JP6301734B2 - Copper alloy material and method for producing the same - Google Patents

Copper alloy material and method for producing the same Download PDF

Info

Publication number
JP6301734B2
JP6301734B2 JP2014108510A JP2014108510A JP6301734B2 JP 6301734 B2 JP6301734 B2 JP 6301734B2 JP 2014108510 A JP2014108510 A JP 2014108510A JP 2014108510 A JP2014108510 A JP 2014108510A JP 6301734 B2 JP6301734 B2 JP 6301734B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
mass
stress relaxation
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014108510A
Other languages
Japanese (ja)
Other versions
JP2015224354A (en
Inventor
恵人 藤井
恵人 藤井
樋口 優
優 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2014108510A priority Critical patent/JP6301734B2/en
Publication of JP2015224354A publication Critical patent/JP2015224354A/en
Application granted granted Critical
Publication of JP6301734B2 publication Critical patent/JP6301734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、EV(Electric Vehicle)、HEV(Hybrid Electric Vehicle)を中心とした車載部品および周辺インフラや太陽光発電システムなどのコネクタのほか、リードフレーム、リレー、スイッチ、ソケット等に好適な銅合金材及びその製造方法に関する。   The present invention is a copper alloy suitable for lead frames, relays, switches, sockets, etc., as well as connectors for in-vehicle components and peripheral infrastructure, solar power generation systems, etc., centering on EVs (Electric Vehicles) and HEVs (Hybrid Electric Vehicles). The present invention relates to a material and a manufacturing method thereof.

EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等の用途においては、銅合金材が一般的に使用されている。近年、回路電源の高電圧化や電子機器寸法の小型化による、回路の高電流密度化が進行しており、通電時の抵抗発熱及びそれに伴うばね接点部における回路接続信頼性の低下が懸念されている。この問題を解決するに当たり、銅合金材には、抵抗発熱を抑制するための高い導電性、発熱した際にばねのへたりを抑制し回路接続信頼性を維持するための耐応力緩和特性が要求される。またばね接点の接圧を担保するために、強度は高い方が好ましい。   Copper alloys are generally used in applications such as in-vehicle components such as EVs and HEVs, connectors for peripheral infrastructure, solar power generation systems, and other lead frames, relays, switches, sockets, and the like. In recent years, the circuit power supply has been increased due to higher voltage of the circuit power supply and downsizing of electronic equipment, and there is a concern about resistance heat generation during energization and a decrease in circuit connection reliability at the spring contact part. ing. In order to solve this problem, copper alloy materials require high conductivity to suppress resistance heat generation, and stress relaxation resistance characteristics to suppress spring sag and maintain circuit connection reliability when heat is generated. Is done. Moreover, in order to ensure the contact pressure of a spring contact, the one where intensity | strength is high is preferable.

中程度の強度と高い導電性を有する合金系として、銅−クロム(Cu−Cr)系銅合金、銅−ジルコニウム(Cu−Zr)系銅合金、銅−希薄チタン(Cu−希薄Ti)系銅合金等が挙げられる。Cu−Cr系銅合金は、元素添加により、耐応力緩和特性を改善することができる。例えば特許文献1では、マグネシウム(Mg)、ジルコニウム(Zr)、チタン(Ti)、スズ(Sn)、銀(Ag)、シリコン(Si)を添加することで、耐応力緩和特性を改善している。Cu−Zr系銅合金やCu−希薄Ti系銅合金は耐応力緩和特性が良好であることが、特許文献2で示されている。   As alloy systems having medium strength and high conductivity, copper-chromium (Cu-Cr) -based copper alloys, copper-zirconium (Cu-Zr) -based copper alloys, copper-diluted titanium (Cu-diluted Ti) -based copper An alloy etc. are mentioned. The Cu—Cr based copper alloy can improve the stress relaxation resistance by adding elements. For example, in Patent Document 1, the stress relaxation resistance is improved by adding magnesium (Mg), zirconium (Zr), titanium (Ti), tin (Sn), silver (Ag), and silicon (Si). . Patent Document 2 shows that Cu-Zr copper alloys and Cu-diluted Ti copper alloys have good stress relaxation resistance.

また耐応力緩和特性を改善するためには、最終加工工程の後に所定の熱処理工程を実施することが有効である。特許文献2において、歪取焼鈍を実施しない場合、耐応力緩和特性が低下することが示されている。   In order to improve the stress relaxation resistance, it is effective to perform a predetermined heat treatment step after the final processing step. In Patent Document 2, it is shown that when stress relief annealing is not performed, the stress relaxation resistance is reduced.

このように、従来、適切な合金系を選択し、製造工程を適宜に工夫することで、高い導電性と耐応力緩和特性を兼ね備えた銅合金材を得ていた。   Thus, conventionally, by selecting an appropriate alloy system and appropriately devising the manufacturing process, a copper alloy material having both high conductivity and stress relaxation resistance has been obtained.

特許第5307305号公報Japanese Patent No. 5307305 特許第5380621号公報Japanese Patent No. 5380621

ところで、近年の急速な、EV、HEVの技術開発、性能向上に伴い、これらの車を中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等において、回路ひいてはシステムの接続信頼性を維持することが必須である。そのため、ばね接点の初期接圧を大きくし、かつ通電時の抵抗発熱等により熱が付加された際にも、大きな接圧を維持する必要が高まっている。このような要求から銅合金材には、高い導電性と優れた耐応力緩和特性に加え、より高い強度が要求される。   By the way, with the rapid development of EV and HEV technology and performance improvements in recent years, in-vehicle components and peripheral infrastructure, connectors for solar power generation systems, etc., mainly for these vehicles, other lead frames, relays, switches, sockets, etc. However, it is essential to maintain the connection reliability of the circuit and the system. For this reason, it is necessary to increase the initial contact pressure of the spring contact and maintain a large contact pressure even when heat is applied due to resistance heat generation or the like during energization. In view of these requirements, the copper alloy material is required to have higher strength in addition to high conductivity and excellent stress relaxation characteristics.

特許文献1では、Cu−Cr系銅合金に元素添加することで、高い導電率(EC:Electrical Conductivity)と引張強度(TS:Tensile Strength)、耐応力緩和特性を兼ね備えている。ばね接点の接圧は0.2%耐力(YS:Yield Stress)によって決まるため、材料にはTSだけでなく、YSも高いことが望まれる。耐応力緩和特性を改善するためには最終加工工程後の熱処理工程が必要であり、その際TSとYSの低下が起こり、TSに比べYSの方が強度低下量は大きくなる。従来は、耐応力緩和特性を改善するために十分な熱処理を行うと、TSを高く維持できたとしてもYSが低下してしまい、また一方で熱処理が不十分だと耐応力緩和特性の改善が不十分になるという問題があった。   In Patent Document 1, by adding an element to a Cu—Cr-based copper alloy, it has both high electrical conductivity (EC), tensile strength (TS), and stress relaxation resistance. Since the contact pressure of the spring contact is determined by 0.2% proof stress (YS: Yield Stress), it is desired that the material has not only TS but also high YS. In order to improve the stress relaxation resistance, a heat treatment step after the final processing step is necessary. At that time, TS and YS decrease, and YS has a larger strength decrease than TS. Conventionally, if sufficient heat treatment is performed to improve the stress relaxation resistance, YS decreases even if TS can be maintained high. On the other hand, if the heat treatment is insufficient, the stress relaxation resistance is improved. There was a problem of becoming insufficient.

また特許文献2に記載されたCu−Zr系銅合金、Cu−希薄Ti系銅合金は、高い導電性と耐応力緩和特性を兼ね備えているものの、比較的強度の低い合金系である。そのため、通常、最終圧延の総加工率を50%より大きくすることで強度を高めているのが実情である。しかし、この方法では、材料の強度は高められる。しかし、曲げ加工性や導電性が低下するという問題がある。また総加工率が50%以下では、0.2%耐力が380MPa未満の低い値となって、十分な接点接圧が得られない可能性がある。   Further, the Cu—Zr copper alloy and Cu—diluted Ti copper alloy described in Patent Document 2 are alloy systems with relatively low strength, although they have high conductivity and stress relaxation resistance. Therefore, the actual situation is that the strength is usually increased by making the total processing rate of the final rolling larger than 50%. However, this method increases the strength of the material. However, there exists a problem that bending workability and electroconductivity fall. When the total processing rate is 50% or less, the 0.2% proof stress is a low value of less than 380 MPa, and there is a possibility that sufficient contact pressure cannot be obtained.

上記の事情に鑑み、本発明の課題は、近年の技術進歩が著しいEV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等に用いるコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等に適した、高い導電性、耐応力緩和特性、強度を兼ね備えた銅合金材及びその製造方法を提供することにある。   In view of the above circumstances, the problem of the present invention is that EVs, HEVs and other in-vehicle parts and connectors used in peripheral infrastructure, solar power generation systems, etc., other lead frames, relays, switches, sockets, etc. It is an object of the present invention to provide a copper alloy material having high electrical conductivity, stress relaxation resistance, and strength, and a method for producing the same.

本発明者らは、上記のEV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等に適した銅合金材について研究を行った。Crを0.10〜0.50質量%とMgを0.10〜0.50質量%、さらにZr、Tiのうち少なくとも一種類を合計で0.01〜0.20質量%、亜鉛(Zn)、鉄(Fe)、Sn、Ag、Si、ニッケル(Ni)のうち少なくとも一種類を合計で0.01〜0.50質量%含有し、残部がCuと不可避的不純物からなる銅合金材の、最終加工工程後の熱処理工程において、熱処理条件(昇温速度、到達温度、熱処理時間、冷却速度など)を適切な範囲に制御することで、熱処理によるYSの低下を抑制できることを見出した。これにより、熱処理後のTSとYSの差が小さくなり、先行例と同等のTSと耐応力緩和特性を持ちながら、高いYSを兼ね備えた銅合金材を得られ、高い導電性、耐応力緩和特性、強度を兼ね備えた材料が得られる。   The present inventors conducted research on copper alloy materials suitable for the above-mentioned EV and HEV-based components, connectors for peripheral infrastructure, solar power generation systems, and other lead frames, relays, switches, sockets, and the like. . Cr is 0.10 to 0.50 mass%, Mg is 0.10 to 0.50 mass%, and at least one of Zr and Ti is 0.01 to 0.20 mass% in total, zinc (Zn) Of copper alloy material containing 0.01 to 0.50% by mass in total of at least one of iron (Fe), Sn, Ag, Si, and nickel (Ni), with the balance being Cu and inevitable impurities, In the heat treatment step after the final processing step, it has been found that by controlling the heat treatment conditions (temperature increase rate, ultimate temperature, heat treatment time, cooling rate, etc.) within an appropriate range, a decrease in YS due to heat treatment can be suppressed. As a result, the difference between TS and YS after heat treatment is reduced, and a copper alloy material having high YS can be obtained while having the same TS and stress relaxation resistance as the previous example, and high conductivity and stress relaxation characteristics. A material having strength can be obtained.

本発明の上記の課題は、下記の手段によって達成される。
(1)Crを0.10〜0.50質量%と、Mgを0.01〜0.50質量%含み、Zr、Tiのうち少なくとも一種を合計で0.00〜0.20質量%含有する第1添加元素群、およびZn、Fe、Sn、Ag、Si、Niのうち少なくとも一種を合計で0.00〜0.50質量%含有する第2添加元素群からなる群から選ばれる一種を含有し、残部がCuと不可避的不純物からなる銅合金材であって、
材料表面への初期負荷応力を0.2%耐力の80%とし、150℃中で1000時間放置後の応力緩和率が30%以下であり、
引張強度と0.2%耐力の差が15MPa以下である銅合金材。
(2)Zr、Tiのうち少なくとも一種を合計で0.01〜0.20質量%含有する第1添加元素群、およびZn、Fe、Sn、Ag、Si、Niのうち少なくとも一種を合計で0.01〜0.50質量%含有する第2添加元素群からなる群から選ばれる少なくとも一種を含有する、(1)に記載の銅合金材。
(3)引張強度と0.2%耐力の差が10MPa以下で(1)または(2)に記載の銅合金材。
(4)導電率が60%IACS以上である(1)〜(3)のいずれか1に記載の銅合金材。
(5)(1)〜(4)のいずれか1に記載の銅合金材を製造する銅合金材の製造方法であって、
(a)前記銅合金材を与える組成から成る銅合金を溶解鋳造、
(b)850〜1050℃で0.5〜12時間の均質加熱処理、
(c)700〜1000℃での熱間加工および冷却、
(d)冷間加工、
(e)350〜650℃で10分〜24時間の熱処理後、冷却速度2℃/分以下で300℃まで冷却、
(f)加工率10〜50%の仕上げ冷間加工、
(g)昇温速度が50℃/秒以上で、冷却速度が50℃/秒以上であり、300〜550℃で2〜60秒の歪取り焼鈍、
をこの順で有する銅合金材の製造方法。
(6)(1)〜(4)のいずれか1に記載の銅合金材からなる電気電子部品。
The above object of the present invention is achieved by the following means.
(1) 0.10 to 0.50% by mass of Cr, 0.01 to 0.50% by mass of Mg, and a total of 0.000 to 0.20% by mass of at least one of Zr and Ti 1st additive element group and 1 type chosen from the group which consists of 2nd additive element group which contains 0.00-0.50 mass% of at least 1 type in total among Zn, Fe, Sn, Ag, Si, and Ni And the balance is a copper alloy material consisting of Cu and inevitable impurities,
The initial load stress on the material surface is set to 80% of 0.2% proof stress, and the stress relaxation rate after being left at 150 ° C. for 1000 hours is 30% or less,
A copper alloy material having a difference in tensile strength and 0.2% proof stress of 15 MPa or less.
(2) A first additive element group containing at least one of Zr and Ti in a total amount of 0.01 to 0.20 mass%, and at least one of Zn, Fe, Sn, Ag, Si, and Ni in total 0 The copper alloy material according to (1), which contains at least one selected from the group consisting of a second additive element group containing 0.01 to 0.50 mass%.
(3) The copper alloy material according to (1) or (2), wherein the difference between the tensile strength and the 0.2% proof stress is 10 MPa or less.
(4) The copper alloy material according to any one of (1) to (3), wherein the electrical conductivity is 60% IACS or more.
(5) A method for producing a copper alloy material for producing the copper alloy material according to any one of (1) to (4),
(A) Melting and casting a copper alloy having a composition that gives the copper alloy material;
(B) Homogeneous heat treatment at 850-1050 ° C. for 0.5-12 hours,
(C) Hot working and cooling at 700-1000 ° C,
(D) cold working,
(E) After heat treatment at 350 to 650 ° C. for 10 minutes to 24 hours, cooling to 300 ° C. at a cooling rate of 2 ° C./min or less,
(F) Finish cold working with a processing rate of 10-50%,
(G) The temperature rising rate is 50 ° C./second or more, the cooling rate is 50 ° C./second or more, and the strain relief annealing is performed at 300 to 550 ° C. for 2 to 60 seconds.
The manufacturing method of the copper alloy material which has these in this order.
(6) An electrical / electronic component comprising the copper alloy material according to any one of (1) to (4).

本発明の銅合金材は、高い導電性、耐応力緩和特性、強度を兼ね備えており、ばね接点に用いた際、初期に高い接圧を担保できる。また通電時の発熱量が小さく、かつ発熱したとしてもばねのへたりが小さいために接圧を維持できる。このため、EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等に好適である。   The copper alloy material of the present invention has high conductivity, stress relaxation resistance, and strength, and when used as a spring contact, can ensure a high contact pressure in the initial stage. In addition, the amount of heat generated during energization is small, and even if heat is generated, the contact pressure can be maintained because the spring settling is small. For this reason, it is suitable for in-vehicle components centering on EV and HEV, peripheral infrastructure, connectors for solar power generation systems, and other lead frames, relays, switches, sockets, and the like.

本発明の銅合金材の好ましい実施の形態について、詳細に説明する。ここで、「銅合金材」とは、(加工前であって所定の合金組成を有する)銅合金素材が所定の形状(例えば、板、条、箔など)に加工されたものを意味する。以下では実施形態として板材、条材について説明するが、その形状はこれに限定されるものではない。   A preferred embodiment of the copper alloy material of the present invention will be described in detail. Here, the “copper alloy material” means that a copper alloy material (before processing and having a predetermined alloy composition) is processed into a predetermined shape (for example, plate, strip, foil, etc.). Below, although a board | plate material and a strip are demonstrated as embodiment, the shape is not limited to this.

本発明の銅合金材は、材料表面への初期負荷応力を0.2%耐力の80%として、150℃中で1000時間放置した時の応力緩和率(SRR:Stress Relaxation Ratio)が30%以下である。また、本発明の銅合金材は、好ましくは引張強度(TS)と0.2%耐力(YS)の差が15MPa以下である。   The copper alloy material of the present invention has an initial load stress on the material surface of 80% of 0.2% proof stress and a stress relaxation ratio (SRR: Stress Relaxation Ratio) of 30% or less when left at 150 ° C. for 1000 hours. It is. Moreover, the copper alloy material of the present invention preferably has a difference between the tensile strength (TS) and the 0.2% proof stress (YS) of 15 MPa or less.

本発明の銅合金材の応力緩和率は、上記のように30%以下が好ましく、20%以下がより好ましく、15%以下がさらに好ましい。応力緩和率が大きすぎると、通電時の抵抗発熱等で端子に熱負荷がかかる際、端子接圧を維持できないために好ましくない。また、本発明の銅合金材の引張強度(TS)は、400MPa以上が好ましく、450MPa以上がより好ましく、500MPa以上がさらに好ましい。さらに上記TSとYSの差は上記のように15MPa以下が好ましく、10MPa以下がさらに好ましい。TSとYSの差が15MPaを超えると、YSが低くなり、端子接圧を担保できなくなるという観点から好ましくない。本発明の銅合金材の構成を、以下にさらに詳細に説明する。   As described above, the stress relaxation rate of the copper alloy material of the present invention is preferably 30% or less, more preferably 20% or less, and further preferably 15% or less. If the stress relaxation rate is too large, it is not preferable because the terminal contact pressure cannot be maintained when a thermal load is applied to the terminal due to resistance heat generation during energization. Moreover, 400 MPa or more is preferable, as for the tensile strength (TS) of the copper alloy material of this invention, 450 MPa or more is more preferable, and 500 MPa or more is further more preferable. Further, the difference between the TS and YS is preferably 15 MPa or less as described above, and more preferably 10 MPa or less. If the difference between TS and YS exceeds 15 MPa, YS becomes low, which is not preferable from the viewpoint that the terminal contact pressure cannot be secured. The structure of the copper alloy material of the present invention will be described in more detail below.

(合金成分)
<Cr>
Crは、銅合金母相中に析出させることで、導電性を損なうことなく、強度、耐応力緩和特性を向上させることができる。本発明において、Crは0.10〜0.50質量%、好ましくは0.15〜0.40質量%、さらに好ましくは0.20〜0.35質量%含まれる。Cr量が0.10質量%未満になると、銅母相中のCrまたはCrを含む化合物の量が少なくなるため、所望の強度、耐応力緩和特性が得られない。また0.50質量%より大きくなると、導電性の低下、銅母相中における粗大な化合物の発生による強度の低下、加工性への悪影響といった問題が生じる。
(Alloy components)
<Cr>
By precipitating Cr in the copper alloy matrix, Cr can improve strength and stress relaxation resistance without impairing electrical conductivity. In the present invention, Cr is contained in an amount of 0.10 to 0.50 mass%, preferably 0.15 to 0.40 mass%, and more preferably 0.20 to 0.35 mass%. When the amount of Cr is less than 0.10% by mass, the amount of Cr or a compound containing Cr in the copper matrix decreases, so that desired strength and stress relaxation resistance cannot be obtained. On the other hand, when it exceeds 0.50% by mass, problems such as a decrease in conductivity, a decrease in strength due to generation of coarse compounds in the copper matrix, and an adverse effect on workability occur.

<Mg>
Mgは、上記の含有量で銅母相中に固溶元素として作用することで、強度、耐応力緩和特性を向上させることができる。本発明において、Mgを0.01〜0.50質量%、好ましくは0.05〜0.40質量%、さらに好ましくは0.10〜0.30質量%含有させても良い。含有量が0.01質量%未満では特性改善効果が十分に得られず、0.50質量%より大きくなると、導電性の低下、加工性への悪影響といった問題が生じる。Mgは、銅母相中に固溶元素として作用することで耐応力緩和特性を向上させるため、PのようにMgと化合物を形成し析出させる元素を同時に添加することは、好ましくない。
<Mg>
Mg acts as a solid solution element in the copper matrix with the above-mentioned content, thereby improving strength and stress relaxation resistance. In the present invention, Mg may be contained in an amount of 0.01 to 0.50% by mass, preferably 0.05 to 0.40% by mass, and more preferably 0.10 to 0.30% by mass. When the content is less than 0.01% by mass, the effect of improving the characteristics cannot be sufficiently obtained. When the content is more than 0.50% by mass, problems such as a decrease in conductivity and an adverse effect on workability occur. Since Mg improves the stress relaxation resistance by acting as a solid solution element in the copper matrix phase, it is not preferable to simultaneously add an element that forms a compound with Mg and precipitates like P.

<Ti、Zr>
本発明において、任意添加成分として添加できる、第1添加元素のTi、Zrは、銅母相中に析出させることで、強度、耐応力緩和特性を向上させることができる。本発明のこの態様において、Ti、Zrのうち少なくとも1種類を合計で0.01〜0.20質量%、好ましくは0.05〜0.15質量%、さらに好ましくは0.10〜0.15質量%含有させても良い。含有量が0.01質量%未満ではその添加の効果が十分でなく、0.20質量%より大きくなると、導電性の低下、加工性への悪影響といった問題が生じる。
<Ti, Zr>
In the present invention, Ti and Zr, which are first additive elements which can be added as optional additional components, can be improved in strength and stress relaxation resistance by being precipitated in the copper matrix. In this aspect of the present invention, at least one of Ti and Zr is 0.01 to 0.20% by mass in total, preferably 0.05 to 0.15% by mass, and more preferably 0.10 to 0.15. You may make it contain the mass%. When the content is less than 0.01% by mass, the effect of the addition is not sufficient. When the content exceeds 0.20% by mass, problems such as a decrease in conductivity and an adverse effect on workability occur.

<Zn、Fe、Sn、Ag、Si、Ni>
本発明の好ましい態様として、任意添加成分として、第2添加元素のZn、Fe、Sn、Ag、Si、Niを添加することで、強度、耐応力緩和特性、プレス性、めっき性といった材料特性を向上させることができる。この場合、Zn、Fe、Sn、Ag、Siのうち少なくとも一種類を合計で0.01〜0.50質量%、好ましくは0.05〜0.40質量%、さらに好ましくは0.10〜0.30質量%含有させても良い。含有量が0.01質量%未満では、第2添加元素の添加の効果が十分でなく、0.50質量%より多すぎると、導電性の低下、加工性への悪影響、原料費の増加といった問題が生じることがある。
<Zn, Fe, Sn, Ag, Si, Ni>
As a preferred embodiment of the present invention, by adding the second additive element Zn, Fe, Sn, Ag, Si, Ni as an optional additive component, material characteristics such as strength, stress relaxation resistance, pressability, and plating property can be obtained. Can be improved. In this case, a total of at least one of Zn, Fe, Sn, Ag, and Si is 0.01 to 0.50 mass%, preferably 0.05 to 0.40 mass%, and more preferably 0.10 to 0 .30% by mass may be contained. If the content is less than 0.01% by mass, the effect of the addition of the second additive element is not sufficient, and if it is more than 0.50% by mass, the conductivity is lowered, the workability is adversely affected, and the raw material cost is increased. Problems can arise.

(製造方法)
次に、本発明の銅合金材の製造方法の好ましい一例について説明する。本発明の銅合金材は、通常、溶解鋳造、均質化熱処理、熱間加工、冷間加工、熱処理、仕上げ加工、歪取り焼鈍を順に行なうことで製造される。さらに熱間加工後、冷間加工前に面削を行ってもよい。この製造方法は、従来と同程度の工程数でありながら、それぞれの工程条件を適切に調整することで、材料特性の向上を実現する。本発明の製造方法においては、最終的に仕上げ加工と歪取り焼鈍を実施することが重要であり、その前工程である冷間加工や熱処理は、複数回実施しても良い。また熱処理工程の前に溶体化熱処理を実施することで、熱間加工で銅母相中に析出した化合物を固溶させ、最終的に得られる材料において、添加成分の効果を得易くすることができる。
(Production method)
Next, a preferable example of the method for producing a copper alloy material of the present invention will be described. The copper alloy material of the present invention is usually produced by sequentially performing melt casting, homogenizing heat treatment, hot working, cold working, heat treatment, finishing, and strain relief annealing. Further, chamfering may be performed after hot working and before cold working. Although this manufacturing method has the same number of steps as the conventional method, the material characteristics can be improved by appropriately adjusting each process condition. In the production method of the present invention, it is important to finally perform finishing and strain relief annealing, and cold processing and heat treatment, which are the previous steps, may be performed a plurality of times. In addition, by performing solution heat treatment before the heat treatment step, it is possible to make the compound precipitated in the copper parent phase by hot working a solid solution, and to easily obtain the effect of the additive component in the finally obtained material. it can.

<溶解鋳造>
銅合金素材を溶解炉により溶解鋳造を実施し、冷却して所定の成分を持つ鋳塊を得る。溶解鋳造は、公知の方法で行うことができる。
<Melting casting>
A copper alloy material is melted and cast in a melting furnace and cooled to obtain an ingot having a predetermined component. Melt casting can be performed by a known method.

<均質化熱処理>
均質化熱処理は、鋳塊に含まれる化合物を銅母相中に固溶させ、鋳塊の成分を均質化するために実施する。これにより、添加した成分の効果が十分に得られるようになり、また材料中の特性のばらつきを小さくすることができる。本発明においては、好ましくは850〜1050℃の温度で0.5〜12時間、より好ましくは900〜1050℃、さらに好ましくは950〜1050℃での均質化熱処理を行う。
<Homogenization heat treatment>
The homogenization heat treatment is performed in order to solidify the compound contained in the ingot in the copper matrix and to homogenize the ingot components. Thereby, the effect of the added component can be sufficiently obtained, and the variation in characteristics in the material can be reduced. In the present invention, a homogenization heat treatment is preferably performed at a temperature of 850 to 1050 ° C. for 0.5 to 12 hours, more preferably 900 to 1050 ° C., and still more preferably 950 to 1050 ° C.

<熱間加工>
均質化熱処理した直後の鋳塊を熱間加工(好ましくは700〜1000℃熱間圧延など)して板厚を薄くし、その後冷却する。冷却は、例えば水冷で行う。冷却速度が遅すぎると冷却中に添加元素の一部が析出し、目標とする最終特性が得られないことになる。
<Hot processing>
The ingot immediately after the homogenization heat treatment is hot-worked (preferably 700-1000 ° C hot rolling, etc.) to reduce the plate thickness, and then cooled. Cooling is performed by water cooling, for example. If the cooling rate is too slow, some of the additive elements will precipitate during cooling, and the target final characteristics will not be obtained.

<面削>
熱間加工後の材料表面に形成された酸化皮膜を面削により取り除く。面削工程は任意で行ってよい。面削は、公知の方法で行うことができる。
<Chamfer>
The oxide film formed on the surface of the material after hot working is removed by chamfering. The chamfering step may be performed arbitrarily. The chamfering can be performed by a known method.

<冷間加工>
面削後の材料を、冷間加工(冷間圧延など)して板厚を薄くする。
<Cold processing>
The material after chamfering is cold processed (cold rolling or the like) to reduce the plate thickness.

<熱処理>
冷間加工後の材料に対して、好ましくは350〜650℃で、10分〜24時間、より好ましくは400〜600℃で1〜10時間の時効析出熱処理を行なう。この熱処理により、銅母相中に微細な析出物が析出し、強度、導電性、耐応力緩和特性が向上する。低温で短時間処理する場合、析出量が少なく、また析出する化合物の粒子径が微細すぎるため、強度、導電性、耐応力緩和特性の向上は望めない。また高温で長時間処理する場合、析出する化合物が粗大化し、導電性は向上するものの、強度、耐応力緩和特性の向上は望めない。また、時効熱処理後の300℃までの冷却速度は、好ましくは2℃/分以下とする。300℃までの冷却速度をこの範囲とすることで、強度、導電性、耐応力緩和特性をより向上させることができる。
<Heat treatment>
The material after cold working is preferably subjected to aging precipitation heat treatment at 350 to 650 ° C. for 10 minutes to 24 hours, more preferably at 400 to 600 ° C. for 1 to 10 hours. By this heat treatment, fine precipitates are precipitated in the copper matrix, and the strength, conductivity, and stress relaxation resistance are improved. When processing at a low temperature for a short time, the amount of precipitation is small, and the particle diameter of the precipitated compound is too fine, so that improvement in strength, conductivity, and stress relaxation resistance cannot be expected. In addition, when the treatment is performed at a high temperature for a long time, the deposited compound becomes coarse and the conductivity is improved, but the strength and stress relaxation resistance cannot be improved. The cooling rate to 300 ° C. after the aging heat treatment is preferably 2 ° C./min or less. By setting the cooling rate to 300 ° C. in this range, the strength, conductivity, and stress relaxation resistance can be further improved.

<仕上げ冷間加工>
熱処理後の材料に、好ましくは10〜50%、より好ましくは10〜40%の加工率で、仕上げ冷間加工(冷間圧延など)を行なう。仕上げ加工により、強度が向上し、またTSとYSの差が小さくなる。しかし、導電性、耐応力緩和特性は低下する。仕上げ加工率が10%より小さい場合、十分な強度の向上は望めず、またTSとYSの差が大きくなる。総加工率が50%より大きい場合、導電性、耐応力緩和特性、曲げ加工性が著しく低下し、後の歪取り焼鈍工程で、これらの特性の回復と強度の維持を両立することが困難となる。
<Finishing cold working>
The material after the heat treatment is preferably subjected to finish cold working (cold rolling or the like) at a working rate of 10 to 50%, more preferably 10 to 40%. Finishing improves the strength and reduces the difference between TS and YS. However, the conductivity and stress relaxation resistance are reduced. When the finishing rate is less than 10%, a sufficient improvement in strength cannot be expected, and the difference between TS and YS becomes large. When the total processing rate is greater than 50%, the conductivity, stress relaxation resistance, and bending workability are remarkably lowered, and it is difficult to achieve both recovery of these characteristics and maintenance of strength in the subsequent strain relief annealing process. Become.

<歪取り焼鈍>
仕上げ加工後の材料に歪取り焼鈍を行なうことで、強度が低下し、TSとYSの差が大きくなる。しかし導電性、耐応力緩和特性、曲げ加工性が改善される。本発明では、300〜550℃の温度で、2〜60秒の歪取り焼鈍を行う。温度は、350〜500℃の範囲であることがより好ましい。時間は、3〜20sの範囲であることがより好ましい。この際、昇温速度と冷却速度は50℃/s以上であることが好ましく、100℃/s以上であることがより好ましい。低温で短時間処理した場合、強度、導電性、耐応力緩和特性、曲げ加工性の変化はほとんど起こらない。また高温で長時間処理すると、強度が著しく低下し、TSとYSの差も大きくなる。昇温速度と冷却速度が規定の範囲を満たさない場合、TS、EC、SRRで狙いの値が得られたとしても、TSとYSの差が大きくなる。
<Strain relief annealing>
By performing strain relief annealing on the finished material, the strength decreases and the difference between TS and YS increases. However, conductivity, stress relaxation resistance and bending workability are improved. In the present invention, strain relief annealing is performed at a temperature of 300 to 550 ° C. for 2 to 60 seconds. The temperature is more preferably in the range of 350 to 500 ° C. The time is more preferably in the range of 3 to 20 s. At this time, the heating rate and the cooling rate are preferably 50 ° C./s or more, and more preferably 100 ° C./s or more. When treated at a low temperature for a short time, the strength, conductivity, stress relaxation resistance and bending workability hardly change. Moreover, when it processes for a long time at high temperature, intensity | strength will fall remarkably and the difference of TS and YS will also become large. When the temperature increase rate and the cooling rate do not satisfy the specified range, even if target values are obtained with TS, EC, and SRR, the difference between TS and YS becomes large.

本発明の銅合金材は、高い導電性、耐応力緩和特性、強度を兼ね備えており、EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等に好適である。   The copper alloy material of the present invention has high electrical conductivity, stress relaxation resistance, and strength, and includes EV, HEV and other in-vehicle components, peripheral infrastructure, connectors for solar power generation systems, other lead frames, relays, Suitable for switches, sockets and the like.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

原料の銅合金素材を溶解鋳造して鋳塊を作製し、これを均質化熱処理した直後に熱間加工を行ない、水冷した。水冷後、面削により材料の酸化皮膜を除去してから冷間加工を行い、350〜650℃で10分〜24時間熱処理し、300℃までの冷却速度を2℃/分として冷却した。冷却後、仕上げ圧延、歪取り焼鈍を続けて行なうことで、銅合金材を得た。各工程の条件を規定の範囲内に収めることで、目標とする材料組織を有する発明例の試料を得た。また比較例として、鋳塊成分、製造方法の異なる材料を作製した。   The raw copper alloy material was melted and cast to produce an ingot, which was subjected to hot working immediately after homogenization heat treatment and water cooled. After cooling with water, the oxide film of the material was removed by chamfering, followed by cold working, heat treatment was performed at 350 to 650 ° C. for 10 minutes to 24 hours, and the cooling rate to 300 ° C. was set to 2 ° C./min. A copper alloy material was obtained by performing finish rolling and strain relief annealing after cooling. By keeping the conditions of each step within a specified range, a sample of the invention example having a target material structure was obtained. As a comparative example, materials with different ingot components and manufacturing methods were produced.

なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を行った。   In addition, after each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface.

このようにして製造した供試材について、下記の評価を実施した。   The following evaluation was performed on the specimens thus produced.

(TS、TSとYSの差)
(引張強度:TS)
引張方向が圧延方向と平行になるように切り出した、試験片を、JIS Z2241に準拠して引張試験を行い、引張強度を求めた。試験は3回実施し、その平均値を試験結果として示した。
(0.2%耐力:YS)
引張方向が圧延方向と平行になるように切り出した試験片を、JIS Z2241に準拠して引張試験を行い、0.2%耐力を求めた。試験は3回実施し、その平均値を試験結果として示した。
(導電率:EC)
20℃(±0.5℃)に保たれた恒温漕中で、四端子法により比抵抗を計測し、導電率を算出した。なお、端子間距離は100mmとした。
(Difference between TS, TS and YS)
(Tensile strength: TS)
A test piece cut out so that the tensile direction was parallel to the rolling direction was subjected to a tensile test in accordance with JIS Z2241, and the tensile strength was determined. The test was performed 3 times, and the average value was shown as the test result.
(0.2% proof stress: YS)
A test piece cut out so that the tensile direction was parallel to the rolling direction was subjected to a tensile test in accordance with JIS Z2241 to obtain a 0.2% yield strength. The test was performed 3 times, and the average value was shown as the test result.
(Conductivity: EC)
In a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.), the specific resistance was measured by the four probe method, and the conductivity was calculated. In addition, the distance between terminals was 100 mm.

(応力緩和率:SRR)
日本伸銅協会 JCBA T309:2004「銅及び銅合金薄板条の曲げによる応力緩和試験方法」に準じ、片持ちはり法(片持ちはりブロック式ジグ使用)により、材料表面への初期負荷応力を0.2%耐力の80%とし、150℃で1000時間保持の条件で測定した。試験片は幅10mmの短冊形とし、圧延平行方向と試験片の長さ方向を一致させた。応力緩和率の算出方法は、特許第5307305号に記載された算出方法による。すなわち、熱処理前、試験台に片持ちで保持した試験片に、耐力の80%の初期応力を付与した時の試験片の先端の位置は、基準位置から距離δの高さにある。これを150℃の恒温槽に1000時間保持(初期応力を付与した状態で上記試験片を熱処理)し、負荷を除いた後の試験片の先端の位置は、上記基準位置から距離Hの高さにある。また応力を負荷しなかった場合の試験片に対して上記の熱処理を行った場合の試験片の先端の位置は、上記基準位置から距離Hの高さにある。これらの関係から、応力緩和率(%)は(H−H)/(δ―H)×100と算出した。
(Stress relaxation rate: SRR)
In accordance with the Japan Copper and Brass Association JCBA T309: 2004 “Stress relaxation test method by bending copper and copper alloy sheet strips”, the initial load stress on the material surface is reduced to 0 by the cantilever method (using a cantilever block type jig). Measured under the condition of 80% of 2% proof stress and holding at 150 ° C. for 1000 hours. The test piece was a strip having a width of 10 mm, and the parallel direction of rolling and the length direction of the test piece were matched. The calculation method of the stress relaxation rate is based on the calculation method described in Japanese Patent No. 5307305. That is, the position of the tip of the test piece when an initial stress of 80% of the proof stress is applied to the test piece held in a cantilever manner before the heat treatment is at a height of δ 0 from the reference position. This is held in a thermostatic bath at 150 ° C. for 1000 hours (the test piece is heat-treated with initial stress applied), and the position of the tip of the test piece after removing the load is a high distance H t from the reference position. There is. Further, the position of the tip of the test piece when the above heat treatment is performed on the test piece when no stress is applied is at a height H 1 from the reference position. From these relationships, the stress relaxation rate (%) was calculated as (H t −H 1 ) / (δ 0 −H 1 ) × 100.

Figure 0006301734
Figure 0006301734

表1に、作製した鋳塊の合金成分をまとめた。合金No.1〜14は本発明の範囲内であり、合金No.15〜24は本発明の範囲外である。   Table 1 summarizes the alloy components of the produced ingots. Alloy No. 1 to 14 are within the scope of the present invention. 15-24 are outside the scope of the present invention.

Figure 0006301734
Figure 0006301734

表2は、製造方法が本発明の範囲内であり、成分も本発明の範囲内である発明例と、成分が本発明の範囲外である比較例について示す。発明例は、いずれもTS≧400MPa、EC≧60%IACS、SRR≦30%で、かつTSとYSの差が15MPa以下となり、高い導電性、耐応力緩和特性、強度を兼ね備えた銅合金材である。これに対し、合金成分の添加量が本発明で規定する範囲を満たさない比較例では、強度、導電性、耐応力緩和特性、及び加工性のいずれかがが劣る結果となった。   Table 2 shows the inventive examples in which the production method is within the scope of the present invention and the components are also within the scope of the present invention, and the comparative examples in which the components are outside the scope of the present invention. Inventive examples are all copper alloy materials with TS ≧ 400 MPa, EC ≧ 60% IACS, SRR ≦ 30%, and the difference between TS and YS is 15 MPa or less, and have high conductivity, stress relaxation resistance, and strength. is there. On the other hand, in the comparative example in which the addition amount of the alloy component does not satisfy the range defined in the present invention, any of strength, conductivity, stress relaxation resistance, and workability was inferior.

Figure 0006301734
Figure 0006301734

表3は、成分が本発明の範囲内であり、製造方法も本発明の範囲内である発明例と、製造方法が本発明の範囲外である比較例について示す。発明例は、いずれもTS≧400MPa、EC≧60%IACS、SRR≦30%で、かつTSとYSの差が15MPa以下となり、高い導電性、耐応力緩和特性、強度を兼ね備えた銅合金材である。これに対し、製造条件が本発明の範囲外である比較例は、強度、導電性、耐応力緩和特性のいずれかが劣る結果となった。   Table 3 shows the invention examples in which the components are within the scope of the present invention and the production method is also within the scope of the present invention, and the comparative examples in which the production methods are outside the scope of the present invention. Inventive examples are all copper alloy materials with TS ≧ 400 MPa, EC ≧ 60% IACS, SRR ≦ 30%, and the difference between TS and YS is 15 MPa or less, and have high conductivity, stress relaxation resistance, and strength. is there. On the other hand, the comparative example whose manufacturing conditions are outside the scope of the present invention resulted in inferior strength, conductivity, or stress relaxation resistance.

本発明の範囲内の銅合金材は、高い導電性、耐応力緩和特性、強度を兼ね備えることが出来るため、EV、HEVを中心とした車載部品及び周辺インフラや太陽光発電システム等のコネクタ、その他リードフレーム、リレー、スイッチ、ソケット等に好適である。   Since the copper alloy material within the scope of the present invention can have high conductivity, stress relaxation resistance, and strength, it is possible to combine EV, HEV-centered components, connectors for peripheral infrastructure, solar power generation system, etc. Suitable for lead frames, relays, switches, sockets and the like.

Claims (6)

Crを0.10〜0.50質量%と、Mgを0.01〜0.50質量%含み、Zr、Tiのうち少なくとも一種を合計で0.00〜0.20質量%含有する第1添加元素群、およびZn、Fe、Sn、Ag、Si、Niのうち少なくとも一種を合計で0.00〜0.50質量%含有する第2添加元素群からなる群から選ばれる一種を含有し、残部がCuと不可避的不純物からなる銅合金材であって、
材料表面への初期負荷応力を0.2%耐力の80%として、150℃中で1000時間放置した時の応力緩和率が30%以下であり、
引張強度と0.2%耐力の差が15MPa以下であることを特徴とする銅合金材。
1st addition which contains 0.10 to 0.50 mass% of Cr, 0.01 to 0.50 mass% of Mg, and contains 0.00 to 0.20 mass% of at least one of Zr and Ti in total Containing one element selected from the group consisting of the element group and the second additive element group containing at least one of Zn, Fe, Sn, Ag, Si, and Ni in a total amount of 0.00 to 0.50% by mass, and the balance Is a copper alloy material consisting of Cu and inevitable impurities,
The initial load stress on the material surface is set to 80% of 0.2% proof stress, and the stress relaxation rate when left at 1000C for 1000 hours is 30% or less,
A copper alloy material characterized in that the difference between tensile strength and 0.2% proof stress is 15 MPa or less.
Zr、Tiのうち少なくとも一種を合計で0.01〜0.20質量%含有する第1添加元素群、およびZn、Fe、Sn、Ag、Si、Niのうち少なくとも一種を合計で0.01〜0.50質量%含有する第2添加元素群からなる群から選ばれる少なくとも一種を含有する、請求項1に記載の銅合金材。   A first additive element group containing at least one of Zr and Ti in a total amount of 0.01 to 0.20 mass%, and at least one of Zn, Fe, Sn, Ag, Si, and Ni in a total of 0.01 to The copper alloy material according to claim 1, comprising at least one selected from the group consisting of a second additive element group containing 0.50% by mass. 引張強度と0.2%耐力の差が10MPa以下である、請求項1または2に記載の銅合金材。   The copper alloy material according to claim 1 or 2, wherein a difference between the tensile strength and the 0.2% proof stress is 10 MPa or less. 導電率が60%IACS以上である、請求項1から3のいずれか1項に記載の銅合金材。   The copper alloy material according to any one of claims 1 to 3, wherein the conductivity is 60% IACS or more. 請求項1〜4のいずれか1項に記載の銅合金材を製造する銅合金材の製造方法であって、
(a)前記銅合金材を与える組成から成る銅合金を溶解鋳造、
(b)850〜1050℃で0.5〜12時間の均質加熱処理、
(c)700〜1000℃での熱間加工および冷却、
(d)冷間加工、
(e)350〜650℃で10分〜24時間の熱処理後、冷却速度2℃/分以下で300℃まで冷却、
(f)加工率10〜50%の仕上げ冷間加工、
(g)昇温速度が50℃/秒以上で、冷却速度が50℃/秒以上であり、300〜550℃で2〜60秒の歪取り焼鈍、
をこの順で有することを特徴とする、銅合金材の製造方法。
It is a manufacturing method of the copper alloy material which manufactures the copper alloy material of any one of Claims 1-4,
(A) Melting and casting a copper alloy having a composition that gives the copper alloy material;
(B) Homogeneous heat treatment at 850-1050 ° C. for 0.5-12 hours,
(C) Hot working and cooling at 700-1000 ° C,
(D) cold working,
(E) After heat treatment at 350 to 650 ° C. for 10 minutes to 24 hours, cooling to 300 ° C. at a cooling rate of 2 ° C./min or less,
(F) Finish cold working with a processing rate of 10-50%,
(G) The temperature rising rate is 50 ° C./second or more, the cooling rate is 50 ° C./second or more, and the strain relief annealing is performed at 300 to 550 ° C. for 2 to 60 seconds.
In this order, the manufacturing method of the copper alloy material characterized by the above-mentioned.
請求項1〜4のいずれか1項に記載の銅合金材からなる電気電子部品。   An electrical / electronic component comprising the copper alloy material according to claim 1.
JP2014108510A 2014-05-26 2014-05-26 Copper alloy material and method for producing the same Active JP6301734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108510A JP6301734B2 (en) 2014-05-26 2014-05-26 Copper alloy material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108510A JP6301734B2 (en) 2014-05-26 2014-05-26 Copper alloy material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015224354A JP2015224354A (en) 2015-12-14
JP6301734B2 true JP6301734B2 (en) 2018-03-28

Family

ID=54841361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108510A Active JP6301734B2 (en) 2014-05-26 2014-05-26 Copper alloy material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6301734B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207539B2 (en) * 2015-02-04 2017-10-04 Jx金属株式会社 Copper alloy strip, and electronic component for high current and heat dissipation provided with the same
JP6951999B2 (en) * 2018-03-26 2021-10-20 古河電気工業株式会社 Copper alloy strip, its manufacturing method and flat cable using it
CN111549251A (en) * 2020-04-17 2020-08-18 中铝材料应用研究院有限公司 Cu-Cr-Zr alloy suitable for non-vacuum preparation and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486244A (en) * 1992-11-04 1996-01-23 Olin Corporation Process for improving the bend formability of copper alloys
JP5590990B2 (en) * 2010-06-30 2014-09-17 株式会社Shカッパープロダクツ Copper alloy
US8821655B1 (en) * 2010-12-02 2014-09-02 Fisk Alloy Inc. High strength, high conductivity copper alloys and electrical conductors made therefrom
JP6088741B2 (en) * 2012-03-16 2017-03-01 古河電気工業株式会社 Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
JP6133178B2 (en) * 2013-09-06 2017-05-24 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015224354A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP5307305B1 (en) Copper alloy material and method of manufacturing the same
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP6053959B2 (en) Copper alloy sheet, method for producing the same, and electric / electronic component comprising the copper alloy sheet
JP5619389B2 (en) Copper alloy material
JP5773929B2 (en) Copper alloy sheet for electrical and electronic parts with excellent bending workability and stress relaxation resistance
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP6088741B2 (en) Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
JP2006009137A (en) Copper alloy
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP2013129889A (en) Copper alloy material and method for producing the same
JP6301734B2 (en) Copper alloy material and method for producing the same
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP2014208859A (en) Copper alloy sheet having excellent conductivity and stress relaxation characteristic
JP2013213236A (en) Cu-Zn-Sn-Ni-P-BASED ALLOY
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2011190469A (en) Copper alloy material, and method for producing the same
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same
JP2014055347A (en) Copper alloy sheet excellent in conductivity and stress relief properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R151 Written notification of patent or utility model registration

Ref document number: 6301734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350