JP5224415B2 - Copper alloy material for electric and electronic parts and manufacturing method thereof - Google Patents

Copper alloy material for electric and electronic parts and manufacturing method thereof Download PDF

Info

Publication number
JP5224415B2
JP5224415B2 JP2010507743A JP2010507743A JP5224415B2 JP 5224415 B2 JP5224415 B2 JP 5224415B2 JP 2010507743 A JP2010507743 A JP 2010507743A JP 2010507743 A JP2010507743 A JP 2010507743A JP 5224415 B2 JP5224415 B2 JP 5224415B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
heat treatment
temperature
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010507743A
Other languages
Japanese (ja)
Other versions
JPWO2010013790A1 (en
Inventor
邦照 三原
亮佑 松尾
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2010507743A priority Critical patent/JP5224415B2/en
Publication of JPWO2010013790A1 publication Critical patent/JPWO2010013790A1/en
Application granted granted Critical
Publication of JP5224415B2 publication Critical patent/JP5224415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Description

本発明は電気電子機器用の部品、例えばコネクタ、端子材等に関するものであり、特に、高導電性が所望される高周波リレーやスイッチ、あるいは、自動車車載用などのコネクタや端子材およびリードフレームなどの電気電子部品に適用される銅合金材料に関する。   The present invention relates to parts for electrical and electronic equipment, such as connectors, terminal materials, etc., in particular, high-frequency relays and switches for which high conductivity is desired, connectors for automobiles, terminal materials, lead frames, etc. The present invention relates to a copper alloy material applied to electrical and electronic parts.

これまで、電気電子機器用の部品であるコネクタ、端子、リレー、スイッチなどには、黄銅(C26000)、リン青銅(C51910,C52120,C52100)、ベリリウム銅(C17200,C17530)及びコルソン系銅合金(以下、単にコルソン銅ともいう。例えば、C70250)などの銅合金が使用されてきた。ここで、「Cxxxxx」とはCDA(Copper Development Association)で規定された銅合金の種類である。   Up to now, connectors (terminals, relays, switches, etc.) that are parts for electrical and electronic equipment include brass (C26000), phosphor bronze (C51910, C52120, C52100), beryllium copper (C17200, C17530) and corson copper alloys ( Hereinafter, it is also simply referred to as Corson copper, for example, a copper alloy such as C70250) has been used. Here, “Cxxxx” is a type of copper alloy defined by CDA (Copper Development Association).

近年、電気電子機器で使用される電流が大きくなり、それに伴い、電気電子機器用部品に用いられる銅合金材料にも高導電性が要求されるようになってきている。例えば、黄銅やリン青銅は導電性が低く、コルソン銅はコネクタ材として、中導電性(導電率が約40%IACS)を示すが、さらに高導電性が求められている。また、ベリリウム銅は高価であることも周知である。一方、高導電性である純銅(C11000)やスズ入銅(C14410)などは強度が低い欠点がある。そこで、従来のコルソン銅を越える導電性と同等の引張強度、曲げ加工性を備えた銅合金が所望されている。この要求を満たす銅合金として、Cu−Co(コバルト)−Si(珪素)系合金が注目されている。このCu−Co−Si系合金は、CoとSiの金属間化合物を利用した析出強化型銅合金である。   In recent years, currents used in electrical and electronic equipment have increased, and accordingly, high electrical conductivity has been required for copper alloy materials used in parts for electrical and electronic equipment. For example, brass or phosphor bronze has low conductivity, and Corson copper exhibits medium conductivity (conductivity of about 40% IACS) as a connector material, but higher conductivity is required. It is also well known that beryllium copper is expensive. On the other hand, pure copper (C11000), tin-containing copper (C14410), and the like, which have high conductivity, have a drawback of low strength. Therefore, there is a demand for a copper alloy having tensile strength and bending workability equivalent to those of electrical conductivity exceeding conventional Corson copper. Cu-Co (cobalt) -Si (silicon) -based alloys have attracted attention as copper alloys that satisfy this requirement. This Cu—Co—Si based alloy is a precipitation strengthening type copper alloy using an intermetallic compound of Co and Si.

特に、近年の電子機器部品では、機器の小型化に伴い複雑かつ厳しい曲げ加工がされたコネクタや端子が多く見られる。これは、小型化に伴いコネクタのサイズもダウンサイズするが、接触の信頼性を保つためにはできるだけ長いコンタクト長をとりたいためである。このような設計思想を持つコネクタや端子をベローズ(蛇腹)曲げコネクタまたはベローズ曲げ端子と呼ぶことが多い。つまり、小さな部品の中に複雑に曲げられた端子・コネクタが装備・設置される要求が高い。一方で、小型化に伴い使用されるコネクタ・端子の材料はより薄くなる。これは、軽量化、省資源の観点からも進んでいる。薄い材料は厚い材料と比べて、同じ接圧を保つためには強度が高いことが求められる。   In particular, in recent electronic device parts, there are many connectors and terminals that have been subjected to complicated and severe bending as the device is downsized. This is because the size of the connector is downsized as the size is reduced, but in order to maintain the reliability of the contact, it is desired to have a contact length as long as possible. Connectors and terminals having such a design concept are often referred to as bellows (bellows) bending connectors or bellows bending terminals. In other words, there is a high demand for installing and installing terminals and connectors bent in a complicated manner in small parts. On the other hand, the material of the connector and terminal used with size reduction becomes thinner. This is also progressing from the viewpoint of weight reduction and resource saving. Thin materials are required to have higher strength than thick materials in order to maintain the same contact pressure.

銅合金材料の強度を高める方法として、固溶強化、加工強化、析出強化などの様々な強化方法がある。銅合金材料において、導電性と強度は一般に相反関係にあるが、銅合金材料の導電性を低下させずに強度を高める方法として、析出強化が有望であることが知られている。この析出強化とは析出を起こす元素を添加した合金を高温熱処理して、銅母相へそれらの元素を固溶させた後、その固溶させた際の温度より低温で熱処理して、固溶させた元素を析出させる手法である。例えば、ベリリウム銅、コルソン銅などはその強化方法を採用している。   As a method for increasing the strength of the copper alloy material, there are various strengthening methods such as solid solution strengthening, work strengthening, and precipitation strengthening. In copper alloy materials, conductivity and strength are generally in a reciprocal relationship, but it is known that precipitation strengthening is promising as a method of increasing strength without reducing the conductivity of copper alloy materials. This precipitation strengthening is a high temperature heat treatment of an alloy added with an element that causes precipitation, so that these elements are dissolved in the copper matrix phase, and then heat treated at a temperature lower than the temperature at which the solid solution is formed. This is a technique for precipitating the deposited elements. For example, beryllium copper, corson copper, etc. employ the strengthening method.

ところで、銅合金材料においては、導電性と強度との関係のほか、曲げ加工性と強度との関係も相反する関係にある。強度を高めるためには最終の冷間圧延率を高めることが効果的であるとされるが、冷間圧延率を高めると曲げ加工性が著しく劣化する傾向がある。これまで、析出型の銅合金として、ベリリウム銅、コルソン銅、チタン銅などが、曲げ加工性と強度のバランスがよいとされてきた。しかし、ベリリウム銅は添加元素であるベリリウムが環境負荷物質とされており、代替材料が求められている。また、コルソン銅やチタン銅は一般に50%IACS以上の導電性を有しない。50%IACS以上の高い導電性の要求される用途としては、例えば、高電流が印加されるバッテリー端子やリレー接点などがある。また、一般に導電率が高い材料は熱伝導特性も優れているため、放熱性を要求されるCPU(集積演算素子)のソケットやヒートシンクなどの材料にも高い導電性の要求がある。特に、最近のハイブリッド車や高速処理が行われるCPUでは、高い導電性と高い強度を備えた材料が要求されている。   By the way, in the copper alloy material, in addition to the relationship between conductivity and strength, the relationship between bending workability and strength is also in an opposite relationship. In order to increase the strength, it is considered effective to increase the final cold rolling rate, but when the cold rolling rate is increased, the bending workability tends to be remarkably deteriorated. Until now, beryllium copper, corson copper, titanium copper and the like have been considered to have a good balance between bending workability and strength as precipitation-type copper alloys. However, for beryllium copper, beryllium, which is an additive element, is regarded as an environmentally hazardous substance, and an alternative material is required. Corson copper and titanium copper generally do not have a conductivity of 50% IACS or higher. Applications requiring high conductivity of 50% IACS or higher include, for example, battery terminals and relay contacts to which a high current is applied. In general, a material having high conductivity has excellent heat conduction characteristics, so that a material such as a CPU (integrated arithmetic element) socket or heat sink that requires heat dissipation also has high conductivity. Particularly in recent hybrid vehicles and CPUs that perform high-speed processing, materials having high conductivity and high strength are required.

このような背景から、強度、曲げ加工性、導電性(熱伝導性)を加味し、CoとSiからなる金属間化合物を利用した銅合金が注目されつつある。CoとSiとを必須に含む銅合金が、以下のとおり知られている。   From such a background, a copper alloy using an intermetallic compound composed of Co and Si in consideration of strength, bending workability, and conductivity (thermal conductivity) has been attracting attention. A copper alloy that essentially contains Co and Si is known as follows.

特許文献1には、熱間加工性を改善するため、CoとSiのほか、Zn(亜鉛)、Mg(マグネシウム)、S(硫黄)を必須に含む銅合金が開示されている。
特許文献2には、CoとSiのほか、Mg、Zn、Sn(スズ)を含む合金が開示されている。
特許文献3には、CoとSiのほか、Sn、Znを必須とする合金が開示されている。
特許文献4には、リードフレーム用途の析出強化型合金のCu−Co−Si系合金が開示されている。
特許文献5には、析出する介在物の大きさが2μm以下であるCu−Co−Si系合金が開示されている。
特許文献6には、CoSi化合物を析出させたCu−Co−Si系合金が開示されている。
Patent Document 1 discloses a copper alloy that essentially contains Zn (zinc), Mg (magnesium), and S (sulfur) in addition to Co and Si in order to improve hot workability.
Patent Document 2 discloses an alloy containing Mg, Zn, and Sn (tin) in addition to Co and Si.
Patent Document 3 discloses an alloy containing Sn and Zn in addition to Co and Si.
Patent Document 4 discloses a Cu—Co—Si alloy that is a precipitation-strengthened alloy for lead frames.
Patent Document 5 discloses a Cu—Co—Si based alloy in which the size of inclusions to be precipitated is 2 μm or less.
Patent Document 6 discloses a Cu—Co—Si based alloy in which a Co 2 Si compound is precipitated.

特開昭61−87838号公報JP-A-61-87838 特開昭63−307232号公報JP-A 63-307232 特開平02−129326号公報Japanese Patent Laid-Open No. 02-129326 特開平02−277735号公報Japanese Patent Laid-Open No. 02-277735 特開2008−88512号公報JP 2008-88512 A 特開2008−56977号公報JP 2008-55977 A

しかしながら、上記特許文献1〜6に開示された技術には、以下のような課題があった。   However, the techniques disclosed in Patent Documents 1 to 6 have the following problems.

例えば、これらはいずれも電気電子部品用途のように、強度、導電性、曲げ加工性を同時に満足させることを目的としたものではなく、また、その合金の状態の詳細には触れていない。
さらに、各特許文献に記載された技術は、いずれも強度、曲げ加工性、導電性(熱伝導性)のすべてを高いレベルで満足するものではない。
特許文献1に開示された技術は、本発明とは異なりSを必須構成元素とする銅合金であり、その目的も本発明と異なり熱間加工性の向上である。そのため、例えば、特許文献1には、析出物(特にCoとSiの析出物)については記載がなく、析出物がどのようなものであるか不明であり、これらの制御方法も不明である。また、電気電子部品として求められる強度や導電性等の諸特性を評価した結果は記載されていない。
特許文献2はCoとSiの析出物がCoSi化合物であるとの記載はあるものの、その析出物の詳細(粒径等)や制御方法は不明である。なお、製法としては、500℃の温度で1時間または450℃の温度で1時間の焼鈍を行ったとの記載はあるが、再結晶処理についての記載はなく、この記載があったとしても母材の結晶粒径は不明である。すなわち、特許文献2に開示された技術による銅合金は、高導電率および高強度が要求される電気電子部品用途の銅合金として特性が不十分であると考えられる。
特許文献3もまた、CoとSiの析出物がCoSi化合物であるとの記載はあるものの、その析出物の詳細(粒径等)や制御方法は不明であり、かつその導電率は30%IACS以下と比較的低い。なお、製法としては、400〜500℃の温度で1時間の焼鈍の前に950℃の温度で溶体化処理と冷間圧延を行っているとの記載があるが、導電率が30%IACS以下と比較的低く、高導電率および高強度が要求される電気電子部品用途の銅合金としては特性が不十分であるといえる。
特許文献4に記載のCu−Co−Si系合金はリードフレーム用途であり、析出強化型合金と記載されているものの、析出物を形成する具体的な化合物及びその詳細(粒径等)は不明である。なお、製法としては、500℃の温度で1時間の熱処理、その後に冷間圧延と300℃で1時間のひずみ取り焼鈍を行ったとの記載はあるが、再結晶処理についての記載はなく、この記載があったとしても母材の結晶粒径は不明である。すなわち、特許文献4に開示された技術による銅合金は、高導電率および高強度が要求される電気電子部品用途の銅合金として特性が不十分であると考えられる。
特許文献5に記載のCu−Co−Si合金はその合金中に析出する介在物の大きさが2μm以下との記載はあるが、介在物の規定方法等詳細は不明である。また、鋳塊をそのまま室温で圧延する工程を経て製造される例のみが示されている。ここで、所望の合金特性を得るために一般に厳密な粒径制御が必要とされることを考慮すると、特許文献5に開示された技術による銅合金は、高導電率および高強度が要求される電気電子部品用途の銅合金として特性が不十分であると考えられる。
特許文献6もまた、CoとSiの析出物がCoSi化合物であるとの記載はあるものの、その析出物の詳細(粒径等)や制御方法や密度が不明である。なお、製法としては、最終圧延前に700〜1050℃の熱処理を行うことが記載されているが、この温度では析出した化合物が再固溶(溶体化処理温度)すると記載されており、最終的にCoとSiの析出物が存在するか否か不明である。その結果、高導電率および高強度が要求される電気電子部品用途の銅合金として特性が不十分であると考えられる。
さらに、特許文献5および特許文献6には、材料の内側曲げ半径をR、板厚をtとした際に、特定の強度レベルにおいてR/t=1の条件で曲げ加工性を評価した例があるが、この程度のレベルでは今後要求される曲げ加工性には必ずしも対応できない場合があると考えられる。
For example, these as either electrical and electronic parts applications, strength, electrical conductivity, and not aimed to simultaneously satisfy the bending workability, also does not address the details of the state of the alloy.
Further, none of the techniques described in each patent document satisfies the strength, bending workability, and conductivity (thermal conductivity) at a high level.
Unlike the present invention, the technique disclosed in Patent Document 1 is a copper alloy containing S as an essential constituent element, and its purpose is to improve hot workability unlike the present invention. Therefore, for example, Patent Document 1 does not describe the precipitates (particularly Co and Si precipitates), and it is unclear what the precipitates are, and the control method thereof is also unknown. Moreover, the result of having evaluated various characteristics, such as intensity | strength and electroconductivity calculated | required as an electric electronic component, is not described.
Although Patent Document 2 describes that a precipitate of Co and Si is a Co 2 Si compound, details (particle size and the like) of the precipitate and a control method are unknown. In addition, as a manufacturing method, although there is a description that annealing was performed at a temperature of 500 ° C. for 1 hour or at a temperature of 450 ° C. for 1 hour, there is no description about recrystallization treatment, and even if this description is included, the base material The crystal grain size of is unknown. That is, it is thought that the copper alloy by the technique disclosed in Patent Document 2 has insufficient characteristics as a copper alloy for electrical and electronic parts that require high conductivity and high strength.
Patent Document 3 also describes that the precipitate of Co and Si is a Co 2 Si compound, but details (particle size, etc.) and control method of the precipitate are unknown, and its conductivity is 30. % IACS or less and relatively low. In addition, as a manufacturing method, although there exists description that the solution treatment and cold rolling are performed at the temperature of 950 degreeC before annealing for 1 hour at the temperature of 400-500 degreeC, electrical conductivity is 30% IACS or less Therefore, it can be said that the properties are insufficient as a copper alloy for electrical and electronic parts requiring high conductivity and high strength.
Although the Cu-Co-Si alloy described in Patent Document 4 is used for lead frames and is described as a precipitation-strengthened alloy, the specific compound forming the precipitate and its details (particle size, etc.) are unknown. It is. In addition, as a manufacturing method, although there is description that heat treatment for 1 hour at a temperature of 500 ° C., followed by cold rolling and strain relief annealing for 1 hour at 300 ° C., there is no description about recrystallization treatment, Even if described, the crystal grain size of the base material is unknown. That is, it is thought that the copper alloy by the technique disclosed in Patent Document 4 has insufficient properties as a copper alloy for electrical and electronic parts that require high conductivity and high strength.
The Cu—Co—Si alloy described in Patent Document 5 has a description that the size of inclusions precipitated in the alloy is 2 μm or less, but details such as the definition of inclusions are unknown. Moreover, only the example manufactured through the process of rolling an ingot at room temperature as it is is shown. Here, considering that generally strict particle size control is required to obtain desired alloy characteristics, the copper alloy according to the technique disclosed in Patent Document 5 requires high conductivity and high strength. It is considered that the characteristics are insufficient as a copper alloy for electrical and electronic parts.
Patent Document 6 also describes that the precipitate of Co and Si is a Co 2 Si compound, but details (particle size and the like), control method, and density of the precipitate are unknown. In addition, as a manufacturing method, although it describes that heat processing of 700-1050 degreeC is carried out before final rolling, it describes that the compound which precipitated at this temperature is a re-solid solution (solution treatment temperature), and is final. It is unclear whether or not Co and Si precipitates exist. As a result, it is considered that the characteristics are insufficient as a copper alloy for electrical and electronic parts requiring high conductivity and high strength.
Further, Patent Document 5 and Patent Document 6 have examples in which bending workability is evaluated under the condition of R / t = 1 at a specific strength level when the inner bending radius of the material is R and the thickness is t. However, at this level, it is considered that the bending workability required in the future may not always be supported.

上述したように、特許文献1〜6に開示された技術には不明な点や矛盾する点があり、上記各特許文献で開示された技術だけでは高導電率で高強度の材料を得ることができなかった。 As described above, the techniques disclosed in Patent Documents 1 to 6 have unclear points and contradictions, and it is possible to obtain a material having high conductivity and high strength only by the techniques disclosed in each of the above patent documents. in-out was bought Do not.

また、高導電率および高強度が要求される電気電子部品用途の銅合金として十分な合金特性を得るためには、母材の結晶粒径や析出物の粒径を厳密に制御することが必要とされるが、各特許文献にはそのことが記載されていない。すなわち、各特許文献に開示の発明による銅合金は、高導電率および高強度が要求される電気電子部品用途の銅合金として特性が不十分であると考えられる。   In addition, in order to obtain sufficient alloy properties as a copper alloy for electrical and electronic parts requiring high conductivity and high strength, it is necessary to strictly control the crystal grain size of the base material and the grain size of the precipitate. However, this is not described in each patent document. That is, the copper alloy according to the invention disclosed in each patent document is considered to have insufficient characteristics as a copper alloy for electrical and electronic parts that require high electrical conductivity and high strength.

発明は、高い導電性、高い強度、良好な曲げ加工性のすべてを満足するため、Cu−Co−Si系銅合金の結晶粒径の値が所定範囲に制御された銅合金材料を提供することを課題とする。 The present invention provides a copper alloy material in which the value of the crystal grain size of a Cu-Co-Si based copper alloy is controlled within a predetermined range in order to satisfy all of high conductivity, high strength, and good bending workability. it is a challenge to.

発明者らは、特に高導電率および高強度が要求される電気電子部品用途に好適な銅合金材料を得るため、銅合金材料における導電性と強度、曲げ加工性の関係についてさらに検討を重ね、本発明を完成させるに至った。 In order to obtain a copper alloy material particularly suitable for electrical and electronic component applications that require high electrical conductivity and high strength, the present inventors have further studied the relationship between electrical conductivity, strength, and bending workability in copper alloy materials. The present invention has been completed.

本発明によれば、以下の手段が提供される:
(1)Co(コバルト)を0.7〜2.0質量%、Si(ケイ素)を0.1〜0.5質量%それぞれ含み、残部Cu(銅)及び不可避不純物からなる組成を有し、CoのSiに対する質量比(Co/Si)が3以上5以下である電気電子部品用銅合金材料であって、母材の銅合金の結晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であって、前記標準偏差が前記算術平均よりも小さく、CoとSiからなる析出物の粒子径が5〜50nmで、前記析出物の密度が1×10〜1×1010個/mmであり、かつ、銅合金材料としての引張強度が570MPa以上、導電率が60%IACS以上である電気電子部品用銅合金材料。
(2)さらに、Cr(クロム)、Ni(ニッケル)の群から選ばれる少なくとも1種を合計で0.01〜1.0質量%含有し、残部が銅および不可避不純物である(1)項に記載の電気電子部品用銅合金材料。
)さらに、Ti(チタン)0.01〜0.1質量%含有し、残部が銅および不可避不純物である(1)または2)に記載の電気電子部品用銅合金材料。
)標準偏差を算術平均で割った値が0.65以下である(1)〜()のいずれか1項に記載の電気電子部品用銅合金材料。
According to the present invention, the following means are provided:
(1) 0.7 to 2.0% by mass of Co (cobalt), 0.1 to 0.5% by mass of Si (silicon), respectively, and having a composition consisting of the balance Cu (copper) and inevitable impurities, A copper alloy material for electrical and electronic parts having a mass ratio of Co to Si (Co / Si) of 3 or more and 5 or less, wherein the arithmetic average of the crystal grain size of the base copper alloy is 3 to 20 μm, and the standard deviation is 8 μm. The standard deviation is smaller than the arithmetic mean, the particle diameter of the precipitate composed of Co and Si is 5 to 50 nm, and the density of the precipitate is 1 × 10 8 to 1 × 10 10 pieces / mm. 2. A copper alloy material for electrical and electronic parts having a tensile strength of 570 MPa or more and a conductivity of 60% IACS or more as a copper alloy material.
(2) Further, in the item (1), at least one selected from the group consisting of Cr (chromium) and Ni (nickel ) is contained in a total amount of 0.01 to 1.0% by mass, and the balance is copper and inevitable impurities. The copper alloy material for electrical and electronic parts as described.
(3) In addition, T i a (titanium) containing 0.01 to 0.1 wt%, the balance being copper and inevitable impurities (1) or electrical and electronic components for the copper alloy material according to (2).
( 4 ) The copper alloy material for electrical and electronic parts according to any one of (1) to ( 3 ), wherein a value obtained by dividing the standard deviation by the arithmetic average is 0.65 or less.

)(1)〜()のいずれか1項に記載の組成を有する銅合金材料を溶解鋳造し、
熱間圧延し、
面削し、
冷間圧延し、
再結晶熱処理し、
時効熱処理する
各工程を有し、
前記溶解鋳造工程が、10〜30K/秒(ここでKは絶対温度を示すケルビンである)の冷却速度で冷却しながら鋳造して、鋳塊を得る工程であり、
前記熱間圧延工程が、前記鋳塊を温度900〜1000℃で30分間〜60分間保持後に加工し、速やかに水冷却、つまり急速冷却、にて焼入れを施す工程であり、
前記再結晶熱処理工程が、温度800〜1025℃に保持されたソルトバス内で一定時間熱処理を行い、その後、速やかに水冷却で焼き入れを行う工程であり、ここで、昇温速度は、温度300℃以上では10〜300K/秒であり、冷却速度は、30〜200K/秒であり、
前記時効熱処理工程での室温から最高温度に到達するまでの昇温速度は3〜25K/分の範囲内にあり、降温に際しては300℃までは炉内で1〜2K/分の範囲内で冷却を行い、
母材の銅合金の結晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であって、前記標準偏差が前記算術平均よりも小さく、CoとSiからなる析出物の粒子径が5〜50nmで、前記析出物の密度が1×10〜1×1010個/mmであり、かつ、銅合金材料としての引張強度が570MPa以上、導電率が60%IACS以上である電気電子部品用銅合金材料を得てなる
(1)〜()のいずれか1項に記載の電気電子部品用銅合金材料を製造する方法。
)前記再結晶熱処理工程での保持温度が、
Coの添加量が1質量%未満の場合は、再結晶熱処理時の保持温度を850℃以上900℃未満とし、
Coの添加量が1質量%以上の場合は、再結晶熱処理時の保持温度を900℃以上1000℃未満とする
)項に記載の電気電子部品用銅合金材料の製造方法。
( 5 ) A copper alloy material having the composition according to any one of (1) to ( 3 ) is melt-cast,
Hot rolled,
Chamfering,
Cold rolled,
Recrystallization heat treatment,
Each process has an aging heat treatment,
The melt casting step is a step of casting while cooling at a cooling rate of 10 to 30 K / second (where K is Kelvin indicating an absolute temperature) to obtain an ingot,
The hot rolling step is a step in which the ingot is processed after being held at a temperature of 900 to 1000 ° C. for 30 minutes to 60 minutes and rapidly quenched with water cooling, that is, rapid cooling.
The recrystallization heat treatment step is a step in which heat treatment is performed for a certain time in a salt bath maintained at a temperature of 800 to 1025 ° C., and then quenched rapidly with water cooling. Above 300 ° C., it is 10 to 300 K / second, and the cooling rate is 30 to 200 K / second,
The rate of temperature rise until reaching the maximum temperature from room temperature in the aging heat treatment step is in the range of 3 to 25 K / min, and when the temperature is lowered, the temperature is cooled to 300 ° C. in the range of 1 to 2 K / min. And
The arithmetic average of the crystal grain size of the copper alloy as a base material is 3 to 20 μm, the standard deviation is 8 μm or less, the standard deviation is smaller than the arithmetic average, and the particle diameter of the precipitate made of Co and Si is 5 An electrical / electronic component having a density of 1 × 10 8 to 1 × 10 10 pieces / mm 2 at 50 nm, a tensile strength as a copper alloy material of 570 MPa or more, and a conductivity of 60% IACS or more. A method for producing a copper alloy material for electrical and electronic parts according to any one of (1) to ( 4 ), wherein the copper alloy material is obtained.
( 6 ) The holding temperature in the recrystallization heat treatment step is
When the addition amount of Co is less than 1% by mass, the holding temperature during the recrystallization heat treatment is 850 ° C. or more and less than 900 ° C.,
When the addition amount of Co is 1% by mass or more, the method for producing a copper alloy material for electrical and electronic parts according to ( 5 ), wherein the holding temperature during recrystallization heat treatment is 900 ° C. or more and less than 1000 ° C.

また、「析出物の粒子径(サイズ)」とは、後述する方法で求めた析出物の平均粒子径であり、「結晶粒径」とは、後述するJIS−H0501(切断法)に基づいて測定した値である。   Further, the “particle diameter (size) of the precipitate” is an average particle diameter of the precipitate obtained by the method described later, and the “crystal particle diameter” is based on JIS-H0501 (cutting method) described later. It is a measured value.

明により、強度、導電性、曲げ加工性に優れ、電気電子機器用途に好適な銅合金材料を提供することができる。 More this onset bright, intensity, conductivity, excellent in bending workability, it is possible to provide a suitable copper alloy material in electrical and electronic device applications.

本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。 These and other features and advantages of the present invention will become more apparent from below Symbol description.

本発明の銅合金材料の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材(ここでは形状の概念がない銅合金の各成分元素の混合物を意味する)が、所定の形状(例えば、板、条、箔、棒、線など)に加工された後のものを意味する。また、「母材の銅合金」とは形状の概念を含まない銅合金を意味する。
なお、銅合金材料の好ましい具体例として板材、条材について説明するが、銅合金材料の形状は板材や条材に限られるものではない。
A preferred embodiment of the copper alloy material of the present invention will be described in detail. Here, the “copper alloy material” means a copper alloy material (which means a mixture of each component element of a copper alloy having no concept of shape) having a predetermined shape (for example, plate, strip, foil, rod, It means the one after being processed into a line. Further, the “base copper alloy” means a copper alloy not including the concept of shape.
In addition, although a board | plate material and a strip are demonstrated as a preferable specific example of copper alloy material, the shape of a copper alloy material is not restricted to a board | plate material or a strip.

次に、本発明の銅合金材料の好ましい実施の態様について、詳細に説明する。 Next, a preferred embodiment of the present onset bright copper alloy material will be described in detail.

本発明では、必須の添加元素としてCo(コバルト)を0.7〜2.0質量%含有し、Si(ケイ素)を、CoのSiに対する質量比(Co/Si)が3以上5以下となる範囲で(0.1〜0.5質量%の範囲で)含有する銅合金材料である。これにより、導電率が60%IACS以上、引張強度が570MPa以上となり、特に高いレベルで高導電率かつ高強度の要求を満足することができる。本発明では銅合金材料の導電率は60%IACS以上であり、高い程好ましいが、その上限は通常75%IACS程度である。また、本発明では銅合金材料の引張強度は、より好ましくは600MPa以上、さらに好ましくは750MPa以上であり、高い程好ましいが、その上限は通常900MPa程度である。
In the present invention, 0.7 to 2.0 mass% of Co (cobalt) is contained as an essential additive element, and the mass ratio of Co to Si (Co / Si) is 3 or more and 5 or less. It is a copper alloy material to be contained in the range (in the range of 0.1 to 0.5% by mass). As a result, the electrical conductivity is 60% IACS or higher and the tensile strength is 570 MPa or higher, and the requirement for high conductivity and high strength can be satisfied at a particularly high level. In the present invention, the electrical conductivity of the copper alloy material is 60% IACS or higher, and the higher the better, the upper limit is usually about 75% IACS. Further, tensile strength of the copper alloy material in the present invention, more preferably 600MPa or more, more preferably not more than 750 MPa, but preferably higher, the upper limit is usually about 900 MPa.

また、母材の銅合金の結晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であることが、曲げ加工性の一層の向上のために有用である。なお、標準偏差は小さければ小さいほどよく、結晶粒径の標準偏差は結晶粒径の算術平均より小さい値である。母材の銅合金の結晶粒径の算術平均および標準偏差が上記範囲にあることで、曲げ応力(負荷された歪)を十分に分散させることができる。なお、曲げ加工性をさらに高めたい場合には、母材の銅合金の結晶粒径の算術平均から標準偏差を引いた値が0μmより大きいことが好ましく、標準偏差を算術平均で割った値が0.65以下であることがより好ましく、0.4以下であることがさらに好ましい。なお、標準偏差を算術平均で割った値の下限は0.2以上であることが現実的で、この値より小さくなると特性は向上するが、実際の製造が困難になる傾向がある。ここで、母材の銅合金の結晶粒径の算術平均および標準偏差を求める際の測定母数は100以上に設定することが好ましく、算術平均および標準偏差の測定母数は同一の値とすることがより好ましい。
本発明の銅合金材料では、CoとSiからなる析出物の粒子径(平均粒子径)を5〜50nmとしている。析出物の粒子径が5nm以上であると十分な析出強化量を得ることができる。また、この析出物は銅母相と整合に析出して材料を強化するため、析出物の粒子径が50nm以下であると、材料の強度が確保される。好ましくは析出物のサイズは10〜30nm、より好ましくは20〜30nmである。
析出密度については、CoとSiからなる析出物の分布密度を1×10 〜10 10 個/mm としている。
In addition, it is useful for further improving the bending workability that the arithmetic average of the crystal grain size of the base copper alloy is 3 to 20 μm and the standard deviation is 8 μm or less. The standard deviation is preferably as small as possible, the standard deviation of the grain size Ru arithmetic mean value less than Der grain size. When the arithmetic mean and standard deviation of the crystal grain size of the copper alloy as the base material are within the above ranges, the bending stress (strain applied) can be sufficiently dispersed. In order to further improve the bending workability, it is preferable that the value obtained by subtracting the standard deviation from the arithmetic average of the crystal grain size of the base copper alloy is larger than 0 μm, and the value obtained by dividing the standard deviation by the arithmetic average is It is more preferably 0.65 or less, and further preferably 0.4 or less. It is practical that the lower limit of the value obtained by dividing the standard deviation by the arithmetic average is 0.2 or more. When the value is smaller than this value, the characteristics are improved, but actual manufacturing tends to be difficult. Here, it is preferable to set the measurement parameter for obtaining the arithmetic mean and standard deviation of the crystal grain size of the copper alloy as a base material to 100 or more, and the measurement parameters for the arithmetic mean and standard deviation are the same value. It is more preferable.
In the copper alloy material of the present invention, the particle diameter (average particle diameter) of the precipitate composed of Co and Si is set to 5 to 50 nm. When the particle diameter of the precipitate is 5 nm or more, a sufficient precipitation strengthening amount can be obtained. Moreover, since this precipitate precipitates in alignment with the copper matrix and strengthens the material, the strength of the material is ensured when the particle diameter of the precipitate is 50 nm or less. Preferably the size of the precipitate is 10-30 nm, more preferably 20-30 nm.
Regarding the precipitation density, the distribution density of precipitates made of Co and Si is set to 1 × 10 8 to 10 10 pieces / mm 2 .

曲げ加工性に関しては、引張強度が570MPa以上650MPa以下の場合は、R/tの値が0.5以下、引張強度が650MPaを超えて700MPa以下の場合は、R/tの値が1.0以下、引張強度が700MPaを超える場合は、R/tの値が1.5以下であることが好ましい。ここで、R/tとは、日本伸銅協会技術標準「銅および銅合金薄板条の曲げ加工性評価方法(JBMA T307)」に準拠した曲げ角度90°のW曲げ試験を行った結果を意味し、圧延垂直方向に切り出した板材を所定の曲げ半径(R)の条件下で曲げ試験を行って、その頂点にクラック(割れ)が生じない限界のRを求め、その時の板厚(t)で規格化した値である。一般にR/tが小さいほど、曲げ加工性が良好であるとされる。本発明の電気電子部品用銅合金材料では、引張強度と曲げ加工性(R/t)が、前記の関係を有するものが好ましい。また、曲げ加工性(R/t)の下限は0である。   Regarding the bending workability, when the tensile strength is 570 MPa or more and 650 MPa or less, the value of R / t is 0.5 or less, and when the tensile strength is over 650 MPa and 700 MPa or less, the value of R / t is 1.0. Hereinafter, when the tensile strength exceeds 700 MPa, the value of R / t is preferably 1.5 or less. Here, R / t means the result of a W-bending test at a bending angle of 90 ° in accordance with the Japan Copper and Brass Association technical standard “Evaluation method for bending workability of copper and copper alloy sheet strip (JBMA T307)”. Then, a plate material cut in the vertical direction of rolling is subjected to a bending test under the condition of a predetermined bending radius (R), and the limit R at which the crack does not occur at the apex is obtained, and the thickness (t) at that time This is the value normalized by. In general, the smaller the R / t, the better the bending workability. In the copper alloy material for electric and electronic parts of the present invention, it is preferable that the tensile strength and the bending workability (R / t) have the above relationship. Further, the lower limit of the bending workability (R / t) is zero.

以下、CoおよびSi以外の添加元素について説明する。
Fe、Cr、NiはCoと置換を行ってSiと化合物を形成し、強度向上に寄与する元素である。Fe、Ni、Crは、Coの一部と置換して、(Co、χ)Si化合物(χはFe、Ni、Cr)を形成し、強度を向上させる働きがある。これらの元素の少なくとも1種(各元素、任意の2種類の元素の組合せ、3種類全てのいずれでも良い)を合計で0.01〜1.0質量%の範囲としている。0.01質量%以上であればその効果が顕著に発揮され、合計で1.0質量%以下であれば、鋳造時に晶出を起こしたり、強度に寄与しない金属間化合物を形成したりすることもなく、導電性低下などの影響もない。なお、これらの元素は複合して添加しても、単独で添加してもほぼ同じような効果が見られるが、Niを添加すると顕著な強度向上効果を示す。Fe、Ni、Crの添加量は、好ましくは、これらの元素の少なくとも1種の合計で0.05〜0.9質量%である。
なお、ZrやTiについても、Fe、Ni、Crとほぼ同様の効果を奏するが、ZrやTiは酸化しやすく、多量に添加すると製造中の材料に割れが発生することがあるので、ZrおよびTiの添加量については、これらの元素の少なくとも1種を合計で0.01〜0.1質量%の範囲とすることが好ましい。
Hereinafter, additive elements other than Co and Si will be described.
Fe, Cr, and Ni are elements that contribute to strength improvement by forming a compound with Si by substitution with Co. Fe, Ni, and Cr are substituted for part of Co to form a (Co, χ) 2 Si compound (χ is Fe, Ni, Cr), and has the function of improving strength. At least one of these elements (each element, a combination of any two kinds of elements may be any of the three kinds) may be in the range of 0.01 to 1.0 mass% in total. If it is 0.01% by mass or more, the effect is remarkably exhibited. If the total is 1.0% by mass or less, crystallization occurs during casting, or an intermetallic compound that does not contribute to strength is formed. There is no influence such as a decrease in conductivity. Even if these elements are added in combination or added alone, almost the same effect is seen, but when Ni is added, a remarkable strength improvement effect is exhibited. The addition amount of Fe, Ni, and Cr is preferably 0.05 to 0.9% by mass in total of at least one of these elements.
Zr and Ti also have almost the same effect as Fe, Ni and Cr, but Zr and Ti are easily oxidized, and if added in a large amount, cracking may occur in the material being produced. About the addition amount of Ti, it is preferable to make at least 1 sort (s) of these elements into the range of 0.01-0.1 mass% in total.

Sn、Zn、Mg、Mnは銅母相に固溶して強化する特徴がある。その添加量が、これらの元素の少なくとも1種の合計で0.01質量%以上であれば効果を奏し、1.0質量%以下であれば導電性を阻害することもない。好ましい添加量は、これらの元素の少なくとも1種の0.05〜0.2質量%である。
本発明の銅合金材料における不可避不純物としては、H、C、O、S等が挙げられる。
Sn, Zn, Mg, and Mn are characterized by solid solution in the copper matrix and strengthening. If the added amount is 0.01% by mass or more in total of at least one of these elements, the effect is obtained, and if it is 1.0% by mass or less, the conductivity is not hindered. A preferable addition amount is 0.05 to 0.2% by mass of at least one of these elements.
The unavoidable impurities in the onset bright copper alloy material, H, C, O, S, and the like.

なお、Znには半田密着性を向上させる効果、Mnは熱間加工性を改善する効果もある。また、Sn、Mgの添加は耐応力緩和特性の改善に効果がある。個々のSn、Mg添加でもその効果は見られるが、同時に添加することにより、相乗的にその効果を発揮する元素である。その添加量が、これらの元素の少なくとも1種の合計で0.1質量%以上であれば効果を奏し、1.0質量%以下であれば導電性を阻害することもなく、50%IACS以上の導電性が確保される。一方、SnとMgの添加比について、Sn/Mg≧1の場合には、耐応力緩和特性はさらに向上する。   Zn has the effect of improving solder adhesion, and Mn has the effect of improving hot workability. Addition of Sn and Mg is effective in improving the stress relaxation resistance. Although the effect can be seen even when individual Sn and Mg are added, it is an element that exhibits the effect synergistically when added simultaneously. If the added amount is 0.1% by mass or more in total of at least one of these elements, the effect is obtained, and if it is 1.0% by mass or less, the conductivity is not impaired, and 50% IACS or more. Conductivity is ensured. On the other hand, with respect to the addition ratio of Sn and Mg, when Sn / Mg ≧ 1, the stress relaxation resistance is further improved.

次に、本発明の銅合金材料を製造する工程の一例を説明する。
<溶解鋳造>
銅合金の原料となる銅、コバルト、ケイ素などを溶解し、鋳型に流し込んで10〜30K/秒(Kは絶対温度を示す「ケルビン」である。以下同じ)の冷却速度で冷却しながら鋳造し、銅合金鋳塊を得る。ここでは幅160mm、厚さ30mm、長さ180mmとなるようにする。
<熱間圧延・面削・冷間圧延>
その後、この鋳塊を温度900〜1000℃で30分間〜60分間保持し、その後熱間圧延によって厚さ12mmになるまで加工後、速やかに水冷却(急速冷却)にて焼入れを施し、表面上の酸化皮膜除去のため、圧延された表面を片側1mm前後面削して約10mmにした後、冷間圧延にて厚さ約0.1〜0.3mmとなるように加工する。
<再結晶熱処理>
この後、溶体化、再結晶させる目的で、温度800〜1025℃に保持されたソルトバス(塩浴炉)内で一定時間(ここでは30秒間)再結晶熱処理を行い、水冷却で焼き入れを行う。再結晶熱処理の際、昇温速度はサンプルを板厚の異なったステンレス板にはさむことで調整して熱処理を行う。このときの好ましい昇温速度は、温度300℃以上では10〜300K/秒である。また、好ましい冷却速度は、30〜200K/秒である。
<時効熱処理>
次に、時効析出させる目的で、温度525℃で120分間の時効熱処理を施す。その際の室温から最高温度に到達するまでの昇温速度は3〜25K/分の範囲内にあり、降温に際しては、析出に影響を与えると考えられる温度帯より十分低い温度である300℃までは炉内で1〜2K/分の範囲内で冷却を行う。
<仕上げ圧延(必要に応じて)>
時効熱処理が終了した銅合金材料に、さらに0%〜40%(上限は好ましくは20%)の加工率で最終の冷間圧延を施して仕上げ圧延材を得る。なお、仕上げ圧延は実施してもしなくてもよい。加工率0%とは、仕上げ圧延を行わないことを意味する。
<歪取り焼鈍>
時効熱処理終了後(仕上げ圧延したものは仕上げ圧延終了後)に、必要に応じて歪取り焼鈍を施す。
<工程の繰り返しについて>
再結晶熱処理と時効熱処理は、上記条件で2回以上繰り返してもよい。
Next, an example of a process for producing the present onset bright copper alloy material.
<Melting casting>
Copper, cobalt, silicon, etc., which are copper alloy raw materials, are melted and poured into a mold and cast while cooling at a cooling rate of 10 to 30 K / second (K is “Kelvin” indicating absolute temperature; the same applies hereinafter). To obtain a copper alloy ingot. Here, the width is 160 mm, the thickness is 30 mm, and the length is 180 mm.
<Hot rolling / facing / cold rolling>
Thereafter, this ingot is held at a temperature of 900 to 1000 ° C. for 30 to 60 minutes, and thereafter processed by hot rolling until the thickness becomes 12 mm, and then rapidly quenched with water cooling (rapid cooling), on the surface In order to remove the oxide film, the rolled surface is chamfered about 1 mm on one side to about 10 mm, and then processed to a thickness of about 0.1 to 0.3 mm by cold rolling.
<Recrystallization heat treatment>
Then, for the purpose of solution and recrystallization, recrystallization heat treatment is performed for a certain time (here, 30 seconds) in a salt bath (salt bath furnace) maintained at a temperature of 800 to 1025 ° C., and quenching is performed with water cooling. Do. During the recrystallization heat treatment, the temperature rise rate is adjusted by sandwiching the sample between stainless steel plates having different thicknesses. A preferable temperature increase rate at this time is 10 to 300 K / sec at a temperature of 300 ° C. or higher. Moreover, a preferable cooling rate is 30 to 200 K / sec.
<Aging heat treatment>
Next, an aging heat treatment is performed at a temperature of 525 ° C. for 120 minutes for the purpose of aging precipitation. In this case, the rate of temperature rise from room temperature to the maximum temperature is in the range of 3 to 25 K / min. When the temperature is lowered, the temperature is sufficiently lower than 300 ° C., which is sufficiently lower than the temperature range considered to affect precipitation. Performs cooling in the furnace within a range of 1 to 2 K / min.
<Finish rolling (if necessary)>
The final cold-rolled material is obtained by subjecting the copper alloy material after the aging heat treatment to a final cold rolling at a processing rate of 0% to 40% (the upper limit is preferably 20%). Note that finish rolling may or may not be performed. A processing rate of 0% means that finish rolling is not performed.
<Strain relief annealing>
After finishing the aging heat treatment (finished rolling is after finishing rolling), if necessary, strain relief annealing is performed.
<Repeating process>
The recrystallization heat treatment and the aging heat treatment may be repeated twice or more under the above conditions.

基本的には、再結晶熱処理と時効熱処理により、結晶粒の粒径やその分布(標準偏差)が決定される。結晶粒の粒径やその分布を変化させるには、再結晶熱処理や時効熱処理における、昇温速度、熱処理時の保持温度、冷却速度を制御することが効果的である。   Basically, the grain size and distribution (standard deviation) of crystal grains are determined by recrystallization heat treatment and aging heat treatment. In order to change the grain size and distribution of crystal grains, it is effective to control the rate of temperature rise, the holding temperature at the time of heat treatment, and the cooling rate in recrystallization heat treatment and aging heat treatment.

また、昇温速度、熱処理時の保持温度、冷却速度は、本発明の銅合金材料において必須の添加元素であるCo、Siの添加量にも関係するため、Co、Siの添加量を調整することによっても結晶粒の粒径やその分布を変化させることができる。さらに、Cu、Co、Si以外の元素を添加することによって、結晶粒以外の析出物を銅合金中に分散させて、その作用により結晶粒の粒径やその分布を変化させることもできる。 Further, heating rate, holding temperature during the heat treatment, the cooling rate, since also relates to the addition amount of an essential additive elements in the present onset bright copper alloy material Co, Si, Co, adjusting the addition amount of Si By doing so, the grain size and distribution of the crystal grains can be changed. Furthermore, by adding elements other than Cu, Co, and Si, precipitates other than crystal grains can be dispersed in the copper alloy, and the grain size and distribution thereof can be changed by the action.

本発明の銅合金材料は、高導電率、高強度、さらに良好な曲げ加工性をすべて満足するため、結晶粒径の算術平均が3μm以上20μm以下、標準偏差を8μm以下とすることが求められる。なお、標準偏差は小さければ小さいほどよく、結晶粒径の標準偏差は結晶粒径の算術平均より小さい値である。母材の銅合金の結晶粒径の算術平均および標準偏差が上記範囲にあることで、曲げ応力(負荷された歪)を十分に分散させることができる。
よって、上述の添加元素や製造条件(特に再結晶熱処理と時効熱処理の条件)は、結晶粒径の算術平均および標準偏差の条件を満足するように適宜調整される。特に、結晶粒径の算術平均が3μm未満の場合においては、未再結晶領域が残存し、曲げ特性の劣化に直結するため、結晶粒径の標準偏差は結晶粒径の算術平均より小さい値であることが好ましく、3μm以上となるようにする。
なお、曲げ加工性をさらに高めたい場合には、母材の銅合金の結晶粒径の算術平均から標準偏差を引いた値が0μmより大きいことが好ましく、また、標準偏差を算術平均で割った値が0.65以下であることがより好ましく、0.4以下であることがさらに好ましい。なお、標準偏差を算術平均で割った値の下限は0.2以上であることが、実際の製造上現実的である。
The copper alloy material of the present invention is required to have an arithmetic average crystal grain size of 3 μm to 20 μm and a standard deviation of 8 μm or less in order to satisfy all of high conductivity, high strength, and good bending workability. . The standard deviation is preferably as small as possible, the standard deviation of the grain size Ru arithmetic mean value less than Der grain size. When the arithmetic mean and standard deviation of the crystal grain size of the copper alloy as the base material are within the above ranges, the bending stress (strain applied) can be sufficiently dispersed.
Therefore, the above-described additive elements and production conditions (particularly conditions for recrystallization heat treatment and aging heat treatment) are appropriately adjusted so as to satisfy the arithmetic average and standard deviation conditions of the crystal grain size. In particular, when the arithmetic average of the crystal grain size is less than 3 μm, an unrecrystallized region remains and directly leads to deterioration of the bending characteristics. Therefore, the standard deviation of the crystal grain size is smaller than the arithmetic average of the crystal grain size. preferably there, you as a 3μm or more.
In order to further improve the bending workability, the value obtained by subtracting the standard deviation from the arithmetic mean of the crystal grain size of the base copper alloy is preferably larger than 0 μm, and the standard deviation is divided by the arithmetic mean. The value is more preferably 0.65 or less, and further preferably 0.4 or less. It is practically practical that the lower limit of the value obtained by dividing the standard deviation by the arithmetic average is 0.2 or more.

ここで、再結晶熱処理における昇温速度について説明する。
昇温速度が遅すぎると加熱処理が過ぎてしまい、析出物や晶出物の粗大化が起き、強度低下が起きてしまうおそれがある。また、過熱による結晶粒粗大化がおきるおそれがある。一方、昇温速度が速すぎると、結晶粒粗大化を防ぐ析出物生成量数が少なくなり、結晶粒の粗大化がおきてしまうおそれがある。このため、好ましい昇温速度は上記のようになる。
Here, the temperature increase rate in the recrystallization heat treatment will be described.
If the rate of temperature rise is too slow, the heat treatment will be over, resulting in coarsening of precipitates and crystallized materials, and there is a risk that strength will be reduced. Moreover, there is a possibility that crystal grain coarsening occurs due to overheating. On the other hand, when the rate of temperature rise is too fast, the number of precipitates generated to prevent coarsening of the crystal grains decreases, and there is a risk that the crystal grains become coarse. For this reason, a preferable temperature increase rate becomes as above.

また、再結晶熱処理温度に関しては、Coの添加量により調整することも効果的である。Coの添加量が1質量%未満の場合は、再結晶熱処理時の保持温度を850℃以上900℃未満とし、Coの添加量が1質量%以上の場合は、再結晶熱処理時の保持温度を900℃以上1000℃未満とすることが好ましい。再結晶熱処理時の保持温度がこの範囲より低い場合は強度不足となるおそれが高まり、再結晶熱処理時の保持温度がこの範囲より高い場合は結晶粒粗大化による曲げ性の劣化が起こりうるだけでなく、銅合金材料の変形も起こりうるためである。   It is also effective to adjust the recrystallization heat treatment temperature by the amount of Co added. When the addition amount of Co is less than 1% by mass, the holding temperature at the recrystallization heat treatment is set to 850 ° C. or more and less than 900 ° C., and when the addition amount of Co is 1% by mass or more, the holding temperature at the recrystallization heat treatment is set to It is preferable to set it to 900 degreeC or more and less than 1000 degreeC. If the holding temperature during the recrystallization heat treatment is lower than this range, there is a risk that the strength will be insufficient.If the holding temperature during the recrystallization heat treatment is higher than this range, the bending property may be deteriorated due to grain coarsening. This is because the copper alloy material may be deformed.

なお、本発明の別の好ましい実施態様として、以下のものが挙げられる。
C3)Coを0.7〜2.5質量%(上限は好ましくは2.0質量%)であり、CoのSiに対する質量比(Co/Si)が3以上5以下である銅合金材料であって、
母材の銅合金の結晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であって、前記標準偏差が前記算術平均よりも小さいことを特徴とする銅合金材料。
記(C3)の実施態様については、例えば、その合金組成、添加元素、結晶粒と析出物の状態、その製造方法(各製造工程、製造条件など)について、さらにそれらの具体例や好ましい範囲など、前記本発明と異なる構成要素に関することを除いて全て同様である。また、前記(C3)の実施態様は、前記本発明と同様の効果を奏するものである。
In addition, the following are mentioned as another preferable embodiment of this invention.
( C3) A copper alloy material in which Co is 0.7 to 2.5 mass% (the upper limit is preferably 2.0 mass%), and the mass ratio of Co to Si (Co / Si) is 3 or more and 5 or less. There,
A copper alloy material characterized in that an arithmetic average of crystal grain size of a copper alloy as a base material is 3 to 20 μm, a standard deviation is 8 μm or less, and the standard deviation is smaller than the arithmetic average.
The embodiments of the previous SL (C3), for example, the alloy composition, additive elements, states of grains and precipitate, a manufacturing method (manufacturing steps, and manufacturing conditions) for further and these embodiments the preferred range etc., are all similarly except for members that is different from the present onset bright. Further, embodiments of the (C3) is to the same effect as the present onset bright.

次に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited to them.

(実施例
に示した成分を含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを10〜30K/秒の冷却速度で鋳造して幅160mm、厚さ30mm、長さ180mmの鋳塊を得た。なお、冷却温度は鋳塊に割れなどが発生しない条件下で行った。
得られた鋳塊を温度1000℃で30分間保持し、熱間圧延を行い板厚t=12mmの熱延板を作製し、その両面を各1mm面削して板厚t=10mmとし、次いで冷間圧延により板厚t=0.3mmに仕上げ、その後800〜1025℃の範囲の温度で再結晶熱処理を行った。再結晶熱処理の温度はCoの添加量などに応じて、表に記載のとおり変化させた。そして、再結晶熱処理後の材料に対して次の2工程を施し、最終製品に相当する供試材を作成した。
工程A:再結晶熱処理−時効熱処理(温度525℃で2時間)−冷間加工(0〜20%)
※この後、必要に応じて、温度300〜400℃の範囲で1〜2時間の歪取り焼鈍を実施した。
工程B:再結晶熱処理−冷間圧延(0〜20%)−時効熱処理(温度525℃で2時間)
(Example 1 )
An alloy containing the components shown in Table 1 and the balance consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace, which is cast at a cooling rate of 10 to 30 K / sec, 160 mm wide, 30 mm thick, and long. A 180 mm ingot was obtained. In addition, the cooling temperature was performed on the conditions which a crack etc. do not generate | occur | produce in an ingot.
The obtained ingot is held at a temperature of 1000 ° C. for 30 minutes, hot rolled to produce a hot-rolled sheet having a thickness t = 12 mm, both sides thereof are each 1 mm chamfered to a thickness t = 10 mm, The sheet thickness t was finished to 0.3 mm by cold rolling, and then recrystallization heat treatment was performed at a temperature in the range of 800 to 1025 ° C. The recrystallization heat treatment temperature was changed as shown in Table 1 according to the amount of Co added. And the following two processes were given with respect to the material after recrystallization heat processing, and the test material equivalent to a final product was created.
Step A: Recrystallization heat treatment-Aging heat treatment (temperature of 525 ° C for 2 hours)-Cold working (0 to 20%)
* After this, if necessary, strain relief annealing was performed at a temperature of 300 to 400 ° C. for 1 to 2 hours.
Step B: Recrystallization heat treatment-cold rolling (0 to 20%)-aging heat treatment (temperature of 525 ° C for 2 hours)

この供試材について下記の特性調査を行った。銅合金材料の合金としての特性評価結果を表1に示す。
a.引張強度:
供試材の圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。
b.導電率測定:
四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試験片の2本について導電率を測定し、その平均値(%IACS)を表1に示した。このとき端子間距離は100mmとした。
c.曲げ加工性:
供試材から圧延方向に垂直に幅10mm、長さ35mmに試験片を切出し、これに曲げの軸が圧延方向に平行に曲げ半径R=0〜0.5(mm)の6水準で90°W曲げ(Bad−way曲げ)し、曲げ部における割れの有無を50倍の光学顕微鏡で目視観察および走査型電子顕微鏡(SEM)によりその曲げ加工部位を観察し割れの有無を調査した。表1中のR/tのRは曲げ半径でtは板厚を示し、この値が小さいほど良好な曲げ加工性を示す。
d3.結晶粒径(算術平均):
試験片の圧延方向に垂直な断面を湿式研磨、バフ研磨により鏡面に仕上げた後、クロム酸:水=1:1の液で数秒研磨面を腐食した後、光学顕微鏡で200〜400倍の倍率か、走査型電子顕微鏡(SEM)の二次電子像を用いて500〜2000倍の倍率で写真をとり、断面粒径をJIS H0501の切断法に準じて結晶粒径を測定した。そして、その測定母数を200として算術平均を求め、この値を結晶粒径の算術平均の値とした。なお、表中では「平均結晶粒径」と表記している。
e3.結晶粒径の偏差:
上記結晶粒径測定と同様の手法で粒径を1個ずつ測定し、その測定母数を200として結晶粒径の標準偏差を求めた。
f.析出物のサイズと密度
析出物のサイズは透過電子顕微鏡(TEM)を用いて評価を行った。最終製品では加工歪みの影響を受けて観察しにくくなるため時効熱処理後の材料の組織観察を実施した。熱処理材の任意の場所からTEM用試験片を切り出し、硝酸(20%)のメタノール溶液を用いて、温度−20〜−25℃の範囲で電解研磨(ツインジェット式電解研磨装置による)を行って観察用の試験片を完成させた。
その後、加速電圧:300kVで観察を行って、電子線の入射方位を(001)近傍に合わせて、100000倍の写真を任意に3枚撮影した。その写真を用いて析出物(約100個)の平均サイズをと個数を求めた。
The following property investigation was conducted on this specimen. Table 1 shows the evaluation results of the characteristics of the copper alloy material as an alloy.
a. Tensile strength:
Three test pieces of JIS Z2201-13B cut out in the rolling parallel direction of the test material were measured according to JIS Z2241, and the average value was shown.
b. Conductivity measurement:
Using a four-terminal method, the conductivity was measured for two of each test piece in a thermostatic chamber controlled at 20 ° C. (± 1 ° C.), and the average value (% IACS) is shown in Table 1. At this time, the distance between terminals was set to 100 mm.
c. Bendability:
Specimens were cut out from the test material to a width of 10 mm and a length of 35 mm perpendicular to the rolling direction, and the bending axis was parallel to the rolling direction and the bending radius R = 0 to 0.5 (mm) at six levels of 90 °. W-bending (Bad-way bending) was performed, and the presence or absence of cracks in the bent portion was visually observed with a 50 × optical microscope, and the bending portion was observed with a scanning electron microscope (SEM) to investigate the presence or absence of cracks. In Table 1, R of R / t is a bending radius, t indicates a plate thickness, and a smaller value indicates better bending workability.
d3. Crystal grain size (arithmetic mean):
After the cross section perpendicular to the rolling direction of the test piece is polished to a mirror surface by wet polishing and buffing, the polished surface is corroded for several seconds with a solution of chromic acid: water = 1: 1, and then magnification is 200 to 400 times with an optical microscope. Alternatively, a photograph was taken at a magnification of 500 to 2000 using a secondary electron image of a scanning electron microscope (SEM), and the crystal grain size was measured according to the cutting method of JIS H0501. And the arithmetic mean was calculated | required by setting the measurement parameter to 200, and this value was made into the value of the arithmetic mean of a crystal grain diameter. In the table, “average grain size” is indicated.
e3. Crystal grain size deviation:
The grain size was measured one by one by the same method as the above grain size measurement, and the standard deviation of the grain size was determined with the measurement parameter being 200.
f. Precipitate size and density
The size of the precipitate was evaluated using a transmission electron microscope (TEM). In the final product, the structure of the material after aging heat treatment was observed because it was difficult to observe due to the influence of processing strain. Cut out a specimen for TEM from an arbitrary place on the heat treatment material, and perform electrolytic polishing (using a twin jet electrolytic polishing apparatus) in a temperature range of −20 to −25 ° C. using a methanol solution of nitric acid (20%). A test specimen for observation was completed.
Thereafter, observation was carried out at an acceleration voltage of 300 kV, and three 100000 times photographs were taken arbitrarily with the incident direction of the electron beam being set in the vicinity of (001). Using the photograph, the average size and number of precipitates (about 100) were obtained.

Figure 0005224415
Figure 0005224415

表1に記載のとおり、本発明に従った例では、強度、導電性を満足している。別途、曲げ加工性について試験したところ、本発明に従った例では、良好な結果が得られており、本発明に従った例では、強度、導電性、曲げ加工性のすべてをバランス良く満足していることを確認した。具体的には、導電率が60%IACS以上であって、かつ引張強度が570MPa以上650MPa以下でR/tの値が0.5以下、引張強度が650MPaを超えて700MPa以下でR/tの値が1.0以下、引張強度が700MPaを超える場合でR/tの値が1.5以下となった。これに対し、本発明に従わなかった例では上記の値を満足しない結果となった。 Table 1 as described in, in the example according to the present invention, are added strength, the conductive fill. Separately, when the bending workability was tested, good results were obtained in the examples according to the present invention, and the examples according to the present invention satisfied all of strength, conductivity, and bending workability in a well-balanced manner. Confirmed that. Specifically, the electrical conductivity is 60% IACS or more, the tensile strength is 570 MPa or more and 650 MPa or less, the R / t value is 0.5 or less, the tensile strength is over 650 MPa and 700 MPa or less, and the R / t is R / t. When the value was 1.0 or less and the tensile strength exceeded 700 MPa, the R / t value was 1.5 or less. On the other hand, in the example which did not follow this invention, the result which does not satisfy said value was brought.

本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。   While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.

本願は、2008年7月31日に日本国で特許出願された特願2008−197672、2008年7月31日に日本国で特許出願された特願2008−197677、及び2008年8月5日に日本国で特許出願された特願2008−202468に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。
This application includes Japanese Patent Application No. 2008-197672 filed in Japan on July 31, 2008, Japanese Patent Application No. 2008-197677 filed in Japan on July 31, 2008, and August 5, 2008. Claiming priority based on Japanese Patent Application No. 2008-202468, filed in Japan, which is incorporated herein by reference in its entirety.

Claims (6)

Co(コバルト)を0.7〜2.0質量%、Si(ケイ素)を0.1〜0.5質量%それぞれ含み、残部Cu(銅)及び不可避不純物からなる組成を有し、CoのSiに対する質量比(Co/Si)が3以上5以下である電気電子部品用銅合金材料であって、母材の銅合金の結晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であって、前記標準偏差が前記算術平均よりも小さく、CoとSiからなる析出物の粒子径が5〜50nmで、前記析出物の密度が1×10〜1×1010個/mmであり、かつ、銅合金材料としての引張強度が570MPa以上、導電率が60%IACS以上である電気電子部品用銅合金材料。 Co (cobalt) 0.7-2.0 mass%, Si (silicon) 0.1-0.5 mass%, respectively, the composition consisting of the balance Cu (copper) and inevitable impurities, Co Co Si A copper alloy material for electrical and electronic parts having a mass ratio (Co / Si) of 3 to 5 and the arithmetic average of the crystal grain size of the base copper alloy is 3 to 20 μm, and the standard deviation is 8 μm or less. The standard deviation is smaller than the arithmetic mean, the particle diameter of the precipitate composed of Co and Si is 5 to 50 nm, and the density of the precipitate is 1 × 10 8 to 1 × 10 10 pieces / mm 2 . And the copper alloy material for electrical and electronic components whose tensile strength as a copper alloy material is 570 Mpa or more and whose electrical conductivity is 60% IACS or more. さらに、Cr(クロム)、Ni(ニッケル)の群から選ばれる少なくとも1種を合計で0.01〜1.0質量%含有し、残部が銅および不可避不純物である請求項1記載の電気電子部品用銅合金材料。 The electrical / electronic component according to claim 1, further comprising 0.01 to 1.0% by mass in total of at least one selected from the group consisting of Cr (chromium) and Ni (nickel ), with the balance being copper and inevitable impurities. Copper alloy material. さらに、Ti(チタン)0.01〜0.1質量%含有し、残部が銅および不可避不純物である請求項1または請求項に記載の電気電子部品用銅合金材料。 Furthermore, T i (titanium) and containing 0.01 to 0.1 wt%, electrical and electronic components for the copper alloy material according to claim 1 or claim 2 the remainder being copper and inevitable impurities. 標準偏差を算術平均で割った値が0.65以下である請求項1〜請求項のいずれか1項に記載の電気電子部品用銅合金材料。 The copper alloy material for electrical and electronic parts according to any one of claims 1 to 3 , wherein a value obtained by dividing the standard deviation by the arithmetic average is 0.65 or less. 請求項1〜請求項のいずれか1項に記載の組成を有する銅合金材料を溶解鋳造し、
熱間圧延し、
面削し、
冷間圧延し、
再結晶熱処理し、
時効熱処理する
各工程を有し、
前記溶解鋳造工程が、10〜30K/秒(ここでKは絶対温度を示すケルビンである)の冷却速度で冷却しながら鋳造して、鋳塊を得る工程であり、
前記熱間圧延工程が、前記鋳塊を温度900〜1000℃で30分間〜60分間保持後に加工し、速やかに水冷却にて焼入れを施す工程であり、
前記再結晶熱処理工程が、温度800〜1025℃に保持されたソルトバス内で一定時間熱処理を行い、その後、速やかに水冷却で焼き入れを行う工程であり、ここで、昇温速度は、温度300℃以上では10〜300K/秒であり、冷却速度は、30〜200K/秒であり、
前記時効熱処理工程での室温から最高温度に到達するまでの昇温速度は3〜25K/分の範囲内にあり、降温に際しては300℃までは炉内で1〜2K/分の範囲内で冷却を行い、
母材の銅合金の結晶粒径の算術平均が3〜20μm、標準偏差が8μm以下であって、前記標準偏差が前記算術平均よりも小さく、CoとSiからなる析出物の粒子径が5〜50nmで、前記析出物の密度が1×10〜1×1010個/mmであり、かつ、銅合金材料としての引張強度が570MPa以上、導電率が60%IACS以上である電気電子部品用銅合金材料を得てなる
請求項1〜請求項のいずれか1項に記載の電気電子部品用銅合金材料を製造する方法。
Was dissolved cast copper alloy material having a composition according to any one of claims 1 to 3,
Hot rolled,
Chamfering,
Cold rolled,
Recrystallization heat treatment,
Each process has an aging heat treatment,
The melt casting step is a step of casting while cooling at a cooling rate of 10 to 30 K / second (where K is Kelvin indicating an absolute temperature) to obtain an ingot,
The hot rolling step is a step in which the ingot is processed after being held at a temperature of 900 to 1000 ° C. for 30 minutes to 60 minutes and rapidly quenched with water cooling,
The recrystallization heat treatment step is a step in which heat treatment is performed for a certain time in a salt bath maintained at a temperature of 800 to 1025 ° C., and then quenched rapidly with water cooling. Above 300 ° C., it is 10 to 300 K / second, and the cooling rate is 30 to 200 K / second,
The rate of temperature rise until reaching the maximum temperature from room temperature in the aging heat treatment step is in the range of 3 to 25 K / min, and when the temperature is lowered, the temperature is cooled to 300 ° C. in the range of 1 to 2 K / min. And
The arithmetic average of the crystal grain size of the copper alloy as a base material is 3 to 20 μm, the standard deviation is 8 μm or less, the standard deviation is smaller than the arithmetic average, and the particle diameter of the precipitate made of Co and Si is 5 An electrical / electronic component having a density of 1 × 10 8 to 1 × 10 10 pieces / mm 2 at 50 nm, a tensile strength as a copper alloy material of 570 MPa or more, and a conductivity of 60% IACS or more. The method for producing a copper alloy material for electric and electronic parts according to any one of claims 1 to 4 , wherein the copper alloy material is obtained.
前記再結晶熱処理工程での保持温度が、
Coの添加量が1質量%未満の場合は、再結晶熱処理時の保持温度を850℃以上900℃未満とし、
Coの添加量が1質量%以上の場合は、再結晶熱処理時の保持温度を900℃以上1000℃未満とする
請求項記載の電気電子部品用銅合金材料の製造方法。
Holding temperature in the recrystallization heat treatment step,
When the addition amount of Co is less than 1% by mass, the holding temperature during the recrystallization heat treatment is 850 ° C. or more and less than 900 ° C.,
The method for producing a copper alloy material for electrical and electronic parts according to claim 5 , wherein when the amount of Co added is 1% by mass or more, the holding temperature during recrystallization heat treatment is 900 ° C or higher and lower than 1000 ° C.
JP2010507743A 2008-07-31 2009-07-30 Copper alloy material for electric and electronic parts and manufacturing method thereof Active JP5224415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010507743A JP5224415B2 (en) 2008-07-31 2009-07-30 Copper alloy material for electric and electronic parts and manufacturing method thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008197672 2008-07-31
JP2008197677 2008-07-31
JP2008197677 2008-07-31
JP2008197672 2008-07-31
JP2008202468 2008-08-05
JP2008202468 2008-08-05
PCT/JP2009/063616 WO2010013790A1 (en) 2008-07-31 2009-07-30 Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP2010507743A JP5224415B2 (en) 2008-07-31 2009-07-30 Copper alloy material for electric and electronic parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2010013790A1 JPWO2010013790A1 (en) 2012-01-12
JP5224415B2 true JP5224415B2 (en) 2013-07-03

Family

ID=41610488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010507743A Active JP5224415B2 (en) 2008-07-31 2009-07-30 Copper alloy material for electric and electronic parts and manufacturing method thereof

Country Status (6)

Country Link
US (1) US20110186192A1 (en)
EP (1) EP2319947A4 (en)
JP (1) JP5224415B2 (en)
KR (1) KR101570555B1 (en)
CN (1) CN102112639A (en)
WO (1) WO2010013790A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620173B1 (en) 2010-03-30 2011-01-26 Jx日鉱日石金属株式会社 Cu-Co-Si alloy material
JP4677505B1 (en) 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4830035B2 (en) * 2010-04-14 2011-12-07 Jx日鉱日石金属株式会社 Cu-Si-Co alloy for electronic materials and method for producing the same
EP3020836A3 (en) 2010-05-14 2016-06-08 Mitsubishi Materials Corporation Copper alloy for electronic device, method for producing it, and rolled copper alloy for electronic device
JP4672804B1 (en) * 2010-05-31 2011-04-20 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4708497B1 (en) * 2010-06-03 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si alloy plate and method for producing the same
JP4834781B1 (en) 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 Cu-Co-Si alloy for electronic materials
JP2012072470A (en) * 2010-09-29 2012-04-12 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2012144789A (en) * 2011-01-13 2012-08-02 Jx Nippon Mining & Metals Corp Cu-Co-Si-Zr ALLOY MATERIAL
JP5544316B2 (en) * 2011-02-14 2014-07-09 Jx日鉱日石金属株式会社 Cu-Co-Si-based alloys, copper products, electronic parts, and connectors
JP5508326B2 (en) * 2011-03-24 2014-05-28 Jx日鉱日石金属株式会社 Co-Si copper alloy sheet
JP5451674B2 (en) * 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP4831552B1 (en) * 2011-03-28 2011-12-07 Jx日鉱日石金属株式会社 Co-Si copper alloy sheet
JP5514762B2 (en) * 2011-03-29 2014-06-04 Jx日鉱日石金属株式会社 Cu-Co-Si alloy with excellent bending workability
JP4799701B1 (en) * 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
JP5903832B2 (en) * 2011-10-28 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and electronic equipment parts
JP5903838B2 (en) * 2011-11-07 2016-04-13 三菱マテリアル株式会社 Copper alloy for electronic equipment, copper material for electronic equipment, copper alloy manufacturing method for electronic equipment, copper alloy plastic working material for electronic equipment, and electronic equipment parts
JP5903842B2 (en) * 2011-11-14 2016-04-13 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, and method for producing copper alloy plastic working material
JP6039999B2 (en) * 2012-10-31 2016-12-07 Dowaメタルテック株式会社 Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
CN104812944B (en) * 2012-11-20 2019-02-19 Jx日矿日石金属株式会社 Copper foil with carrier
US9394619B2 (en) * 2013-03-12 2016-07-19 Intel Corporation Methods of adding dopants to conductive interconnect structures in substrate technologies and structures formed thereby
CN105018782B (en) * 2015-07-23 2017-09-26 宁波博威合金板带有限公司 A kind of copper alloy of the silicon containing cobalt
JP6246173B2 (en) * 2015-10-05 2017-12-13 Jx金属株式会社 Cu-Co-Ni-Si alloy for electronic parts
KR101810925B1 (en) * 2017-10-18 2017-12-20 주식회사 풍산 Copper alloy strips having high heat resistance and thermal dissipation properties
CN112725657B (en) * 2020-12-24 2021-09-17 国工恒昌新材料沧州有限公司 Preparation method of C70350 nickel-silicon bronze strip
KR20240077633A (en) 2022-11-24 2024-06-03 신영금속 (주) Ag-Pd-Cu alloy material having improved electrical resistance and abrasion resistance and electrical and electronic components manufactured using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169765A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy and its production method
JP2007177274A (en) * 2005-12-27 2007-07-12 Kobe Steel Ltd Copper alloy with high strength and excellent processability in bending, and its production process
JP2008007839A (en) * 2006-06-30 2008-01-17 Nikko Kinzoku Kk Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY
JP2008056977A (en) * 2006-08-30 2008-03-13 Mitsubishi Electric Corp Copper alloy and its production method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187838A (en) 1984-10-03 1986-05-06 Kobe Steel Ltd Copper alloy having superior hot workability
JPS63307232A (en) 1987-06-04 1988-12-14 Sumitomo Metal Mining Co Ltd Copper alloy
JPH02129326A (en) 1988-11-08 1990-05-17 Sumitomo Metal Mining Co Ltd High strength copper alloy
JPH02277735A (en) 1989-04-20 1990-11-14 Sumitomo Metal Mining Co Ltd Copper alloy for lead frame
JP3408021B2 (en) * 1995-06-30 2003-05-19 古河電気工業株式会社 Copper alloy for electronic and electric parts and method for producing the same
CN100362552C (en) 1997-02-17 2008-01-16 精工爱普生株式会社 Electric current driven luminous display device
JPH1112714A (en) * 1997-06-25 1999-01-19 Dowa Mining Co Ltd Copper and copper base alloy excellent in direct bonding property and soldering property and production thereof
JP4378502B2 (en) * 2004-02-25 2009-12-09 Dowaメタルテック株式会社 Heat sink for semiconductor device and manufacturing method thereof
CN101124345B (en) * 2005-03-02 2011-02-09 古河电气工业株式会社 Copper alloy and method for production thereof
CN1908777A (en) 2005-08-05 2007-02-07 精工爱普生株式会社 Liquid crystal device, electro-optical device, projector, and micro-device
JP5085908B2 (en) 2006-10-03 2012-11-28 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP2008202468A (en) 2007-02-19 2008-09-04 Toyota Motor Corp Output convergence value calculation device for engine system
JP2008266787A (en) * 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy material and its manufacturing method
EP2248921A4 (en) * 2008-01-31 2011-03-16 Furukawa Electric Co Ltd Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169765A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy and its production method
JP2007177274A (en) * 2005-12-27 2007-07-12 Kobe Steel Ltd Copper alloy with high strength and excellent processability in bending, and its production process
JP2008007839A (en) * 2006-06-30 2008-01-17 Nikko Kinzoku Kk Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY
JP2008056977A (en) * 2006-08-30 2008-03-13 Mitsubishi Electric Corp Copper alloy and its production method

Also Published As

Publication number Publication date
EP2319947A1 (en) 2011-05-11
KR101570555B1 (en) 2015-11-19
EP2319947A4 (en) 2011-11-23
CN102112639A (en) 2011-06-29
US20110186192A1 (en) 2011-08-04
WO2010013790A1 (en) 2010-02-04
JPWO2010013790A1 (en) 2012-01-12
KR20110038143A (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
JP5619389B2 (en) Copper alloy material
JP5307305B1 (en) Copper alloy material and method of manufacturing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5773929B2 (en) Copper alloy sheet for electrical and electronic parts with excellent bending workability and stress relaxation resistance
JP2014156623A (en) HIGH INTENSITY Cu-Ni-Co-Si BASED COPPER ALLOY SHEET MATERIAL AND PRODUCTION METHOD THEREOF, AND CONDUCTIVE COMPONENT
JP6053959B2 (en) Copper alloy sheet, method for producing the same, and electric / electronic component comprising the copper alloy sheet
JP6088741B2 (en) Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
JP5065478B2 (en) Copper alloy material for electric and electronic parts and manufacturing method
WO2010016428A1 (en) Copper alloy material for electrical/electronic component
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JP2013129889A (en) Copper alloy material and method for producing the same
JP5468798B2 (en) Copper alloy sheet
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
JP6301734B2 (en) Copper alloy material and method for producing the same
KR102421870B1 (en) Cu-Ni-Si-Mn-Sn based Copper alloy material with excellent strength, electrical conductivity and bendability, and method for preparing the same
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP2005089843A (en) High-strength copper alloy sheet and manufacturing method therefor
TW201714185A (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
WO2020152967A1 (en) Copper alloy plate material and method for manufacturing same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120119

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

R151 Written notification of patent or utility model registration

Ref document number: 5224415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350