JP2019052343A - Cu-Ni-Si BASED COPPER ALLOY EXCELLENT IN DIE WEAR PROPERTIES - Google Patents

Cu-Ni-Si BASED COPPER ALLOY EXCELLENT IN DIE WEAR PROPERTIES Download PDF

Info

Publication number
JP2019052343A
JP2019052343A JP2017176315A JP2017176315A JP2019052343A JP 2019052343 A JP2019052343 A JP 2019052343A JP 2017176315 A JP2017176315 A JP 2017176315A JP 2017176315 A JP2017176315 A JP 2017176315A JP 2019052343 A JP2019052343 A JP 2019052343A
Authority
JP
Japan
Prior art keywords
particles
less
copper alloy
wear
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017176315A
Other languages
Japanese (ja)
Other versions
JP6670277B2 (en
Inventor
寛之 北川
Hiroyuki Kitagawa
寛之 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017176315A priority Critical patent/JP6670277B2/en
Priority to TW107129726A priority patent/TWI676693B/en
Priority to KR1020180105180A priority patent/KR102121180B1/en
Priority to CN201811050851.1A priority patent/CN109504873B/en
Publication of JP2019052343A publication Critical patent/JP2019052343A/en
Application granted granted Critical
Publication of JP6670277B2 publication Critical patent/JP6670277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a Cu-Ni-Si based copper alloy excellent in die wear properties.SOLUTION: There is provided a Cu-Ni-Si based copper alloy which comprises, by mass%, 2.0 to 5.0% of Ni and 0.3 to 1.5% of Si and the balance Cu with inevitable impurities, wherein the Ni/Si ratio is 1.3 or more and 6.7 or less, the 0.2% proof stress YS is 700 MPa or more, the number of first Ni-Si particles having a diameter of 0.5 to 0.6 μm is 0.04×10to 1.4×10pieces/mmand the number of second Ni-Si particles having a diameter of less than 0.5 μm is less than 4.0×10pieces/mm, which is equal to or larger than the number of first N-Si particles.SELECTED DRAWING: Figure 1

Description

本発明は、例えばコネクタ、端子、リレ−、スイッチ等の導電性ばね材に好適なCu−Ni−Si系銅合金に関する。   The present invention relates to a Cu—Ni—Si based copper alloy suitable for conductive spring materials such as connectors, terminals, relays, switches and the like.

従来から、端子やコネクタの材料として、固溶強化型合金である黄銅やりん青銅が用いられてきた。ところで、電子機器の高性能化に伴い、使用される銅合金には高電流化が求められている。そこで、従来の固溶強化型の銅合金に比べ、強度、電気伝導性および熱伝導性に優れた析出強化型の銅合金が使用されてきている。析出強化型の銅合金は、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると共に、銅中の固溶元素量が減少して電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好となる。   Conventionally, brass and phosphor bronze, which are solid solution strengthened alloys, have been used as materials for terminals and connectors. By the way, with the improvement in performance of electronic equipment, the copper alloy used is required to have a high current. Thus, precipitation-strengthened copper alloys that are superior in strength, electrical conductivity, and thermal conductivity have been used compared to conventional solid solution-strengthened copper alloys. Precipitation-strengthened copper alloys are obtained by aging the solution-treated supersaturated solid solution to disperse fine precipitates uniformly, increasing the strength of the alloy and reducing the amount of solid solution elements in copper. As a result, electrical conductivity is improved. For this reason, it is excellent in mechanical properties such as strength and springiness, and also has good electrical and thermal conductivity.

析出強化型銅合金として、Cu−Ni−Si系銅合金が開発されている(特許文献1)。しかし、一般にCu−Ni−Si系銅合金は、連続プレス加工におけるプレス打抜き面のせん断面が大きく、金型中のパンチ等の工具が材料と接触する面積が増加するため、摩耗が促進される。このため、金型のメンテナンス頻度が高くなって生産性が低下する問題があり、その抑制が望まれている。   A Cu—Ni—Si based copper alloy has been developed as a precipitation strengthening type copper alloy (Patent Document 1). However, in general, the Cu—Ni—Si based copper alloy has a large shearing surface of the press punching surface in continuous press working, and the area where a tool such as a punch in the mold comes into contact with the material is increased, so that wear is promoted. . For this reason, there is a problem that the maintenance frequency of the mold is increased and the productivity is lowered, and suppression thereof is desired.

そこで、近年、コルソン合金の金型摩耗性を改善する技術として、析出物の個数と分布を制御する方策が提唱されている。例えば、特許文献2の発明では(1)熱間圧延(2)冷間圧延(3)溶体化処理(4)時効処理(5)最終冷間圧延(6)歪取焼鈍をこの順番で含む工程で、熱間圧延最終パス終了後の冷却を開始温度300〜450℃で実施し、溶体化処理前の冷間圧延を1パス当たりの平均圧延率を15〜30%にて総圧延率を70%以上で実施し、溶体化処理を800〜900℃で60〜120秒間で実施し、時効処理を400〜500℃で7〜14時間で実施する。
これにより、表面の粒径20〜80nmのNi−Si析出物粒子の個数を1.5×10〜5.0×10個/mm、表面の粒径100nmを超えるNi−Si析出物粒子の個数が0.5×10〜4.0×10個/mmに制御し、表面からの厚みが全板厚みの20%である表面層における粒径20〜80nmのNi−Si析出物粒子の個数をa個/mm2、前記表面層より内方部分における粒径20〜80nmのNi−Si析出物粒子の個数をb個/mmとした場合に、a/bが0.5〜1.5になるように制御し、耐金型磨耗性を改善している。
Therefore, in recent years, a technique for controlling the number and distribution of precipitates has been proposed as a technique for improving the mold wear of Corson alloy. For example, in the invention of Patent Document 2, the process includes (1) hot rolling (2) cold rolling (3) solution treatment (4) aging treatment (5) final cold rolling (6) strain relief annealing in this order. Then, cooling after the end of the final pass of hot rolling is performed at a starting temperature of 300 to 450 ° C., and cold rolling before solution treatment is performed with an average rolling rate per pass of 15 to 30% and a total rolling rate of 70. The solution treatment is performed at 800 to 900 ° C. for 60 to 120 seconds, and the aging treatment is performed at 400 to 500 ° C. for 7 to 14 hours.
Accordingly, the number of Ni—Si precipitate particles having a surface particle diameter of 20 to 80 nm is 1.5 × 10 6 to 5.0 × 10 6 particles / mm 2 , and the Ni—Si precipitate exceeding the surface particle diameter of 100 nm is used. The number of particles is controlled to 0.5 × 10 5 to 4.0 × 10 5 particles / mm 2 , and Ni—Si having a particle size of 20 to 80 nm in the surface layer whose thickness from the surface is 20% of the total plate thickness When the number of precipitate particles is a / mm 2 and the number of Ni—Si precipitate particles having a particle diameter of 20 to 80 nm in the inner portion of the surface layer is b / mm 2 , a / b is 0.00. It is controlled so as to be 5 to 1.5, and the mold wear resistance is improved.

特許文献3の発明では、(1)鋳造(10〜30℃/秒の冷却速度で鋳造)(2)再熱処理(850〜950℃で2〜8時間)(3)熱間圧延(終了温度680〜780℃、圧延時間180〜450秒、冷却時間40〜180℃/秒)(4)面削(5)冷間圧延(6)溶体化処理(950℃で20秒、その後直ちに水焼入れ)(7)時効熱処理(温度425〜500℃、時間1〜6時間で実施)(8)冷間圧延(圧延率10%)をこの順番で含む工程で実施する。
これにより、(a)(NiとSiを合計で50mass%以上含む3種類の金属間化合物A(直径:0.3μm以上2μm以下)、B(直径:0.05μm以上0.3μm未満)、C(直径:0.001μmを越え0.05μm未満))、(b)(銅合金板材の圧延方向に垂直な断面における結晶粒径の横長さx(μm)と縦長さy(μm)が、関係式[x/y≧2]を満たす)および、(c)(化合物Aの分散密度a、前記金属間化合物Bの分散密度bおよび前記金属間化合物Cの分散密度cが、関係式[a/(b+c)≦0.010]および[0.001≦(b/c)≦0.10]を満足する)、を満足するよう制御し、耐金型磨耗性を改善している。
In the invention of Patent Document 3, (1) casting (casting at a cooling rate of 10 to 30 ° C./second) (2) reheat treatment (at 850 to 950 ° C. for 2 to 8 hours) (3) hot rolling (end temperature 680) ˜780 ° C., rolling time 180 to 450 seconds, cooling time 40 to 180 ° C./second) (4) face milling (5) cold rolling (6) solution treatment (950 ° C. for 20 seconds, then immediately water quenching) ( 7) Aging heat treatment (implemented at a temperature of 425 to 500 ° C. for 1 to 6 hours) (8) Implemented in a step including cold rolling (rolling rate 10%) in this order.
Thereby, (a) (three kinds of intermetallic compounds A (diameter: 0.3 μm or more and 2 μm or less) containing Ni and Si in total of 50 mass% or more), B (diameter: 0.05 μm or more and less than 0.3 μm), C (Diameter: more than 0.001 μm and less than 0.05 μm)), (b) (the relationship between the horizontal length x (μm) and the vertical length y (μm) of the crystal grain size in the cross section perpendicular to the rolling direction of the copper alloy sheet) Formula [x / y ≧ 2] is satisfied, and (c) (dispersion density a of compound A, dispersion density b of intermetallic compound B, and dispersion density c of intermetallic compound C are expressed by the relation [a / (B + c) ≦ 0.010] and [0.001 ≦ (b / c) ≦ 0.10]) are satisfied to improve mold wear resistance.

国際公開第WO2011/068134号International Publication No. WO2011 / 068134 国際公開第WO2013/094061号International Publication No. WO2013 / 094061 特開2008−95185号公報JP 2008-95185 A

しかしながら、従来のCu−Ni−Si系銅合金は耐金型磨耗性を改善するが、より強度が高い領域での検討が十分になされていなかった。
これらの事情を鑑みて、本発明は上記の課題を解決するためになされたものであり、金型摩耗性に優れるCu−Ni−Si系銅合金の提供を目的とする。
However, the conventional Cu—Ni—Si based copper alloy improves the wear resistance of the mold, but has not been sufficiently studied in a higher strength region.
In view of these circumstances, the present invention has been made in order to solve the above-described problems, and an object thereof is to provide a Cu—Ni—Si based copper alloy having excellent mold wear.

析出強化型のCu−Ni−Si系銅合金は、時効処理によってnmレベルの粒径のNi−Si粒子を析出物として大量に析出させるが、強度の向上に寄与しない微細なμmレベルの粒径のNi−Si粒子も多く存在する。
本発明者は、Niの含有量が2.0%以上かつNi/Si比が1.3以上6.7以下であり、0.2%耐力YSが700MPa以上の高強度である場合、Cu−Ni−Si系銅合金の材料をプレス加工した際に、材料の表面及び破面に存在するμmレベルのNi−Si粒子が金型と接触すると、その粒子を起点にひっかき摩耗が発生することを発見した。そして、直径0.5〜0.6μmのNi−Si粒子の個数が引っかき傷の個数と相関があることがわかった。そこで、直径0.5〜0.6μmのNi−Si析出物を抑制することで金型摩耗性を向上できることを見出した。
更に、製品の引張強度TS(MPa)と0.2%耐力YS(MPa)の比である降伏比YS/TSが0.9以上であり、加工硬化指数n値(以下、n値)が0.05以下である場合に、さらに耐金型磨耗性が向上することを見出した。
Precipitation-strengthening Cu-Ni-Si based copper alloy deposits a large amount of Ni-Si particles having a particle size of nm level as precipitates by aging treatment, but does not contribute to improvement in strength, but has a fine particle size of μm level. There are also many Ni-Si particles.
When the Ni content is 2.0% or more, the Ni / Si ratio is 1.3 or more and 6.7 or less, and the 0.2% proof stress YS is high strength of 700 MPa or more, Cu— When a Ni-Si-based copper alloy material is pressed, if Ni-Si particles of a μm level existing on the surface and fracture surface of the material come into contact with the mold, scratches are generated starting from the particles. discovered. It was found that the number of Ni—Si particles having a diameter of 0.5 to 0.6 μm correlated with the number of scratches. Then, it discovered that metal mold | die abrasion could be improved by suppressing the Ni-Si deposit of 0.5-0.6 micrometers in diameter.
Furthermore, the yield ratio YS / TS, which is the ratio of the tensile strength TS (MPa) of the product to the 0.2% proof stress YS (MPa), is 0.9 or more, and the work hardening index n value (hereinafter n value) is 0. It has been found that the wear resistance of the mold is further improved when it is 0.05 or less.

又、直径0.5μm未満のNi−Si粒子の個数が直径0.5〜0.6μmのNi−Si粒子の個数より少なくなると凝着摩耗が促進され、直径0.6μmを超えるNi−Si粒子の個数が直径0.5〜0.6μmのNi−Si粒子の個数より多くなるとひっかき摩耗が促進されることも判明した。
なお、Niの含有量が2.0%未満であり、0.2%耐力YSが700MPa未満の場合は、Ni−Si粒子の個数が金型摩耗性に影響を与える現象は顕著にみられなかった。
Further, when the number of Ni—Si particles having a diameter of less than 0.5 μm is smaller than the number of Ni—Si particles having a diameter of 0.5 to 0.6 μm, adhesion wear is promoted, and Ni—Si particles having a diameter exceeding 0.6 μm are promoted. It has also been found that when the number of particles exceeds the number of Ni—Si particles having a diameter of 0.5 to 0.6 μm, scratch wear is promoted.
When the Ni content is less than 2.0% and the 0.2% proof stress YS is less than 700 MPa, the phenomenon in which the number of Ni—Si particles affects the mold wear is not noticeable. It was.

そして、nmレベルの粒径のNi−Si粒子であれば、溶体化および時効処理の条件を制御して調整できるが、μmレベルのNi−Si粒子を制御しようとすると、過時効等を行わなければならず、強度等の特性を損ねてしまう。そこで、熱間圧延条件を制御して熱間圧延直後のNi−Si粒子の直径と個数を規制することを見出した。   Ni-Si particles with a particle size of nm level can be adjusted by controlling the conditions of solution treatment and aging treatment. However, when trying to control Ni-Si particles of μm level, overaging or the like must be performed. In other words, properties such as strength are impaired. Thus, it has been found that the diameter and number of Ni—Si particles immediately after hot rolling are controlled by controlling the hot rolling conditions.

上記の目的を達成するために、本発明のCu−Ni−Si系銅合金は、質量%で、Ni:2.0〜5.0%、Si:0.3〜1.5%含有し、Ni/Si比が1.3以上6.7以下であり、残部がCu及び不可避不純物からなり、0.2%耐力YSが700MPa以上であり、直径0.5〜0.6μmの第1のNi−Si粒子が0.04×10〜1.4×10個/mm、直径0.5μm未満の第2のNi−Si粒子の個数が前記第1のNi−Si粒子の個数以上4.0×10個/mm未満である。 In order to achieve the above object, the Cu-Ni-Si based copper alloy of the present invention contains, in mass%, Ni: 2.0 to 5.0%, Si: 0.3 to 1.5%, The Ni / Si ratio is 1.3 or more and 6.7 or less, the balance is Cu and inevitable impurities, the 0.2% proof stress YS is 700 MPa or more, and the first Ni having a diameter of 0.5 to 0.6 μm The number of second Ni—Si particles having a diameter of less than 0.5 μm is 0.04 × 10 3 to 1.4 × 10 3 particles / mm 2 or more than the number of the first Ni—Si particles. 0.0 × 10 3 pieces / mm 2 or less.

降伏比YS/TSが0.9以上、加工硬化係数n値が0.05以下であることが好ましい。
本発明のCu−Ni−Si系銅合金は、更にMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有することが好ましい。
It is preferable that the yield ratio YS / TS is 0.9 or more and the work hardening coefficient n value is 0.05 or less.
The Cu—Ni—Si based copper alloy of the present invention preferably further contains at least one selected from the group consisting of Mg, Mn, Sn, Zn and Cr in a total amount of 0.005 to 1.0 mass%.

本発明によれば、金型摩耗性に優れるCu−Ni−Si系銅合金が得られる。   According to the present invention, it is possible to obtain a Cu—Ni—Si based copper alloy excellent in mold wear.

金型摩耗を定量化するためのパンチの摩耗面積を説明する図である。It is a figure explaining the wear area of the punch for quantifying die wear.

以下、本発明の実施形態に係るCu−Ni−Si系銅合金について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, the Cu—Ni—Si based copper alloy according to the embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

(組成)
[Ni、Co及びSi]
銅合金中にNi:2.0〜5.0%、Si:0.3〜1.5%含有しNi/Si比が1.3以上6.7以下である。Ni及びSiは、適当な熱処理を施すことにより金属間化合物を形成し,導電率を劣化させずに強度を向上させる。
Ni及びSiの含有量が上記範囲未満であると、強度の向上効果が得られず、上記範囲を超えると導電性が低下すると共に熱間加工性が低下する。
Ni/Si比が1.3未満の場合、及びNi/Si比が6.7を超える場合は、いずれも導電率が著しく低下する。
(composition)
[Ni, Co and Si]
The copper alloy contains Ni: 2.0 to 5.0%, Si: 0.3 to 1.5%, and the Ni / Si ratio is 1.3 or more and 6.7 or less. Ni and Si form an intermetallic compound by performing an appropriate heat treatment, and improve the strength without deteriorating the electrical conductivity.
When the content of Ni and Si is less than the above range, the effect of improving the strength cannot be obtained.
In both cases where the Ni / Si ratio is less than 1.3 and the Ni / Si ratio exceeds 6.7, the conductivity is significantly reduced.

[他の添加元素]
合金中に、更にMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有してもよい。
Mgは強度と耐応力緩和特性を向上させる。Mnは強度と熱間加工性を向上させる。Snは強度を向上させる。Znは半田接合部の耐熱性を向上させる。Crは、Niと同様にSiと化合物を形成するため、析出硬化により導電率を劣化させずに強度を向上させる。
なお、上記した各元素の総量が上記範囲未満であると上記した効果が得られず、上記範囲を超えると導電率の低下を招く場合がある。
[Other additive elements]
The alloy may further contain 0.005 to 1.0% by mass in total of at least one selected from the group consisting of Mg, Mn, Sn, Zn and Cr.
Mg improves strength and stress relaxation resistance. Mn improves strength and hot workability. Sn improves the strength. Zn improves the heat resistance of the solder joint. Since Cr forms a compound with Si like Ni, it improves the strength without deteriorating conductivity by precipitation hardening.
In addition, when the total amount of each element described above is less than the above range, the above effect cannot be obtained, and when it exceeds the above range, the conductivity may be lowered.

[Ni−Si粒子]
Cu−Ni−Si系銅合金に含まれる直径0.5〜0.6μmの第1のNi−Si粒子(析出物)が0.04×10〜1.4×10個/mmである。
第1のNi−Si粒子は、上述のように金型のひっかき摩耗を生じさせる。
従って、第1のNi−Si粒子の個数が少ない方が良いが、Cu−Ni−Si系銅合金の単位面積当たり、第1のNi−Si粒子が0.04×10個/mm未満の場合、金型へCu−Ni−Si系銅合金が凝着する凝着摩耗が促進される。
[Ni-Si particles]
The first Ni—Si particles (precipitates) having a diameter of 0.5 to 0.6 μm contained in the Cu—Ni—Si based copper alloy are 0.04 × 10 3 to 1.4 × 10 3 particles / mm 2 . is there.
The first Ni—Si particles cause scratching of the mold as described above.
Therefore, it is better that the number of the first Ni—Si particles is smaller, but the number of the first Ni—Si particles is less than 0.04 × 10 3 particles / mm 2 per unit area of the Cu—Ni—Si based copper alloy. In this case, adhesion wear in which the Cu—Ni—Si based copper alloy adheres to the mold is promoted.

ここで、Ni−Si粒子はプレス時に応力集中し、クラックの起点となるため、Ni−Si粒子が大きいか、多数分布しているほど材料のせん断面に対する割合が少なくなる。これは、Ni−Si粒子の個数が多いほど応力集中部分が多く、早期にクラックが進展するため、材料のせん断面に対する割合は小さくなるためである。そして、せん断面はプレス中の金型と接触する面であるため、その面積が増えると金型と材料の接触時間が長くなり、材料から金型へ凝着物が付着しやすくなる。
一方、第1のNi−Si粒子が1.4×10個/mmを超えると、金型のひっかき摩耗が促進される。
Here, since stress concentrates at the time of pressing Ni-Si particles and becomes a starting point of cracks, the larger the Ni-Si particles are distributed or the more the Ni-Si particles are distributed, the smaller the ratio of the material to the shear plane. This is because the greater the number of Ni—Si particles, the more the stress concentration portion and the earlier the cracks progress, so the ratio of the material to the shear plane becomes smaller. And since a shear surface is a surface which contacts the metal mold | die in press, when the area increases, the contact time of a metal mold | die and a material will become long, and it will become easy to adhere an adhesive substance from a material to a metal mold | die.
On the other hand, when the number of the first Ni—Si particles exceeds 1.4 × 10 3 particles / mm 2 , scratch abrasion of the mold is promoted.

Cu−Ni−Si系銅合金に含まれる直径0.5μm未満の第2のNi−Si粒子の個数が、第1のNi−Si粒子の個数以上、かつ4.0×10個/mm未満である。
第2のNi−Si粒子の個数が第1のNi−Si粒子の個数より少なくなると凝着摩耗が促進される。一方、第2のNi−Si粒子の個数が4.0×10個/mm以上になると、ひっかき摩耗が促進される。
The number of second Ni—Si particles having a diameter of less than 0.5 μm included in the Cu—Ni—Si based copper alloy is equal to or greater than the number of first Ni—Si particles and 4.0 × 10 3 particles / mm 2. Is less than.
Adhesive wear is promoted when the number of second Ni—Si particles is less than the number of first Ni—Si particles. On the other hand, when the number of the second Ni—Si particles is 4.0 × 10 3 particles / mm 2 or more, scratch wear is promoted.

ここで、第2のNi−Si粒子の個数による金型摩耗への影響は第1のNi−Si粒子の個数による金型摩耗への影響と同様であるため、第2のNi−Si粒子の個数が少ないと凝着摩耗が促進され、個数が多いとひっかき摩耗が促進される。
なお、第2のNi−Si粒子の個数の増減は、第1のNi−Si粒子の個数の増減につれて変化する傾向にある。
Here, the influence on the mold wear by the number of the second Ni—Si particles is the same as the influence on the mold wear by the number of the first Ni—Si particles. When the number is small, adhesive wear is promoted, and when the number is large, scratch wear is promoted.
Note that the increase or decrease in the number of second Ni—Si particles tends to change as the number of first Ni—Si particles increases or decreases.

第1〜第2のNi−Si粒子の粒径及び個数は、Cu−Ni−Si系銅合金の圧延平行断面を研磨し,エッチング後に、FE−SEM(電解放射型走査電子顕微鏡)を用いて1500〜5000倍程度の倍率の像をもとに測定する。粒子解析ソフト及びEDS(エネルギー分散型X線分析)を用いて上記画像中の成分を測定し、母材成分と異なる成分で構成される粒子を第1〜第3のNi−Si粒子とみなす。各粒子のそれぞれの粒径を測定し、画像処理ソフト(例えば、アメリカ国立衛生研究所が公開しているImageJ)を使用して個数を数える。ここで、析出物に外接する円の直径を各Ni−Si粒子の粒径とする。   The particle diameter and the number of the first and second Ni—Si particles are determined by polishing a rolled parallel section of a Cu—Ni—Si based copper alloy, and using an FE-SEM (electrolytic emission scanning electron microscope) after etching. Measurement is performed based on an image with a magnification of about 1500 to 5000 times. The components in the image are measured using particle analysis software and EDS (energy dispersive X-ray analysis), and particles composed of components different from the base material components are regarded as first to third Ni—Si particles. The particle size of each particle is measured, and the number is counted using image processing software (for example, ImageJ published by the National Institutes of Health). Here, the diameter of the circle circumscribing the precipitate is defined as the particle diameter of each Ni-Si particle.

Cu−Ni−Si系銅合金の降伏比YS/TSが0.9以上であり、加工硬化係数(n値)が0.05以下であると好ましい。
降伏比YS/TSの値が0.9以上であると、TSとYSの差が小さいため、伸び始めるとすぐに破断する。すなわち、降伏比が高いと材料がプレス中にすぐ破断することで、金型と材料の接触時間が短くなり、耐金型磨耗性が向上する。
また、加工硬化係数(n値)は材料の均一伸びと相関のある値である。この値が小さいほど材料をプレスした際に、打ち抜きまでに必要な塑性変形領域が小さくなる。すなわち、n値が0.05以下であると、金型と材料の接触時間が短くなるため、耐金型磨耗性が向上する。
The yield ratio YS / TS of the Cu—Ni—Si based copper alloy is preferably 0.9 or more and the work hardening coefficient (n value) is preferably 0.05 or less.
When the value of the yield ratio YS / TS is 0.9 or more, the difference between TS and YS is small, so that the fracture occurs as soon as the elongation starts. That is, when the yield ratio is high, the material breaks immediately during the pressing, so that the contact time between the mold and the material is shortened, and the wear resistance of the mold is improved.
The work hardening coefficient (n value) is a value correlated with the uniform elongation of the material. The smaller this value, the smaller the plastic deformation area required before punching when the material is pressed. That is, when the n value is 0.05 or less, the contact time between the mold and the material is shortened, so that the mold wear resistance is improved.

なお、加工硬化係数(n値)は次のようにして求める。
引張試験において試験片を引張り、荷重を負荷すると、弾性限度を越えて最高荷重点に達するまでの塑性変形域では試験片各部は一様に伸びる(均一伸び)。この均一伸びが発生する塑性変形域では真応力σtと真ひずみεtの間には式1
σt=Kεt n
の関係が成立し、これをn乗硬化則という。「n」を加工硬化係数とする(須藤一:材料試験法、内田老鶴圃社、(1976)、p.34)。nは0≦n≦1の値をとり、nが大きいほど加工硬化の程度が大きく、局所的な変形を受けた部分が加工硬化した際に他の部分に変形が移り、くびれが生じにくくなる。このため、n値が大きい材料は一様な伸びを示す。
The work hardening coefficient (n value) is obtained as follows.
When a test piece is pulled and a load is applied in a tensile test, each part of the test piece is uniformly extended (uniform elongation) in the plastic deformation region exceeding the elastic limit and reaching the maximum load point. In the plastic deformation region where the uniform elongation occurs, there is an equation 1 between the true stress σ t and the true strain ε t.
σ t = Kε t n
This relationship is established, and this is called the n-th power hardening rule. “N” is defined as a work hardening coefficient (Kazuto Sudo: Material Testing Method, Uchida Otsukurakusha, (1976), p. 34). n takes a value of 0 ≦ n ≦ 1, and the larger the value of n, the greater the degree of work hardening. When a part that has undergone local deformation is work hardened, the deformation is transferred to other parts, and constriction is less likely to occur. . For this reason, a material with a large n value exhibits uniform elongation.

降伏比とn値はそれぞれ仕上げ圧延加工度と相関があり、後述する仕上げ圧延の圧延加工度を制御することで、降伏比とn値を調整できる。   The yield ratio and the n value have a correlation with the finish rolling work degree, respectively, and the yield ratio and the n value can be adjusted by controlling the rolling work degree of the finish rolling described later.

仕上げ圧延の圧延加工度が10%未満である場合、降伏比は0.9より小さくなり、n値は0.05より大きくなる。仕上げ圧延の圧延加工度が10%以上15%未満である場合は、加工硬化によりYSの値が増加することで降伏比が0.9以上となるので好ましい。一方でn値は、0.05より大きいままである。
仕上げ圧延の圧延加工度が15%以上30%以下である場合、降伏比は0.9以上となり、均一伸びが低下することでn値は0.05以下となり、最も好適な条件となる。
When the rolling degree of finish rolling is less than 10%, the yield ratio is smaller than 0.9 and the n value is larger than 0.05. When the rolling degree of finish rolling is 10% or more and less than 15%, it is preferable because the yield ratio becomes 0.9 or more by increasing the value of YS by work hardening. On the other hand, the n value remains greater than 0.05.
When the rolling degree of finish rolling is 15% or more and 30% or less, the yield ratio is 0.9 or more, and the n value becomes 0.05 or less because the uniform elongation decreases, which is the most suitable condition.

仕上げ圧延の圧延加工度が30%を超えて40%以下の範囲では、TSと比較してYSの強度が早期に飽和することから降伏比が0.9未満となり、n値は0.05以下となる。圧延加工度が40%を超えても同様の傾向であるが、降伏比がより小さくなることで金型摩耗性は悪化する。   When the rolling degree of finish rolling exceeds 30% and is 40% or less, the yield ratio becomes less than 0.9 because the strength of YS is saturated earlier than TS, and the n value is 0.05 or less. It becomes. Even if the rolling degree exceeds 40%, the same tendency is observed, but the die wear property is deteriorated as the yield ratio becomes smaller.

[0.2%耐力]
Cu−Ni−Si系銅合金の圧延平行方向の0.2%耐力は、例えば700MPa以上である。0.2%耐力を700MPa以上とすると、強度が向上する。
なお、引張強さは、JIS−Z2241に従い引張試験して求める。引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さ50mmとした。
[0.2% yield strength]
The 0.2% yield strength of the Cu—Ni—Si based copper alloy in the rolling parallel direction is, for example, 700 MPa or more. When the 0.2% proof stress is 700 MPa or more, the strength is improved.
The tensile strength is obtained by a tensile test according to JIS-Z2241. The conditions of the tensile test were a test piece width of 12.7 mm, a room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, and a gauge length of 50 mm.

[伸び]
Cu−Ni−Si系銅合金の圧延平行方向の伸びは、例えば13%以下である。伸びの下限は特に制限されないが、例えば1%である。
又、伸びは、破断伸びであり、引張試験機により、JIS−Z2241に従い、上述の引張強さを測定するのと同時に測定した。そして、試験片が破断したときの標点間の長さL(ゲージ長さ)と、試験前の標点距離L0との差を%で求めた。
引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さL=50mmで、銅箔の圧延方向に引張試験する。
[Elongation]
The elongation in the rolling parallel direction of the Cu—Ni—Si based copper alloy is, for example, 13% or less. The lower limit of elongation is not particularly limited, but is, for example, 1%.
Elongation is elongation at break, and was measured simultaneously with the above-described tensile strength according to JIS-Z2241 using a tensile tester. And the difference of the length L (gauge length) between the gauge points when the test piece broke and the gauge distance L0 before the test was obtained in%.
The tensile test conditions were a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, a gauge length L = 50 mm, and a tensile test in the rolling direction of the copper foil.

[導電率]
Cu−Ni−Si系銅合金の導電率(%IACS)は、例えば30以上である。
[conductivity]
The conductivity (% IACS) of the Cu—Ni—Si based copper alloy is, for example, 30 or more.

<製造方法>
本発明のCu−Ni−Si系銅合金は、通常、インゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、仕上げ圧延、歪取焼鈍の順で行って製造することができる。溶体化処理前の冷間圧延や再結晶焼鈍は必須ではなく、必要に応じて実施してもよい。
<Manufacturing method>
The Cu—Ni—Si based copper alloy of the present invention can usually be produced by performing an ingot in the order of hot rolling, cold rolling, solution treatment, aging treatment, finish rolling, and strain relief annealing. Cold rolling and recrystallization annealing before solution treatment are not essential, and may be performed as necessary.

<熱間圧延>
ここで、熱間圧延後で冷間圧延前の材料中の直径1.0μm以上3.5μm以下の第3のNi−Si粒子が3.5×10〜8.5×10個/mmの範囲内となるよう、熱間圧延を設定する。これは、溶体化および時効処理の条件を調整してμmレベルのNi−Si粒子を制御しようとすると、過時効等を行わなければならず、強度等の特性を損ねてしまうからである。
直径1.0μm以上3.5μm以下の第3のNi−Si粒子の個数を制御することは、最終製品の第1のNi−Si粒子の個数を制御することに対応する。
第3のNi−Si粒子が3.5×10個/mm未満であると、第1のNi−Si粒子が0.04×10個/mm未満となり、凝着摩耗が促進する。第3のNi−Si粒子が8.5×10個/mmを超えると、第1のNi−Si粒子が1.4×10個/mm以上となり、ひっかき摩耗が促進される。
第3のNi−Si粒子の直径及び個数を規制するための熱間圧延の条件としては、例えば熱間圧延温度800〜1000℃、保持時間1〜5hの範囲で調整することができる。
<Hot rolling>
Here, the third Ni—Si particles having a diameter of 1.0 μm to 3.5 μm in the material after hot rolling and before cold rolling are 3.5 × 10 3 to 8.5 × 10 3 particles / mm. The hot rolling is set so as to be within the range of 2 . This is because if the conditions of solution treatment and aging treatment are adjusted to control the Ni-Si particles at the μm level, overaging or the like must be performed, and properties such as strength are impaired.
Controlling the number of third Ni—Si particles having a diameter of 1.0 μm or more and 3.5 μm or less corresponds to controlling the number of first Ni—Si particles of the final product.
When the third Ni—Si particles are less than 3.5 × 10 3 particles / mm 2 , the first Ni—Si particles are less than 0.04 × 10 3 particles / mm 2 , and adhesion wear is promoted. . When the third Ni—Si particles exceed 8.5 × 10 3 particles / mm 2 , the first Ni—Si particles become 1.4 × 10 3 particles / mm 2 or more, and scratch abrasion is promoted.
The hot rolling conditions for regulating the diameter and number of the third Ni—Si particles can be adjusted, for example, in the range of a hot rolling temperature of 800 to 1000 ° C. and a holding time of 1 to 5 hours.

大気溶解炉中にて電気銅を溶解し、必要に応じて表1に示す添加元素を所定量投入し、溶湯を攪拌した。その後、鋳込み温度1200℃にて鋳型に出湯し、表1に示す組成の銅合金インゴットを得た。インゴットを熱間圧延し、板厚を10mmとした。その後、面削、冷間圧延、溶体化処理、時効処理、低温熱処理、仕上げ圧延の順に行い、板厚0.05〜0.4mmの試料を得た。仕上げ冷間圧延の後に200℃〜500℃の温度範囲で1秒〜1000秒間歪取焼鈍を行った。
なお、熱間圧延は1000℃で3時間行い、溶体化処理を700〜900℃で行った。時効処理は400℃〜550℃で1〜15時間の範囲で、仕上げ圧延後の引張強さが最大となる温度及び時間で行い、仕上げ圧延は加工率10〜40%の範囲で実施した。
Electrolytic copper was melted in an air melting furnace, and a predetermined amount of additive elements shown in Table 1 was added as necessary, and the molten metal was stirred. Thereafter, the molten metal was poured into a mold at a casting temperature of 1200 ° C. to obtain a copper alloy ingot having the composition shown in Table 1. The ingot was hot-rolled to a plate thickness of 10 mm. Thereafter, chamfering, cold rolling, solution treatment, aging treatment, low-temperature heat treatment, and finish rolling were performed in this order to obtain a sample having a plate thickness of 0.05 to 0.4 mm. After finish cold rolling, strain relief annealing was performed in a temperature range of 200 ° C. to 500 ° C. for 1 second to 1000 seconds.
In addition, hot rolling was performed at 1000 degreeC for 3 hours, and the solution treatment was performed at 700-900 degreeC. The aging treatment was performed at 400 ° C. to 550 ° C. for 1 to 15 hours at a temperature and time at which the tensile strength after finish rolling was maximized, and the finish rolling was performed at a processing rate of 10 to 40%.

<評価>
得られた試料について以下の項目を評価した。
[導電率]
歪取焼鈍後の圧延平行方向の試料について、JISH0505に準拠し、ダブルブリッジ装置を用いた四端子法により求めた体積抵抗率から導電率(%IACS)を算出した。
[引張強さ]
歪取焼鈍後の試料につき、引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、引張強さTSを測定した。引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さL=50mmで、銅箔の圧延方向に引張試験した。
<Evaluation>
The following items were evaluated for the obtained samples.
[conductivity]
About the sample of the rolling parallel direction after strain relief annealing, based on JISH0505, electrical conductivity (% IACS) was computed from the volume resistivity calculated | required by the four-terminal method using a double bridge apparatus.
[Tensile strength]
About the sample after strain relief annealing, the JIS13B test piece was produced using the press so that the tension direction might become parallel to the rolling direction. The test piece was subjected to a tensile test according to JIS-Z2241, and the tensile strength TS was measured. The tensile test conditions were a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, a gauge length L = 50 mm, and a tensile test in the rolling direction of the copper foil.

[伸び]
上記引張試験により、破断伸びを求めた。試験片が破断したときの標点間の長さLと、試験前の標点距離L0との差を%で求めて伸びとした。
[Elongation]
The elongation at break was determined by the tensile test. The difference between the length L between the gauge points when the test piece broke and the gauge distance L0 before the test was obtained in% and defined as elongation.

[ひっかき摩耗評価]
パンチキズ数:5mm角のパンチを使用し、各試料の圧延平行方向を長手方向として5×15mmに切り出した試料10枚に対し、それぞれ1ショット(計10ショット)打ち抜いた後のパンチ側面についたキズの数を目視で計数した。パンチキズ数が20個以下であれば、金型のひっかき摩耗が少なく、金型摩耗性に優れる。
[Scratch wear evaluation]
Number of punch scratches: Scratches on the side surface of punches after punching 1 shot (10 shots in total) for each of 10 samples cut into 5 × 15 mm using a 5 mm square punch as the longitudinal direction of each sample. Were counted visually. When the number of punch scratches is 20 or less, there is little scratching of the mold, and the mold wear resistance is excellent.

[凝着摩耗評価]
凝着摩耗の判定はボールオンディスク式の摩擦摩耗試験機を使用して行った。試験は、荷重1N、摺動距離125mで実施し、ボール(相手材)の材質はSUJ2とした。
摩耗試験前後にボールの摺動部断面のプロファイルをレーザー顕微鏡で測定し、摺動部の長さ1μm以上の部位につき、試験前に比べて試験後の断面プロファイルの高さが高くなった場合に、凝着摩耗が生じたと判断した。
[Adhesion wear evaluation]
Adhesion wear was determined using a ball-on-disk friction and wear tester. The test was performed with a load of 1 N and a sliding distance of 125 m, and the ball (mating material) was SUJ2.
When the profile of the cross section of the sliding part of the ball is measured with a laser microscope before and after the wear test, the height of the cross-sectional profile after the test is higher than before the test for the part with a length of 1 μm or more of the sliding part. It was determined that adhesive wear occurred.

[金型摩耗性の評価]
金型磨耗性は、上記のひっかき摩耗評価、凝着摩耗評価のみでは判断できず、材料の機械的特性にも影響を受ける。これらの影響を総合的に判断するため、タレットパンチプレス機を使用し、200×300mm切り出した試料5枚に対して、各試料を10万ショット打ち抜いた後のパンチ刃の摩耗量を測定することで金型摩耗性を評価した。パンチ刃の摩耗量は、プレス前を基準として測定した。
円筒形のパンチを使用し、クリアランスは板厚の5%、プレス速度は290shot/minとし、パンチの押し込み深さは板厚の50%に設定した。また、パンチとダイはそれぞれ硬度の異なるものを使用し、パンチの硬度がダイの硬度の60〜80%の値となるよう設定した。
[Evaluation of mold wear]
The mold wearability cannot be determined only by the above-described scratch wear evaluation and adhesion wear evaluation, and is also influenced by the mechanical properties of the material. In order to comprehensively judge these effects, use a turret punch press to measure the wear amount of the punch blade after punching out 100,000 shots of each sample on 5 samples cut out by 200 x 300 mm. The mold wear was evaluated. The amount of wear of the punch blade was measured on the basis of before the press.
A cylindrical punch was used, the clearance was 5% of the plate thickness, the press speed was 290 shots / min, and the indentation depth of the punch was set to 50% of the plate thickness. Further, punches and dies having different hardnesses were used, and the punch hardness was set to be 60 to 80% of the die hardness.

パンチ刃の摩耗量は、レーザー顕微鏡を使用し、図1に示すように、プレス前のパンチ刃の断面プロファイルP1とプレス後のパンチ刃の断面プロファイルP2の間で高低差が生じた面積S1を摩耗した面積とみなし、その面積を算出した。図1の符号Dはプレス方向を示す。以下の基準で金型摩耗性を評価した。評価が○であれば、金型摩耗性が優れており、◎であればさらに優れていることを示す。
◎:摩耗面積が1000μm以下
○:摩耗面積が1000μmを超え1500μm未満
×:摩耗面積が1500μm以上
As shown in FIG. 1, the wear amount of the punch blade is an area S1 in which a height difference is generated between the cross-sectional profile P1 of the punch blade before pressing and the cross-sectional profile P2 of the punch blade after pressing, as shown in FIG. The area was calculated as the worn area. A symbol D in FIG. 1 indicates a pressing direction. The mold wear was evaluated according to the following criteria. If the evaluation is ◯, the mold wear is excellent, and if it is ◎, it is further excellent.
◎: Wear area is 1000 .mu.m 2 or less ○: wear area exceeds 1000 .mu.m 2 1500 .mu.m 2 less ×: wear area is 1500 .mu.m 2 or more

得られた結果を表1、表2に示す。   The obtained results are shown in Tables 1 and 2.

表1、表2から明らかなように、第1のNi−Si粒子〜第2のNi−Si粒子の個数を所定範囲内に規制した各実施例の場合、金型摩耗性に優れていた。また、仕上げ圧延の加工度が15〜30%のものはさらに金型摩耗性に優れ、降伏比YS/TSが0.9以上、加工硬化係数n値が0.05以下となった。これは、金型と材料の接触時間が減少したためと考えられる。
なお、仕上げ圧延の加工度が10%以上15%未満の実施例5、7、9の場合、降伏比が0.9以上となったものの、n値は、0.05より大きかった。又、仕上げ圧延の加工度が30%を超えて40%以下の実施例2、3、10、11の場合、n値が0.05以下となったものの、降伏比が0.9より小さかった。但し、これらの実施例も実用上、問題はない。
As is clear from Tables 1 and 2, in each Example in which the number of the first Ni—Si particles to the second Ni—Si particles was regulated within a predetermined range, the mold wear was excellent. Further, those with a finish rolling workability of 15 to 30% were further excellent in mold wear, yield ratio YS / TS was 0.9 or more, and work hardening coefficient n value was 0.05 or less. This is probably because the contact time between the mold and the material has decreased.
In Examples 5, 7, and 9 in which the workability of finish rolling was 10% or more and less than 15%, the yield ratio was 0.9 or more, but the n value was larger than 0.05. Further, in Examples 2, 3, 10, and 11 in which the workability of finish rolling exceeds 30% and is 40% or less, the n value was 0.05 or less, but the yield ratio was smaller than 0.9. . However, these examples also have no practical problem.

一方、第1のNi−Si粒子が1.4×10個/mmを超え、第2のNi−Si粒子の個数が4.0×10個/mm以上になった比較例1〜4および比較例6の場合、パンチキズ数が20個を超え、金型のひっかき摩耗が促進されて金型摩耗性が劣った。
第1のNi−Si粒子が0.04×10個/mm未満、第2のNi−Si粒子の個数が第1のNi−Si粒子の個数未満の比較例5の場合、凝着摩耗が促進されて金型摩耗性が劣った。
On the other hand, Comparative Example 1 in which the first Ni—Si particles exceeded 1.4 × 10 3 particles / mm 2 and the number of the second Ni—Si particles became 4.0 × 10 3 particles / mm 2 or more. In the case of? 4 and Comparative Example 6, the number of punch scratches exceeded 20, the scratch wear of the mold was promoted, and the mold wear was inferior.
In the case of Comparative Example 5 in which the first Ni—Si particles are less than 0.04 × 10 3 particles / mm 2 and the number of second Ni—Si particles is less than the number of first Ni—Si particles, adhesive wear is caused. As a result, the mold wear was inferior.

Claims (3)

質量%で、Ni:2.0〜5.0%、Si:0.3〜1.5%含有し、Ni/Si比が1.3以上6.7以下であり、残部がCu及び不可避不純物からなり、0.2%耐力YSが700MPa以上であり、直径0.5〜0.6μmの第1のNi−Si粒子が0.04×10〜1.4×10個/mm、直径0.5μm未満の第2のNi−Si粒子の個数が前記第1のNi−Si粒子の個数以上4.0×10個/mm未満であるCu−Ni−Si系銅合金。 In mass%, Ni: 2.0 to 5.0%, Si: 0.3 to 1.5%, Ni / Si ratio is 1.3 or more and 6.7 or less, and the balance is Cu and inevitable impurities 0.2% proof stress YS is 700 MPa or more, and the first Ni—Si particles having a diameter of 0.5 to 0.6 μm are 0.04 × 10 3 to 1.4 × 10 3 particles / mm 2 , A Cu—Ni—Si based copper alloy in which the number of second Ni—Si particles having a diameter of less than 0.5 μm is equal to or more than the number of first Ni—Si particles and less than 4.0 × 10 3 / mm 2 . 降伏比YS/TSが0.9以上、加工硬化係数n値が0.05以下である、請求項1に記載のCu−Ni−Si系銅合金。   The Cu-Ni-Si based copper alloy according to claim 1, wherein the yield ratio YS / TS is 0.9 or more and the work hardening coefficient n value is 0.05 or less. 更にMg、Mn、Sn、Zn及びCrの群から選ばれる少なくとも1種以上を総量で0.005〜1.0質量%含有する請求項1に記載のCu−Ni−Si系銅合金。   Furthermore, the Cu-Ni-Si type | system | group copper alloy of Claim 1 which contains 0.005-1.0 mass% of at least 1 sort (s) chosen from the group of Mg, Mn, Sn, Zn, and Cr in a total amount.
JP2017176315A 2017-09-14 2017-09-14 Cu-Ni-Si based copper alloy with excellent mold wear Active JP6670277B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017176315A JP6670277B2 (en) 2017-09-14 2017-09-14 Cu-Ni-Si based copper alloy with excellent mold wear
TW107129726A TWI676693B (en) 2017-09-14 2018-08-27 Cu-Ni-Si copper alloy with excellent mold wear resistance
KR1020180105180A KR102121180B1 (en) 2017-09-14 2018-09-04 Cu-Ni-Si BASED COPPER ALLOY HAVING EXCELLENT WEAR-RESISTANCE OF MOLDING
CN201811050851.1A CN109504873B (en) 2017-09-14 2018-09-10 Cu-Ni-Si copper alloy having excellent die wear properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017176315A JP6670277B2 (en) 2017-09-14 2017-09-14 Cu-Ni-Si based copper alloy with excellent mold wear

Publications (2)

Publication Number Publication Date
JP2019052343A true JP2019052343A (en) 2019-04-04
JP6670277B2 JP6670277B2 (en) 2020-03-18

Family

ID=65745696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176315A Active JP6670277B2 (en) 2017-09-14 2017-09-14 Cu-Ni-Si based copper alloy with excellent mold wear

Country Status (4)

Country Link
JP (1) JP6670277B2 (en)
KR (1) KR102121180B1 (en)
CN (1) CN109504873B (en)
TW (1) TWI676693B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046590A (en) * 2019-09-19 2021-03-25 Jx金属株式会社 Copper alloy, drawn copper article and electronic apparatus component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846533A (en) * 2019-10-30 2020-02-28 东北大学 Preparation method of Cu-Ni-Si alloy thin strip based on sub-rapid solidification

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247922B2 (en) 2006-09-12 2009-04-02 古河電気工業株式会社 Copper alloy sheet for electrical and electronic equipment and method for producing the same
WO2009041197A1 (en) * 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
CN102105611B (en) * 2009-04-30 2014-09-17 Jx日矿日石金属株式会社 Cu-Ni-Si-Mg-based alloy having improved electrical conductivity and bendability
JP4809935B2 (en) 2009-12-02 2011-11-09 古河電気工業株式会社 Copper alloy sheet having low Young's modulus and method for producing the same
JP2011190469A (en) * 2010-03-11 2011-09-29 Hitachi Cable Ltd Copper alloy material, and method for producing the same
JP5281031B2 (en) * 2010-03-31 2013-09-04 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy with excellent bending workability
JP5961335B2 (en) * 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
JP5117604B1 (en) * 2011-08-29 2013-01-16 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
JP5827530B2 (en) * 2011-09-16 2015-12-02 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
WO2013094061A1 (en) 2011-12-22 2013-06-27 三菱伸銅株式会社 Cu-Ni-Si BASED COPPER ALLOY SHEET HAVING HIGH DIE ABRASION RESISTANCE AND GOOD SHEAR PROCESSABILITY AND METHOD FOR PRODUCING SAME
CN106103756B (en) * 2014-03-25 2018-10-23 古河电气工业株式会社 The manufacturing method of copper alloy plate, connector and copper alloy plate
KR20160117210A (en) * 2015-03-30 2016-10-10 제이엑스금속주식회사 Cu-Ni-Si BASED ROLLED COPPER ALLOY AND METHOD FOR MANUFACTURING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046590A (en) * 2019-09-19 2021-03-25 Jx金属株式会社 Copper alloy, drawn copper article and electronic apparatus component
JP7430502B2 (en) 2019-09-19 2024-02-13 Jx金属株式会社 Copper alloy wire and electronic equipment parts

Also Published As

Publication number Publication date
KR20190030603A (en) 2019-03-22
CN109504873B (en) 2021-02-12
TW201920703A (en) 2019-06-01
TWI676693B (en) 2019-11-11
JP6670277B2 (en) 2020-03-18
CN109504873A (en) 2019-03-22
KR102121180B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP4247922B2 (en) Copper alloy sheet for electrical and electronic equipment and method for producing the same
TWI649437B (en) Copper alloy plate and manufacturing method of copper alloy plate
TWI705148B (en) Copper alloy plate and its manufacturing method
JPWO2002053790A1 (en) High-strength copper alloy excellent in bending workability, method for producing the same, and terminal / connector using the same
JP2006291356A (en) Ni-sn-p based copper alloy
JPWO2013094061A1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JP6355672B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP6670277B2 (en) Cu-Ni-Si based copper alloy with excellent mold wear
JP6085633B2 (en) Copper alloy plate and press-molded product including the same
CN110462076B (en) Copper alloy strip with improved dimensional accuracy after stamping
JP2007084920A (en) Cu-Zn-Sn ALLOY FOR ELECTRICAL-ELECTRONIC APPARATUS
JP6845885B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP2004225112A (en) High strength and high conductivity copper alloy having excellent fatigue and intermediate temperature property
JP6845884B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP2018062705A (en) Copper alloy for electronic material
JP2012246530A (en) Copper alloy wrought material
JP6154996B2 (en) High-strength copper alloy material and manufacturing method thereof
JP2011046970A (en) Copper alloy material and method for producing the same
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP2021046590A (en) Copper alloy, drawn copper article and electronic apparatus component
JP2004269962A (en) High strength copper alloy
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance
JP2003293056A (en) Phosphor bronze strip with excellent press workability
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200228

R150 Certificate of patent or registration of utility model

Ref document number: 6670277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250