JP5619389B2 - Copper alloy material - Google Patents

Copper alloy material Download PDF

Info

Publication number
JP5619389B2
JP5619389B2 JP2009182593A JP2009182593A JP5619389B2 JP 5619389 B2 JP5619389 B2 JP 5619389B2 JP 2009182593 A JP2009182593 A JP 2009182593A JP 2009182593 A JP2009182593 A JP 2009182593A JP 5619389 B2 JP5619389 B2 JP 5619389B2
Authority
JP
Japan
Prior art keywords
copper alloy
copper
alloy material
standard deviation
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009182593A
Other languages
Japanese (ja)
Other versions
JP2010059543A (en
Inventor
亮佑 松尾
亮佑 松尾
邦照 三原
邦照 三原
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009182593A priority Critical patent/JP5619389B2/en
Publication of JP2010059543A publication Critical patent/JP2010059543A/en
Application granted granted Critical
Publication of JP5619389B2 publication Critical patent/JP5619389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

本発明は、電気電子部品に好適に用いられる銅合金材料に関する。   The present invention relates to a copper alloy material suitably used for electrical and electronic parts.

これまで、電子・電気機器用のコネクタ、端子、リレー、スイッチなどには黄銅(C2
6000)やリン青銅(C51910、C52120、C52100)ならびにベリリウ
ム銅(C17200、C17530)やコルソン銅(C70250)などが使用されてき
た。
Until now, brass (C2) has been used for connectors, terminals, relays, switches, etc. for electronic and electrical equipment.
6000), phosphor bronze (C51910, C52120, C52100), beryllium copper (C17200, C17530), corson copper (C70250), and the like have been used.

近年、これらが使用される電子・電気機器で使用される電流の周波数が高くなり、材料
にも高導電性が要求されるようになっている。そこで、元々、黄銅やリン青銅は導電性が
低く、コルソン銅はコネクタ材として、中導電性(導電率が約40%IACS)を示すが
、さらに高導電性が求められている。また、ベリリウム銅は高価であることも周知である
。一方、高導電性である純銅(C11000)やスズ入銅(C14410)などは強度が
低い欠点がある。そこで、従来のコルソン銅を越える導電性と同等の引張強度、曲げ加工
性を備えた銅合金が所望されている。
ここで、「Cxxxxx」とはCDA(Copper Development As
sociation)で規定された銅合金の種類であり、%IACSは材料の導電性を示
す単位であって、「IACS」とは“International Annealed
Copper Standard”の略である。
In recent years, the frequency of currents used in electronic and electrical equipment in which these are used has increased, and high conductivity has been required for materials. Therefore, originally, brass and phosphor bronze have low conductivity, and Corson copper shows medium conductivity (conductivity of about 40% IACS) as a connector material, but higher conductivity is required. It is also well known that beryllium copper is expensive. On the other hand, pure copper (C11000), tin-containing copper (C14410), and the like, which have high conductivity, have a drawback of low strength. Therefore, there is a demand for a copper alloy having tensile strength and bending workability equivalent to those of electrical conductivity exceeding conventional Corson copper.
Here, “Cxxxx” means CDA (Copper Development As
sociation), and% IACS is a unit indicating conductivity of a material, and “IACS” is “International Annealed”.
Abbreviation for “Copper Standard”.

特に、近年の電子機器部品では、機器の小型化に伴い複雑かつ厳しい曲げ加工がされた
コネクタや端子が多く見られる。これは、小型化に伴いコネクタのサイズもダウンサイズ
するが、接触の信頼性を保つためにはできるだけ長いコンタクト長をとりたいためである
。このような設計思想を持つコネクタや端子をベローズ(蛇腹)曲げコネクタまたはベロ
ーズ曲げ端子と呼ぶことが多い。つまり、小さな部品の中に複雑に曲げられた端子・コネ
クタが装備・設置される要求が高い。一方で、小型化に伴い使用されるコネクタ・端子の
材料はより薄くなる。これは、軽量化、省資源の観点からも進んでいる。薄い材料は厚い
材料と比べて、同じ接圧を保つためには強度が高いことが求められる。
In particular, in recent electronic device parts, there are many connectors and terminals that have been subjected to complicated and severe bending as the device is downsized. This is because the size of the connector is downsized as the size is reduced, but in order to maintain the reliability of the contact, it is desired to have a contact length as long as possible. Connectors and terminals having such a design concept are often referred to as bellows (bellows) bending connectors or bellows bending terminals. In other words, there is a high demand for installing and installing terminals and connectors bent in a complicated manner in small parts. On the other hand, the material of the connector and terminal used with size reduction becomes thinner. This is also progressing from the viewpoint of weight reduction and resource saving. Thin materials are required to have higher strength than thick materials in order to maintain the same contact pressure.

銅合金材料の強度を高める方法として、固溶強化、加工強化、析出強化などの様々な強
化方法がある。銅合金材料において、導電性と強度は一般に相反関係にあるが、銅合金材
料の導電性を低下させずに強度を高める方法として、析出強化が有望であることが知られ
ている。この析出強化とは析出を起こす元素を添加した合金を高温熱処理して、銅母相へ
それらの元素を固溶させた後、その固溶させた際の温度より低温で熱処理して、固溶させ
た元素を析出させる手法である。例えば、ベリリウム銅、コルソン銅などはその強化方法
を採用している。
As a method for increasing the strength of the copper alloy material, there are various strengthening methods such as solid solution strengthening, work strengthening, and precipitation strengthening. In copper alloy materials, conductivity and strength are generally in a reciprocal relationship, but it is known that precipitation strengthening is promising as a method of increasing strength without reducing the conductivity of copper alloy materials. This precipitation strengthening is a high temperature heat treatment of an alloy added with an element that causes precipitation, so that these elements are dissolved in the copper matrix phase, and then heat treated at a temperature lower than the temperature at which the solid solution is formed. This is a technique for precipitating the deposited elements. For example, beryllium copper, corson copper, etc. employ the strengthening method.

ところで、銅合金材料においては、導電性と強度との関係のほか、曲げ加工性と強度と
の関係も相反する関係にある。強度を高めるためには最終の冷間圧延率を高めることが効
果的であるとされるが、冷間圧延率を高めると曲げ加工性が著しく劣化する傾向がある。
これまで、析出型の銅合金として、ベリリウム銅、コルソン銅、チタン銅などが、曲げ加
工性と強度のバランスがよいとされてきた。しかし、ベリリウム銅は添加元素であるベリ
リウムが環境負荷物質とされており、代替材料が求められている。また、コルソン銅やチ
タン銅は一般に50%IACS以上の導電性を有しない。50%IACS以上の高い導電
性の要求される用途としては、例えば、高電流が印加されるバッテリー端子やリレー接点
などがある。また、一般に導電率が高い材料は熱伝導特性も優れているため、放熱性を要
求されるCPU(集積演算素子)のソケットやヒートシンクなどの材料にも高い導電性の
要求がある。特に、最近のハイブリッド車や高速処理が行われるCPUでは、高い導電性
と高い強度を備えた材料が要求されている。
By the way, in the copper alloy material, in addition to the relationship between conductivity and strength, the relationship between bending workability and strength is also in an opposite relationship. In order to increase the strength, it is considered effective to increase the final cold rolling rate, but when the cold rolling rate is increased, the bending workability tends to be remarkably deteriorated.
Until now, beryllium copper, corson copper, titanium copper and the like have been considered to have a good balance between bending workability and strength as precipitation-type copper alloys. However, for beryllium copper, beryllium, which is an additive element, is regarded as an environmentally hazardous substance, and an alternative material is required. Corson copper and titanium copper generally do not have a conductivity of 50% IACS or higher. Applications requiring high conductivity of 50% IACS or higher include, for example, battery terminals and relay contacts to which a high current is applied. In general, a material having high conductivity has excellent heat conduction characteristics, so that a material such as a CPU (integrated arithmetic element) socket or heat sink that requires heat dissipation also has high conductivity. Particularly in recent hybrid vehicles and CPUs that perform high-speed processing, materials having high conductivity and high strength are required.

このような背景から、強度、曲げ加工性、導電性(熱伝導性)を加味し、コバルト(C
o)とシリコン(Si)からなる金属間化合物を利用した銅合金が注目されつつある。C
oとSiとを必須に含む銅合金が、以下のとおり知られている。
From such a background, cobalt (C) is added in consideration of strength, bending workability, and conductivity (thermal conductivity).
A copper alloy using an intermetallic compound composed of o) and silicon (Si) is attracting attention. C
A copper alloy that essentially contains o and Si is known as follows.

特許文献1には、熱間加工性を改善するため、CoとSiのほか、Zn(亜鉛)、Mg
(マグネシウム)、S(硫黄)を必須に含む銅合金が開示されている。
特許文献2には、CoとSiのほか、Mg、Zn、Sn(スズ)を含む合金が開示され
ている。
特許文献3には、CoとSiのほか、Sn、Znを必須とする合金が開示されている。
特許文献4には、リードフレーム用途の析出強化型合金のCu−Co−Si系合金が開
示されている記載されている。
特許文献5には、析出する介在物の大きさが2μm以下であるCu−Co−Si系合金
が開示されている。
特許文献6には、CoSi化合物を析出させたCu−Co−Si系合金が開示されて
いる。
In Patent Document 1, in order to improve hot workability, in addition to Co and Si, Zn (zinc), Mg
A copper alloy that essentially contains (magnesium) and S (sulfur) is disclosed.
Patent Document 2 discloses an alloy containing Mg, Zn, and Sn (tin) in addition to Co and Si.
Patent Document 3 discloses an alloy containing Sn and Zn in addition to Co and Si.
Patent Document 4 describes that a Cu—Co—Si alloy, which is a precipitation-strengthened alloy for lead frames, is disclosed.
Patent Document 5 discloses a Cu—Co—Si based alloy in which the size of inclusions to be precipitated is 2 μm or less.
Patent Document 6 discloses a Cu—Co—Si based alloy in which a Co 2 Si compound is precipitated.

特開昭61−87838号公報JP-A-61-87838 特開昭63−307232号公報JP-A 63-307232 特開平02−129326号公報Japanese Patent Laid-Open No. 02-129326 特開平02−277735号公報Japanese Patent Laid-Open No. 02-277735 特開2008−88512号公報JP 2008-88512 A 特開2008−56977号公報JP 2008-55977 A

しかし、各特許文献に記載された技術は、いずれも強度、曲げ加工性、導電性(熱伝導
性)のすべてを高いレベルで満足するものではない。また、特性のばらつきを抑制しよう
とするものでもない。
特許文献1は熱間加工性の改善を目的としており、さらに強度や導電性についての記載
がない。
特許文献2には、再結晶処理を行うとの記載がなく、曲げ加工性は悪いと考えられる。
特許文献3には、その実施例に導電率は30%IACS以下と比較的低い値が示されて
いる。
特許文献4には、析出強化型合金と記載されているが具体的な化合物やそのサイズが記
載されていない。また、再結晶処理を行うとの記載がなく、曲げ加工性は悪いと考えられ
る。
特許文献5および特許文献6には、材料の内側曲げ半径をR、板厚をtとした際に、R
/t=1の条件で曲げ加工性を評価した例があるが、特許文献5および特許文献6には金
属組織の具体的な記載はなく、特性のばらつきを抑制しようとするものでもない。すなわ
ち、今後要求される曲げ加工性には十分に対応できないと考えられる。
However, none of the techniques described in each patent document satisfies all of strength, bending workability, and conductivity (thermal conductivity) at a high level. Further, it is not intended to suppress the variation in characteristics.
Patent Document 1 aims to improve hot workability, and there is no description about strength and conductivity.
In Patent Document 2, there is no description that recrystallization treatment is performed, and it is considered that bending workability is poor.
Patent Document 3 shows a comparatively low value of conductivity of 30% IACS or less in the embodiment.
Patent Document 4 describes a precipitation strengthened alloy, but does not describe a specific compound or its size. Moreover, there is no description that the recrystallization process is performed, and the bending workability is considered to be poor.
In Patent Document 5 and Patent Document 6, when the inner bending radius of the material is R and the thickness is t, R
Although there is an example in which bending workability is evaluated under the condition of / t = 1, Patent Document 5 and Patent Document 6 do not have a specific description of the metal structure, and are not intended to suppress variation in characteristics. That is, it is considered that the bending workability required in the future cannot be sufficiently handled.

そこで、本発明は、高い導電性、高い強度、良好な曲げ加工性のすべてを満足するため
、Cu−Co−Si系銅合金の結晶粒径の値が所定範囲に制御された銅合金材料を提供す
ることを目的とする。
Therefore, the present invention provides a copper alloy material in which the value of the crystal grain size of the Cu-Co-Si-based copper alloy is controlled within a predetermined range in order to satisfy all of high conductivity, high strength, and good bending workability. The purpose is to provide.

本発明は、以下の事項を特徴とする。
(1)添加元素としてCo(コバルト)を0.7〜2.5質量%含有し、さらにSi(
ケイ素)をCoのSiに対する質量比(Co/Si)が3以上5以下となる範囲で含有し
、残部が銅および不可避不純物である銅合金材料であって、結晶粒径の算術平均が3〜2
0μm、標準偏差が8μm以下であり、前記標準偏差が前記算術平均よりも小さいことを
特徴とする銅合金材料。
(2)添加元素としてCo(コバルト)を0.7〜2.5質量%含有し、さらにSi(
ケイ素)をCoのSiに対する質量比(Co/Si)が3以上5以下となる範囲で含有し
、さらに、Cr(クロム)を0.01〜1.0質量%、またはNi(ニッケル)を0.0
1〜1.0質量%、またはTi(チタン)を0.01〜0.1質量%含有し、残部が銅お
よび不可避不純物である銅合金材料であって、結晶粒径の算術平均が3〜20μm、標準
偏差が8μm以下であり、前記標準偏差が前記算術平均よりも小さいことを特徴とする銅
合金材料。

The present invention is characterized by the following matters.
(1) Containing 0.7 to 2.5% by mass of Co (cobalt) as an additive element;
Incorporated within a range of a mass ratio of silicon) to Si in the Co (Co / Si) is 3 to 5, the balance being a copper alloy material is copper and inevitable impurities, the arithmetic mean of the crystal grain size of 3 ~ 2
A copper alloy material characterized in that 0 μm, a standard deviation is 8 μm or less, and the standard deviation is smaller than the arithmetic mean.
(2) It contains 0.7 to 2.5% by mass of Co (cobalt) as an additive element, and further Si (
Silicon) in a range where the mass ratio of Co to Si (Co / Si) is 3 or more and 5 or less, and further 0.01 to 1.0 mass% of Cr (chromium) or 0 of Ni (nickel). .0
1 to 1.0 wt%, or Ti a (titanium) containing 0.01 to 0.1 wt%, the balance being a copper alloy material is copper and inevitable impurities, the arithmetic mean of the crystal grain size of 3 A copper alloy material having a standard deviation of ˜20 μm and a standard deviation of 8 μm or less, and the standard deviation being smaller than the arithmetic mean.

本発明により、強度、導電性、曲げ加工性に優れ、特性のばらつきが小さく、電気電子
機器用途に好適な銅合金材料を提供することができる。
According to the present invention, it is possible to provide a copper alloy material that is excellent in strength, conductivity, and bending workability, has small variations in characteristics, and is suitable for electrical and electronic equipment applications.

本発明の銅合金材料の好ましい実施の態様について、詳細に説明する。ここで、「銅合
金材料」とは、銅合金素材(ここでは形状の概念がない銅合金の原料を意味する)が、所
定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。また、「母
材の銅合金」とは形状の概念を含まない銅合金を意味する。
なお、銅合金材料の好ましい具体例として板材、条材について説明するが、銅合金材料
の形状は板材や条材に限られるものではない。
A preferred embodiment of the copper alloy material of the present invention will be described in detail. Here, “copper alloy material” means that a copper alloy material (which means a copper alloy material having no concept of shape here) has a predetermined shape (eg, plate, strip, foil, bar, wire, etc.) It means what has been processed. Further, the “base copper alloy” means a copper alloy not including the concept of shape.
In addition, although a board | plate material and a strip are demonstrated as a preferable specific example of copper alloy material, the shape of a copper alloy material is not restricted to a board | plate material or a strip.

本発明の銅合金材料は、必須の添加元素としてCo(コバルト)を0.7〜2.5質量
%含有し、Si(ケイ素)を、CoのSiに対する質量比(Co/Si)が3以上5以下
となる範囲で含有する銅合金材料である。この材料は、導電率を60%IACS以上、引
張強度を570MPa以上とすることができ、高導電率かつ高強度の要求を満足すること
ができる。本発明の銅合金材料の導電率は50%IACS以上が好ましい。より好ましく
は55%IACS以上、さらに好ましくは60%IACS以上であり、高い程好ましいが
、その上限は適度な引張強度を兼ね備える観点から、通常75%IACS程度である。ま
た、本発明の銅合金材料の引張強度は550MPa以上が好ましい。より好ましくは60
0MPa以上、さらに好ましくは750MPa以上であり、高い程好ましいが、その上限
は適度な導電性を兼ね備える観点から、通常900MPa程度である。
また、母材の銅合金の結晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であ
ることが、曲げ加工性の一層の向上のために有用である。なお、標準偏差は小さければ小
さいほどよく、結晶粒径の標準偏差は結晶粒径の算術平均より小さい値であることがより
好ましい。母材の銅合金の結晶粒径の算術平均および標準偏差が上記範囲にあることで、
曲げ応力(負荷された歪)を十分に分散させることができる。なお、曲げ加工性をさらに
高めたい場合には、母材の銅合金の結晶粒径の算術平均から標準偏差を引いた値が0μm
より大きいことが好ましく、標準偏差を算術平均で割った値が0.6以下であることがよ
り好ましく、0.4以下であることがさらに好ましい。なお、標準偏差を算術平均で割っ
た値の下限は0.2以上であることが現実的で、この値より小さくなると特性は向上する
が、実際の製造が困難になる傾向がある。
ここで、母材の銅合金の結晶粒径の算術平均および標準偏差を求める際の測定母数は1
00以上に設定することが好ましく、算術平均および標準偏差の測定母数は同一の値とす
ることがより好ましい。
The copper alloy material of the present invention contains 0.7 to 2.5 mass% of Co (cobalt) as an essential additive element, Si (silicon), and the mass ratio of Co to Si (Co / Si) is 3 or more. It is a copper alloy material contained in a range of 5 or less. This material can have a conductivity of 60% IACS or more and a tensile strength of 570 MPa or more, and can satisfy the demand for high conductivity and high strength. The electrical conductivity of the copper alloy material of the present invention is preferably 50% IACS or more. More preferably, it is 55% IACS or more, more preferably 60% IACS or more, and the higher the better, but the upper limit is usually about 75% IACS from the viewpoint of having an appropriate tensile strength. The tensile strength of the copper alloy material of the present invention is preferably 550 MPa or more. More preferably 60
The upper limit is preferably 0 MPa or higher, more preferably 750 MPa or higher, and the higher the better, but the upper limit is usually about 900 MPa from the viewpoint of combining moderate conductivity.
In addition, it is useful for further improving the bending workability that the arithmetic average of the crystal grain size of the base copper alloy is 3 to 20 μm and the standard deviation is 8 μm or less. The standard deviation is preferably as small as possible, and the standard deviation of the crystal grain size is more preferably smaller than the arithmetic average of the crystal grain size. The arithmetic mean and standard deviation of the crystal grain size of the base copper alloy are in the above range,
Bending stress (strain applied) can be sufficiently dispersed. In order to further improve the bending workability, the value obtained by subtracting the standard deviation from the arithmetic mean of the crystal grain size of the base copper alloy is 0 μm.
The value obtained by dividing the standard deviation by the arithmetic mean is more preferably 0.6 or less, and further preferably 0.4 or less. It is practical that the lower limit of the value obtained by dividing the standard deviation by the arithmetic average is 0.2 or more. When the value is smaller than this value, the characteristics are improved, but actual manufacturing tends to be difficult.
Here, the measurement parameter when calculating the arithmetic mean and standard deviation of the crystal grain size of the copper alloy of the base material is 1
It is preferable to set it to 00 or more, and it is more preferable that the measurement parameters of the arithmetic mean and the standard deviation are the same value.

曲げ加工性に関しては、引張強度が570MPa以上650MPa以下の場合は、R/
tの値が0.5以下、引張強度が650MPaを超えて700MPa以下の場合は、R/
tの値が1.0以下、引張強度が700MPaを超える場合は、R/tの値が1.5以下
であることが好ましい。ここで、R/tとは、日本伸銅協会技術標準「銅および銅合金薄
板条の曲げ加工性評価方法(JBMA T307)」に準拠した曲げ角度90°のW曲げ
試験を行った結果を意味し、圧延垂直方向に切り出した板材を所定の曲げ半径(R)の条
件下で曲げ試験を行って、その頂点にクラック(割れ)が生じない限界のRを求め、その
時の板厚(t)で規格化した値である。一般にR/tが小さいほど、曲げ加工性が良好で
あるとされる。本発明の電気電子部品用銅合金材料では、引張強度と曲げ加工性(R/t
)が、前記の関係を有するものが好ましい。また、曲げ加工性(R/t)の下限は0であ
る。
Regarding bending workability, when the tensile strength is 570 MPa or more and 650 MPa or less, R /
When the value of t is 0.5 or less and the tensile strength is more than 650 MPa and 700 MPa or less, R /
When the value of t is 1.0 or less and the tensile strength exceeds 700 MPa, the value of R / t is preferably 1.5 or less. Here, R / t means the result of a W-bending test at a bending angle of 90 ° in accordance with the Japan Copper and Brass Association technical standard “Evaluation method for bending workability of copper and copper alloy sheet strip (JBMA T307)”. Then, a plate material cut in the vertical direction of rolling is subjected to a bending test under the condition of a predetermined bending radius (R), and the limit R at which the crack does not occur at the apex is obtained, and the thickness (t) at that time This is the value normalized by. In general, the smaller the R / t, the better the bending workability. In the copper alloy material for electric and electronic parts of the present invention, the tensile strength and bending workability (R / t
) Having the above-mentioned relationship is preferable. Further, the lower limit of the bending workability (R / t) is zero.

以下、CoおよびSi以外の添加元素について説明する。
Fe、Cr、NiはCoと置換を行ってSiと化合物を形成し、強度向上に寄与する元
素である。Fe、Ni、Crは、Coの一部と置換して、(Co、χ)Si化合物(χ
はFe、Ni、Cr)を形成し、強度を向上させる働きがある。これらの元素の少なくと
も1種(各元素、任意の2種類の元素の組合せ、3種類全てのいずれでも良い)を合計で
0.01〜1.0質量%の範囲としている。0.01質量%以上であればその効果が顕著
に発揮され、合計で1.0質量%以下であれば、鋳造時に晶出を起こしたり、強度に寄与
しない金属間化合物を形成したりすることもなく、導電性低下などの影響もない。なお、
これらの元素は複合して添加しても、単独で添加してもほぼ同じような効果が見られるが
、Niを添加すると顕著な強度向上効果を示す。Fe、Ni、Crの添加量は、好ましく
はこれらの元素の少なくとも1種または2種以上の合計で0.05〜0.9質量%である
。なお、ZrやTiについても、Fe、Ni、Crとほぼ同様の効果を奏するが、Zrや
Tiは酸化しやすく、多量に添加すると製造中の材料に割れが発生することがあるので、
ZrおよびTiの添加量については、これらの元素の少なくとも1種または2種以上の合
計で0.01〜0.1質量%の範囲とすることが好ましい。
Hereinafter, additive elements other than Co and Si will be described.
Fe, Cr, and Ni are elements that contribute to strength improvement by forming a compound with Si by substitution with Co. Fe, Ni, and Cr are substituted with a part of Co to form a (Co, χ) 2 Si compound (χ
Forms Fe, Ni, Cr) and has the function of improving the strength. At least one of these elements (each element, a combination of any two kinds of elements may be any of the three kinds) may be in the range of 0.01 to 1.0 mass% in total. If it is 0.01% by mass or more, the effect is remarkably exhibited. If the total is 1.0% by mass or less, crystallization occurs during casting, or an intermetallic compound that does not contribute to strength is formed. There is no influence such as a decrease in conductivity. In addition,
Even if these elements are added in combination or added alone, almost the same effect is observed, but when Ni is added, a remarkable strength improvement effect is exhibited. The addition amount of Fe, Ni, and Cr is preferably 0.05 to 0.9% by mass in total of at least one or more of these elements. Zr and Ti also have almost the same effect as Fe, Ni and Cr, but Zr and Ti are easy to oxidize, and if added in a large amount, cracking may occur in the material being manufactured.
About the addition amount of Zr and Ti, it is preferable to set it as the range of 0.01-0.1 mass% in total of at least 1 sort (s) or 2 or more types of these elements.

Sn、Zn、Mg、Mnは銅母相に固溶して強化する特徴がある。その添加量がこれら
の元素の少なくとも1種または2種以上の合計で0.01質量%以上であれば効果を奏し
、1.0質量%以下であれば導電性を阻害することもない。好ましい添加量は0.05〜
0.2質量%である。本発明の銅合金材料における不可避不純物としては、第1または第
2の実施態様の銅合金材料と同様に、H、C、O、S等が挙げられる。
Sn, Zn, Mg, and Mn are characterized by solid solution in the copper matrix and strengthening. If the added amount is 0.01% by mass or more in total of at least one or more of these elements, the effect is obtained, and if it is 1.0% by mass or less, the conductivity is not hindered. A preferred addition amount is 0.05 to
0.2% by mass. Examples of the inevitable impurities in the copper alloy material of the present invention include H, C, O, and S, as in the copper alloy material of the first or second embodiment.

なお、Znには半田密着性を向上させる効果、Mnは熱間加工性を改善する効果もある
。また、Sn、Mgの添加は耐応力緩和特性の改善に効果がある。個々のSn、Mg添加
でもその効果は見られるが、同時に添加することにより、相乗的にその効果を発揮する元
素である。その添加量が、これらの元素の少なくとも1種のまたは2種以上の合計で0.
1質量%以上であれば効果を奏し、1.0質量%以下であれば導電性を阻害することもな
く、50%IACS以上の導電性が確保される。一方、SnとMgの添加比について、S
n/Mg≧1の場合には、耐応力緩和特性はさらに向上する。
Zn has the effect of improving solder adhesion, and Mn has the effect of improving hot workability. Addition of Sn and Mg is effective in improving the stress relaxation resistance. Although the effect can be seen even when individual Sn and Mg are added, it is an element that exhibits the effect synergistically when added simultaneously. The amount of addition is at least one of these elements or a total of two or more of these elements.
If it is 1% by mass or more, the effect is obtained, and if it is 1.0% by mass or less, conductivity is not hindered, and conductivity of 50% IACS or more is ensured. On the other hand, regarding the addition ratio of Sn and Mg, S
In the case of n / Mg ≧ 1, the stress relaxation resistance is further improved.

次に、本発明の銅合金材料を製造する工程の一例を説明する。
<溶解鋳造>
銅合金の原料となる銅、コバルト、ケイ素などを溶解し、鋳型に流し込んで10〜30
K/秒(Kは絶対温度を示す「ケルビン」である。以下同じ)の冷却速度で冷却しながら
鋳造し、銅合金鋳塊を得る。ここでは幅160mm、厚さ30mm、長さ180mmとな
るようにする。
<熱間圧延・面削・冷間圧延>
その後、この鋳塊を温度900〜1000℃で30分間〜60分間保持し、その後熱間
圧延によって厚さ12mmになるまで加工後、速やかに水冷却(急速冷却)にて焼入れを
施し、表面上の酸化皮膜除去のため、圧延された表面を片側1mm前後面削して約10m
mにした後、冷間圧延にて厚さ約0.1〜0.3mmとなるように加工する。
<再結晶熱処理>
この後、溶体化、再結晶させる目的で、温度800〜1025℃に保持されたソルトバ
ス(塩浴炉)内で一定時間(ここでは30秒間)再結晶熱処理を行い、水冷却で焼き入れ
を行う。再結晶熱処理の際、昇温速度はサンプルを板厚の異なったステンレス板にはさむ
ことで調整して熱処理を行う。このときの好ましい昇温速度は、温度300℃以上では1
0〜300K/秒である。また、好ましい冷却速度は、30〜200K/秒である。

<時効熱処理>
次に、時効析出させる目的で、温度525℃で120分間の時効熱処理を施した。その
際の室温から最高温度に到達するまでの昇温速度は3〜25K/分の範囲内にあり、降温
に際しては、析出に影響を与えると考えられる温度帯より十分低い温度である300℃ま
では炉内で1〜2K/分の範囲内で冷却を行う。
<仕上げ圧延(必要に応じて)>
時効熱処理が終了した銅合金材料に、0%〜40%(上限は好ましくは20%)の加工
率で最終の冷間圧延を施して仕上げ圧延材を得る。なお、仕上げ圧延は実施してもしなく
てもよい。加工率0%とは、仕上げ圧延を行わないことを意味する。
<歪取り焼鈍>
時効熱処理終了後(仕上げ圧延したものは仕上げ圧延終了後)に、必要に応じて歪取り
焼鈍を施す。
<工程の繰り返しについて>
再結晶熱処理と時効熱処理は、上記条件で2回以上繰り返してもよい。
Next, an example of the process for producing the copper alloy material of the present invention will be described.
<Melting casting>
Copper, cobalt, silicon, etc., which are raw materials for the copper alloy, are melted and poured into a mold, and 10-30
Casting is performed while cooling at a cooling rate of K / second (K is “Kelvin” indicating absolute temperature; the same applies hereinafter) to obtain a copper alloy ingot. Here, the width is 160 mm, the thickness is 30 mm, and the length is 180 mm.
<Hot rolling / facing / cold rolling>
Thereafter, this ingot is held at a temperature of 900 to 1000 ° C. for 30 to 60 minutes, and thereafter processed by hot rolling until the thickness becomes 12 mm, and then rapidly quenched with water cooling (rapid cooling), on the surface In order to remove the oxide film, the rolled surface is chamfered about 1 mm on one side and about 10 m
Then, it is processed to a thickness of about 0.1 to 0.3 mm by cold rolling.
<Recrystallization heat treatment>
Then, for the purpose of solution and recrystallization, recrystallization heat treatment is performed for a certain time (here, 30 seconds) in a salt bath (salt bath furnace) maintained at a temperature of 800 to 1025 ° C., and quenching is performed with water cooling. Do. During the recrystallization heat treatment, the temperature rise rate is adjusted by sandwiching the sample between stainless steel plates having different thicknesses. A preferable temperature increase rate at this time is 1 at a temperature of 300 ° C. or higher.
0 to 300 K / sec. Moreover, a preferable cooling rate is 30 to 200 K / sec.

<Aging heat treatment>
Next, an aging heat treatment was performed at a temperature of 525 ° C. for 120 minutes for the purpose of aging precipitation. In this case, the rate of temperature rise from room temperature to the maximum temperature is in the range of 3 to 25 K / min. When the temperature is lowered, the temperature is sufficiently lower than 300 ° C., which is sufficiently lower than the temperature range considered to affect precipitation. Performs cooling in the furnace within a range of 1 to 2 K / min.
<Finish rolling (if necessary)>
The copper alloy material after the aging heat treatment is subjected to final cold rolling at a processing rate of 0% to 40% (the upper limit is preferably 20%) to obtain a finished rolled material. Note that finish rolling may or may not be performed. A processing rate of 0% means that finish rolling is not performed.
<Strain relief annealing>
After finishing the aging heat treatment (finished rolling is after finishing rolling), if necessary, strain relief annealing is performed.
<Repeating process>
The recrystallization heat treatment and the aging heat treatment may be repeated twice or more under the above conditions.

基本的には、再結晶熱処理と時効熱処理により、結晶粒の粒径やその分布(標準偏差)
が決定される。結晶粒の粒径やその分布を変化させるには、再結晶熱処理や時効熱処理に
おける、昇温速度、熱処理時の保持温度、冷却速度を制御することが効果的である。
Basically, the crystal grain size and its distribution (standard deviation) by recrystallization heat treatment and aging heat treatment
Is determined. In order to change the grain size and distribution of crystal grains, it is effective to control the rate of temperature rise, the holding temperature at the time of heat treatment, and the cooling rate in recrystallization heat treatment and aging heat treatment.

また、昇温速度、熱処理時の保持温度、冷却速度は、本発明の銅合金材料において必須
の添加元素であるCo、Siの添加量にも関係するため、Co、Siの添加量を調整する
ことによっても結晶粒の粒径やその分布を変化させることができる。さらに、Cu、Co
、Si以外の元素を添加することによって、結晶粒以外の析出物を銅合金中に分散させて
、その作用により結晶粒の粒径やその分布を変化させることもできる。
In addition, the temperature increase rate, the holding temperature during heat treatment, and the cooling rate are also related to the amounts of addition of Co and Si, which are essential additive elements in the copper alloy material of the present invention, so the amounts of Co and Si are adjusted. Also, the grain size and distribution thereof can be changed. In addition, Cu, Co
By adding an element other than Si, precipitates other than crystal grains can be dispersed in the copper alloy, and the grain size and distribution thereof can be changed by the action.

本発明の銅合金材料は、高導電率、高強度、さらに良好な曲げ加工性をすべて満足する
ため、結晶粒径の算術平均が3μm以上20μm以下、標準偏差を8μm以下とすること
が求められる。なお、標準偏差は小さければ小さいほどよく、結晶粒径の標準偏差は結晶
粒径の算術平均より小さい値であることがより好ましい。母材の銅合金の結晶粒径の算術
平均および標準偏差が上記範囲にあることで、曲げ応力(負荷された歪)を十分に分散さ
せることができる。
よって、上述の添加元素や製造条件(特に再結晶熱処理と時効熱処理の条件)は、結晶
粒径の算術平均および標準偏差の条件を満足するように適宜調整される。特に、結晶粒径
の算術平均が3μm未満の場合においては、未再結晶領域が残存し、曲げ特性の劣化に直
結するため、結晶粒径の標準偏差は結晶粒径の算術平均より小さい値であることが好まし
く、3μm以上となるようにすることがより好ましい。
なお、曲げ加工性をさらに高めたい場合には、母材の銅合金の結晶粒径の算術平均から
標準偏差を引いた値が0μmより大きいことが好ましく、また、標準偏差を算術平均で割
った値が0.6以下であることがより好ましく、0.4以下であることがさらに好ましい
。なお、標準偏差を算術平均で割った値の下限は0.2以上であることが、実際の製造上
現実的である。
The copper alloy material of the present invention is required to have an arithmetic average crystal grain size of 3 μm to 20 μm and a standard deviation of 8 μm or less in order to satisfy all of high conductivity, high strength, and good bending workability. . The standard deviation is preferably as small as possible, and the standard deviation of the crystal grain size is more preferably smaller than the arithmetic average of the crystal grain size. When the arithmetic mean and standard deviation of the crystal grain size of the copper alloy as the base material are within the above ranges, the bending stress (strain applied) can be sufficiently dispersed.
Therefore, the above-described additive elements and production conditions (particularly conditions for recrystallization heat treatment and aging heat treatment) are appropriately adjusted so as to satisfy the arithmetic average and standard deviation conditions of the crystal grain size. In particular, when the arithmetic average of the crystal grain size is less than 3 μm, an unrecrystallized region remains and directly leads to deterioration of the bending characteristics. Therefore, the standard deviation of the crystal grain size is smaller than the arithmetic average of the crystal grain size. It is preferable that the thickness is 3 μm or more.
In order to further improve the bending workability, the value obtained by subtracting the standard deviation from the arithmetic mean of the crystal grain size of the base copper alloy is preferably larger than 0 μm, and the standard deviation is divided by the arithmetic mean. The value is more preferably 0.6 or less, and further preferably 0.4 or less. It is practically practical that the lower limit of the value obtained by dividing the standard deviation by the arithmetic average is 0.2 or more.

ここで、再結晶熱処理における昇温速度について説明する。昇温速度が遅すぎると加熱
処理が過ぎてしまい、析出物や晶出物の粗大化が起き、強度低下が起きてしまうおそれが
ある。また、過熱による結晶粒粗大化がおきるおそれがある。一方、昇温速度が速すぎる
と、結晶粒粗大化を防ぐ析出物生成量数が少なくなり、結晶粒の粗大化がおきてしまうお
それがある。このため、好ましい昇温速度は上記のようになる。
Here, the temperature increase rate in the recrystallization heat treatment will be described. If the rate of temperature rise is too slow, the heat treatment will be over, resulting in coarsening of precipitates and crystallized materials, and there is a risk that strength will be reduced. Moreover, there is a possibility that crystal grain coarsening occurs due to overheating. On the other hand, when the rate of temperature rise is too fast, the number of precipitates generated to prevent coarsening of the crystal grains decreases, and there is a risk that the crystal grains become coarse. For this reason, a preferable temperature increase rate becomes as above.

また、再結晶熱処理温度に関しては、Coの添加量により調整する。Coの添加量が1質量%未満の場合は、再結晶熱処理時の保持温度を850℃以上900℃未満とし、Coの添加量が1質量%以上の場合は、再結晶熱処理時の保持温度を900℃以上1000℃未満とる。再結晶熱処理時の保持温度がこの範囲より低い場合は強度不足となるおそれが高まり、再結晶熱処理時の保持温度がこの範囲より高い場合は結晶粒粗大化による曲げ性の劣化が起こりうるだけでなく、銅合金材料の変形も起こりうるためである。

As for the recrystallization heat treatment temperature, adjust the addition amount of Co. When the addition amount of Co is less than 1% by mass, the holding temperature at the recrystallization heat treatment is set to 850 ° C. or more and less than 900 ° C., and when the addition amount of Co is 1% by mass or more, the holding temperature at the recrystallization heat treatment is set to 900 ℃ or more on the 1 000 ℃ shall be the less than. If the holding temperature during the recrystallization heat treatment is lower than this range, there is a risk that the strength will be insufficient.If the holding temperature during the recrystallization heat treatment is higher than this range, the bending property may be deteriorated due to grain coarsening. This is because the copper alloy material may be deformed.

次に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定される
ものではない。
EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited to them.

(実施例1)
表1に示した成分を含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉に
より溶解し、これを10〜30K/秒の冷却速度で鋳造して幅160mm、厚さ30mm
、長さ180mmの鋳塊を得た。なお、冷却温度は鋳塊に割れなどが発生しない条件下で
行った。
得られた鋳塊を温度1000℃で30分間保持し、熱間圧延を行い板厚t=12mmの
熱延板を作製し、その両面を各1mm面削して板厚t=10mmとし、次いで冷間圧延に
より板厚t=0.3mmに仕上げ、その後800〜1025℃の範囲の温度で再結晶熱処
理を行った。再結晶熱処理の温度はCoの添加量などに応じて、表1に記載のとおり変化
させた。そして、再結晶熱処理後の材料に対して次の2工程を施し、最終製品に相当する
供試材を作成した。なお、表1〜表2の各例では工程Aを実施した場合の値を記載したが
、各例について工程Bを実施した場合でも、結果は工程Aを実施した場合とほぼ同様の結
果となった。
工程A:再結晶熱処理−時効熱処理(温度525℃で2時間)−冷間加工(0〜40%

※この後、必要に応じて、温度300〜400℃の範囲で1〜2時間の歪取り焼
鈍を実施した。
工程B:再結晶熱処理−冷間加工(0〜40%)−時効熱処理(温度525℃で2時間
Example 1
An alloy containing the components shown in Table 1 and the balance consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace, which is cast at a cooling rate of 10 to 30 K / sec, and is 160 mm wide and 30 mm thick.
An ingot with a length of 180 mm was obtained. In addition, the cooling temperature was performed on the conditions which a crack etc. do not generate | occur | produce in an ingot.
The obtained ingot is held at a temperature of 1000 ° C. for 30 minutes, hot rolled to produce a hot-rolled sheet having a thickness t = 12 mm, both sides thereof are each 1 mm chamfered to a thickness t = 10 mm, The sheet thickness t was finished to 0.3 mm by cold rolling, and then recrystallization heat treatment was performed at a temperature in the range of 800 to 1025 ° C. The recrystallization heat treatment temperature was changed as shown in Table 1 according to the amount of Co added. And the following two processes were given with respect to the material after recrystallization heat processing, and the test material equivalent to a final product was created. In addition, although the value at the time of implementing the process A was described in each example of Table 1-Table 2, even when the process B was implemented about each example, a result became a result similar to the case where the process A was implemented. It was.
Step A: Recrystallization heat treatment-Aging heat treatment (temperature of 525 ° C for 2 hours)-Cold working (0 to 40%)
)
* After this, if necessary, strain relief annealing was performed at a temperature of 300 to 400 ° C. for 1 to 2 hours.
Step B: Recrystallization heat treatment-cold working (0 to 40%)-aging heat treatment (temperature of 525 ° C for 2 hours)

この供試材について下記の特性調査を行った。銅合金材料の合金としての特性評価結果
を表1に、銅合金材料の強度および曲げ特性の評価結果を表2に示す。なお、表2には、
表1の例の一部について、合金組成(No.101、102)及び/又は製造方法(No
.203〜208)が本発明の範囲外であった場合の評価結果を、表1に示した例の一部
の曲げ加工性を含めた評価と併せて示した。また、銅合金材料の板厚は、すべてt=0.
25mm(冷間加工の加工率=20%)とした。
a.引張強度:
試験片の圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS
Z2241に準じて3本測定しその平均値を示した。
b.導電率測定:
四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試験片の2本につい
て導電率を測定し、その平均値(%IACS)を表1〜2に示した。このとき端子間距離
は100mmとした。
c.曲げ加工性:
圧延方向に平行に幅10mm、長さ35mmに切り出された供試材を、曲げの軸が圧延
方向に垂直になるように曲げるGW(Good−way)曲げと、圧延方向に垂直に幅1
0mm、長さ35mmに切り出された供試材を、曲げの軸が圧延方向に平行になるように
曲げるBW(Bad−way)曲げについて評価した。
それぞれ、曲げ半径R=0〜0.5(mm)の21水準(0.025mm単位)で90
°W曲げし、曲げ部における割れの有無を光学顕微鏡にて50倍、および走査型電子顕微
鏡(SEM)にて200倍で、その曲げ加工部位を観察し割れの有無を調査した。表中の
R/tのRは曲げ割れが確認されなかった最小の曲げ半径でtは板厚を示し、この値が小
さいほど良好な曲げ加工性を示す。
d.結晶粒径(算術平均):
試験片の圧延方向に垂直な断面を湿式研磨、バフ研磨により鏡面に仕上げた後、クロム
酸:水=1:1の液で数秒研磨面を腐食した後、光学顕微鏡で200〜400倍の倍率か
、走査型電子顕微鏡(SEM)の二次電子像を用いて500〜2000倍の倍率で写真を
とり、断面粒径をJIS H0501の切断法に準じて結晶粒径を測定した。そして、そ
の測定母数を200として算術平均を求め、この値を結晶粒径の算術平均の値とした。な
お、表中では「平均結晶粒径」と表記している。
e.結晶粒径の偏差:
上記結晶粒径測定と同様の手法で粒径を1個ずつ測定し、その測定母数を200として
結晶粒径の標準偏差を求めた。
The following property investigation was conducted on this specimen. Table 1 shows the evaluation results of the characteristics of the copper alloy material as an alloy, and Table 2 shows the evaluation results of the strength and bending characteristics of the copper alloy material. In Table 2,
For some of the examples in Table 1, the alloy composition (No. 101, 102) and / or manufacturing method (No.
. The evaluation results when 203 to 208) are outside the scope of the present invention are shown together with the evaluation including some bending workability in the examples shown in Table 1. The plate thickness of the copper alloy material is t = 0.
It was 25 mm (processing rate of cold working = 20%).
a. Tensile strength:
JIS Z2201-13B test piece cut out from the direction parallel to the rolling of the test piece
Three samples were measured according to Z2241, and the average value was shown.
b. Conductivity measurement:
Using a four-terminal method, the electrical conductivity of two test pieces was measured in a thermostat controlled at 20 ° C. (± 1 ° C.), and the average value (% IACS) is shown in Tables 1-2. It was. At this time, the distance between terminals was set to 100 mm.
c. Bending workability:
GW (Good-way) bending, in which a specimen cut into a width of 10 mm and a length of 35 mm parallel to the rolling direction is bent so that the axis of bending is perpendicular to the rolling direction, and a width of 1 perpendicular to the rolling direction
The specimens cut out to 0 mm and 35 mm in length were evaluated for BW (Bad-way) bending in which the bending axis was parallel to the rolling direction.
Respectively, it is 90 in 21 levels (0.025mm unit) of bending radius R = 0-0.5 (mm).
Bending was performed, and the presence or absence of cracks in the bent part was observed 50 times with an optical microscope and 200 times with a scanning electron microscope (SEM). R of R / t in the table is the minimum bending radius at which no bending crack was confirmed, and t indicates the plate thickness. The smaller this value, the better the bending workability.
d. Crystal grain size (arithmetic mean):
After the cross section perpendicular to the rolling direction of the test piece is polished to a mirror surface by wet polishing and buffing, the polished surface is corroded for several seconds with a solution of chromic acid: water = 1: 1, and then magnification is 200 to 400 times with an optical microscope. Alternatively, a photograph was taken at a magnification of 500 to 2000 using a secondary electron image of a scanning electron microscope (SEM), and the crystal grain size was measured according to the cutting method of JIS H0501. And the arithmetic mean was calculated | required by setting the measurement parameter to 200, and this value was made into the value of the arithmetic mean of a crystal grain diameter. In the table, “average grain size” is indicated.
e. Crystal grain size deviation:
The grain size was measured one by one by the same method as the above grain size measurement, and the standard deviation of the grain size was determined with the measurement parameter being 200.

Figure 0005619389
Figure 0005619389

Figure 0005619389
Figure 0005619389

表1、表2に記載のとおり、本発明例は、強度、導電性、曲げ加工性のすべてをバラン
ス良く満足している。具体的には、導電率が60%IACS以上であって、かつ引張強度
が570MPa以上650MPa以下でR/tの値が0.5以下、引張強度が650MP
aを超えて700MPa以下でR/tの値が1.0以下、引張強度が700MPaを超え
る場合でR/tの値が1.5以下となっている。これに対し、比較例では上記の値を満足
しない結果となった。
As shown in Tables 1 and 2, the examples of the present invention satisfy all of the strength, conductivity, and bending workability in a well-balanced manner. Specifically, the electrical conductivity is 60% IACS or more, the tensile strength is 570 MPa or more and 650 MPa or less, the R / t value is 0.5 or less, and the tensile strength is 650 MP.
The value of R / t is 1.5 or less when the value of R / t is 1.0 or less and the tensile strength exceeds 700 MPa at a pressure of 700 MPa or less. In contrast, the comparative example did not satisfy the above values.

Claims (2)

添加元素としてCo(コバルト)を0.7〜2.5質量%含有し、さらにSi(ケイ素
)をCoのSiに対する質量比(Co/Si)が3以上5以下となる範囲で含有し、残部
が銅および不可避不純物である銅合金材料であって、
晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であり、前記標準偏差が前
記算術平均よりも小さいことを特徴とする銅合金材料。
Co (cobalt) is contained as an additive element in an amount of 0.7 to 2.5% by mass, and Si (silicon) is further contained in a range where the mass ratio of Co to Si (Co / Si) is 3 or more and 5 or less, and the balance Is a copper alloy material which is copper and inevitable impurities,
Crystal grain arithmetic mean of the diameter of 3 to 20 [mu] m, and the standard deviation is 8μm or less, the copper alloy material characterized in that the standard deviation is smaller than the arithmetic mean.
添加元素としてCo(コバルト)を0.7〜2.5質量%含有し、さらにSi(ケイ素
)をCoのSiに対する質量比(Co/Si)が3以上5以下となる範囲で含有し、
さらに、Cr(クロム)を0.01〜1.0質量%、またはNi(ニッケル)を0.01
〜1.0質量%、またはTi(チタン)を0.01〜0.1質量%含有し、残部が銅およ
び不可避不純物である銅合金材料であって、
晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であり、前記標準偏差が前
記算術平均よりも小さいことを特徴とする銅合金材料。
Co (cobalt) is contained as an additive element in an amount of 0.7 to 2.5 mass%, and Si (silicon) is further contained in a range where the mass ratio of Co to Si (Co / Si) is 3 or more and 5 or less,
Furthermore, Cr (chromium) is 0.01 to 1.0 mass%, or Ni (nickel) is 0.01
-1.0 mass%, or a copper alloy material containing 0.01-0.1 mass% Ti (titanium), the balance being copper and inevitable impurities,
Crystal grain arithmetic mean of the diameter of 3 to 20 [mu] m, and the standard deviation is 8μm or less, the copper alloy material characterized in that the standard deviation is smaller than the arithmetic mean.
JP2009182593A 2008-08-05 2009-08-05 Copper alloy material Active JP5619389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182593A JP5619389B2 (en) 2008-08-05 2009-08-05 Copper alloy material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008202468 2008-08-05
JP2008202468 2008-08-05
JP2009182593A JP5619389B2 (en) 2008-08-05 2009-08-05 Copper alloy material

Publications (2)

Publication Number Publication Date
JP2010059543A JP2010059543A (en) 2010-03-18
JP5619389B2 true JP5619389B2 (en) 2014-11-05

Family

ID=42186646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182593A Active JP5619389B2 (en) 2008-08-05 2009-08-05 Copper alloy material

Country Status (1)

Country Link
JP (1) JP5619389B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708485B2 (en) * 2009-03-31 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4620173B1 (en) * 2010-03-30 2011-01-26 Jx日鉱日石金属株式会社 Cu-Co-Si alloy material
JP4830035B2 (en) 2010-04-14 2011-12-07 Jx日鉱日石金属株式会社 Cu-Si-Co alloy for electronic materials and method for producing the same
JP4708497B1 (en) * 2010-06-03 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si alloy plate and method for producing the same
JP5325178B2 (en) * 2010-08-12 2013-10-23 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy excellent in strength, electrical conductivity and bending workability and method for producing the same
JP4834781B1 (en) 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 Cu-Co-Si alloy for electronic materials
JP2012072470A (en) 2010-09-29 2012-04-12 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2012144789A (en) * 2011-01-13 2012-08-02 Jx Nippon Mining & Metals Corp Cu-Co-Si-Zr ALLOY MATERIAL
JP6821290B2 (en) * 2015-03-19 2021-01-27 Jx金属株式会社 Cu-Ni-Co-Si alloy for electronic components
JP6830135B2 (en) * 2019-08-06 2021-02-17 Jx金属株式会社 Cu-Ni-Co-Si alloy for electronic components

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112714A (en) * 1997-06-25 1999-01-19 Dowa Mining Co Ltd Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof
JP4378502B2 (en) * 2004-02-25 2009-12-09 Dowaメタルテック株式会社 Heat sink for semiconductor device and manufacturing method thereof
JP3838521B1 (en) * 2005-12-27 2006-10-25 株式会社神戸製鋼所 Copper alloy having high strength and excellent bending workability and method for producing the same
JP5247010B2 (en) * 2006-06-30 2013-07-24 Jx日鉱日石金属株式会社 Cu-Zn alloy with high strength and excellent bending workability
JP4943095B2 (en) * 2006-08-30 2012-05-30 三菱電機株式会社 Copper alloy and manufacturing method thereof
JP5085908B2 (en) * 2006-10-03 2012-11-28 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010059543A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP4809602B2 (en) Copper alloy
JP4143662B2 (en) Cu-Ni-Si alloy
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP2006152392A (en) High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JP5065478B2 (en) Copper alloy material for electric and electronic parts and manufacturing method
WO2015182777A1 (en) Copper alloy sheet material, production method therefor, and electrical/electronic component comprising said copper alloy sheet material
JP5468798B2 (en) Copper alloy sheet
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP6301734B2 (en) Copper alloy material and method for producing the same
JP4175920B2 (en) High strength copper alloy
JP2005089843A (en) High-strength copper alloy sheet and manufacturing method therefor
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R151 Written notification of patent or utility model registration

Ref document number: 5619389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350