JP7430502B2 - Copper alloy wire and electronic equipment parts - Google Patents

Copper alloy wire and electronic equipment parts Download PDF

Info

Publication number
JP7430502B2
JP7430502B2 JP2019170800A JP2019170800A JP7430502B2 JP 7430502 B2 JP7430502 B2 JP 7430502B2 JP 2019170800 A JP2019170800 A JP 2019170800A JP 2019170800 A JP2019170800 A JP 2019170800A JP 7430502 B2 JP7430502 B2 JP 7430502B2
Authority
JP
Japan
Prior art keywords
copper alloy
annealing
less
phase particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019170800A
Other languages
Japanese (ja)
Other versions
JP2021046590A (en
Inventor
康弘 岡藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019170800A priority Critical patent/JP7430502B2/en
Publication of JP2021046590A publication Critical patent/JP2021046590A/en
Application granted granted Critical
Publication of JP7430502B2 publication Critical patent/JP7430502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コネクタ、端子、リレー、スイッチ等の導電性ばね材やトランジスタ、集積回路(IC)等の半導体機器のリードフレーム材として好適な、優れた強度、導電性、耐焼鈍軟化特性等を備えた銅合金、伸銅品及び電子機器部品に関する。 The present invention provides excellent strength, conductivity, and annealing-softening properties suitable for conductive spring materials such as connectors, terminals, relays, and switches, and lead frame materials for semiconductor devices such as transistors and integrated circuits (ICs). Related to copper alloys, copper rolled products and electronic equipment parts.

近年、電気・電子部品の小型化が進み、これら部品に使用される銅合金に良好な強度、導電率及び耐焼鈍軟化特性が要求されている。この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わり、高い強度及び導電率を有するコルソン合金等の析出強化型銅合金の需要が増加している。コルソン合金の一つであるCu-Ni-Si系合金は、Cuマトリックス中にNiとSiとの化合物粒子を析出させた合金であり、高強度、高い導電率、耐焼鈍軟化特性を兼ね備えている。プレス加工後の歪取り焼鈍等で焼鈍前の強度を維持できるようCu-Ni-Si系合金において更に耐焼鈍軟化特性を改善することが望まれている。 In recent years, electric and electronic parts have become smaller, and copper alloys used in these parts are required to have good strength, electrical conductivity, and annealing-softening resistance. In response to this demand, there is an increasing demand for precipitation-strengthened copper alloys such as Corson alloys, which have high strength and electrical conductivity, in place of conventional solid-solution-strengthened copper alloys such as phosphor bronze and brass. Cu-Ni-Si alloy, which is one of the Corson alloys, is an alloy in which compound particles of Ni and Si are precipitated in a Cu matrix, and has high strength, high electrical conductivity, and annealing and softening resistance. . It is desired to further improve the annealing softening resistance of Cu--Ni--Si alloys so that the strength before annealing can be maintained during strain relief annealing after press working.

近年、Cu-Ni-Si系合金の耐焼鈍軟化特性を改善する技術として、低温焼鈍硬化量を調整する方策が提唱されている。例えば、特許文献1では、鋳塊を熱間圧延、冷間圧延、溶体化処理、時効処理、導電率が2~4%IACS低くなる条件の低温溶体化処理、加工率50%以上の時効後冷間圧延、200~500℃で1~1000秒間の歪取焼鈍を順次行うことにより、500℃×60秒の大気加熱による強度低下量を30~140MPaに制御している。 In recent years, as a technique for improving the annealing softening resistance of Cu--Ni--Si alloys, a method of adjusting the amount of hardening by low-temperature annealing has been proposed. For example, in Patent Document 1, an ingot is subjected to hot rolling, cold rolling, solution treatment, aging treatment, low-temperature solution treatment under conditions such that the electrical conductivity decreases by 2 to 4% IACS, and aging at a processing rate of 50% or more. By sequentially performing cold rolling and strain relief annealing at 200 to 500°C for 1 to 1000 seconds, the strength reduction due to atmospheric heating at 500°C for 60 seconds is controlled to 30 to 140 MPa.

特開2017-179512号公報JP 2017-179512 Publication

しかしながら、特許文献1に記載された発明は、プレス加工前の耐焼鈍軟化特性のみを改善の対象としており、プレス加工時の変形によって生じる歪によって耐焼鈍軟化特性が低下し、プレス加工後の歪取焼鈍には耐えられない場合がある。 However, the invention described in Patent Document 1 targets only the improvement of the annealing-softening resistance before press working, and the annealing-softening resistance decreases due to strain caused by deformation during press working, and the distortion after press working deteriorates. It may not be able to withstand annealing.

そこで、本発明は、高強度、高導電率及び耐焼鈍軟化特性を兼備した銅合金、伸銅品及び電子機器部品を提供することを課題とする。 Therefore, an object of the present invention is to provide a copper alloy, a copper alloy product, and an electronic device component that have high strength, high electrical conductivity, and annealing softening resistance.

本発明者が鋭意検討した結果、プレス加工後の歪取り焼鈍に耐え得る程度の耐焼鈍軟化特性を備え、高強度、高導電率であるCu-Ni-Si系合金を得るためには、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度を制御すれば改善することを見出した。 As a result of intensive studies by the present inventors, in order to obtain a Cu-Ni-Si alloy with high strength and high conductivity, it has annealing-softening resistance that can withstand stress relief annealing after press working. It has been found that the improvement can be achieved by controlling the number density of second phase particles having a diameter of 1.0 μm or more and less than 5.0 μm.

以上の知見を背景にして完成した本発明の実施の形態に係る銅合金は一側面において、Niを1.0~4.0質量%、Siを0.2~1.5質量%含有し、残部が銅及び不可避的不純物からなり、粒径1.0μm以上5.0μm未満の第二相粒子を1000~20000個/mm2含有する銅合金である。 In one aspect, the copper alloy according to the embodiment of the present invention, which was completed based on the above findings, contains 1.0 to 4.0% by mass of Ni and 0.2 to 1.5% by mass of Si, The remainder is copper and unavoidable impurities, and it is a copper alloy containing 1000 to 20000 second phase particles/mm 2 with a particle size of 1.0 μm or more and less than 5.0 μm.

本発明の実施の形態に係る銅合金は一実施態様において、粒径0.2μm以上1.0μm未満の第二相粒子を3000~150000個/mm2含有する。 In one embodiment, the copper alloy according to the embodiment of the present invention contains 3,000 to 150,000 second phase particles/mm 2 with a particle size of 0.2 μm or more and less than 1.0 μm.

本発明の実施の形態に係る銅合金は別の一実施態様において、Coを0.0~0.5質量%含有する。 In another embodiment, the copper alloy according to the embodiment of the present invention contains 0.0 to 0.5% by mass of Co.

本発明の実施の形態に係る銅合金は更に別の一実施態様において、Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr及びAgのうち1種以上を総量で0.005~3.0質量%含有する。 In yet another embodiment, the copper alloy according to the embodiment of the present invention contains one or more of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr, and Ag in a total amount of 0. Contains 0.005 to 3.0% by mass.

本発明の実施の形態に係る銅合金は更に別の一実施態様において、引張強さが700MPa以上、導電率が40%IACS以上であり、500℃の温度で1分間の焼鈍処理を行った場合に、焼鈍処理後の引張強さが、焼鈍処理前の引張強さに対して85%以上となる。 In yet another embodiment, the copper alloy according to the embodiment of the present invention has a tensile strength of 700 MPa or more, an electrical conductivity of 40% IACS or more, and is annealed at a temperature of 500° C. for 1 minute. In addition, the tensile strength after annealing is 85% or more of the tensile strength before annealing.

本発明は別の一側面において、上記銅合金を備えた伸銅品である。 Another aspect of the present invention is a rolled copper product comprising the above copper alloy.

本発明は更に別の一側面において、上記銅合金を備えた電子機器部品である。 In yet another aspect, the present invention is an electronic device component comprising the above-mentioned copper alloy.

本発明によれば、高強度、高導電率及び耐焼鈍軟化特性を兼備した銅合金、伸銅品及び電子機器部品を提供することができる。 According to the present invention, it is possible to provide a copper alloy, a copper alloy product, and an electronic device component that have high strength, high electrical conductivity, and annealing softening resistance.

(Ni及びSiの添加量)
Ni及びSiは、適当な時効処理を行うことにより、Ni2Si等の50nm以下の微細な金属間化合物として析出する。この析出物の作用により強度が向上し、析出によりCuマトリックス中に固溶したNi及びSiが減少するため導電率が向上する。しかしながら、Niが1.0質量%未満又はSiが0.2質量%未満になると所望の強度が得られず、反対にNiが4.0質量%を超えると又はSiが1.5質量%を超えると加工が難しくなる。このため、本発明に係るCu-Ni-Si系合金では、Niの添加量は1.0~4.0質量%とし、Siの添加量は0.2~1.5質量%としている。さらに、Niの添加量は1.5~3.0質量%が好ましく、Siの添加量は0.3~0.80質量%が好ましい。
(Additional amount of Ni and Si)
Ni and Si precipitate as fine intermetallic compounds of 50 nm or less, such as Ni 2 Si, by performing a suitable aging treatment. The strength is improved by the action of this precipitate, and the electrical conductivity is improved because Ni and Si dissolved in the Cu matrix are reduced by the precipitation. However, if the Ni content is less than 1.0% by mass or the Si content is less than 0.2% by mass, the desired strength cannot be obtained, whereas if the Ni content exceeds 4.0% by mass or the Si content is less than 1.5% by mass, If it exceeds the limit, processing becomes difficult. Therefore, in the Cu-Ni-Si alloy according to the present invention, the amount of Ni added is 1.0 to 4.0% by mass, and the amount of Si added is 0.2 to 1.5% by mass. Further, the amount of Ni added is preferably 1.5 to 3.0% by mass, and the amount of Si added is preferably 0.3 to 0.80% by mass.

(その他の添加元素)
Coは導電率上昇に寄与する。Coが0.5質量%を超えると強度が低下する。このため、本実施形態に係るCu-Ni-Si系合金では、Coを0.0~0.5質量%、好ましくは0.005~0.5質量%含有することが好ましい。
(Other additive elements)
Co contributes to increasing conductivity. If Co exceeds 0.5% by mass, the strength will decrease. Therefore, the Cu-Ni-Si alloy according to the present embodiment preferably contains Co in an amount of 0.0 to 0.5% by mass, preferably 0.005 to 0.5% by mass.

Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr、Agは強度上昇に寄与する。さらにZnはSnめっきの耐熱剥離性の向上に、Mgは応力緩和特性の向上に、Zr、Cr、Mnは熱間加工性の向上に効果がある。Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr、Agが総量で3.0質量%を超えると導電率が著しく低下する。このため、本発明に係るCu-Ni-Si系合金では、これらの元素のうち1種以上を総量で0.005~3.0質量%含有することが好ましく、0.01~2.0質量%含有することがより好ましい。 Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr, and Ag contribute to increasing the strength. Further, Zn is effective in improving the heat peeling resistance of Sn plating, Mg is effective in improving stress relaxation characteristics, and Zr, Cr, and Mn are effective in improving hot workability. When the total amount of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr, and Ag exceeds 3.0% by mass, the electrical conductivity decreases significantly. Therefore, the Cu-Ni-Si alloy according to the present invention preferably contains one or more of these elements in a total amount of 0.005 to 3.0% by mass, and 0.01 to 2.0% by mass. % is more preferable.

(第二相粒子)
本実施形態における第二相粒子とは、銅に他の元素が含まれる場合に生成され、銅母相(マトリックス)とは異なる相を形成する粒子をいう。第二相粒子の個数密度は、機械研磨にて鏡面仕上げした後、電解研磨及び/又は酸洗エッチングをした後の銅合金の加工方向に対して直角な断面、即ち圧延加工した銅合金については圧延直角方向の断面、伸線加工した銅合金については伸線加工方向に直角な断面を任意に5箇所選択して得られた1視野の走査電子顕微鏡写真から該当する粒径範囲の粒子の個数を測定し、評価面積で除することで得られる。ここで、粒径とは、各粒子の短径と長径の平均値をいう。本実施形態に係る銅合金の第二相粒子の大部分はNi2Siであるが、他の金属間化合物も粒径が範囲内であれば個数密度の測定に含まれるものとする。第二相粒子を構成する元素は、例えば、FE-SEM(日本FEI株式会社型式XL30SFEG)に付属のEDXを使用して確認できる。
(Second phase particles)
The second phase particles in this embodiment refer to particles that are generated when copper contains other elements and form a phase different from the copper parent phase (matrix). The number density of second phase particles is determined by the cross section perpendicular to the processing direction of the copper alloy after mirror finishing by mechanical polishing, electrolytic polishing and/or pickling etching, that is, for the copper alloy that has been rolled. Cross-section in the direction perpendicular to rolling, and for wire-drawn copper alloys, the number of particles in the corresponding particle size range from a scanning electron micrograph of one field of view obtained by arbitrarily selecting five cross-sections perpendicular to the wire-drawing direction. It is obtained by measuring and dividing by the evaluation area. Here, the particle size refers to the average value of the short axis and long axis of each particle. Although most of the second phase particles of the copper alloy according to this embodiment are Ni 2 Si, other intermetallic compounds are also included in the measurement of number density if their particle sizes are within the range. The elements constituting the second phase particles can be confirmed using, for example, the EDX attached to the FE-SEM (Japan FEI Co., Ltd. model XL30SFEG).

本実施形態に係る銅合金は、銅合金の加工方向に対して直角な断面の電子顕微鏡を用いた組織観察において、粒径1.0μm以上5.0μm未満の第二相粒子が1000個/mm2以上、好ましくは2000個/mm2以上、更に好ましくは3000個/mm2以上含有される。粒径1.0μm以上5.0μm未満の第二相粒子の個数密度は、熱間加工後の冷却速度を遅くして析出させ、更に必要であれば熱間加工後に熱処理することで調整できる。粒径1.0μm以上5.0μm未満の第二相粒子が1000個/mm2以上であると耐焼鈍軟化特性が向上する。一方、粒径1.0μm以上5.0μm未満の第二相粒子が20000個を超えると析出強化に必要な50nm以下の微細な析出物が不足するため、強度が不足する。 In the copper alloy according to the present embodiment, in microstructural observation using an electron microscope of a cross section perpendicular to the processing direction of the copper alloy, the number of second phase particles with a grain size of 1.0 μm or more and less than 5.0 μm is 1000 particles/mm. The content is 2 or more, preferably 2000 or more pieces/mm 2 , more preferably 3000 pieces/mm 2 or more. The number density of second phase particles having a particle size of 1.0 μm or more and less than 5.0 μm can be adjusted by slowing down the cooling rate after hot working to precipitate them, and if necessary, performing heat treatment after hot working. When the number of second phase particles having a particle size of 1.0 μm or more and less than 5.0 μm is 1000 pieces/mm 2 or more, the annealing softening resistance is improved. On the other hand, if the number of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm exceeds 20,000, there will be a shortage of fine precipitates of 50 nm or less necessary for precipitation strengthening, resulting in insufficient strength.

本実施形態に係る銅合金は、銅合金の加工方向に対して直角な断面の電子顕微鏡を用いた組織観察において、粒径0.2μm以上1.0μm未満の第二相粒子が好ましくは3000個/mm2以上、更に好ましくは5000個/mm2以上、より更に好ましくは10000個/mm2以上含有される。粒径0.2μm以上1.0μm未満の第二相粒子は、熱間加工後の冷却速度を遅くして析出させ、更に必要であれば熱間加工後に熱処理することで調整できる。粒径0.2μm以上1.0μm未満の第二相粒子が3000個/mm2以上であると、粒径1.0μm以上5.0μm未満の第二相粒子よりも効果は少ないが、耐焼鈍軟化特性を向上させる効果がある。一方、粒径0.2μm以上1.0μm未満の第二相粒子が150000個/mm2を超えると析出強化に必要な50nm以下の微細な析出物が不足するため、強度が不足する。 The copper alloy according to the present embodiment preferably has 3000 second phase particles with a grain size of 0.2 μm or more and less than 1.0 μm in microstructure observation using an electron microscope of a cross section perpendicular to the processing direction of the copper alloy. /mm 2 or more, more preferably 5,000 pieces/mm 2 or more, even more preferably 10,000 pieces/mm 2 or more. The second phase particles having a particle size of 0.2 μm or more and less than 1.0 μm can be precipitated by slowing down the cooling rate after hot working, and if necessary, can be adjusted by heat treatment after hot working. If the number of second phase particles with a particle size of 0.2 μm or more and less than 1.0 μm is 3000 or more pieces/mm 2 , the effect is less than that of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm, but the annealing resistance It has the effect of improving softening properties. On the other hand, if the number of second phase particles with a particle size of 0.2 μm or more and less than 1.0 μm exceeds 150,000 pieces/mm 2 , there will be a shortage of fine precipitates of 50 nm or less necessary for precipitation strengthening, resulting in insufficient strength.

(引張強さ)
本実施形態に係る銅合金は、引張強さ(TS)が700MPa以上、より好ましくは750MPa以上、更に好ましくは800MPa以上である。銅合金の引張強さは、JIS Z 2241に準拠し、引張試験機を用いて圧延方向と平行な方向の引張強さを測定した結果を示す。本実施形態において、引張強さの上限値は、以下に限定されるものではないが、典型的には1600MPa以下とすることができる。
(Tensile strength)
The copper alloy according to this embodiment has a tensile strength (TS) of 700 MPa or more, more preferably 750 MPa or more, and still more preferably 800 MPa or more. The tensile strength of the copper alloy is based on JIS Z 2241, and is the result of measuring the tensile strength in a direction parallel to the rolling direction using a tensile tester. In this embodiment, the upper limit of the tensile strength is typically 1600 MPa or less, although it is not limited to the following.

(導電率)
本実施形態に係る銅合金は、導電率(EC)が40%IACS以上、より好ましくは45%IACS以上、更に好ましくは48%IACS以上である。銅合金の導電率は、JIS H 0505に準拠し、圧延方向と平行な方向の導電率を測定した結果を示す。本実施形態において、導電率の上限値は、以下に限定されるものではないが、典型的には70%IACS以下とすることができる。
(conductivity)
The copper alloy according to this embodiment has an electrical conductivity (EC) of 40% IACS or more, more preferably 45% IACS or more, and still more preferably 48% IACS or more. The electrical conductivity of the copper alloy is based on JIS H 0505, and shows the results of measuring the electrical conductivity in a direction parallel to the rolling direction. In the present embodiment, the upper limit of the conductivity is not limited to the following, but can typically be 70% IACS or less.

(軟化特性)
本実施形態に係る銅合金は、500℃の温度で1分間の焼鈍処理を行った場合に、焼鈍処理後の引張強さが、焼鈍処理前の引張強さに対して85%以上となるような軟化特性が得られる。より典型的には、本実施形態に係る銅合金の軟化特性は、より典型的には88%以上であり、更に典型的には90%以上である。
(Softening properties)
The copper alloy according to this embodiment has a tensile strength after annealing that is 85% or more of the tensile strength before annealing when annealing is performed at a temperature of 500°C for 1 minute. It provides excellent softening properties. More typically, the softening property of the copper alloy according to this embodiment is more typically 88% or more, and even more typically 90% or more.

(用途)
Cu-Ni-Si系合金は種々の伸銅品、例えば板、条、棒、線及び箔に加工することができ、更に、本発明のCu-Ni-Si系合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、線材、撚線、二次電池用箔材等の電子機器部品等に使用することができる。
(Application)
The Cu-Ni-Si alloy can be processed into various rolled copper products, such as plates, strips, bars, wires, and foils. Furthermore, the Cu-Ni-Si alloy of the present invention can be processed into lead frames, connectors, It can be used for electronic device parts such as pins, terminals, relays, switches, wires, twisted wires, and foil materials for secondary batteries.

(製造方法)
以下に本発明の実施の形態に係る銅合金の製造方法の一例を説明する。Cu-Ni-Si系合金の一般的な製造プロセスでは、まず溶解炉で電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間加工、冷間加工、溶体化処理、時効処理、冷間加工の順で所望の厚み、径および特性を有する板、条、棒、線及び箔等に仕上げる。熱処理後には、熱処理で生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。また、高強度化のために、溶体化処理と時効の間や時効後に冷間加工を行ってもよい。
(Production method)
An example of a method for manufacturing a copper alloy according to an embodiment of the present invention will be described below. In a typical manufacturing process for Cu--Ni--Si alloys, raw materials such as electrolytic copper, Ni, and Si are first melted in a melting furnace to obtain a molten metal with a desired composition. This molten metal is then cast into an ingot. Thereafter, it is finished into plates, strips, bars, wires, foils, etc. having desired thickness, diameter, and characteristics by hot working, cold working, solution treatment, aging treatment, and cold working in this order. After the heat treatment, the surface may be pickled, polished, etc. in order to remove the surface oxide film generated by the heat treatment. Further, in order to increase the strength, cold working may be performed between the solution treatment and aging or after aging.

本実施形態では、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が1000~20000個/mm2である銅合金を得るために、熱間加工後の冷却速度を調整し、必要であれば熱間加工後に熱処理をする。 In this embodiment, the cooling rate after hot working is adjusted in order to obtain a copper alloy with a number density of 1000 to 20000 particles/mm 2 of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm. , If necessary, perform heat treatment after hot working.

熱間加工は、加熱した鋳塊を圧延や押出により加工する方法であり、好ましくは材料温度が900~1000℃となるように加熱し、700℃以上で熱間加工を終了させることを含む。熱間加工終了後の700℃から500℃までの冷却速度を平均0.01~0.1℃/sに調節することで、冷却中にNi2Si等が析出し、所望の第二相粒子の個数密度となる。熱間加工後に500~700℃で1~60分の熱処理を行うことによりNi2Si等の析出物を粗大化させて、粒径1.0μm以上5.0μm未満の第二相粒子と粒径0.2μm以上1.0μm未満の第二相粒子の個数密度を更に増加させることができる。700℃から500℃の冷却速度が0.01℃/sを下回ると、冷却中の析出量が多くなりすぎて、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が20000個/mm2を超え、引張強さが不足し、粒径0.2μm以上1.0μm未満の第二相粒子が150000個/mm2を超え、強度が不足する。 Hot working is a method of processing a heated ingot by rolling or extrusion, and preferably includes heating the material to a temperature of 900 to 1000°C and terminating the hot working at 700°C or higher. By adjusting the cooling rate from 700°C to 500°C after hot working to an average of 0.01 to 0.1°C/s, Ni 2 Si etc. precipitate during cooling and form the desired second phase particles. The number density is . After hot working, heat treatment is performed at 500 to 700°C for 1 to 60 minutes to coarsen precipitates such as Ni 2 Si, resulting in second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm. The number density of second phase particles having a size of 0.2 μm or more and less than 1.0 μm can be further increased. When the cooling rate from 700°C to 500°C is less than 0.01°C/s, the amount of precipitation during cooling becomes too large, and the number density of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm becomes 20,000. If the number of second phase particles exceeds 150,000 particles/mm 2 , the tensile strength is insufficient, and if the number of second phase particles with a particle size of 0.2 μm or more and less than 1.0 μm exceeds 150,000 particles/mm 2 , the strength is insufficient.

本実施形態に係る銅合金の板材の場合の製造方法を工程順に列記すると次のようになる。
(1)インゴットの鋳造
(2)熱間圧延(加熱温度900~1000℃、厚み5~20mm程度まで、圧延後700℃から500℃の冷却速度0.01~0.1℃/s)
(3)熱処理(500~700℃で1~60分)
(4)冷間圧延(加工度1~99%)
(5)溶体化処理(800~1050℃で5~300秒)
(6)冷間圧延(加工度1~60%)
(7)時効処理(400~600℃で2~20時間)
(8)冷間圧延(加工度1~99.9%)
(9)歪取り焼鈍(300~700℃で5秒~10時間)
The manufacturing method for the copper alloy plate according to the present embodiment is listed in the order of steps as follows.
(1) Casting of ingot (2) Hot rolling (heating temperature 900-1000°C, thickness to about 5-20mm, cooling rate 0.01-0.1°C/s from 700°C to 500°C after rolling)
(3) Heat treatment (1 to 60 minutes at 500 to 700°C)
(4) Cold rolling (working degree 1-99%)
(5) Solution treatment (5 to 300 seconds at 800 to 1050°C)
(6) Cold rolling (workability 1-60%)
(7) Aging treatment (2 to 20 hours at 400 to 600°C)
(8) Cold rolling (working degree 1-99.9%)
(9) Strain relief annealing (5 seconds to 10 hours at 300 to 700°C)

ここで、熱間圧延(2)は、900~1000℃に加熱し、700℃以上で圧延を終了させることが好ましく、加工終了後の700℃から500℃の冷却速度を平均0.01~0.1℃/sに調節することが好ましく、0.01~0.08℃/sに調節することが更に好ましい。 Here, in the hot rolling (2), it is preferable to heat to 900 to 1000°C and finish rolling at 700°C or higher, and the cooling rate from 700°C to 500°C after finishing is 0.01 to 0. The temperature is preferably adjusted to .1°C/s, and more preferably 0.01 to 0.08°C/s.

熱処理(3)は第二相粒子の個数密度を更に増加させられるが、行わなくても良い。冷間圧延(4)の加工度は1~99%とすることが好ましいが行わなくても良い。冷間圧延(6)及び(8)は高強度化のために任意に行うものであり、圧延加工度の増加とともに強度が増加する反面、導電率が低下する。冷間圧延(6)及び(8)の有無およびそれぞれの加工度によらず、耐焼鈍軟化特性が向上するという本実施形態の効果は得られる。冷間圧延(6)及び(8)は行っても良いし行わなくても良い。 Although heat treatment (3) can further increase the number density of second phase particles, it is not necessary to perform heat treatment (3). The working degree of cold rolling (4) is preferably 1 to 99%, but may not be performed. Cold rolling (6) and (8) are optionally performed to increase the strength, and while the strength increases as the degree of rolling increases, the electrical conductivity decreases. The effect of this embodiment that the annealing softening resistance is improved can be obtained regardless of the presence or absence of cold rolling (6) and (8) and the respective working degrees. Cold rolling (6) and (8) may or may not be performed.

歪取り焼鈍(9)は、耐焼鈍軟化特性向上のために任意に行うものである。耐焼鈍軟化特性が向上する反面、強度が低下するため必要に応じて実施するものである。第二相粒子の個数密度を制御していれば、歪取り焼鈍(9)を行わなくても所望の耐焼鈍軟化特性は得られる。 Strain relief annealing (9) is optionally carried out in order to improve the annealing softening resistance. Although the annealing softening resistance improves, the strength decreases, so this is carried out as necessary. As long as the number density of the second phase particles is controlled, the desired annealing softening resistance can be obtained without performing strain relief annealing (9).

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be shown below along with comparative examples, but these examples are provided to better understand the present invention and its advantages, and are not intended to limit the invention.

(銅合金の製造1)
電気銅、Ni、Siを原料とした溶湯に添加元素の量、種類を変更して添加し、厚みが30mmのインゴットを鋳造した。このインゴットを1000℃で3時間加熱し、終了温度が700℃以上となるように熱間圧延により厚み10mmの板にした。熱間圧延後の700℃から500℃の冷却速度を表1中の条件で実施した。次に、表面の酸化スケールを研削除去し、その後、冷間圧延、溶体化処理、時効、冷間圧延をこの順で行い最終厚みが0.1mmの最終製品に仕上げた。
(Manufacture of copper alloy 1)
Additive elements were added in varying amounts and types to a molten metal made of electrolytic copper, Ni, and Si as raw materials, and an ingot with a thickness of 30 mm was cast. This ingot was heated at 1000° C. for 3 hours and hot rolled into a plate having a thickness of 10 mm so that the final temperature was 700° C. or higher. The cooling rate after hot rolling was from 700°C to 500°C under the conditions shown in Table 1. Next, the oxide scale on the surface was removed by grinding, and then cold rolling, solution treatment, aging, and cold rolling were performed in this order to produce a final product with a final thickness of 0.1 mm.

製品試料について、次の評価を行った。
(強度(引張強さ)測定および焼鈍軟化特性の評価)
引張試験機を用いてJIS Z 2241に準拠し圧延方向と平行に引張強さを測定した。また、この最終製品に500℃で1分焼鈍した試料を作製し、圧延方向と平行に引張強さを同様に測定した。焼鈍前のTS、焼鈍後のTSから焼鈍軟化特性(焼鈍後TS/焼鈍前TS)を求めた。
The following evaluations were performed on the product samples.
(Strength (tensile strength) measurement and evaluation of annealing softening characteristics)
The tensile strength was measured in parallel to the rolling direction using a tensile tester in accordance with JIS Z 2241. Further, a sample was prepared by annealing this final product at 500° C. for 1 minute, and the tensile strength was similarly measured in parallel to the rolling direction. The annealing softening property (TS after annealing/TS before annealing) was determined from the TS before annealing and the TS after annealing.

(導電率(EC)測定)
JIS H 0505に準拠して導電率を測定した。測定での通電は圧延方向と平行に行った。
(Electrical conductivity (EC) measurement)
Electrical conductivity was measured in accordance with JIS H 0505. Electricity was applied in the measurement parallel to the rolling direction.

(第二相粒子密度の測定)
第二相粒子の粒径及び密度は、最終製品の圧延直角断面を機械研磨して鏡面に仕上げた後、電解研磨及び/又は酸洗エッチングをして圧延直角断面を現出させ、走査電子顕微鏡を用いて測定した。粒径1.0μm以上5.0μm未満の第二相粒子については1000倍の顕微鏡写真5枚、粒径0.2~1.0μmの第二相粒子については5000倍の顕微鏡写真5枚に対して行い、その平均値とした。表1に評価結果を示す。
(Measurement of second phase particle density)
The particle size and density of the second phase particles are determined by mechanically polishing the rolled cross section of the final product to a mirror finish, and then electropolishing and/or pickling etching to reveal the rolled cross section. Measured using For second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm, 5 micrographs at 1,000 times The average value was taken as the average value. Table 1 shows the evaluation results.

Figure 0007430502000001
Figure 0007430502000001

実施例1~11は、いずれも本実施形態において規定される条件で熱間圧延後の冷却速度を制御して行ったものであり、引張強さ700MPa以上、導電率が40%IACS以上の高強度高導電率であり、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が本実施形態の範囲内となり、85%以上の軟化特性が得られた。 Examples 1 to 11 were all carried out by controlling the cooling rate after hot rolling under the conditions specified in this embodiment, and were conducted with high tensile strength of 700 MPa or more and electrical conductivity of 40% IACS or more. It had high strength and high conductivity, the number density of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm was within the range of this embodiment, and a softening property of 85% or more was obtained.

比較例1は、Ni濃度が高く、熱間圧延中に割れが発生しその後の加工が困難となった。比較例2、4及び5は、熱間圧延後の冷却速度が速く、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が1000個/mm2を下回り、軟化特性が低くなった。比較例3は、Ni濃度が低く強度が低かった。比較例6は、熱間圧延後の冷却速度が遅すぎたため、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が20000個/mm2を超え強度が低下した。比較例7は、その他添加元素濃度が3%を超え、導電率が低くなった。 In Comparative Example 1, the Ni concentration was high, and cracks occurred during hot rolling, making subsequent processing difficult. In Comparative Examples 2, 4, and 5, the cooling rate after hot rolling was fast, the number density of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm was less than 1000 particles/mm 2 , and the softening properties were low. became. Comparative Example 3 had a low Ni concentration and low strength. In Comparative Example 6, the cooling rate after hot rolling was too slow, so the number density of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm exceeded 20,000 particles/mm 2 and the strength decreased. In Comparative Example 7, the concentration of other additive elements exceeded 3%, resulting in low conductivity.

(銅合金の製造2)
電気銅、Ni、Siを原料とした溶湯に添加元素の量、種類を変更して添加し、ビレットを鋳造した。このビレットを1000℃で3時間加熱し、終了温度が700℃以上となるように熱間押出により直径10mmの棒にした。熱間押出後の700℃から500℃の冷却速度を表中の条件で実施した。次に、表面の酸化スケールを研削除去し、その後、冷間伸線、溶体化処理、時効処理、冷間伸線をこの順で行い最終直径が0.1mmの最終製品に仕上げた。
(Manufacture of copper alloy 2)
A billet was cast by adding different amounts and types of additive elements to a molten metal made of electrolytic copper, Ni, and Si as raw materials. This billet was heated at 1000° C. for 3 hours and hot extruded to a rod with a diameter of 10 mm so that the final temperature was 700° C. or higher. The cooling rate after hot extrusion was from 700°C to 500°C under the conditions shown in the table. Next, the oxidized scale on the surface was removed by polishing, and then cold wire drawing, solution treatment, aging treatment, and cold wire drawing were performed in this order to produce a final product with a final diameter of 0.1 mm.

製品試料について、次の評価を行った。
(強度(TS)測定および焼鈍軟化特性の評価)
引張試験機を用いてJIS Z 2241に準拠し引張強さを測定した。また、この最終製品に500℃で1分焼鈍した試料を作製し、引張強さを同様に測定した。焼鈍前のTS、焼鈍後のTSから焼鈍軟化特性(焼鈍後TS/焼鈍前TS)を求めた。
The following evaluations were performed on the product samples.
(Strength (TS) measurement and evaluation of annealing softening characteristics)
Tensile strength was measured using a tensile tester in accordance with JIS Z 2241. Further, a sample was prepared by annealing this final product at 500° C. for 1 minute, and the tensile strength was measured in the same manner. The annealing softening property (TS after annealing/TS before annealing) was determined from the TS before annealing and the TS after annealing.

(導電率(EC)測定)
JIS H 0505に準拠して導電率を測定した。測定での通電は伸線方向と平行に行った。
(Electrical conductivity (EC) measurement)
Electrical conductivity was measured in accordance with JIS H 0505. Electricity was applied in the measurement parallel to the wire drawing direction.

(第二相粒子密度の測定)
第二相粒子の粒径及び密度は、最終製品の伸線直角断面を機械研磨して鏡面に仕上げた後、電解研磨及び/又は酸洗エッチングをして伸線直角断面を現出させ、走査電子顕微鏡を用いて測定した。粒径1.0μm以上5.0μm未満の第二相粒子については1000倍の顕微鏡写真5枚、粒径0.2~1.0μmの第二相粒子については5000倍の顕微鏡写真5枚に対して行い、その平均値とした。表2に評価結果を示す。
(Measurement of second phase particle density)
The particle size and density of the second phase particles are determined by mechanically polishing the cross section of the final product at right angles to the drawn wire to give it a mirror finish, and then electropolishing and/or pickling etching to reveal the cross section at right angles to the wire drawing. Measured using an electron microscope. For second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm, 5 micrographs at 1,000 times The average value was taken as the average value. Table 2 shows the evaluation results.

Figure 0007430502000002
Figure 0007430502000002

実施例1~11は、いずれも本実施形態において規定される条件で熱間押出後の冷却速度を制御して行ったものであり、引張強さ700MPa以上、導電率が40%IACS以上の高強度高導電率であり、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が本実施形態の範囲内となり、85%以上の軟化特性が得られた。 Examples 1 to 11 were all carried out by controlling the cooling rate after hot extrusion under the conditions specified in this embodiment, and the samples had high tensile strength of 700 MPa or more and electrical conductivity of 40% IACS or more. It had high strength and high conductivity, the number density of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm was within the range of this embodiment, and a softening property of 85% or more was obtained.

比較例1は、Ni濃度が高く、熱間押出中に割れが発生しその後の加工が困難となった。比較例2、4及び5は、熱間押出後の冷却速度が速く、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が1000個/mm2を下回り、軟化特性が低くなった。比較例3は、Ni濃度が低く強度が不足した。比較例6は、熱間押出後の冷却速度が遅すぎたため、粒径1.0μm以上5.0μm未満の第二相粒子の個数密度が20000個/mm2を超え強度が不足した。比較例7は、添加元素濃度が3%を超え、導電率が低くなった。 Comparative Example 1 had a high Ni concentration and cracks occurred during hot extrusion, making subsequent processing difficult. In Comparative Examples 2, 4, and 5, the cooling rate after hot extrusion was fast, the number density of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm was less than 1000 particles/mm 2 , and the softening properties were low. became. Comparative Example 3 had a low Ni concentration and lacked strength. In Comparative Example 6, the cooling rate after hot extrusion was too slow, so the number density of second phase particles with a particle size of 1.0 μm or more and less than 5.0 μm exceeded 20,000 pieces/mm 2 and the strength was insufficient. In Comparative Example 7, the concentration of added elements exceeded 3% and the conductivity was low.

Claims (5)

Niを1.0~4.0質量%、Siを0.2~1.5質量%含有し、残部が銅及び不可避的不純物からなり、粒径1.0μm以上5.0μm未満の第二相粒子を1000~20000個/mm2含有し、粒径0.2μm以上1.0μm未満の第二相粒子を3000~150000個/mm 2 含有する銅合金線材。 A second phase containing 1.0 to 4.0% by mass of Ni, 0.2 to 1.5% by mass of Si, the remainder consisting of copper and unavoidable impurities, and having a particle size of 1.0 μm or more and less than 5.0 μm. A copper alloy wire containing 1,000 to 20,000 particles/mm 2 and 3,000 to 150,000 second phase particles/mm 2 with a particle size of 0.2 μm or more and less than 1.0 μm. Coを0.0~0.5質量%含有する請求項に記載の銅合金線材。 The copper alloy wire according to claim 1 , containing 0.0 to 0.5% by mass of Co. Sn、Zn、Mg、Fe、Ti、Zr、Al、P、Mn、Cr及びAgのうち1種以上を総量で0.005~3.0質量%含有する請求項1又は2に記載の銅合金線材。 The copper alloy according to claim 1 or 2, containing one or more of Sn, Zn, Mg, Fe, Ti, Zr, Al, P, Mn, Cr and Ag in a total amount of 0.005 to 3.0% by mass. wire. 引張強さが700MPa以上、導電率が40%IACS以上であり、500℃の温度で1分間の焼鈍処理を行った場合に、前記焼鈍処理後の引張強さが、前記焼鈍処理前の引張強さに対して85%以上となる請求項1~のいずれか1項に記載の銅合金線材。 When the tensile strength is 700 MPa or more, the electrical conductivity is 40% IACS or more, and annealing treatment is performed at a temperature of 500°C for 1 minute, the tensile strength after the annealing treatment is equal to the tensile strength before the annealing treatment. The copper alloy wire according to any one of claims 1 to 3 , wherein the copper alloy wire has a thickness of 85% or more. 請求項1~のいずれか1項に記載の銅合金線材を備えた電子機器部品。 An electronic device component comprising the copper alloy wire according to any one of claims 1 to 4 .
JP2019170800A 2019-09-19 2019-09-19 Copper alloy wire and electronic equipment parts Active JP7430502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019170800A JP7430502B2 (en) 2019-09-19 2019-09-19 Copper alloy wire and electronic equipment parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170800A JP7430502B2 (en) 2019-09-19 2019-09-19 Copper alloy wire and electronic equipment parts

Publications (2)

Publication Number Publication Date
JP2021046590A JP2021046590A (en) 2021-03-25
JP7430502B2 true JP7430502B2 (en) 2024-02-13

Family

ID=74877881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170800A Active JP7430502B2 (en) 2019-09-19 2019-09-19 Copper alloy wire and electronic equipment parts

Country Status (1)

Country Link
JP (1) JP7430502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505782A (en) * 2022-09-29 2022-12-23 苏州铂源航天航空新材料有限公司 Continuous casting high-tin alloy pipe for airplane turbine worm and production process thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244398A (en) 2000-02-29 2001-09-07 Nippon Mining & Metals Co Ltd Lead frame material for semiconductor package, the method for soldering the lead frame material and semiconductor package
JP2007246931A (en) 2006-03-13 2007-09-27 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP2010007174A (en) 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2011117034A (en) 2009-12-02 2011-06-16 Furukawa Electric Co Ltd:The Copper-alloy material
WO2012081342A1 (en) 2010-12-13 2012-06-21 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRON MATERIAL AND METHOD FOR PRODUCING SAME
JP2017179512A (en) 2016-03-31 2017-10-05 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP2018035437A (en) 2016-03-31 2018-03-08 Dowaメタルテック株式会社 Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL
JP2019052343A (en) 2017-09-14 2019-04-04 Jx金属株式会社 Cu-Ni-Si BASED COPPER ALLOY EXCELLENT IN DIE WEAR PROPERTIES

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244398A (en) 2000-02-29 2001-09-07 Nippon Mining & Metals Co Ltd Lead frame material for semiconductor package, the method for soldering the lead frame material and semiconductor package
JP2007246931A (en) 2006-03-13 2007-09-27 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP2010007174A (en) 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2011117034A (en) 2009-12-02 2011-06-16 Furukawa Electric Co Ltd:The Copper-alloy material
WO2012081342A1 (en) 2010-12-13 2012-06-21 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRON MATERIAL AND METHOD FOR PRODUCING SAME
JP2017179512A (en) 2016-03-31 2017-10-05 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP2018035437A (en) 2016-03-31 2018-03-08 Dowaメタルテック株式会社 Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL
JP2019052343A (en) 2017-09-14 2019-04-04 Jx金属株式会社 Cu-Ni-Si BASED COPPER ALLOY EXCELLENT IN DIE WEAR PROPERTIES

Also Published As

Publication number Publication date
JP2021046590A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP2014095150A (en) Copper alloy containing cobalt, nickel and silicon
JP6226098B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP5619389B2 (en) Copper alloy material
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
WO2017170699A1 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP4349631B2 (en) Manufacturing method of Corson alloy fine wire for electric and electronic equipment parts
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP6522677B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP2020158817A (en) Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240131

R151 Written notification of patent or utility model registration

Ref document number: 7430502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151