JP4809935B2 - Copper alloy sheet having low Young's modulus and method for producing the same - Google Patents

Copper alloy sheet having low Young's modulus and method for producing the same Download PDF

Info

Publication number
JP4809935B2
JP4809935B2 JP2011513179A JP2011513179A JP4809935B2 JP 4809935 B2 JP4809935 B2 JP 4809935B2 JP 2011513179 A JP2011513179 A JP 2011513179A JP 2011513179 A JP2011513179 A JP 2011513179A JP 4809935 B2 JP4809935 B2 JP 4809935B2
Authority
JP
Japan
Prior art keywords
copper alloy
modulus
rolling
orientation
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011513179A
Other languages
Japanese (ja)
Other versions
JPWO2011068134A1 (en
Inventor
浩二 佐藤
洋 金子
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011513179A priority Critical patent/JP4809935B2/en
Application granted granted Critical
Publication of JP4809935B2 publication Critical patent/JP4809935B2/en
Publication of JPWO2011068134A1 publication Critical patent/JPWO2011068134A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Description

本発明は、コネクタ等の電気・電子部品用材料として好適な高強度と高導電性を有し、さらに低ヤング率を有する銅合金板材、およびその製造法に関するものである。   The present invention relates to a copper alloy sheet material having high strength and high electrical conductivity suitable as a material for electrical and electronic parts such as connectors, and having a low Young's modulus, and a method for producing the same.

近年、エレクトロニクス産業の発達により、種々の電気・電子機器の配線は複雑化、高集積化が進み、それに伴い電気・電子部品用として銅合金が使用される機会が増加している。特に、コネクタ等の電気・電子部品には、狭ピッチ、低背化、高信頼性、低コスト化が要求されている。よって、これらの要求を満たすために、コネクタ等の電気・電子部品に用いられる銅合金板材は、薄肉化され、また複雑な形状にプレスされるために、高い強度と導電率を有し、同時にプレス成形性に優れることが必要とされる。   In recent years, with the development of the electronics industry, the wiring of various electric / electronic devices has become more complex and highly integrated, and accordingly, the opportunity to use copper alloys for electric / electronic parts is increasing. In particular, electrical and electronic parts such as connectors are required to have a narrow pitch, a low profile, high reliability, and low cost. Therefore, in order to satisfy these requirements, the copper alloy plate material used for electrical and electronic parts such as connectors is thinned and pressed into a complicated shape, so it has high strength and conductivity, and at the same time It is required to have excellent press formability.

端子として使用するためには、挿抜時や曲げに対して変形しない強度として、圧延方向(RD)の引張強さは500MPa以上、さらに、通電によるジュール熱発生を抑えるため、導電率は30%IACS以上が好ましい。   In order to use as a terminal, the tensile strength in the rolling direction (RD) is 500 MPa or more as the strength that does not deform with respect to insertion / extraction or bending, and the conductivity is 30% IACS in order to suppress the generation of Joule heat due to energization. The above is preferable.

また従来は、コネクタが小型化され、小さな変位で大きな応力が得られるようコネクタ用材料のヤング率が大きいことが求められていた。しかしながら、端子自身の寸法精度が厳しくなり、金型技術やプレスの操業管理、またはコネクタ用材料の板厚や残留応力のバラツキ等、管理基準が厳しくなり、逆にコストアップを招いていた。そこで、最近はヤング率の小さいコネクタ用材料を用い、ばねの変位を大きくとる構造とし、寸法のばらつきを許容できる設計が求められてきている。したがって、圧延方向のヤング率が110GPa以下、好ましくは100GPa以下であることが求められてきている。   Conventionally, it has been required that the connector material is made small and the Young's modulus of the connector material is large so that a large stress can be obtained with a small displacement. However, the dimensional accuracy of the terminal itself has become strict, and management standards such as mold technology and press operation management, or variations in the thickness and residual stress of connector materials have become strict, resulting in an increase in cost. Therefore, recently, there has been a demand for a design that uses a connector material having a low Young's modulus and has a structure that allows a large displacement of the spring, and that can tolerate variation in dimensions. Therefore, it has been demanded that the Young's modulus in the rolling direction is 110 GPa or less, preferably 100 GPa or less.

これまでに、黄銅やりん青銅等が、コネクタ用材料として一般的に使用されてきている。黄銅、りん青銅共に圧延方向のヤング率は約110〜120GPaであり、純銅のヤング率128GPaと比べて小さく、低ヤング率材として広く使用されている。しかしながらこれらの銅合金は導電率が30%IACS以下であり、導電率が低く、大電流を流す用途としてはコネクタとして使用できない。そこで、中程度の導電率をもつコルソン系合金が注目され、使用量が増加してきているが、このコルソン系合金は、ヤング率が約130GPaであり、この点でコネクタ材料の低ヤング率化が求められている。また、コネクタの設計者によっては、ヤング率ではなく、曲げたわみ係数(曲げ試験時の縦弾性係数)でコネクタを設計する場合もあり、低曲げたわみ係数化が求められている。一般的に、ヤング率は引張応力下での縦弾性係数を表し、曲げたわみ係数は曲げ時の圧縮と引張の複雑な応力下での縦弾性係数を表し、ヤング率と曲げたわみ係数の値は異なるが、ヤング率が低ければ、曲げたわみ係数も低い値となる傾向がある。   So far, brass, phosphor bronze and the like have been generally used as connector materials. For both brass and phosphor bronze, the Young's modulus in the rolling direction is about 110 to 120 GPa, which is smaller than that of pure copper, 128 GPa, and is widely used as a low Young's modulus material. However, these copper alloys have a conductivity of 30% IACS or less, have a low conductivity, and cannot be used as connectors for applications where a large current flows. Therefore, a Corson alloy having a medium conductivity has been attracting attention and its amount of use has increased. This Corson alloy has a Young's modulus of about 130 GPa, and in this respect, the connector material has a low Young's modulus. It has been demanded. In addition, some connector designers may design a connector with a bending deflection coefficient (longitudinal elastic modulus at the time of a bending test) instead of a Young's modulus, and a low bending deflection coefficient is required. In general, the Young's modulus represents the longitudinal elastic modulus under tensile stress, the bending deflection coefficient represents the longitudinal elastic modulus under complex compression and tension stresses during bending, and the Young's modulus and bending deflection coefficient values are Although it is different, if the Young's modulus is low, the bending deflection coefficient tends to be low.

低ヤング率化および低曲げたわみ係数化は、亜鉛(Zn)やリン(P)を銅に添加するだけでなく、結晶方位を制御することでも達成される。例えば特許文献1や特許文献2で述べられているように、純銅では高い加工率で圧延後に熱処理して再結晶させると板材の圧延法線方向(ND)に対してCube方位(100)<100>が増加することで、ヤング率が低下し、屈曲性が良好となる。しかしながら、コルソン系合金では単純に再結晶前の冷間圧延率を高めるのみでは、Cube方位は増加せず、ヤング率を制御することは困難であった。   Low Young's modulus and low bending deflection coefficient can be achieved not only by adding zinc (Zn) or phosphorus (P) to copper, but also by controlling the crystal orientation. For example, as described in Patent Document 1 and Patent Document 2, when pure copper is subjected to heat treatment after rolling at a high processing rate and recrystallized, Cube orientation (100) <100 with respect to the rolling normal direction (ND) of the plate material. > Increases, the Young's modulus decreases, and the flexibility becomes good. However, in the Corson alloy, simply increasing the cold rolling rate before recrystallization does not increase the Cube orientation, and it is difficult to control the Young's modulus.

特開昭55−54554号公報JP 55-55454 A 特許3009383号公報Japanese Patent No. 3009383

本発明は、エレクトロニクス産業の発達によりコネクタ等の電気・電子部品用材料に要求される高い強度、高い導電率、低いヤング率を同時に満足することができるコネクタ等の電気・電子部品用銅合金板材とその製造法を提供することを目的とする。   The present invention relates to a copper alloy sheet for electrical and electronic parts such as connectors that can simultaneously satisfy the high strength, high electrical conductivity, and low Young's modulus required for electrical and electronic parts materials such as connectors due to the development of the electronics industry. And its manufacturing method.

本発明によれば、以下の手段が提供される。
(1)NiとCoのどちらか一方または両方の合計で0.5〜5.0質量%、Siを0.2〜1.5質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有してなり、圧延方向の0.2%耐力が500MPa以上、導電率が30%IACS以上、ヤング率が110GPa以下、曲げたわみ係数が105GPa以下であることを特徴とする電気・電子部品用銅合金板材。
(2)前記銅合金板材のEBSDを用いて解析することによって得られる圧延方向に向く(100)面の面積率が30%以上であることを特徴とする(1)に記載の電気・電子部品用銅合金板材。
(3)前記銅合金板材のEBSDを用いて解析することによって得られる圧延方向に向く(111)面の面積率が15%以下であることを特徴とする(1)又は(2)に記載の電気・電子部品用銅合金板材。
(4)さらに、Crを0.05〜0.5質量%含有することを特徴とする(1)〜(3)のいずれかに記載の電気・電子部品用銅合金板材。
(5)さらに、Zn、Sn、Mg、Ag、MnおよびZrからなる群から選ばれる1種または2種以上を合計で0.01〜1.0質量%含有することを特徴とする(1)〜(4)のいずれかに記載の電気・電子部品用銅合金板材。
(6)コネクタ用材料であることを特徴とする(1)〜(5)のいずれか1項に記載の電気・電子部品用銅合金板材。
(7)(1)〜(6)のいずれか1項に記載の電気・電子部品用銅合金板材からなるコネクタ。
According to the present invention, the following means are provided.
(1) An alloy composition comprising 0.5 to 5.0 mass% of Ni or Co in total, or 0.2 to 1.5 mass% of Si, with the balance being Cu and inevitable impurities. A copper for electric and electronic parts, characterized by having a 0.2% proof stress in the rolling direction of 500 MPa or more, an electrical conductivity of 30% IACS or more, a Young's modulus of 110 GPa or less, and a bending deflection coefficient of 105 GPa or less. Alloy plate material.
(2) The electrical / electronic component according to (1), wherein the area ratio of the (100) plane facing in the rolling direction obtained by analyzing the copper alloy sheet using EBSD is 30% or more Copper alloy plate material.
(3) The area ratio of the (111) plane facing in the rolling direction obtained by analyzing using the EBSD of the copper alloy sheet is 15% or less, as described in (1) or (2) Copper alloy sheet for electrical and electronic parts.
(4) The copper alloy sheet for electrical / electronic parts according to any one of (1) to (3), further containing 0.05 to 0.5 mass% of Cr.
(5) Further, it contains 0.01 to 1.0% by mass in total of one or more selected from the group consisting of Zn, Sn, Mg, Ag, Mn and Zr (1) The copper alloy sheet for electric / electronic parts according to any one of to (4).
(6) The copper alloy sheet for electrical / electronic parts according to any one of (1) to (5), which is a connector material.
(7) A connector comprising the copper alloy sheet for electric / electronic parts according to any one of (1) to (6).

本発明に係る銅基合金材料または本発明の製造法によって得られた銅合金材料は、従来のコルソン系合金と比較して、コネクタ等の電気・電子部品用材料に要求される高強度や高導電率を損ねることなく、低ヤング率を有し、コネクタ等の電気・電子部品用銅合金材料として好適なものである。   The copper base alloy material according to the present invention or the copper alloy material obtained by the production method according to the present invention has higher strength and higher strength required for materials for electrical and electronic parts such as connectors as compared to conventional Corson alloys. It has a low Young's modulus without impairing electrical conductivity, and is suitable as a copper alloy material for electrical and electronic parts such as connectors.

本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。そのなかで板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含む意味である。ここで、板材において、「材料表層」とは、「板表層」を意味し、「材料の深さ位置」とは、「板厚方向の位置」を意味する。板材の厚さは特に限定されないが、本発明の効果が一層よく顕れ実際的なアプリケーションに適合することを考慮すると、8〜800μmが好ましく、50〜70μmがより好ましい。
なお、本発明の銅合金板材は、その特性を圧延板の所定の方向における原子面の集積率で規定するものであるが、これは銅合金板材として本発明のような特性を有していれば良いのであって、銅合金板材の形状は板材や条材に限定されるものではなく、本発明では、管材も板材として解釈して取り扱うことができるものとする。
上記の、低ヤング率および低曲げたわみ係数を有するコルソン系などの析出型銅合金材料である本発明の銅合金材料(代表的な形状としては、板材)について、まずその合金組成を、次いでその組織を説明する。
A preferred embodiment of the copper alloy sheet material of the present invention will be described in detail. Here, the “copper alloy material” means a material obtained by processing a copper alloy material into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, or the like). Among them, the plate material refers to a material having a specific thickness and stable in shape and having a spread in the surface direction, and in a broad sense, includes a strip material. Here, in the plate material, “material surface layer” means “plate surface layer”, and “material depth position” means “position in the plate thickness direction”. The thickness of the plate material is not particularly limited, but it is preferably 8 to 800 μm, and more preferably 50 to 70 μm, considering that the effects of the present invention are better manifested and suitable for practical applications.
Note that the copper alloy sheet of the present invention is characterized by the accumulation ratio of atomic planes in a predetermined direction of the rolled sheet. However, this copper alloy sheet may have the characteristics of the present invention as a copper alloy sheet. The shape of the copper alloy plate material is not limited to the plate material or the strip material, and in the present invention, the pipe material can be interpreted and handled as a plate material.
Regarding the copper alloy material of the present invention which is a precipitation type copper alloy material such as Corson type having a low Young's modulus and a low bending deflection coefficient (a typical shape is a plate material), first, its alloy composition and then its Describe your organization.

(銅合金材料の成分組成)
高強度を有するための前提となる、本発明の銅合金材料における化学成分組成の限定理由を説明する(ここで記載する含有量「%」は全て「質量%」である)。
(Component composition of copper alloy material)
The reason for limiting the chemical component composition in the copper alloy material of the present invention, which is a premise for having high strength, will be described (all contents “%” described here are “mass%”).

(Ni:0.5〜5.0%)
Niは後述するSiと共に含有されて、時効処理で析出したNiSi相を形成して、銅合金材料の強度の向上に寄与する元素である。Niの含有量が少なすぎる場合は、前記NiSi相が不足し、銅合金材料の引張強さを高めることができない。一方、Niの含有量が多すぎると、導電率が低下する。また、熱間圧延加工性が悪化する。したがって、Ni含有量は0.5〜5.0%の範囲とし、好ましくは1.5〜4.0%である。
(Ni: 0.5-5.0%)
Ni is an element that is contained together with Si to be described later, forms a Ni 2 Si phase precipitated by aging treatment, and contributes to improving the strength of the copper alloy material. If the content of Ni is too small, the Ni 2 Si phase is insufficient, it is impossible to increase the tensile strength of the copper alloy material. On the other hand, when there is too much content of Ni, electrical conductivity will fall. Moreover, hot rolling workability deteriorates. Therefore, the Ni content is in the range of 0.5 to 5.0%, preferably 1.5 to 4.0%.

(Co:0.5〜5.0%)
CoはSiと共に含有されて、時効処理で析出したCoSi相を形成して、銅合金材料の強度の向上に寄与する元素である。導電性を高めたい場合は、Niを含まずCoを単独で含有させることが好ましい。Coの含有量が少なすぎる場合は、前記CoSi相が不足し、銅合金材料の引張強さを高めることができない。一方、Coの含有量が多すぎると、導電率が低下する。また、熱間圧延加工性が悪化する。したがって、Co含有量は0.5〜5.0%の範囲とし、好ましくは0.8〜3.0%、さらに好ましくは1.1〜1.7%である。
(Co: 0.5-5.0%)
Co is an element that is contained together with Si and contributes to improving the strength of the copper alloy material by forming a Co 2 Si phase precipitated by aging treatment. When it is desired to increase the conductivity, it is preferable to contain Co alone without containing Ni. When the content of Co is too small, the Co 2 Si phase is insufficient, and the tensile strength of the copper alloy material cannot be increased. On the other hand, when there is too much content of Co, electrical conductivity will fall. Moreover, hot rolling workability deteriorates. Therefore, the Co content is in the range of 0.5 to 5.0%, preferably 0.8 to 3.0%, and more preferably 1.1 to 1.7%.

これらNiとCoは両方を含有してもよいが、これらの含有量を合計で0.5〜5.0%とする。NiとCoの両方を含有すると、時効処理の際にNiSiとCoSiの両方が析出し、時効強度を高めることができる。この合計の含有量が少なすぎる場合は、引張強さを高めることができず、多すぎると導電率や熱間圧延加工性が低下する。したがって、NiとCoの含有量の合計は0.5〜5.0%の範囲とし、好ましくは0.8〜4.0%である。These Ni and Co may contain both, but the total content thereof is 0.5 to 5.0%. When both Ni and Co are contained, both Ni 2 Si and Co 2 Si precipitate during the aging treatment, and the aging strength can be increased. If the total content is too small, the tensile strength cannot be increased. If the total content is too large, the electrical conductivity and hot rolling processability are lowered. Therefore, the total content of Ni and Co is in the range of 0.5 to 5.0%, preferably 0.8 to 4.0%.

(Si)
Siは前記Ni、Coと共に含有されて、時効処理で析出したNiSiまたはCoSi相を形成して、銅合金材料の強度の向上に寄与する。Siの含有量は、0.2〜1.5%とし、好ましくは0.2〜1.0%である。Siの含有量は化学量論比でNi/Si=4.2、Co/Si=4.2とするのが最も導電率と強度のバランスがよい。そのためSiの含有量は、Ni/Si、Co/Si、(Ni+Co)/Siが3.2〜5.2の範囲となるようにするのが好ましく、より好ましくは3.5〜4.8である。
(Si)
Si is contained together with the Ni and Co, and forms a Ni 2 Si or Co 2 Si phase precipitated by aging treatment, thereby contributing to an improvement in the strength of the copper alloy material. The Si content is 0.2 to 1.5%, preferably 0.2 to 1.0%. The balance between conductivity and strength is best when the Si content is stoichiometrically Ni / Si = 4.2 and Co / Si = 4.2. Therefore, the Si content is preferably Ni / Si, Co / Si, and (Ni + Co) / Si in the range of 3.2 to 5.2, more preferably 3.5 to 4.8. is there.

この範囲から外れ、Siが過剰に含まれた場合、銅合金材料の引張強さを高くすることができるが、過剰な分のSiが銅のマトリックス中に固溶し、銅合金材料の導電率が低下する。また、Siが過剰に含まれた場合、鋳造での鋳造性や、熱間および冷間での圧延加工性も低下し、鋳造割れや圧延割れが生じやすくなる。一方、この範囲から外れ、Siの含有量が少な過ぎる場合は、NiSiやCoSiの析出相が不足し材料の引張強さを高くすることができない。When the Si is excessively contained outside this range, the tensile strength of the copper alloy material can be increased, but the excess amount of Si is dissolved in the copper matrix, and the conductivity of the copper alloy material is increased. Decreases. Moreover, when Si is contained excessively, the castability in casting and the hot and cold rolling processability are also lowered, and casting cracks and rolling cracks are likely to occur. On the other hand, if it is out of this range and the Si content is too small, the precipitated phase of Ni 2 Si or Co 2 Si is insufficient and the tensile strength of the material cannot be increased.

(Cr)
上記組成に加えて、Crを0.05〜0.5質量%含有してもよい。Crは合金中の結晶粒を微細化する効果があり、銅合金材料の強度や曲げ加工性の向上に寄与する。少なすぎるとその効果が小さく、多すぎると鋳造時に晶出物を形成し時効強度が低下する。
(Cr)
In addition to the above composition, 0.05 to 0.5 mass% of Cr may be contained. Cr has an effect of refining crystal grains in the alloy, and contributes to improvement of the strength and bending workability of the copper alloy material. If the amount is too small, the effect is small. If the amount is too large, a crystallized product is formed during casting, and the aging strength is lowered.

(その他の合金元素)
本発明の銅合金材料は、上記基本組成の他に添加元素として、質量%で、Sn:0.01〜1.0%、Zn:0.01〜1.0%、Ag:0.01〜1.0%、Mn:0.01〜1.0%、Zr:0.1〜1.0%、Mg:0.01〜1.0%の一種または二種以上を合計で0.01〜1.0%の量で、必要に応じて含有することができる。これらの元素は、いずれも本発明の銅合金材料が奏しようとする高い強度や導電率あるいは低いヤング率のいずれかを向上させる共通の効果があるか、これに加えてあるいはこれに代えて、さらに他の性質(耐応力緩和特性など)を向上させる元素である。以下に、各元素の特徴的な作用効果と含有範囲の意義を記載する。
(Other alloy elements)
In addition to the above basic composition, the copper alloy material of the present invention includes, as an additive element, mass%, Sn: 0.01 to 1.0%, Zn: 0.01 to 1.0%, Ag: 0.01 to 1.0%, Mn: 0.01 to 1.0%, Zr: 0.1 to 1.0%, Mg: 0.01 to 1.0%, or a total of 0.01 to 1.0% It can be contained as needed in an amount of 1.0%. Any of these elements has a common effect of improving either the high strength and electrical conductivity or low Young's modulus that the copper alloy material of the present invention intends to play, in addition to or instead of this, Further, it is an element that improves other properties (such as stress relaxation resistance). Below, the characteristic effect of each element and the significance of the content range are described.

(Sn)
Snは主に銅合金材料の強度を向上させる元素であり、これらの特性を重視する用途に使用する場合には、選択的に含有させる。Snの含有量が少なすぎるとその強度向上効果が小さい。一方、Snを含有させると銅合金材料の導電率が低下する。特に、Snが多すぎると、銅合金材料の導電率を30%IACS以上とすることが難しくなる。したがって、含有させる場合には、Snの含有量を0.01〜1.0%の範囲とする。
(Sn)
Sn is an element mainly improving the strength of the copper alloy material, and is selectively contained when used for applications in which these characteristics are important. When there is too little content of Sn, the strength improvement effect will be small. On the other hand, when Sn is contained, the electrical conductivity of the copper alloy material is lowered. In particular, when there is too much Sn, it becomes difficult to make the electrical conductivity of the copper alloy material 30% IACS or more. Therefore, when it contains, content of Sn shall be 0.01 to 1.0% of range.

(Zn)
Zn添加により、半田の耐熱剥離性や耐マイグレーション性を向上させることができる。Znの含有量が少なすぎるとその効果が小さい。一方、Znを含有させると銅合金材料の導電率が低下し、Znが多すぎると、銅合金材料の導電率を30%IACS以上とすることが難しくなる。したがって、Znの含有量を0.01〜1.0%の範囲とする。
(Zn)
Addition of Zn can improve the heat-resistant peelability and migration resistance of the solder. The effect is small when there is too little content of Zn. On the other hand, when Zn is contained, the electrical conductivity of the copper alloy material is lowered, and when there is too much Zn, it is difficult to make the electrical conductivity of the copper alloy material 30% IACS or more. Therefore, the Zn content is in the range of 0.01 to 1.0%.

(Ag)
Agは強度の上昇に寄与する。Agの含有量が少なすぎるとその効果が小さい。一方、Agを多く含有させても、強度上昇効果が飽和するだけである。したがって、含有させる場合には、Agの含有量を0.01〜1.0%の範囲とする。
(Ag)
Ag contributes to an increase in strength. If the content of Ag is too small, the effect is small. On the other hand, even if a large amount of Ag is contained, the strength increasing effect is only saturated. Therefore, when it contains, content of Ag shall be 0.01 to 1.0% of range.

(Mn)
Mnは主に熱間圧延での加工性を向上させる。Mnの含有量が少なすぎるとその効果が小さい。一方、Mnが多すぎると、銅合金の造塊時の湯流れ性が悪化して造塊歩留まりが低下する。したがって、含有させる場合には、Mnの含有量を0.01〜1.0%の範囲とする。
(Mn)
Mn mainly improves the workability in hot rolling. If the Mn content is too small, the effect is small. On the other hand, when there is too much Mn, the hot water flow property at the time of ingot-making of a copper alloy will deteriorate, and ingot-making yield will fall. Therefore, when it contains, the content of Mn is made 0.01 to 1.0% of range.

(Zr)
Zrは主に結晶粒を微細化させて、銅合金材料の強度や曲げ加工性を向上させる。Zrの含有量が少なすぎるとその効果が小さい。一方、Zrが多すぎると、化合物を形成し、銅合金材料の圧延などの加工性が低下する。したがって、含有させる場合には、Zrの含有量を0.01〜1.0%の範囲とする。
(Zr)
Zr mainly refines the crystal grains to improve the strength and bending workability of the copper alloy material. If the Zr content is too small, the effect is small. On the other hand, when there is too much Zr, a compound will be formed and workability, such as rolling of a copper alloy material, will fall. Therefore, when it contains, content of Zr shall be 0.01 to 1.0% of range.

(Mg)
Mgは耐応力緩和特性を向上させる。したがって、耐応力緩和特性が必要な場合には、0.01〜1.0%の範囲で選択的に含有させる。少なすぎると、添加した効果が小さく、多すぎると導電率が低下する。したがって、含有させる場合には、Mgの含有量を0.01〜1.0%の範囲とする。
なお、Mg、Sn、Znは、Cu−Ni−Si系、Cu−Ni−Co−Si系、Cu−Co−Si系銅合金に添加することで、いずれも耐応力緩和特性が向上する。それぞれを単独で添加した場合よりも併せて添加した場合に相乗効果によってさらに耐応力緩和特性が向上する。また、半田脆化を著しく改善する効果がある。
(Mg)
Mg improves stress relaxation resistance. Therefore, when the stress relaxation resistance is required, it is selectively contained in the range of 0.01 to 1.0%. If the amount is too small, the added effect is small, and if the amount is too large, the electrical conductivity decreases. Therefore, when it contains, content of Mg shall be 0.01 to 1.0% of range.
Note that Mg, Sn, and Zn are all added to Cu—Ni—Si, Cu—Ni—Co—Si, and Cu—Co—Si copper alloys to improve the stress relaxation resistance. The stress relaxation resistance is further improved by a synergistic effect when each of them is added together than when they are added alone. In addition, there is an effect of remarkably improving solder embrittlement.

本発明の銅合金板材で実現される導電性としては30%IACS以上であり、好ましい範囲は35%IACS以上、更に好ましい範囲45%IACS以上である。上限は特にないが60%IACS以下であることが実際的である。
また、本発明の銅合金材料で実現される圧延方向の0.2%耐力として好ましい範囲は500MPa以上であり、650MPa以上であることが好ましく、更に好ましい範囲は800MPa以上である。上限は特にないが1100MPa以下であることが実際的である。
曲げたわみ係数は、105GPa以下であることが好ましく、100GPa以下であることがより好ましい。下限は特にないが60GPa以上であることが実際的である。
ヤング率は110GPa以下であり、100GPa以下であることがより好ましい。下限は特にないが70GPa以上であることが実際的である。
The conductivity realized by the copper alloy sheet of the present invention is 30% IACS or more, a preferred range is 35% IACS or more, and a more preferred range is 45% IACS or more. Although there is no particular upper limit, it is practical that it is 60% IACS or less.
Moreover, a preferable range as the 0.2% yield strength in the rolling direction realized by the copper alloy material of the present invention is 500 MPa or more, preferably 650 MPa or more, and more preferably 800 MPa or more. Although there is no upper limit in particular, it is practical that it is 1100 MPa or less.
The bending deflection coefficient is preferably 105 GPa or less, and more preferably 100 GPa or less. Although there is no particular lower limit, it is practical that it is 60 GPa or more.
The Young's modulus is 110 GPa or less, and more preferably 100 GPa or less. Although there is no particular lower limit, it is practical that it is 70 GPa or more.

(集合組織)
本発明の銅合金材料の集合組織は、特に、低ヤング率および低曲げたわみ係数を実現するために、SEM−EBSD法による圧延方向(RD)からの解析結果で、RDに向く(100)面の面積率が30%以上である集合組織を有するものとすることが好ましい。なお、板材圧延方向(RD)と当該面の法線とのなす角の角度が10°以下の方位を有する結晶粒はすべて当該RDに向く(100)面を有するものとする。
(Gathering organization)
The texture of the copper alloy material of the present invention is an analysis result from the rolling direction (RD) by the SEM-EBSD method in order to realize a low Young's modulus and a low bending deflection coefficient. It is preferable to have a texture with an area ratio of 30% or more. Note that all crystal grains having an orientation in which the angle between the plate material rolling direction (RD) and the normal to the surface is 10 ° or less have a (100) surface facing the RD.

銅合金板の場合、主に、以下に示す如き、Cube方位、Goss方位、Brass方位、Copper方位、S方位等と呼ばれる集合組織を形成し、それらに応じた結晶面が存在する。   In the case of a copper alloy plate, a texture called a Cube orientation, a Goss orientation, a Brass orientation, a Copper orientation, an S orientation or the like is mainly formed as shown below, and there are crystal planes corresponding to them.

これらの集合組織の形成は同じ結晶系の場合でも加工、熱処理方法によって異なる。本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延法線方向を(ND)をZ軸の直角座標系をとり、材料中の各領域がZ軸に垂直な(圧延面に平行な)結晶面の指数(hkl)とX軸に平行な(圧延面に垂直な)結晶方向の指数[uvw]とを用いて(hkl)[uvw]の形で示す。また、(1 3 2)[6 −4 3]と(2 3 1)[3 −4 6]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリーを表すカッコ記号を使用し、{hkl}<uvw>と示す。上述の表記に伴い、各方位は下記の如く表現される。   The formation of these textures differs depending on the processing and heat treatment methods even in the case of the same crystal system. The crystal orientation display method in this specification takes a rectangular coordinate system in which the rolling direction (RD) of the material is the X axis, the sheet width direction (TD) is the Y axis, and the rolling normal direction (ND) is the Z axis. Using the index (hkl) of the crystal plane perpendicular to the Z axis (parallel to the rolling surface) and the index [uvw] of the crystal direction parallel to the X axis (perpendicular to the rolling surface) in each region in the material ( hkl) [uvw]. In addition, as for (1 3 2) [6 -4 3] and (2 3 1) [3 -4 6], etc. It uses {hkl} <uvw> as a parenthesis to represent. With the above notation, each direction is expressed as follows.

FCC金属に見られる、代表的な結晶方位としては、下記のような指数で表現される成分が一般的である。
Cube方位 {001}<100>
Rotated−Cube方位 {012}<100>
Goss方位 {011}<100>
Rotated−Goss方位 {011}<011>
Brass方位 {011}<211>
Copper方位 {112}<111>
S方位 {123}<634>
P方位 {011}<111>
As typical crystal orientations found in FCC metals, components represented by the following indices are common.
Cube orientation {001} <100>
Rotated-Cube orientation {012} <100>
Goss orientation {011} <100>
Rotated-Goss orientation {011} <011>
Brass orientation {011} <211>
Copper orientation {112} <111>
S orientation {123} <634>
P direction {011} <111>

通常の銅合金板の集合組織は、これらの結晶面の構成割合が変化すると板材の弾性挙動が変化する。   In the texture of a normal copper alloy plate, the elastic behavior of the plate material changes when the composition ratio of these crystal faces changes.

銅合金では、上述のような方位が現れることが知られているが、我々は鋭意検討した結果、RDに向く(100)面の面積率を増加させることがヤング率および曲げたわみ係数を低下させることに有効であることを見出した。(100)面がRDに向く方位成分には、上述のCube方位、Rotated−Cube方位、Goss方位などが含まれる。従来のコルソン系高強度銅合金板の集合組織は、公知の方法によって製造した場合、Cube方位{001}<100>以外の、S方位{123}<634>や、Brass方位{011}<211>が主体となり、Cube方位の割合は減少し、ヤング率および曲げたわみ係数は高くなることを本発明者らは確認した。特にRD方向に(111)面が多い場合、ヤング率および曲げたわみ係数が高くなることを確認した。   In copper alloys, it is known that the above-mentioned orientation appears. However, as a result of intensive studies, increasing the area ratio of the (100) plane facing the RD decreases the Young's modulus and the bending deflection coefficient. It was found to be particularly effective. The orientation component whose (100) plane faces the RD includes the above-mentioned Cube orientation, Rotated-Cube orientation, Goss orientation, and the like. When the texture of a conventional Corson-based high-strength copper alloy plate is manufactured by a known method, the S orientation {123} <634> or the Brass orientation {011} <211 other than the Cube orientation {001} <100>. The present inventors confirmed that the ratio of Cube orientation decreased, the Young's modulus and the bending deflection coefficient increased. In particular, when there are many (111) planes in the RD direction, it was confirmed that the Young's modulus and the bending deflection coefficient increase.

したがって、本発明の銅合金板の集合組織は、RDに向く結晶面のうち、その面方位{例えば(100)面の法線}とRDとの2つのベクトルのなす角が10°以下である結晶面の面積率が30%以上であることが好ましく、これにより、低ヤング率および低曲げたわみ係数の集合組織を有するものとすることができる。RDに向く(100)面の面積率は、さらに好ましくは40%以上、より好ましくは50%以上である。このようにRDに向く(100)面の面積率を高めれば、ヤング率は110GPa以下に、曲げたわみ係数は105GPa以下にすることができる。これは、ヤング率および曲げたわみ係数の低い(100)のRDに向く結晶面の面積率が増えるためである。また、ヤング率および曲げたわみ係数の高い(111)のRDに向く結晶面の面積率が減少することによりヤング率を低下させることができる。RDに向く(111)面の面積率は、15%以下であることが好ましく、さらに好ましくは10%以下である。   Therefore, in the texture of the copper alloy plate of the present invention, the angle formed by the two vectors of the plane orientation (for example, the (100) plane normal) and the RD of the crystal planes facing the RD is 10 ° or less. The area ratio of the crystal plane is preferably 30% or more, and thereby, it can have a texture with a low Young's modulus and a low bending deflection coefficient. The area ratio of the (100) plane facing the RD is more preferably 40% or more, and more preferably 50% or more. If the area ratio of the (100) plane facing the RD is increased in this way, the Young's modulus can be made 110 GPa or less and the bending deflection coefficient can be made 105 GPa or less. This is because the area ratio of the crystal plane toward the RD having a low Young's modulus and a low bending deflection coefficient (100) increases. In addition, the Young's modulus can be lowered by decreasing the area ratio of the crystal plane facing the (111) RD having a high Young's modulus and bending deflection coefficient. The area ratio of the (111) plane facing the RD is preferably 15% or less, and more preferably 10% or less.

銅合金板の集合組織における、RDに向く(100)面の面積率の測定は、SEMによる電子顕微鏡組織をEBSDを用いて解析することによって得られる。ここでは、結晶粒を400個以上含む範囲を(例えば、800μm四方の試料面積に対して)、1μmのステップでスキャンし、方位を解析した。なお、これらの方位分布は板厚方向に変化しているため、板厚方向に何点か任意にとって平均をとることによって求める方が好ましい。   Measurement of the area ratio of the (100) plane facing the RD in the texture of the copper alloy plate can be obtained by analyzing the electron microscope structure by SEM using EBSD. Here, a range including 400 or more crystal grains (for example, an 800 μm square sample area) was scanned in 1 μm steps, and the orientation was analyzed. Since these orientation distributions change in the plate thickness direction, it is preferable to obtain them by taking an average for some points in the plate thickness direction.

このSEM−EBSD法は、Scanning Electron Microscopy−Electron Back Scattered Diffraction Pattern法の略称である。即ち、SEM画面上にあらわれる個々の結晶粒に電子ビームを照射し、その回折電子から個々の結晶方位を同定するものである。   This SEM-EBSD method is an abbreviation for Scanning Electron Microscopy-Electron Back Scattered Diffraction Pattern Method. That is, each crystal grain appearing on the SEM screen is irradiated with an electron beam, and each crystal orientation is identified from the diffracted electrons.

本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延法線方向(ND)をZ軸の直角座標系を取り、RDに(100)面が向いている領域の割合を、その面積率で規定したものである。測定領域内の各結晶粒の(100)面の法線とRDの二つのベクトルのなす角の角度を計算し、この角度が10°以下の原子面を有するものについて面積を合計し、これを全測定面積で除して得た値を、(100)面の法線とRDのなす角の角度が10°以下である原子面を有する領域の面積率(%)とした。
すなわち、本発明において、圧延板の圧延方向(RD)に向く原子面の集積に関し、(100)面の法線とRDのなす角の角度が10°以下である原子面を有する領域とは、圧延板の圧延方向(RD)に向く、つまりRDに対向する原子面の集積に関して、理想方位である圧延板の圧延方向(RD)を法線とする(100)面自体と、(100)面の法線とRDのなす角の角度が10°以下である原子面の各々とを合わせた領域(これらの面積の和)をいう。以下、これらの面を合わせて、RDに向く(100)面ともいい、また、これらの領域を、単に、RDに(100)面が向く原子面の領域ともいう。また、RDに向く(111)面についても同様である。
The crystal orientation display method in the present specification takes a rectangular coordinate system in which the rolling direction (RD) of the material is the X axis, the sheet width direction (TD) is the Y axis, and the rolling normal direction (ND) is the Z axis. The ratio of the area where the (100) plane faces is defined by the area ratio. Calculate the angle of the angle between two vectors of (100) plane normal and RD of each crystal grain in the measurement region, and sum the areas for those having an atomic plane whose angle is 10 ° or less. The value obtained by dividing by the total measurement area was defined as the area ratio (%) of the region having an atomic plane in which the angle formed by the normal of the (100) plane and the RD was 10 ° or less.
That is, in the present invention, regarding the accumulation of atomic planes facing in the rolling direction (RD) of the rolled sheet, the region having an atomic plane whose angle formed by the normal of the (100) plane and the RD is 10 ° or less, The (100) plane itself, which is normal to the rolling direction (RD) of the rolled sheet, which is the ideal orientation, with respect to the accumulation of atomic planes facing the rolling direction (RD) of the rolled sheet, that is, facing the RD, and (100) plane Is a region (sum of these areas) in which the normal line of RD and each of the atomic planes whose angle formed by RD is 10 ° or less are combined. Hereinafter, these surfaces are collectively referred to as a (100) plane facing the RD, and these regions are also simply referred to as an atomic plane region facing the RD to the (100) plane. The same applies to the (111) plane facing the RD.

EBSD測定にあたっては、鮮明な菊池線回折像を得るために、機械研磨の後に、コロイダルシリカの砥粒を使用して、基体表面を鏡面研磨した後に、測定を行うことが好ましい。また、測定は特に断らない限り板表面のND方向から行なうものとする。
ここで、EBSD測定の特徴について、X線回折測定との対比として説明する。まず1点目に挙げられるのは、X線回折測定によったのでは測定することができない結晶方位があり、それがS方位及びBR方位である。換言すれば、EBSDを採用することにより、初めて、S方位及びBR方位に関する情報が得られ、それにより特定される合金組織と作用との関係が明らかになる。2点目は、X線回折はND//{hkl}の±0.5°程度に含まれる結晶方位の分量を測定している。一方、EBSDは当該方位から±10°に含まれる結晶方位の分量を測定している。したがって、EBSD測定によれば桁違いに広範な合金組織に関する情報が網羅的に得られ、合金材料全体としてX線回折では特定することが難しい状態が明らかになる。以上のとおり、EBSD測定とX線回折測定とで得られる情報はその内容及び性質が異なる。なお、本明細書において特に断らない限り、EBSDの結果は、銅合金板材のND方向に対して行ったものである。
In the EBSD measurement, in order to obtain a clear Kikuchi line diffraction image, it is preferable to perform measurement after mirror polishing the surface of the substrate using colloidal silica abrasive grains after mechanical polishing. Further, measurement is performed from the ND direction on the plate surface unless otherwise specified.
Here, the characteristics of the EBSD measurement will be described as contrast with the X-ray diffraction measurement. The first point is that there are crystal orientations that cannot be measured by X-ray diffraction measurement, which are the S orientation and the BR orientation. In other words, by using EBSD, information on the S orientation and the BR orientation is obtained for the first time, and the relationship between the alloy structure and the action specified thereby becomes clear. Second, X-ray diffraction measures the amount of crystal orientation included in about ± 0.5 ° of ND // {hkl}. On the other hand, EBSD measures the amount of crystal orientation included within ± 10 ° from the orientation. Therefore, according to the EBSD measurement, information on an extremely wide range of alloy structure is comprehensively obtained, and it becomes clear that it is difficult to specify the entire alloy material by X-ray diffraction. As described above, contents and properties of information obtained by EBSD measurement and X-ray diffraction measurement are different. In addition, unless otherwise indicated in this specification, the result of EBSD was performed with respect to the ND direction of a copper alloy board | plate material.

(製造条件)
次に、本発明の銅合金材料の好ましい製造条件について以下に説明する。本発明の銅合金材料は、例えば、鋳造、熱間圧延、徐冷、冷間圧延1、中間焼鈍、冷間圧延2、溶体化熱処理、時効熱処理、仕上げ冷間圧延、低温焼鈍、の各工程を経て製造される。本発明の銅合金材料は、従来のコルソン系合金とほぼ同様の設備で製造できる。所定の物性とさらには集合組織を得るには、各工程の製造条件を適宜調整する必要がある。この点、本発明の銅合金材料は、熱間圧延後の処理か、溶体化処理前の冷間圧延と中間焼鈍の、少なくともいずれかの処理もしくは加工を所定の条件で行なうことで製造することができる。
(Production conditions)
Next, preferable production conditions for the copper alloy material of the present invention will be described below. The copper alloy material of the present invention includes, for example, steps of casting, hot rolling, gradual cooling, cold rolling 1, intermediate annealing, cold rolling 2, solution heat treatment, aging heat treatment, finish cold rolling, and low temperature annealing. It is manufactured through. The copper alloy material of the present invention can be manufactured with almost the same equipment as a conventional Corson alloy. In order to obtain predetermined physical properties and further a texture, it is necessary to appropriately adjust the manufacturing conditions of each step. In this regard, the copper alloy material of the present invention is manufactured by performing processing or processing at least one of processing after hot rolling or cold rolling and intermediate annealing before solution treatment under predetermined conditions. Can do.

鋳造は、上記組成範囲に成分調整した銅合金溶湯を鋳造する。そして、鋳塊を面削後、800〜1000℃で加熱または均質化熱処理した後に熱間圧延する。ここで、通常のコルソン系合金の製造方法では熱間圧延後ただちに水冷などの方法で急冷する。一方、本発明の銅合金材料を製造する方法の好ましい第1の実施態様では、熱間圧延後のRDに向く(100)面を増加させるために急冷を実施せず、徐冷することを特徴とする。徐冷する際の冷却速度は5K/秒以下が好ましい。RDに(100)面が向く方位は他の方位に比べて、低温で回復現象を生じ、熱間圧延組織中にRDに(100)面が向く方位の面積率を高めることができる。この熱間圧延組織中のRDに(100)の面が向く方位を有する粒の割合を高めると、後の工程である溶体化工程において、RDに(100)の面が向く方位の面積率を高めることができる。冷却の際の温度が350℃未満では組織の変化は生じないため、温度が350℃未満まで冷却された後には、製造時間を短縮するために水冷などの方法で急冷してもよい。   Casting is performed by casting a molten copper alloy whose components are adjusted to the above composition range. Then, after chamfering the ingot, heating or homogenizing heat treatment is performed at 800 to 1000 ° C. and then hot rolling is performed. Here, in a normal method for producing a Corson alloy, it is rapidly cooled by a method such as water cooling immediately after hot rolling. On the other hand, in the first preferred embodiment of the method for producing the copper alloy material of the present invention, the method is characterized in that rapid cooling is not performed in order to increase the (100) plane facing the RD after hot rolling, but the cooling is performed slowly. And The cooling rate at the time of slow cooling is preferably 5 K / second or less. The orientation with the (100) plane facing the RD causes a recovery phenomenon at a lower temperature than the other orientations, and the area ratio of the orientation with the (100) plane facing the RD in the hot rolled structure can be increased. When the ratio of grains having an orientation in which the (100) plane faces the RD in this hot-rolled structure is increased, the area ratio of the orientation in which the (100) plane faces in the RD in the solution forming process, which is a subsequent process, is increased. Can be increased. Since the structure does not change when the temperature at the time of cooling is less than 350 ° C., after the temperature is cooled to less than 350 ° C., it may be rapidly cooled by a method such as water cooling in order to shorten the production time.

次に、前記熱間圧延と冷却とが完了後、表面を面削し、冷間圧延1を行う。この冷間圧延1の圧延率が低すぎると、その後最終製品まで製造してもBrass方位やS方位などが発達し、(100)面積率を高めることが難しくなる。そのため、冷間圧延1の圧延率は70%以上とすることが好ましい。   Next, after the hot rolling and cooling are completed, the surface is chamfered and cold rolling 1 is performed. If the rolling rate of the cold rolling 1 is too low, the Brass orientation, the S orientation, etc. develop even if the final product is manufactured thereafter, making it difficult to increase the (100) area ratio. Therefore, the rolling rate of the cold rolling 1 is preferably 70% or more.

冷間圧延1の後、300〜800℃で5秒〜2時間、中間焼鈍を施す。中間焼鈍の後、圧延率3〜60%の冷間圧延2を行う。この中間焼鈍と冷間圧延2を繰り返し行うと、さらにRDに向く(100)面の面積率を高めることができる。そこで、本発明の銅合金材料を製造する方法の好ましい第2の実施態様では、前記中間焼鈍と冷間圧延2とを2回以上繰り返して行なう。   After cold rolling 1, intermediate annealing is performed at 300 to 800 ° C. for 5 seconds to 2 hours. After the intermediate annealing, cold rolling 2 with a rolling rate of 3 to 60% is performed. When this intermediate annealing and cold rolling 2 are repeated, the area ratio of the (100) plane facing RD can be further increased. Therefore, in a second preferred embodiment of the method for producing a copper alloy material of the present invention, the intermediate annealing and the cold rolling 2 are repeated twice or more.

溶体化処理は、600〜1000℃で5秒〜300秒の条件で行う。NiやCoの濃度によって必要な温度条件が変わるため、Ni、Co濃度に応じて適切な温度条件を選択する必要がある。溶体化温度が低すぎると、時効処理工程において強度が不足し、溶体化温度が高すぎると材料が必要以上に軟化して形状制御が難しくなるため好ましくない。   The solution treatment is performed at 600 to 1000 ° C. for 5 to 300 seconds. Since necessary temperature conditions vary depending on the Ni and Co concentrations, it is necessary to select appropriate temperature conditions according to the Ni and Co concentrations. If the solution temperature is too low, the strength is insufficient in the aging treatment step, and if the solution temperature is too high, the material softens more than necessary and shape control becomes difficult.

時効処理は、400〜600℃で0.5時間〜8時間の範囲で行う。NiやCoの濃度によって必要な温度条件が変わるため、Ni、Co濃度に応じて適切な温度条件を選択する必要がある。時効処理の温度が低すぎると、時効析出量が低下し強度が不足する。また、時効処理の温度が高すぎると析出物が粗大化し、強度が低下する。   The aging treatment is performed at 400 to 600 ° C. for 0.5 to 8 hours. Since necessary temperature conditions vary depending on the Ni and Co concentrations, it is necessary to select appropriate temperature conditions according to the Ni and Co concentrations. When the temperature of the aging treatment is too low, the amount of aging precipitation is lowered and the strength is insufficient. Moreover, when the temperature of an aging treatment is too high, a precipitate will coarsen and intensity | strength will fall.

溶体化処理後の仕上げ冷間圧延の加工率を50%以下とするのが好ましい。このように加工率を適正に規制することにより、Cube方位などの(100)方位を有する結晶粒がBrass、S、Copper方位などへと方位回転することを抑制し、得られる銅合金材料の物性に優れ、さらには集合組織の好ましい状態を達成することができる。   The processing rate of finish cold rolling after the solution treatment is preferably 50% or less. By appropriately regulating the processing rate in this way, the crystal grains having the (100) orientation such as the Cube orientation are prevented from rotating to the Brass, S, Copper orientation, etc., and the physical properties of the obtained copper alloy material In addition, a preferable state of the texture can be achieved.

低温焼鈍は、300〜700℃で10秒〜2時間の条件で行う。この焼鈍によって、コネクタ材に要求される、耐応力緩和特性やバネ限界値を向上させることができる。   Low temperature annealing is performed at 300 to 700 ° C. for 10 seconds to 2 hours. This annealing can improve the stress relaxation resistance and the spring limit value required for the connector material.

本発明の銅合金材料を得るより好ましい製造方法においては、前記第1の実施態様と第2の実施態様の両方の工程を行い、つまり、熱間圧延後に少なくとも350℃未満の温度域となるまでは急冷ではなく徐冷(好ましくは冷却速度5K/秒以下)し、中間焼鈍と冷間圧延2とを2回以上繰り返して行なう。   In a more preferable manufacturing method for obtaining the copper alloy material of the present invention, the steps of both the first embodiment and the second embodiment are performed, that is, until a temperature range of at least less than 350 ° C. is obtained after hot rolling. Is not rapid quenching but slow cooling (preferably at a cooling rate of 5 K / sec or less), and intermediate annealing and cold rolling 2 are repeated twice or more.

Figure 0004809935
Figure 0004809935

上記方法により製造された本発明の銅合金材料が所定の特性を有することを保証するためには、銅合金材料の物性とさらには集合組織が所定の範囲内であるかどうか、EBSD解析によって検証すればよい。   In order to ensure that the copper alloy material of the present invention produced by the above method has a predetermined property, it is verified by EBSD analysis whether the physical properties and further the texture of the copper alloy material are within a predetermined range. do it.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

下記表1、2に示す各組成の銅合金を鋳造して銅合金板を製造し、強度(0.2%耐力)、導電率、ヤング率などの各特性を評価した。   A copper alloy plate was produced by casting a copper alloy having each composition shown in Tables 1 and 2 below, and properties such as strength (0.2% proof stress), conductivity, Young's modulus and the like were evaluated.

まず、DC(Direct Chill)法により鋳造して、厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。次にこれら鋳塊を950℃に加熱し、この温度に1時間保持後、厚さ14mmに熱間圧延し、1K/sの冷却速度で徐冷し、300℃以下になったら水冷した。次いで両面を各2mmずつ面削して酸化被膜を除去した後、圧延率90〜95%の冷間圧延1を施した。この後、350〜700℃で30分の中間焼鈍と、10〜30%の冷間圧延率で冷間圧延2を行った。その後、700〜950℃で5秒〜10分の種々の条件で溶体化処理を行い、直ちに15℃/秒以上の冷却速度で冷却した。次に不活性ガス雰囲気中で、400〜600℃で2時間の時効処理を施し、その後圧延率50%以下の仕上げ圧延を行い、最終的な板厚を0.15mmに揃えた。仕上げ圧延後、400℃で30秒の低温焼鈍処理を施して、各合金組成の銅合金板材を得た。   First, it cast by DC (Direct Chill) method, and obtained the ingot of thickness 30mm, width 100mm, and length 150mm. Next, these ingots were heated to 950 ° C., kept at this temperature for 1 hour, hot-rolled to a thickness of 14 mm, gradually cooled at a cooling rate of 1 K / s, and cooled to 300 ° C. or less with water. Next, both sides were chamfered 2 mm each to remove the oxide film, and then cold rolling 1 with a rolling rate of 90 to 95% was performed. After that, cold rolling 2 was performed at 350 to 700 ° C. for 30 minutes with an intermediate annealing and a cold rolling rate of 10 to 30%. Thereafter, solution treatment was performed at 700 to 950 ° C. under various conditions for 5 seconds to 10 minutes, and immediately cooled at a cooling rate of 15 ° C./second or more. Next, an aging treatment was performed at 400 to 600 ° C. for 2 hours in an inert gas atmosphere, and then finish rolling with a rolling rate of 50% or less was performed, so that the final plate thickness was adjusted to 0.15 mm. After the finish rolling, a low temperature annealing treatment was performed at 400 ° C. for 30 seconds to obtain a copper alloy sheet having each alloy composition.

このようにして製造した銅合金板に対して、各例とも、低温焼鈍処理を施した銅合金板から切り出した試料を使用し、以下に示す試験及び評価を実施した。   With respect to the copper alloy plate thus manufactured, in each example, a sample cut out from the copper alloy plate subjected to the low-temperature annealing treatment was used, and the following tests and evaluations were performed.

(1)結晶方位粒の面積率
銅合金板試料の組織について、RDに向く(100)面の面積率を次のように求めた。
すなわち、RD方向からEBSD解析したときの(100)面の法線がRDとなす角についてその角度が10°以下の結晶方位を有する結晶粒を、RDに向く(100)面を有する粒とした。前記RDに向く(100)面の面積率は、具体的には次のように求めた。EBSD法により、約800μm四方の試料測定領域で、スキャンステップが1μmの条件で測定を行った。測定面積は結晶粒を400個以上含むことを基準として調整した。上記の通り、板材試料の圧延方向(RD)とのなす角が10°以下となるような(100)面の法線を有する結晶粒の(100)面についてその面積の和を求めて、該面積の和を全測定面積で割ることでRDに向く(100)面の面積率(%)を得た。ここで、前記なす角が10°以下の結晶粒については同一方位粒とした。
また、RDに向く(111)面の面積率(%)についても同様に求めた。
(2)0.2%耐力
0.2%耐力は、各供試材からJIS Z 2201記載の5号試験片を切り出して、JIS Z 2241に準拠して求めた。0.2%耐力は5MPaの整数倍に丸めて示した。
(3)導電率
導電率はJIS H 0505に準拠して求めた。
(4)ヤング率
ヤング率は、幅20〜30mmの短冊状試験片を用い、引張試験機にて0.2%耐力以下の強度領域のヤング率を、ひずみゲージを用いて測定した。なお、試験片は圧延方向に対して平行に採取した。
(5)曲げたわみ係数
曲げたわみ係数は、日本伸銅協会(JCBA)技術標準に準拠して測定した。試験片の幅は10mm、長さ15mmとし、片持ち梁の曲げ試験を行い、荷重とたわみ変位から、たわみ係数を測定した。
これらの結果を表1、2に示す。
(1) Area ratio of crystal orientation grains For the structure of the copper alloy sheet sample, the area ratio of the (100) plane facing the RD was determined as follows.
That is, a crystal grain having a crystal orientation with an angle of 10 ° or less with respect to an angle formed by the normal of the (100) plane when the EBSD analysis is performed from the RD direction and the RD is a grain having a (100) plane facing the RD. . Specifically, the area ratio of the (100) plane facing the RD was determined as follows. By the EBSD method, measurement was performed in a sample measurement area of about 800 μm square under the condition that the scan step was 1 μm. The measurement area was adjusted based on the inclusion of 400 or more crystal grains. As described above, the sum of the areas of the (100) plane of the crystal grain having the normal line of the (100) plane such that the angle formed with the rolling direction (RD) of the plate material sample is 10 ° or less is obtained, By dividing the sum of the areas by the total measurement area, the area ratio (%) of the (100) plane facing the RD was obtained. Here, the crystal grains having an angle of 10 ° or less were set to the same orientation.
Moreover, it calculated | required similarly about the area ratio (%) of the (111) surface which faces RD.
(2) 0.2% proof stress 0.2% proof stress was obtained in accordance with JIS Z 2241 by cutting out No. 5 test piece described in JIS Z 2201 from each specimen. The 0.2% yield strength is shown rounded to an integer multiple of 5 MPa.
(3) Electrical conductivity Electrical conductivity was determined according to JIS H 0505.
(4) Young's modulus The Young's modulus was measured using a strain gauge with a tensile tester using a strip-shaped test piece with a width of 20 to 30 mm and a strength region of 0.2% proof stress or less. In addition, the test piece was extract | collected in parallel with respect to the rolling direction.
(5) Bending Deflection Coefficient The bending deflection coefficient was measured according to the Japan Copper and Brass Association (JCBA) technical standard. The width of the test piece was 10 mm, the length was 15 mm, a cantilever bending test was performed, and the deflection coefficient was measured from the load and deflection displacement.
These results are shown in Tables 1 and 2.

Figure 0004809935
Figure 0004809935

Figure 0004809935
Figure 0004809935

表1に、本発明の実施例を示す。実施例1〜29は集合組織が本発明の好ましい範囲内にあり、0.2%耐力、導電率、ヤング率および曲げたわみ係数がいずれも優れるものであった。   Table 1 shows examples of the present invention. In Examples 1 to 29, the texture was within the preferred range of the present invention, and the 0.2% proof stress, conductivity, Young's modulus, and bending deflection coefficient were all excellent.

表2に本発明に対する比較例を示す。比較例1、2、5は、Niおよび/またはCoの含有量とSiの含有量とが本発明の範囲より少なすぎたため、0.2%耐力が劣った。比較例3、4、6、7は、Niおよび/またはCoの含有量が多すぎたため、熱間圧延時に割れが生じたため製造を中止した。比較例8は、Siの濃度が高すぎたため、導電率が劣った。
以下の比較例は実施例2と同一の鋳塊を用いた例である。
・比較例2−2は、熱間圧延後ただちに水冷し、中間焼鈍と冷間圧延2を省略し、その他については実施例2と同様に作製した例であるが、RDに向く(100)面の面積率が低く、また(111)面の面積率が高く、ヤング率および曲げたわみ係数が本発明例よりも高くなった。
・比較例2−3は、熱間圧延後ただちに水冷すること以外は実施例2と同様に作製した例であるが、RDに向く(100)面の面積率が低く、ヤング率が本発明例よりも高くなった。
Table 2 shows a comparative example for the present invention. In Comparative Examples 1, 2, and 5, the Ni and / or Co content and the Si content were too much less than the scope of the present invention, so the 0.2% yield strength was inferior. In Comparative Examples 3, 4, 6, and 7, since the content of Ni and / or Co was too large, the production was stopped because cracks occurred during hot rolling. In Comparative Example 8, the conductivity was inferior because the Si concentration was too high.
The following comparative example is an example using the same ingot as in Example 2.
Comparative Example 2-2 is an example in which water cooling is performed immediately after hot rolling, intermediate annealing and cold rolling 2 are omitted, and the others are manufactured in the same manner as in Example 2, but the (100) plane is suitable for RD. And the area ratio of the (111) plane was high, and the Young's modulus and bending deflection coefficient were higher than those of the examples of the present invention.
Comparative Example 2-3 is an example prepared in the same manner as in Example 2 except that water cooling is performed immediately after hot rolling, but the area ratio of the (100) plane facing the RD is low, and the Young's modulus is an example of the present invention. Higher than.

Figure 0004809935
Figure 0004809935

表3に他の実施例を示す。   Table 3 shows another embodiment.

Figure 0004809935
Figure 0004809935

表3の実施例10−2、18−2、25−2は、表1の実施例10、18、25とそれぞれ同一の鋳塊を用いて、熱間圧延後ただちに水冷し、中間焼鈍と冷間圧延2を2度繰り返し、その他については表1の各実施例と同様に作製し、同様に各特性を評価した例である。これらはRDに向く(100)面の面積率が本発明の好ましい範囲内にあり、強度、導電率、ヤング率、曲げたわみ係数が優れる。
実施例10−3、18−3、25−3は、表1の実施例10、18、25とそれぞれ同一の鋳塊を用いて、中間焼鈍と冷間圧延2を2度繰り返し、その他については表1の各実施例と同様に作製し、同様に各特性を評価した例である。これらはRDに向く(100)面の面積率が特に高く、ヤング率が100GPa以下と特に低く、曲げたわみ係数が90GPaと特に低く、かつ、0.2%耐力と導電率が優れるものであった。
Examples 10-2, 18-2, and 25-2 in Table 3 were water-cooled immediately after hot rolling using the same ingots as Examples 10, 18, and 25 in Table 1, respectively, and were subjected to intermediate annealing and cooling. This is an example in which the inter-rolling 2 was repeated twice, and the others were produced in the same manner as in the examples of Table 1 and the characteristics were evaluated in the same manner. These have an area ratio of the (100) plane facing the RD within the preferable range of the present invention, and are excellent in strength, electrical conductivity, Young's modulus, and bending deflection coefficient.
In Examples 10-3, 18-3, and 25-3, using the same ingot as each of Examples 10, 18, and 25 in Table 1, intermediate annealing and cold rolling 2 were repeated twice, and the others were This is an example in which each of the examples in Table 1 was produced in the same manner and each characteristic was similarly evaluated. These had a particularly high area ratio of the (100) plane facing RD, a particularly low Young's modulus of 100 GPa or less, a particularly low bending deflection coefficient of 90 GPa, and excellent 0.2% proof stress and electrical conductivity. .

つづいて、従来の製造条件により製造した銅合金板材について、本願発明に係る銅合金板材との相違を明確化するために、その条件で銅合金板材を作製し、上記と同様の特性項目の評価を行った。なお、各板材の厚さは特に断らない限り上記実施例と同じ厚さになるように加工率を調整した。   Subsequently, in order to clarify the difference from the copper alloy sheet material according to the present invention, the copper alloy sheet material produced under the conventional production conditions, the copper alloy sheet material is produced under the conditions, and the same characteristic items as described above are evaluated. Went. In addition, the processing rate was adjusted so that the thickness of each board | plate material might become the same thickness as the said Example unless there is particular notice.

(比較例101)・・・特開2009−007666号公報の条件
上記本発明例1−1と同様の金属元素を配合し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1020℃で3分から10時間の保持後、熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削を行った。この後の工程は、次に記載する工程A−3,B−3の処理を施すことによって銅合金c01を製造した。
製造工程には、1回または2回以上の溶体化熱処理を含み、ここでは、その中の最後の溶体化熱処理の前後で工程を分類し、中間溶体化までの工程でA−3工程とし、中間溶体化より後の工程でB−3工程とした。
(Comparative Example 101) ... Conditions of JP2009-007666 A metal element similar to that of Invention Example 1-1 is blended, and an alloy composed of Cu and inevitable impurities is melted in a high-frequency melting furnace. This was cast at a cooling rate of 0.1 to 100 ° C./second to obtain an ingot. This was held at 900 to 1020 ° C. for 3 minutes to 10 hours, then hot worked, then water quenched, and chamfered to remove oxide scale. In the subsequent steps, the copper alloy c01 was manufactured by performing the processes of steps A-3 and B-3 described below.
The manufacturing process includes one or more solution heat treatments, and here, the process is classified before and after the last solution heat treatment, and the process up to the intermediate solution is A-3 process, It was set as B-3 process in the process after intermediate solution.

工程A−3:断面減少率が20%以上の冷間加工を施し、350〜750℃で5分〜10時間の熱処理を施し、断面減少率が5〜50%の冷間加工を施し、800〜1000℃で5秒〜30分の溶体化熱処理を施す。
工程B−3:断面減少率が50%以下の冷間加工を施し、400〜700℃で5分〜10時間の熱処理を施し、断面減少率が30%以下の冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を施す。
Step A-3: Cold work with a cross-section reduction rate of 20% or more is performed, heat treatment is performed at 350 to 750 ° C. for 5 minutes to 10 hours, cold work with a cross-section reduction rate of 5 to 50% is performed, and 800 A solution heat treatment is performed at ˜1000 ° C. for 5 seconds to 30 minutes.
Step B-3: cold working with a cross-section reduction rate of 50% or less, heat treatment at 400 to 700 ° C. for 5 minutes to 10 hours, and cold working with a cross-section reduction rate of 30% or less, 200 to Temper annealing is performed at 550 ° C. for 5 seconds to 10 hours.

得られた試験体c01は、上記実施例とは製造条件について熱延後の350℃までの徐冷の有無の点で異なり、RDに向く(111)面の面積率が高く、ヤング率および曲げたわみ係数について要求特性を満たさない結果となった。   The obtained specimen c01 differs from the above examples in terms of production conditions in the presence or absence of slow cooling to 350 ° C. after hot rolling, the area ratio of the (111) plane facing the RD is high, Young's modulus and bending As a result, the deflection coefficient did not meet the required characteristics.

(比較例102)・・・特開2006−283059号公報の条件
上記本発明例1−1の組成の銅合金を、電気炉により大気中にて木炭被覆下で溶解し、鋳造可否を判断した。溶製した鋳塊を熱間圧延し、厚さ15mmに仕上げた。つづいてこの熱間圧延材に対し、冷間圧延及び熱処理(冷間圧延1→溶体化連続焼鈍→冷間圧延2→時効処理→冷間圧延3→短時間焼鈍)を施し、所定の厚さの銅合金薄板(c02)を製造した。
(Comparative Example 102) ... Conditions of Japanese Patent Application Laid-Open No. 2006-283059 The copper alloy having the composition of Example 1-1 of the present invention was melted in the atmosphere under charcoal coating in an electric furnace to determine whether casting was possible. . The molten ingot was hot-rolled to a thickness of 15 mm. Subsequently, the hot rolled material is subjected to cold rolling and heat treatment (cold rolling 1 → solution annealing, cold rolling 2 → aging treatment → cold rolling 3 → short annealing) to a predetermined thickness. A copper alloy sheet (c02) was produced.

得られた試験体c02は、上記実施例1とは製造条件について熱延後の350℃までの徐冷の有無、および、溶体化前の中間焼鈍と冷間圧延の有無の点で異なり、RDに向く(111)面の面積率が高く、ヤング率および曲げたわみ係数について要求を満たさない結果となった。   The obtained specimen c02 differs from Example 1 above in terms of the production conditions with or without slow cooling to 350 ° C. after hot rolling, and with or without intermediate annealing and cold rolling before solution treatment. The area ratio of the (111) surface facing the surface was high, and the Young's modulus and bending deflection coefficient did not satisfy the requirements.

(比較例103)・・・特開2006−152392号公報の条件
上記本発明例1−1の組成をもつ合金について、クリプトル炉において大気中で木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、厚さが50mm、幅が75mm、長さが180mmの鋳塊を得た。そして、鋳塊の表面を面削した後、950℃の温度で厚さが15mmになるまで熱間圧延し、750℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、冷間圧延を行い、所定の厚さの板を得た。
(Comparative Example 103) ... Conditions of Japanese Patent Application Laid-Open No. 2006-152392 The alloy having the composition of the present invention example 1-1 was melted under a charcoal coating in the atmosphere in a kryptor furnace and cast into a cast iron book mold. Thus, an ingot having a thickness of 50 mm, a width of 75 mm, and a length of 180 mm was obtained. Then, after chamfering the surface of the ingot, it was hot-rolled at a temperature of 950 ° C. until the thickness became 15 mm, and rapidly cooled into water from a temperature of 750 ° C. or higher. Next, after removing the oxide scale, cold rolling was performed to obtain a plate having a predetermined thickness.

続いて、塩浴炉を使用し、温度で20秒間加熱する溶体化処理を行なった後に、水中に急冷した後、後半の仕上げ冷間圧延により、各厚みの冷延板にした。この際、下記に示すように、これら冷間圧延の加工率(%)を種々変えて冷延板(c03)にした。これらの冷延板を、下記に示すように、温度(℃)と時間(hr)とを種々変えて時効処理した。   Subsequently, after using a salt bath furnace and performing a solution treatment by heating at a temperature for 20 seconds, the solution was rapidly cooled in water, and then cold-rolled sheets having various thicknesses were obtained by finish cold rolling in the latter half. At this time, as shown below, the cold-rolled sheet (c03) was obtained by variously changing the cold rolling processing rate (%). As shown below, these cold-rolled sheets were subjected to aging treatment at various temperatures (° C.) and times (hr).

冷間加工率: 95%
溶体化処理温度: 900℃
人工時効硬化処理温度×時間: 450℃×4時間
板厚: 0.6mm
Cold working rate: 95%
Solution treatment temperature: 900 ° C
Artificial age hardening temperature x time: 450 ° C x 4 hours Thickness: 0.6mm

得られた試験体c03は、上記実施例1とは製造条件について熱延後の350℃までの徐冷の有無、および、溶体化前の中間焼鈍と冷間圧延の有無の点で異なり、RDに向く(111)面の面積率が高く、ヤング率および曲げたわみ係数について要求を満たさない結果となった。   The obtained specimen c03 differs from the above Example 1 in terms of the production conditions with or without slow cooling to 350 ° C. after hot rolling, and with or without intermediate annealing and cold rolling before solution treatment. The area ratio of the (111) surface facing the surface was high, and the Young's modulus and bending deflection coefficient did not satisfy the requirements.

(比較例104)・・・特開2008−223136号公報の条件
実施例1に示す銅合金を溶製し、縦型連続鋳造機を用いて鋳造した。得られた鋳片(厚さ180mm)から厚さ50mmの試料を切り出し、これを950℃に加熱したのち抽出して、熱間圧延を開始した。その際、950〜700℃の温度域での圧延率が60%以上となり、かつ700℃未満の温度域でも圧延が行われるようにパススケジュールを設定した。熱間圧延の最終パス温度は600〜400℃の間にある。鋳片からのトータルの熱間圧延率は約90%である。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。
(Comparative Example 104) ... Conditions of JP-A-2008-223136 The copper alloy shown in Example 1 was melted and cast using a vertical continuous casting machine. A sample with a thickness of 50 mm was cut out from the obtained slab (thickness 180 mm), heated to 950 ° C., extracted, and hot rolling was started. At that time, the pass schedule was set so that the rolling rate in the temperature range of 950 to 700 ° C. was 60% or more and the rolling was performed in the temperature range of less than 700 ° C. The final pass temperature of hot rolling is between 600-400 ° C. The total hot rolling rate from the slab is about 90%. After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing.

次いで、冷間圧延を行った後、溶体化処理に供した。試料表面に取り付けた熱電対により溶体化処理時の温度変化をモニターし、昇温過程における100℃から700℃までの昇温時間を求めた。溶体化処理後の平均結晶粒径(双晶境界を結晶粒界とみなさない)が10〜60μmとなるように到達温度を合金組成に応じて700〜850℃の範囲内で調整し、700〜850℃の温度域での保持時間を10sec〜10mimの範囲で調整した。続いて、上記溶体化処理後の板材に対して、圧延率で中間冷間圧延を施し、次いで時効処理を施した。時効処理温度は材温450℃とし、時効時間は合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。このような合金組成に応じて最適な溶体化処理条件や時効処理時間は予備実験により把握してある。次いで、圧延率で仕上げ冷間圧延を行った。仕上げ冷間圧延を行ったものについては、その後さらに、400℃の炉中に5min装入する低温焼鈍を施した。このようにして供試材c04を得た。なお、必要に応じて途中で面削を行い、供試材の板厚は0.2mmに揃えた。主な製造条件は下記に記載してある。   Subsequently, after performing cold rolling, it used for the solution treatment. The temperature change during the solution treatment was monitored by a thermocouple attached to the sample surface, and the temperature raising time from 100 ° C. to 700 ° C. in the temperature raising process was determined. The ultimate temperature is adjusted within the range of 700 to 850 ° C. according to the alloy composition so that the average crystal grain size after solution treatment (the twin boundary is not regarded as a grain boundary) is 10 to 60 μm. The holding time in the temperature range of 850 ° C. was adjusted in the range of 10 sec to 10 mim. Subsequently, the plate material after the solution treatment was subjected to intermediate cold rolling at a rolling rate and then subjected to an aging treatment. The aging treatment temperature was adjusted to a material temperature of 450 ° C., and the aging time was adjusted to a time when the hardness peaked at 450 ° C. according to the alloy composition. The optimum solution treatment conditions and aging treatment time according to such an alloy composition have been grasped by preliminary experiments. Next, finish cold rolling was performed at a rolling rate. About what performed finish cold rolling, the low temperature annealing which puts it in a 400 degreeC furnace for 5 minutes after that was given after that. In this way, a test material c04 was obtained. If necessary, chamfering was performed in the middle, and the thickness of the specimen was adjusted to 0.2 mm. The main production conditions are described below.

[特開2008−223136 実施例1の条件]
700℃未満〜400℃での熱間圧延率: 56%(1パス)
溶体化処理前 冷間圧延率: 92%
中間冷間圧延 冷間圧延率: 20%
仕上げ冷間圧延 冷間圧延率: 30%
100℃から700℃までの昇温時間: 10秒
[Conditions of JP-A-2008-223136 Example 1]
Hot rolling rate at less than 700 ° C to 400 ° C: 56% (1 pass)
Before solution treatment Cold rolling rate: 92%
Intermediate cold rolling Cold rolling rate: 20%
Finish cold rolling Cold rolling rate: 30%
Temperature rising time from 100 ° C to 700 ° C: 10 seconds

得られた試験体c04は、上記実施例1とは製造条件について熱延後の350℃までの徐冷の有無、および、溶体化前の中間焼鈍と冷間圧延の有無 の点で異なり、RDに向く(111)面の面積率が高く、ヤング率および曲げたわみ係数について要求を満たさない結果となった。   The obtained specimen c04 differs from the above-mentioned Example 1 in terms of production conditions with or without slow cooling to 350 ° C. after hot rolling, and with or without intermediate annealing and cold rolling before solution treatment. The area ratio of the (111) surface facing the surface was high, and the Young's modulus and bending deflection coefficient did not satisfy the requirements.

Claims (7)

NiとCoのどちらか一方または両方の合計で0.5〜5.0質量%、Siを0.2〜1.5質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有してなり、圧延方向の0.2%耐力が500MPa以上、導電率が30%IACS以上、ヤング率が110GPa以下、曲げたわみ係数が105GPa以下であることを特徴とする電気・電子部品用銅合金板材。  It has an alloy composition containing 0.5 to 5.0 mass% of Ni or Co in total, or 0.2 to 1.5 mass% of Si, and the balance of Cu and inevitable impurities. A copper alloy sheet for electrical and electronic parts, characterized in that the 0.2% proof stress in the rolling direction is 500 MPa or more, the electrical conductivity is 30% IACS or more, the Young's modulus is 110 GPa or less, and the bending deflection coefficient is 105 GPa or less. 前記銅合金板材のEBSDを用いて解析することによって得られる圧延方向に向く(100)面の面積率が30%以上であることを特徴とする請求項1に記載の電気・電子部品用銅合金板材。  2. The copper alloy for electrical and electronic parts according to claim 1, wherein an area ratio of a (100) plane facing in a rolling direction obtained by analyzing the copper alloy sheet using EBSD is 30% or more. Board material. 前記銅合金板材のEBSDを用いて解析することによって得られる圧延方向に向く(111)面の面積率が15%以下であることを特徴とする請求項1又は2に記載の電気・電子部品用銅合金板材。  3. The electric / electronic component according to claim 1, wherein an area ratio of a (111) plane facing in a rolling direction obtained by analyzing the copper alloy sheet using EBSD is 15% or less. Copper alloy sheet. さらに、Crを0.05〜0.5質量%含有することを特徴とする請求項1〜3のいずれかに記載の電気・電子部品用銅合金板材。  Furthermore, 0.05-0.5 mass% of Cr is contained, The copper alloy board | plate material for electrical / electronic components in any one of Claims 1-3 characterized by the above-mentioned. さらに、Zn、Sn、Mg、Ag、MnおよびZrからなる群から選ばれる1種または2種以上を合計で0.01〜1.0質量%含有することを特徴とする請求項1〜4のいずれか1項に記載の電気・電子部品用銅合金板材。  Furthermore, 0.01-1.0 mass% in total containing 1 type, or 2 or more types chosen from the group which consists of Zn, Sn, Mg, Ag, Mn, and Zr is characterized by the above-mentioned The copper alloy sheet material for electrical / electronic parts according to any one of the above. コネクタ用材料であることを特徴とする請求項1〜5のいずれか1項に記載の電気・電子部品用銅合金板材。  It is a material for connectors, The copper alloy board | plate material for electrical / electronic components of any one of Claims 1-5 characterized by the above-mentioned. 請求項1〜6のいずれか1項に記載の電気・電子部品用銅合金板材からなるコネクタ。  The connector which consists of a copper alloy board | plate material for electrical / electronic components of any one of Claims 1-6.
JP2011513179A 2009-12-02 2010-12-01 Copper alloy sheet having low Young's modulus and method for producing the same Active JP4809935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011513179A JP4809935B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet having low Young's modulus and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009274996 2009-12-02
JP2009274996 2009-12-02
PCT/JP2010/071517 WO2011068134A1 (en) 2009-12-02 2010-12-01 Copper alloy sheet material having low young's modulus and method for producing same
JP2011513179A JP4809935B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet having low Young's modulus and method for producing the same

Publications (2)

Publication Number Publication Date
JP4809935B2 true JP4809935B2 (en) 2011-11-09
JPWO2011068134A1 JPWO2011068134A1 (en) 2013-04-18

Family

ID=44114980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011513179A Active JP4809935B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet having low Young's modulus and method for producing the same

Country Status (6)

Country Link
US (1) US20120241056A1 (en)
EP (1) EP2508634B1 (en)
JP (1) JP4809935B2 (en)
KR (1) KR20120104553A (en)
CN (1) CN102630251B (en)
WO (1) WO2011068134A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220077198A (en) 2020-11-30 2022-06-09 한국생산기술연구원 Manufacturing method of beryllium(Be) free copper alloy using Metaheuristic
KR20220077196A (en) 2020-11-30 2022-06-09 한국생산기술연구원 beryllium(Be) free copper alloy
KR20220077197A (en) 2020-11-30 2022-06-09 한국생산기술연구원 Manufacturing method of beryllium(Be) free copper alloy

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400877B2 (en) * 2009-12-02 2014-01-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
WO2011068135A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
CN103069025B (en) * 2010-08-27 2015-04-22 古河电气工业株式会社 Copper alloy sheet and manufacturing method for same
JP5039862B1 (en) * 2011-07-15 2012-10-03 Jx日鉱日石金属株式会社 Corson alloy and manufacturing method thereof
JP5539932B2 (en) * 2011-08-01 2014-07-02 Jx日鉱日石金属株式会社 Cu-Co-Si alloy with excellent bending workability
TW201321527A (en) * 2011-08-05 2013-06-01 Furukawa Electric Co Ltd Rolled copper foil for secondary battery collector and production method therefor
JP5117602B1 (en) * 2011-08-18 2013-01-16 古河電気工業株式会社 Copper alloy sheet with low deflection coefficient and excellent bending workability
TWI461549B (en) * 2012-02-14 2014-11-21 Jx Nippon Mining & Metals Corp Carbene alloy and its manufacturing method
JP6111028B2 (en) * 2012-03-26 2017-04-05 Jx金属株式会社 Corson alloy and manufacturing method thereof
JP6126791B2 (en) * 2012-04-24 2017-05-10 Jx金属株式会社 Cu-Ni-Si copper alloy
JP6196435B2 (en) * 2012-10-02 2017-09-13 Jx金属株式会社 Titanium copper and method for producing the same
JP6039999B2 (en) * 2012-10-31 2016-12-07 Dowaメタルテック株式会社 Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
KR101274063B1 (en) * 2013-01-22 2013-06-12 한국기계연구원 A metal matrix composite with two-way shape precipitation and method for manufacturing thereof
JP5647703B2 (en) 2013-02-14 2015-01-07 Dowaメタルテック株式会社 High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
JP6181392B2 (en) * 2013-03-12 2017-08-16 Jx金属株式会社 Cu-Ni-Si copper alloy
JP6223057B2 (en) 2013-08-13 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6050738B2 (en) 2013-11-25 2016-12-21 Jx金属株式会社 Copper alloy sheet with excellent conductivity, moldability and stress relaxation properties
CN105829555B (en) 2013-12-27 2018-04-20 古河电气工业株式会社 The manufacture method of copper alloy plate, connector and copper alloy plate
CN105829556B (en) * 2013-12-27 2018-02-06 古河电气工业株式会社 The manufacture method of copper alloy plate, connector and copper alloy plate
KR20160117210A (en) 2015-03-30 2016-10-10 제이엑스금속주식회사 Cu-Ni-Si BASED ROLLED COPPER ALLOY AND METHOD FOR MANUFACTURING THE SAME
CN105088010B (en) * 2015-08-31 2017-08-25 河南科技大学 A kind of high-strength highly-conductive rare earth copper zirconium alloy and preparation method thereof
JP2016204757A (en) * 2016-07-20 2016-12-08 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY
JP2017020115A (en) * 2016-08-29 2017-01-26 Jx金属株式会社 Titanium copper and manufacturing method therefor
KR102367066B1 (en) * 2016-09-20 2022-02-24 후루카와 덴끼고교 가부시키가이샤 Flat cable, manufacturing method of flat cable, and rotating connector device with flat cable
JP6345290B1 (en) 2017-03-22 2018-06-20 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working
JP6618945B2 (en) * 2017-03-24 2019-12-11 Jx金属株式会社 Copper alloy for electronic materials
JP6670277B2 (en) 2017-09-14 2020-03-18 Jx金属株式会社 Cu-Ni-Si based copper alloy with excellent mold wear
CN109055810A (en) * 2018-07-10 2018-12-21 浙江力博实业股份有限公司 A kind of preparation method of electrode material copper cobalt chrome-silicon alloy
CN118103534A (en) * 2022-01-20 2024-05-28 古河电气工业株式会社 Copper alloy sheet material and method for producing same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554554A (en) 1978-10-11 1980-04-21 Yaskawa Electric Mfg Co Ltd Conductor for flexible cable
JPS6362834A (en) * 1986-09-04 1988-03-19 Nippon Mining Co Ltd Copper alloy for dc wiring material
JPH01150748A (en) 1987-12-08 1989-06-13 Rinnai Corp Surplus heat discharging mechanism for heating device
JP4255330B2 (en) * 2003-07-31 2009-04-15 日鉱金属株式会社 Cu-Ni-Si alloy member with excellent fatigue characteristics
JP4584692B2 (en) 2004-11-30 2010-11-24 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4566048B2 (en) 2005-03-31 2010-10-20 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4275697B2 (en) * 2006-11-24 2009-06-10 三菱伸銅株式会社 Copper alloy and lead frame material for electronic equipment
US20080190523A1 (en) * 2007-02-13 2008-08-14 Weilin Gao Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
TWI395824B (en) * 2007-03-30 2013-05-11 Jx Nippon Mining & Metals Corp Cu-Ni-Si alloy for electronic materials
JP4981748B2 (en) 2007-05-31 2012-07-25 古河電気工業株式会社 Copper alloy for electrical and electronic equipment
CN102105610B (en) * 2008-06-03 2013-05-29 古河电气工业株式会社 Copper alloy sheet material and manufacturing method thereof
WO2011068135A1 (en) * 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220077198A (en) 2020-11-30 2022-06-09 한국생산기술연구원 Manufacturing method of beryllium(Be) free copper alloy using Metaheuristic
KR20220077196A (en) 2020-11-30 2022-06-09 한국생산기술연구원 beryllium(Be) free copper alloy
KR20220077197A (en) 2020-11-30 2022-06-09 한국생산기술연구원 Manufacturing method of beryllium(Be) free copper alloy

Also Published As

Publication number Publication date
JPWO2011068134A1 (en) 2013-04-18
CN102630251B (en) 2017-03-15
WO2011068134A1 (en) 2011-06-09
KR20120104553A (en) 2012-09-21
EP2508634B1 (en) 2017-08-23
EP2508634A4 (en) 2016-01-06
CN102630251A (en) 2012-08-08
US20120241056A1 (en) 2012-09-27
EP2508634A1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP4809935B2 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5448763B2 (en) Copper alloy material
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP4885332B2 (en) Copper alloy sheet and manufacturing method thereof
JP3838521B1 (en) Copper alloy having high strength and excellent bending workability and method for producing the same
CN102112641B (en) Copper alloy material for electrical/electronic component
JP5503791B2 (en) Copper alloy sheet and manufacturing method thereof
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP6696769B2 (en) Copper alloy plate and connector
JP2006152392A (en) High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP5690170B2 (en) Copper alloy
WO2013018228A1 (en) Copper alloy
JP2002356726A (en) High-strength titanium-copper alloy, its manufacturing method, and terminal and connector using it
JP5261619B2 (en) Copper alloy sheet and manufacturing method thereof
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP2006291356A (en) Ni-sn-p based copper alloy
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4642119B2 (en) Copper alloy and method for producing the same
JP5690169B2 (en) Copper alloy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4809935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350