合が製品の曲げ性及び応力緩和特性に及ぼす影響を検討した。
高周波溶解炉にてアルゴン雰囲気中で内径60mm、深さ200mmの黒鉛るつぼを用い電気銅2.5kgを溶解した。上記合金組成が得られるよう合金元素を添加し、溶湯温度を1300℃に調整した後、鋳鉄製の鋳型に鋳込み、厚さ30mm、幅60mm、長さ120mmインゴットを製造した。このインゴットを950℃で3時間加熱し、厚さ10mmまで熱間圧延した。熱間圧延板表面の酸化スケールをグラインダーで研削し除去した。研削後の厚みは9mmであった。その後、次の工程順で圧延および熱処理を施し、板厚0.15mmの製品試料を作製した。
(1)第一の冷間圧延:第二の冷間圧延の圧延加工度に応じ、所定の厚みまで冷間圧延した。
(2)予備焼鈍:所定温度に調整した電気炉に試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却(水冷)または試料を大気中に放置し冷却(空冷)の二通りの条件で冷却した。
(3)第二の冷間圧延:種々の圧延加工度及び歪速度で、厚み0.18mmまで冷間圧延を行った。
(4)溶体化処理:800℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。
(5)時効処理: 電気炉を用い450℃で5時間、Ar雰囲気中で加熱した。
(6)第三の冷間圧延: 0.18mmから0.15mmまで加工度17%で冷間圧延した。
(7)歪取り焼鈍: 400℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
Example 1
Cu-2.7 mass% Ni-0.58 mass% Si-0.5 mass% Sn-0.4 mass% Zn alloy was used as an experimental material, pre-annealing, light rolling workability and strain rate, and each crystal grain The relationship between the ratio of the number of grains and the influence of the ratio of the number of each crystal grain on the bendability and stress relaxation characteristics of the product were examined.
In a high frequency melting furnace, 2.5 kg of electrolytic copper was melted using a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm in an argon atmosphere. Alloy elements were added to obtain the above alloy composition, and the melt temperature was adjusted to 1300 ° C., and then cast into a cast iron mold to produce an ingot having a thickness of 30 mm, a width of 60 mm, and a length of 120 mm. This ingot was heated at 950 ° C. for 3 hours and hot-rolled to a thickness of 10 mm. The oxidized scale on the surface of the hot rolled plate was removed by grinding with a grinder. The thickness after grinding was 9 mm. Thereafter, rolling and heat treatment were performed in the following order of steps to produce a product sample having a thickness of 0.15 mm.
(1) First cold rolling: Cold rolling was performed to a predetermined thickness in accordance with the rolling degree of the second cold rolling.
(2) Pre-annealing: Insert the sample into an electric furnace adjusted to a predetermined temperature, hold it for a predetermined time, then place the sample in a water bath and cool (water cooling) or leave the sample in the atmosphere and cool (air cooling) Cooled under conditions.
(3) Second cold rolling: Cold rolling was performed to a thickness of 0.18 mm at various rolling degrees and strain rates.
(4) Solution treatment: The sample was inserted into an electric furnace adjusted to 800 ° C. and held for 10 seconds, and then the sample was placed in a water bath and cooled.
(5) Aging treatment: Heated in an Ar atmosphere at 450 ° C. for 5 hours using an electric furnace.
(6) Third cold rolling: Cold rolling was performed at a workability of 17% from 0.18 mm to 0.15 mm.
(7) Strain relief annealing: The sample was inserted into an electric furnace adjusted to 400 ° C. and held for 10 seconds, and then the sample was left in the air and cooled.

予備焼鈍後の試料および製品試料(この場合は歪取り焼鈍上がり)について、次の評価を行った。
(予備焼鈍での軟化度評価)
予備焼鈍前および予備焼鈍後の試料につき、引張試験機を用いてJIS Z 2241に準拠し圧延方向と平行に引張強さを測定し、それぞれの値をσ0およびσTとした。また、900℃焼鈍試料を前記手順(950℃の炉に挿入し試料が900℃に到達したときに水冷)で作製し、圧延方向と平行に引張強さを同様に測定しσ900を求めた。σ0、σT、σ900から、軟化度STを求めた。
T=(σ0−σT)/(σ0−σ900
The following evaluation was performed on the sample after the pre-annealing and the product sample (in this case, the strain relief annealing was completed).
(Evaluation of softening degree in preliminary annealing)
About the sample before pre-annealing and after pre-annealing, the tensile strength was measured in parallel with the rolling direction according to JIS Z 2241 using a tensile tester, and the respective values were set as σ 0 and σ T. In addition, a 900 ° C. annealed sample was prepared by the above procedure (water cooling when the sample reached 900 ° C. when inserted in a 950 ° C. furnace), and the tensile strength was measured in parallel with the rolling direction to obtain σ 900 . . The softening degree S T was determined from σ 0 , σ T , and σ 900 .
S T = (σ 0 −σ T ) / (σ 0 −σ 900 )

(製品の結晶粒個数及び結晶粒径測定)
圧延方向に平行な断面の組織を、エッチング(水−NH3(40vol%)−H22(0.6vol%))により現出させ、キーエンス社製デジタルマイクロスコープ付属の画像解析装置を使用して、20000μm2内に含まれる結晶粒の個数及び各結晶粒の面積を測定した。そして、各結晶粒を正円とみなして、面積から直径を算出し、これを結晶粒径とした。ただし、20000μm2内に完全に含まれていない結晶粒は測定から除外した。
(Measurement of crystal grain number and crystal grain size of product)
The structure of the cross section parallel to the rolling direction is revealed by etching (water-NH 3 (40 vol%)-H 2 O 2 (0.6 vol%)), and an image analysis apparatus attached to a digital microscope manufactured by Keyence Corporation is used. Then, the number of crystal grains contained in 20000 μm 2 and the area of each crystal grain were measured. Each crystal grain was regarded as a perfect circle, the diameter was calculated from the area, and this was used as the crystal grain diameter. However, crystal grains not completely contained within 20000 μm 2 were excluded from the measurement.

(製品の引張試験)
引張試験機を用いてJIS Z 2241に準拠し圧延方向と平行に引張試験を行い、応力−歪曲線を得た。この曲線より引張強さおよび0.2%耐力を求めた。
(Product tensile test)
A tensile test was performed in parallel with the rolling direction in accordance with JIS Z 2241 using a tensile tester to obtain a stress-strain curve. From this curve, tensile strength and 0.2% yield strength were determined.

(製品の曲げ試験)
圧延方向に対して平行方向にJIS H 3130に記載されたW曲げ試験(曲げ半径0.075mm)を行った後、曲げ表面を観察し、日本伸銅協会の規格であるJBMA T307に記載された評価基準に従い、曲げ加工性の評価を行った。評価基準は、Aがシワなし、Bがシワ小、Cがシワ大、Dが割れ小、Eが割れ大である。
(Product bending test)
After performing the W bending test (bending radius 0.075 mm) described in JIS H 3130 in a direction parallel to the rolling direction, the bending surface was observed and described in JBMA T307, which is a standard of the Japan Copper and Brass Association. Bending workability was evaluated according to the evaluation criteria. The evaluation criteria are A for no wrinkles, B for small wrinkles, C for large wrinkles, D for small cracks, and E for large cracks.

(製品の応力緩和試験)
幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行となるように採取した。図2のように、l=25mmの位置を作用点として、試験片にy0のたわみを与え、0.2%耐力の80%に相当する応力(σ0)を負荷した。y0は次式より求めた。
0=(2/3)・l2・σ0/(E・T)
ここで、Eはヤング率であり、Tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図3のように永久変形量(高さ)yを測定し、応力緩和率(%)はy/y0×100より算出した。
表1に試験条件及び評価結果を示す。
(Product stress relaxation test)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 2, with the position of l = 25 mm as the working point, the test piece was given a deflection of y 0 and a stress (σ 0 ) corresponding to 80% of the 0.2% proof stress was applied. y 0 is determined from the following equation.
y 0 = (2/3) · l 2 · σ 0 / (E · T)
Here, E is Young's modulus and T is the thickness of the sample. After unloading after heating at 150 ° C. for 1000 hours, the amount of permanent deformation (height) y was measured as shown in FIG. 3, and the stress relaxation rate (%) was calculated from y / y 0 × 100.
Table 1 shows test conditions and evaluation results.

Figure 0006246454
Figure 0006246454

発明例は、本発明が規定する条件で製造したものであり、各結晶粒径の結晶粒個数の割合が本発明の規定を満たし、曲げ性の評価がB以上及び応力緩和率が20%以下と良好な曲げ加工性及び応力緩和特性が得られた。
比較例1は、予備焼鈍での軟化度が0.25未満になったため、20μm以上の結晶粒個数の割合が15%未満となり応力緩和特性が悪かった。比較例2は、予備焼鈍での軟化度が0.75を超えたため、10μm以下の結晶粒個数の割合及び20μm以上の結晶粒個数の割合が15%未満となり、曲げ加工性及び応力緩和特性が悪かった。比較例3は、第二圧延の加工度が7%未満となったため、10μm以下の結晶粒個数の割合及び20μm以上の結晶粒個数の割合が15%未満となり、曲げ加工性及び応力緩和特性が悪かった。比較例4は、第二圧延の加工度が50%を超えたため、20μm以上の結晶粒個数の割合が15%未満となり応力緩和特性が悪かった。比較例5は、第二圧延の歪速度が本発明の規定から外れたものであり、10μm以下の結晶粒個数の割合が15%未満となり曲げ加工性は悪かった。
なお、比較例5は特許文献3が推奨する条件の範囲で行われたものであった。
Inventive examples were manufactured under the conditions specified by the present invention, the ratio of the number of crystal grains of each crystal grain size satisfied the present invention, the evaluation of bendability was B or more, and the stress relaxation rate was 20% or less. Good bending workability and stress relaxation characteristics were obtained.
In Comparative Example 1, since the degree of softening in the preliminary annealing was less than 0.25, the ratio of the number of crystal grains of 20 μm or more was less than 15%, and the stress relaxation characteristics were poor. In Comparative Example 2, since the degree of softening in the pre-annealing exceeded 0.75, the ratio of the number of crystal grains of 10 μm or less and the ratio of the number of crystal grains of 20 μm or more were less than 15%, and bending workability and stress relaxation characteristics were improved. It was bad. In Comparative Example 3, the degree of workability of the second rolling was less than 7%, so that the ratio of the number of crystal grains of 10 μm or less and the ratio of the number of crystal grains of 20 μm or more were less than 15%, and the bending workability and stress relaxation characteristics were improved. It was bad. In Comparative Example 4, since the workability of the second rolling exceeded 50%, the ratio of the number of crystal grains of 20 μm or more was less than 15%, and the stress relaxation characteristics were poor. In Comparative Example 5, the strain rate of the second rolling deviated from the definition of the present invention, and the ratio of the number of crystal grains of 10 μm or less was less than 15%, and the bending workability was poor.
Note that Comparative Example 5 was performed within the range of conditions recommended by Patent Document 3.

(実施例2)
実施例1で示した曲げ性及び応力緩和特性の改善効果が、異なる成分および製造条件のCu−Ni−Si合金でも得られることを検証した結果を示す。
実施例1と同様の方法で鋳造、熱間圧延および表面研削を行い、表2の成分を有する厚み9mmの板を得た。この板に対し次の工程順で圧延および熱処理を施し、表2に示す板厚の製品試料を得た。
(1)第一の冷間圧延:第二の冷間圧延の圧延加工度に応じ、所定の厚みまで冷間圧延した。
(2)予備焼鈍:所定温度に調整した電気炉に、試料を挿入し、所定時間保持した後、試料を水槽に入れ冷却(水冷)または試料を大気中に放置し冷却(空冷)のニ通りの条件で冷却した。
(3)第二の冷間圧延:種々の圧延加工度及び歪速度で、厚み0.18mmまで冷間圧延を行った。
(4)溶体化処理:種々の温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。
(5)時効処理:電気炉を用い所定温度で5時間、Ar雰囲気中で加熱した。該温度は時効後の引張強さが最大になるように選択した。
(6)第三の冷間圧延:0.18mmから0.15mmまで加工度17%で冷間圧延した。
(7)歪取り焼鈍:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
予備焼鈍後の試料および製品試料について、実施例1と同様の評価を行った。
表2及び表3に、試験条件及び評価結果を示す。歪取り焼鈍を行わなかった場合は、その温度の欄に「なし」と表記している。
(Example 2)
The result which verified that the improvement effect of the bendability and the stress relaxation characteristic shown in Example 1 was obtained also with the Cu-Ni-Si alloy of a different component and manufacturing conditions is shown.
Casting, hot rolling and surface grinding were performed in the same manner as in Example 1 to obtain a 9 mm thick plate having the components shown in Table 2. This plate was subjected to rolling and heat treatment in the following process order to obtain a product sample having a plate thickness shown in Table 2.
(1) First cold rolling: Cold rolling was performed to a predetermined thickness in accordance with the rolling degree of the second cold rolling.
(2) Pre-annealing: Insert a sample into an electric furnace adjusted to a predetermined temperature, hold it for a predetermined time, and then place the sample in a water bath for cooling (water cooling) or leaving the sample in the atmosphere for cooling (air cooling) It cooled in the conditions of.
(3) Second cold rolling: Cold rolling was performed to a thickness of 0.18 mm at various rolling degrees and strain rates.
(4) Solution treatment: The sample was inserted into an electric furnace adjusted to various temperatures and held for 10 seconds, and then the sample was placed in a water bath and cooled.
(5) Aging treatment: Heating was performed in an Ar atmosphere using an electric furnace at a predetermined temperature for 5 hours. The temperature was selected to maximize the tensile strength after aging.
(6) Third cold rolling: cold rolled from 0.18 mm to 0.15 mm at a workability of 17%.
(7) Strain relief annealing: The sample was inserted into an electric furnace adjusted to a predetermined temperature and held for 10 seconds, and then the sample was left in the air and cooled.
Evaluation similar to Example 1 was performed about the sample after preliminary annealing, and a product sample.
Tables 2 and 3 show test conditions and evaluation results. When the strain relief annealing is not performed, “none” is written in the temperature column.

Figure 0006246454
Figure 0006246454





Figure 0006246454
Figure 0006246454

発明例は、本発明が規定する条件で製造したものであり、各結晶粒径の結晶粒個数の割合が本発明の規定を満たし、曲げ性の評価がB以上及び応力緩和率が20%以下と良好な曲げ加工性及び応力緩和特性が得られた。
一方、比較例6及び7は、予備焼鈍での軟化度が本発明の規定から外れたため、比較例6は20μm以上の結晶粒個数の割合が15%未満となり応力緩和特性が悪かった。比較例7は10μm以下の結晶粒個数の割合及び20μm以上の結晶粒個数の割合が15%未満となり、応力緩和特性が悪かった。比較例8及び9は第二圧延の加工度が本発明の規定から外れたため、いずれも10μm以下の結晶粒個数の割合及び20μm以上の結晶粒個数の割合が15%未満となり、応力緩和特性が悪かった。比較例10は、第二圧延の歪速度が本発明の規定から外れたため、10μm以下の結晶粒個数の割合が15%未満となり曲げ加工性は悪かった。比較例11は、NiおよびSi濃度が本発明の規定を下回ったものであり、その曲げ加工性及び応力緩和特性は良好であったが、0.2%耐力が500MPaにも達しなかった。
Inventive examples were manufactured under the conditions specified by the present invention, the ratio of the number of crystal grains of each crystal grain size satisfied the present invention, the evaluation of bendability was B or more, and the stress relaxation rate was 20% or less. Good bending workability and stress relaxation characteristics were obtained.
On the other hand, in Comparative Examples 6 and 7, the degree of softening in the pre-annealing was out of the definition of the present invention. Therefore, in Comparative Example 6, the ratio of the number of crystal grains of 20 μm or more was less than 15% and the stress relaxation characteristics were poor. Ratio of Comparative Example 7 ratio and 20μm or more crystal grains number in the following grain number 10μm is less than 15%, resulting in poor stress relaxation properties. In Comparative Examples 8 and 9 that the working ratio of the second rolling off the provision of the present invention, the ratio of the rate and 20μm or more crystal grains number of both 10μm following grain number is less than 15%, stress relaxation characteristics Was bad. In Comparative Example 10, the strain rate of the second rolling deviated from the definition of the present invention, so the ratio of the number of crystal grains of 10 μm or less was less than 15%, and the bending workability was poor. In Comparative Example 11, the Ni and Si concentrations were lower than those of the present invention, and the bending workability and stress relaxation characteristics were good, but the 0.2% proof stress did not reach 500 MPa.

Claims (6)

1.0〜4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、圧延平行断面における単位面積当たりの結晶粒個数に対して、結晶粒径が10μm以下の結晶粒個数の割合が15%以上、20μm以上の結晶粒個数の割合が15%以上である曲げ加工性及び応力緩和特性に優れたCu−Ni−Si系合金。   1.0-4.5 mass% Ni and 0.2-1.0 mass% Si are contained, the remainder consists of copper and unavoidable impurities, and with respect to the number of crystal grains per unit area in the rolled parallel section Cu-Ni-Si-based alloy having excellent bending workability and stress relaxation characteristics, wherein the ratio of the number of crystal grains having a grain size of 10 μm or less is 15% or more, and the ratio of the number of crystal grains having a grain size of 20 μm or more is 15% or more . Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005〜2.5質量%含有する請求項1に記載のCu−Ni−Si系合金。   The Cu- of Claim 1 which contains 0.005-2.5 mass% of 1 or more types in total among Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Co, Cr, and Ag. Ni-Si alloy. 1.0〜4.5質量%のNi及び0.2〜1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、前記インゴットを温度800〜1000℃で厚み5〜20mm程度まで熱間圧延した後、加工度30〜99%の冷間圧延を行い、軟化度0.25〜0.75の予備焼鈍を行った後、加工度7〜50%及び歪速度2×10-4(1/秒)以下の冷間圧延を行い、次いで、700〜900℃で5〜300秒間の溶体化処理を行った後、時効処理冷間圧延及び歪取り焼鈍の順で行う方法であり、
前記軟化度はSと表記したとき次式で示される請求項1又は2に記載のCu−Ni−Si系合金の製造方法:
S=(σ0−σ)/(σ0−σ900
(σ0は予備焼鈍前の引張強さであり、σ及びσ900はそれぞれ予備焼鈍後及び900℃で焼鈍後の引張強さである)。
An ingot containing 1.0 to 4.5% by mass of Ni and 0.2 to 1.0% by mass of Si, with the balance being made of copper and inevitable impurities is prepared. The ingot is heated at a temperature of 800 to 1000 ° C. After hot-rolling to a thickness of about 5 to 20 mm, cold-rolling with a working degree of 30 to 99%, pre-annealing with a softening degree of 0.25 to 0.75, and then a working degree of 7 to 50% and strain After performing cold rolling at a speed of 2 × 10 −4 (1 / second) or less and then performing solution treatment at 700 to 900 ° C. for 5 to 300 seconds, aging treatment , cold rolling and strain relief annealing are performed . is a way to do in the order of this,
The method for producing a Cu-Ni-Si-based alloy according to claim 1 or 2, wherein the softening degree is represented by the following formula when expressed as S:
S = (σ 0 −σ) / (σ 0 −σ 900 )
0 is the tensile strength before pre-annealing, and σ and σ 900 are the tensile strength after pre-annealing and after annealing at 900 ° C., respectively).
前記インゴットが、Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Co、Cr及びAgのうち1種以上を総量で0.005〜2.5質量%含有する請求項3に記載のCu−Ni−Si系合金の製造方法。   The said ingot contains 0.005-2.5 mass% in total of 1 or more types in Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Co, Cr, and Ag. The manufacturing method of the Cu-Ni-Si-type alloy of description. 請求項1又は2に記載の銅合金を備えた伸銅品。   A copper product comprising the copper alloy according to claim 1. 請求項1又は2に記載の銅合金を備えた電子機器部品。   The electronic device component provided with the copper alloy of Claim 1 or 2.
JP2011241269A 2011-11-02 2011-11-02 Cu-Ni-Si alloy and method for producing the same Active JP6246454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241269A JP6246454B2 (en) 2011-11-02 2011-11-02 Cu-Ni-Si alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241269A JP6246454B2 (en) 2011-11-02 2011-11-02 Cu-Ni-Si alloy and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016146513A Division JP2016211078A (en) 2016-07-26 2016-07-26 Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR

Publications (2)

Publication Number Publication Date
JP2013095977A JP2013095977A (en) 2013-05-20
JP6246454B2 true JP6246454B2 (en) 2017-12-13

Family

ID=48618252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241269A Active JP6246454B2 (en) 2011-11-02 2011-11-02 Cu-Ni-Si alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP6246454B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211078A (en) * 2016-07-26 2016-12-15 Jx金属株式会社 Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128292A (en) * 1982-01-26 1983-07-30 Furukawa Electric Co Ltd:The Thin strip of phosphorus copper brazing filler metal
JP2002038227A (en) * 2000-05-16 2002-02-06 Nippon Mining & Metals Co Ltd Phosphor bronze bar excellent in deep drawing and its production method
JP4610765B2 (en) * 2001-03-21 2011-01-12 株式会社神戸製鋼所 Hot-rollable phosphor bronze
JP5097970B2 (en) * 2006-07-24 2012-12-12 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP4357536B2 (en) * 2007-02-16 2009-11-04 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP5170881B2 (en) * 2007-03-26 2013-03-27 古河電気工業株式会社 Copper alloy material for electrical and electronic equipment and method for producing the same
JP4596490B2 (en) * 2008-03-31 2010-12-08 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5367999B2 (en) * 2008-03-31 2013-12-11 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy for electronic materials
CN102549180A (en) * 2009-09-28 2012-07-04 Jx日矿日石金属株式会社 Cu-Ni-Si-Co copper alloy for electronic material and process for producing same
JP5448763B2 (en) * 2009-12-02 2014-03-19 古河電気工業株式会社 Copper alloy material
CN102695811B (en) * 2009-12-02 2014-04-02 古河电气工业株式会社 Copper alloy sheet and process for producing same
JP5117604B1 (en) * 2011-08-29 2013-01-16 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same

Also Published As

Publication number Publication date
JP2013095977A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP6196435B2 (en) Titanium copper and method for producing the same
JP5619389B2 (en) Copper alloy material
JP5039862B1 (en) Corson alloy and manufacturing method thereof
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP2013104082A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
TWI467035B (en) Carbene alloy and its manufacturing method
WO2013069376A1 (en) Cu-co-si-based alloy and method for producing same
JP6345290B1 (en) Copper alloy strip with improved dimensional accuracy after press working
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP4130593B2 (en) High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
WO2013121620A1 (en) Corson alloy and method for manufacturing same
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2021046589A (en) Copper alloy, drawn copper article and electronic apparatus component
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171115

R150 Certificate of patent or registration of utility model

Ref document number: 6246454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250