JP5690169B2 - Copper alloy - Google Patents

Copper alloy Download PDF

Info

Publication number
JP5690169B2
JP5690169B2 JP2011040393A JP2011040393A JP5690169B2 JP 5690169 B2 JP5690169 B2 JP 5690169B2 JP 2011040393 A JP2011040393 A JP 2011040393A JP 2011040393 A JP2011040393 A JP 2011040393A JP 5690169 B2 JP5690169 B2 JP 5690169B2
Authority
JP
Japan
Prior art keywords
grain size
copper alloy
crystal grain
rolling
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011040393A
Other languages
Japanese (ja)
Other versions
JP2012177152A (en
Inventor
久郎 宍戸
久郎 宍戸
進也 桂
進也 桂
有賀 康博
康博 有賀
松本 克史
克史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011040393A priority Critical patent/JP5690169B2/en
Priority to US13/299,828 priority patent/US9845521B2/en
Priority to EP12007912A priority patent/EP2562280A1/en
Priority to EP11009294A priority patent/EP2463393A1/en
Priority to CN201110408401.7A priority patent/CN102534298B/en
Priority to KR1020110132859A priority patent/KR101387263B1/en
Publication of JP2012177152A publication Critical patent/JP2012177152A/en
Priority to KR1020130122577A priority patent/KR101396616B1/en
Priority to KR1020130122579A priority patent/KR101396766B1/en
Application granted granted Critical
Publication of JP5690169B2 publication Critical patent/JP5690169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電性が良好であることは勿論のこと、高強度、優れた曲げ加工性、および優れた耐応力緩和特性を兼ね備えた銅合金に関し、特に、電気・電子部品を構成するコネクター、リードフレーム、リレー、スイッチなどの通電部品に好適に用いることができる電気・電子部品用の銅合金に関するものである。   The present invention relates to a copper alloy having not only good conductivity but also high strength, excellent bending workability, and excellent stress relaxation resistance, in particular, a connector constituting an electric / electronic component, The present invention relates to a copper alloy for electrical and electronic parts that can be suitably used for energized parts such as lead frames, relays, and switches.

電気・電子部品を構成するコネクター、リードフレーム、リレー、スイッチなどの通電部品に使用される銅合金材料には、通電によるジュール熱の発生を抑制するために良好な導電性が要求されると共に、電気・電子部品の組立時や作動時に付与される応力に耐え得るだけの高い強度が要求される。また、電気・電子部品は曲げ加工により成形されることが一般的であり、この曲げ加工される電気・電子部品用の材料には優れた曲げ加工性も要求される。更には、電気・電子部品の接触信頼性を確保するためには、接触圧力が時間を経るに伴い低下する現象、すなわち応力緩和に対する耐久性である耐応力緩和特性に優れることも要求される。   Copper alloy materials used for current-carrying parts such as connectors, lead frames, relays, and switches that make up electrical and electronic parts are required to have good conductivity in order to suppress the generation of Joule heat due to current flow. High strength is required to withstand the stress applied during assembly and operation of electrical / electronic components. Further, electric / electronic parts are generally formed by bending, and excellent bending workability is required for the material for electric / electronic parts to be bent. Furthermore, in order to ensure the contact reliability of electric / electronic parts, it is also required that the contact pressure is reduced with time, that is, it is excellent in stress relaxation resistance which is durability against stress relaxation.

これら通電部品に使用される材料を高強度化する方法としては、Ni、Siなどの溶質元素を多量に添加する方法や、製造時に焼鈍と圧延を繰り返す方法、時効処理後の仕上げ圧延(調質処理)率を増大させる方法などが、一般的に知られている。しかしながら、Ni、Siなどの溶質元素の多量添加は、Ni−Si系介在物量の増大を招き、曲げ加工性を低下させるという問題を発生してしまう。また、仕上げ圧延(調質処理)率を増大させる方法では、Cube方位面積率が低下し、同じく曲げ加工性を低下させるという問題を発生してしまう。   Methods for increasing the strength of materials used in these current-carrying parts include adding a large amount of solute elements such as Ni and Si, repeating annealing and rolling during manufacturing, and finishing rolling after aging treatment (tempering) A method for increasing the processing rate is generally known. However, the addition of a large amount of solute elements such as Ni and Si causes an increase in the amount of Ni-Si inclusions, resulting in a problem that bending workability is lowered. Further, in the method of increasing the finish rolling (tempering treatment) rate, the Cube azimuth area rate is lowered, and the problem that the bending workability is similarly lowered occurs.

また、通電部品に使用される材料の曲げ加工性を向上させる方法としては、仕上げ圧延(調質処理)率を低下させる方法や、結晶粒径を微細化させる方法、Cube方位面積率を増加させる方法などが一般的に知られている。しかしながら、結晶粒径を微細化させると、耐応力緩和特性が低下するという問題を発生してしまう。   Moreover, as a method of improving the bending workability of the material used for the current-carrying parts, a method of decreasing the finish rolling (tempering treatment) rate, a method of refining the crystal grain size, or increasing the Cube orientation area ratio Methods are generally known. However, when the crystal grain size is made finer, the problem that the stress relaxation resistance is lowered occurs.

更には、通電部品に使用される材料の耐応力緩和特性を向上させる方法としては、仕上げ圧延(調質処理)率を低下させる方法や、結晶粒径を粗大化させる方法が一般的に知られている。   Furthermore, as a method of improving the stress relaxation resistance of the material used for the current-carrying parts, a method of reducing the finish rolling (tempering treatment) rate and a method of increasing the crystal grain size are generally known. ing.

そのため、従来からの各種技術を用いても、電気・電子部品を構成する通電部品に使用される材料の高強度化、曲げ加工性の向上、耐応力緩和特性の向上を、同時に実現させることは非常に困難であるということができる。従って、従来は作製する個々の通電部品に要求される特性に鑑み、これら夫々の特性に適宜バランスをもたせることで対応するという方法をとらざるを得なかった。特に、銅合金の中でもコルソン合金(Cu−Ni−Si系銅合金)はこれら種々の特性に優れ、且つ安価なことから、電気・電子部品を構成する通電部品に好適な銅合金材料であるとして、近年広く採用されている。   Therefore, even with various conventional technologies, it is possible to simultaneously increase the strength of materials used for current-carrying parts that make up electrical and electronic parts, improve bending workability, and improve stress relaxation characteristics. It can be said that it is very difficult. Therefore, in the past, in view of the characteristics required for each current-carrying part to be manufactured, it has been necessary to take a method of responding by appropriately balancing these characteristics. In particular, among the copper alloys, the Corson alloy (Cu—Ni—Si based copper alloy) is excellent in various characteristics and is inexpensive, and therefore is a copper alloy material suitable for energizing parts constituting electric / electronic parts. In recent years, it has been widely adopted.

また、近年は電子機器の小型化および軽量化が進んでおり、端子・コネクター用に用いられる銅合金材料には、特に高強度薄肉化の要求が高くなる傾向がある。従って、強度の中においても接圧力強度という観点から圧延直角方向(T.D.方向)の0.2%耐力(YP)が高いことが特に求められる傾向にある。   In recent years, electronic devices have been reduced in size and weight, and there is a tendency for copper alloy materials used for terminals and connectors to have a particularly high demand for high strength and thinness. Accordingly, among the strengths, a high 0.2% proof stress (YP) in the direction perpendicular to the rolling direction (TD direction) tends to be particularly required from the viewpoint of contact pressure strength.

しかしながら、特にコルソン合金は、圧延平行方向(L.D.方向)と圧延直角方向(T.D.方向)の強度差が大きいという特徴、すなわち、圧延平行方向の強度より圧延直角方向の強度の方が相対的に低いという特徴がある。また、引張強度(TS)と0.2%耐力(YP)の差が大きいという特徴もある。そのため、このコルソン合金を、端子・コネクターに用いた場合は、圧延直角方向の耐力が低くなり、接圧強度が不足するなどの問題が発生している。   However, in particular, the Corson alloy has a feature that the difference in strength between the rolling parallel direction (LD direction) and the rolling perpendicular direction (TD direction) is large, that is, the strength in the direction perpendicular to the rolling is higher than the strength in the rolling parallel direction. The characteristic is that it is relatively low. Moreover, there is also a feature that the difference between the tensile strength (TS) and the 0.2% proof stress (YP) is large. For this reason, when this Corson alloy is used for a terminal / connector, the proof stress in the direction perpendicular to the rolling becomes low and the contact pressure strength is insufficient.

近年、このコルソン合金の曲げ加工性を改善する方法が種々提案されている。例えば、特許文献1により、コルソン合金の曲げ加工性を向上させる有効な方法として、結晶粒の集合組織を制御する技術が提案されている。その特許文献1には、Niを2.0〜6.0質量%、SiをNi/Siの質量比で4〜5の範囲で各々含むコルソン合金の、平均結晶粒径を10μm以下とすると共に、SEM−EBSP法による測定結果で、Cube方位{001}<100>の割合が50%以上である集合組織を有し、且つ、300倍の光学顕微鏡による組織観察によって観察しうる層状境界を有さない銅合金板が開示されている。   In recent years, various methods for improving the bending workability of this Corson alloy have been proposed. For example, Patent Document 1 proposes a technique for controlling the texture of crystal grains as an effective method for improving the bending workability of a Corson alloy. In Patent Document 1, an average crystal grain size of a Corson alloy containing Ni in a range of 2.0 to 6.0% by mass and Si in a range of 4 to 5 by mass ratio of Ni / Si is set to 10 μm or less. The measurement result by the SEM-EBSP method has a texture where the ratio of the Cube orientation {001} <100> is 50% or more, and has a layered boundary that can be observed by a structure observation with a 300 times optical microscope. A copper alloy plate is disclosed.

また、特許文献2により、Niを0.5〜4.0質量%、Coを0.5〜2.0質量%、Siを0.3〜1.5質量%を含有する銅合金の材料表面における{111}面からの回析強度をI{111}、{200}面からの回析強度をI{200}、{220}面からの回析強度をI{220}、{311}面からの回析強度をI{311}、これらの回析強度の中の{200}面からの回析強度の割合をR{200}=I{200}/(I{111}+I{200}+I{311})とした場合に、R{200}が0.3以上である電気・電子機器用銅合金に関する提案がなされている。   Further, according to Patent Document 2, the material surface of a copper alloy containing 0.5 to 4.0% by mass of Ni, 0.5 to 2.0% by mass of Co, and 0.3 to 1.5% by mass of Si. The diffraction intensity from the {111} plane is I {111}, the diffraction intensity from the {200} plane is I {200}, and the diffraction intensity from the {220} plane is I {220}, {311} plane Is the diffraction intensity from {200} plane, and the ratio of the diffraction intensity from {200} plane in these diffraction intensities is R {200} = I {200} / (I {111} + I {200} + I {311}), a proposal has been made regarding a copper alloy for electrical and electronic equipment in which R {200} is 0.3 or more.

更には、特許文献3により、質量%で、Ni:0.7〜2.5%、Si:0.2〜0.7%を含有する銅合金板材において、3.0≦I{220}/I{220}≦6.0、1.5≦I{200}/I{200}≦2.5を満足させることで、コルソン合金の高強度と優れた曲げ加工性を維持しながら、それらの特性についての異方性を改善した銅合金板材に関する提案がなされている。 Furthermore, according to Patent Document 3, in a copper alloy sheet containing Ni: 0.7 to 2.5% and Si: 0.2 to 0.7% by mass%, 3.0 ≦ I {220} / By satisfying I 0 {220} ≦ 6.0, 1.5 ≦ I {200} / I 0 {200} ≦ 2.5, while maintaining the high strength and excellent bending workability of the Corson alloy, Proposals have been made on copper alloy sheet materials with improved anisotropy regarding their properties.

また、特許文献4により、質量%で、Ni:0.7〜4.2%、Si:0.2〜1.0%を含有する銅合金板材において、I{420}/I{420}>1.0を満足させることで、高強度および高導電性を維持しながら、優れた曲げ加工性と耐応力緩和特性を呈する銅合金板材に関する提案がなされている。 Further, according to Patent Document 4, in a copper alloy sheet material containing Ni: 0.7 to 4.2% and Si: 0.2 to 1.0% by mass%, I {420} / I 0 {420} By satisfying> 1.0, a proposal has been made regarding a copper alloy sheet that exhibits excellent bending workability and stress relaxation resistance while maintaining high strength and high conductivity.

特開2006−152392号公報JP 2006-152392 A 特開2009−7666号公報JP 2009-7666 A 特開2008−13836号公報JP 2008-13836 A 特開2008−223136号公報JP 2008-223136 A

本発明は、上記従来の実情に鑑みてなされたもので、導電性が良好であることは勿論のこと、高強度、優れた曲げ加工性、および優れた耐応力緩和特性を兼ね備えた銅合金を提供することを課題とするものである。   The present invention has been made in view of the above-described conventional situation, and it is a copper alloy having not only good conductivity but also high strength, excellent bending workability, and excellent stress relaxation resistance. The issue is to provide.

請求項1記載の発明は、質量%で、Ni:1.5〜3.6%、Si:0.3〜1.0%を含有し、残部が銅および不可避的不純物からなる銅合金であって、この銅合金の結晶粒の平均結晶粒径が5μm〜30μmであると共に、その平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率が3%〜20%であり、且つ、その平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積のうち、Cube方位粒が占める面積率が50%以上であることを特徴とする銅合金である。 The invention according to claim 1 is a copper alloy containing Ni: 1.5 to 3.6% and Si: 0.3 to 1.0% by mass, with the balance being made of copper and inevitable impurities. In addition, the average crystal grain size of the crystal grains of this copper alloy is 5 μm to 30 μm, and the area ratio occupied by crystal grains having a crystal grain size more than twice the average crystal grain size is 3% to 20% . In addition, among the areas occupied by crystal grains having a crystal grain size twice or more of the average crystal grain size, the area ratio occupied by Cube orientation grains is 50% or more.

請求項2記載の発明は、更に、質量%で、Sn:0.05〜3.0%および/またはZn:0.05〜3.0%を含有する請求項1記載の銅合金である。   Invention of Claim 2 is a copper alloy of Claim 1 which contains Sn: 0.05-3.0% and / or Zn: 0.05-3.0% by the mass% further.

請求項3記載の発明は、更に、質量%で、Fe、Mn、Mg、Co、Ti、Cr、Zrのうち一種または二種以上を、合計で0.01〜3.0%含有する請求項1または2記載の銅合金である。   The invention according to claim 3 further comprises 0.01 to 3.0% in total of one or more of Fe, Mn, Mg, Co, Ti, Cr and Zr in mass%. The copper alloy according to 1 or 2.

本発明によると、銅合金の特性である導電性が良好であることは勿論のこと、高強度、優れた曲げ加工性、および優れた耐応力緩和特性を兼ね備えた、すなわち、曲げ加工性および耐応力緩和特性に優れた高強度銅合金とすることができる。   According to the present invention, the copper alloy has not only good conductivity, but also high strength, excellent bending workability, and excellent stress relaxation resistance, that is, bending workability and resistance. A high-strength copper alloy having excellent stress relaxation characteristics can be obtained.

実施例で銅合金の耐応力緩和特性を求める試験方法を示し、短冊状試験片にたわみ量を与えた状態を示す正面図である。It is a front view which shows the test method which calculates | requires the stress relaxation characteristic of copper alloy in an Example, and shows the state which gave the deflection amount to the strip-shaped test piece. 実施例で銅合金の耐応力緩和特性を求める試験方法を示し、たわみ量を取り去ったときの永久たわみを示す正面図である。It is a front view which shows the test method which calculates | requires the stress relaxation resistance characteristic of a copper alloy in an Example, and shows a permanent deflection when the deflection amount is removed.

銅合金を高強度化する方法として最も有効な方法は、仕上げ圧延(調質処理)率を増大させる方法である。しかしながら、仕上げ圧延(調質処理)率を増大させると、銅合金の曲げ加工性および耐応力緩和特性を逆に低下させることになってしまう。また、耐応力緩和特性を向上させる最も有効な手段は、銅合金の結晶粒径を大きくすることである。しかしながら、結晶粒径を大きくすると、銅合金の曲げ加工性を逆に低下させることになってしまう。そのため、従来からの技術で、強度、曲げ加工性、耐応力緩和特性という諸特性を兼ねた銅合金を得ようとすると、仕上げ圧延(調質処理)率や結晶粒径を制御して、強度、曲げ加工性、耐応力緩和特性を、適当にバランスする方法を採用するしかなく、高強度、優れた曲げ加工性、優れた耐応力緩和特性という相矛盾する特性を兼ね備えた銅合金を得ることは不可能であった。   The most effective method for increasing the strength of a copper alloy is to increase the finish rolling (tempering treatment) rate. However, if the finish rolling (tempering treatment) rate is increased, the bending workability and stress relaxation resistance of the copper alloy will be reduced. Moreover, the most effective means for improving the stress relaxation resistance is to increase the crystal grain size of the copper alloy. However, when the crystal grain size is increased, the bending workability of the copper alloy is reduced. Therefore, when trying to obtain a copper alloy that combines strength, bending workability, and stress relaxation resistance with conventional techniques, the finish rolling (tempering treatment) rate and crystal grain size are controlled to achieve strength. , To obtain a copper alloy that has the contradictory properties of high strength, excellent bending workability, and excellent stress relaxation properties, by adopting a method that appropriately balances bending workability and stress relaxation resistance. Was impossible.

本発明者らは、このような従来からの課題に鑑み、高強度、優れた曲げ加工性、優れた耐応力緩和特性を兼ね備えた銅合金を得るために、鋭意、実験、研究を進めた。   In view of such conventional problems, the present inventors have intensively conducted experiments and research in order to obtain a copper alloy having high strength, excellent bending workability, and excellent stress relaxation resistance.

本発明者らは、銅合金の結晶粒径が、高強度、優れた曲げ加工性、優れた耐応力緩和特性を兼ね備えた銅合金を得るための重大要素であると捉え、検討を開始した。その結果、銅合金の結晶粒組織中に、微細な結晶粒とある程度粗大な結晶粒を混在させることで、粗大な結晶粒のみが存在した時に発生する曲げ加工時の粒界割れを抑制できることを知見した。また、銅合金の結晶粒の一部を大きくすることで優れた耐応力緩和特性を得ることができることも知見した。   The present inventors considered that the crystal grain size of the copper alloy is a critical factor for obtaining a copper alloy having high strength, excellent bending workability, and excellent stress relaxation properties, and started investigation. As a result, it is possible to suppress intergranular cracking during bending when only coarse grains exist by mixing fine grains and coarse grains to some extent in the crystal grain structure of the copper alloy. I found out. It was also found that excellent stress relaxation characteristics can be obtained by enlarging some of the crystal grains of the copper alloy.

更に、本発明者らはSEM−EBSPを用いて結晶粒径の大きさと結晶方位についての詳細な調査を実施した結果、銅合金の結晶粒組織中に比較的粗大なCube方位粒を適量分散させることで、特に曲げ加工性が良好となることを知見した。尚、このCube方位粒は、他の方位粒と比較してすべり系が多い方位粒であり、そのため、比較的粗大なCube方位粒がある程度存在しても曲げ加工性を劣化させることがないと推測される。   Furthermore, as a result of conducting a detailed investigation on the crystal grain size and crystal orientation using the SEM-EBSP, the present inventors disperse an appropriate amount of relatively coarse Cube orientation grains in the crystal grain structure of the copper alloy. As a result, it has been found that bending workability is particularly good. In addition, this Cube orientation grain is an orientation grain with many slip systems compared with other orientation grains. Therefore, even if a relatively coarse Cube orientation grain exists to some extent, bending workability is not deteriorated. Guessed.

本発明者らは、以上の実験、研究による知見の結果、銅合金中の結晶粒の平均結晶粒径を5μm〜30μmとした上で、その平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が結晶粒組織中に占める面積率を3%以上とし、更に、その平均結晶粒径の2倍以上の結晶粒径を有する結晶粒のうち50%以上をCube方位粒とすることで、本発明が課題としている高強度、優れた曲げ加工性、および優れた耐応力緩和特性を兼ね備えた銅合金を得ることができることを見出した。   As a result of the above experiments and research, the present inventors determined that the average crystal grain size of the crystal grains in the copper alloy is 5 μm to 30 μm, and that the crystal grain size is twice or more the average crystal grain size. By making the area ratio of the crystal grains possessed in the crystal grain structure 3% or more, and further making 50% or more of the crystal grains having a crystal grain size more than twice the average crystal grain size as Cube orientation grains The present inventors have found that it is possible to obtain a copper alloy having high strength, excellent bending workability, and excellent stress relaxation resistance, which are the problems of the present invention.

以下、本発明の実施の形態について、各要件ごとに具体的に説明するが、まず、本発明の銅合金の結晶粒組織に関する要件について順に説明する。   Hereinafter, embodiments of the present invention will be specifically described for each requirement. First, requirements regarding the crystal grain structure of the copper alloy of the present invention will be described in order.

(平均結晶粒径)
銅合金の平均結晶粒径は5μm〜30μmとする。平均結晶粒径が5μm未満になると、耐応力緩和特性が低下してしまう。一方、平均結晶粒径が30μmを超えると、銅合金の曲げ加工性が低下してしまい、例えば、日本伸銅協会技術標準JBMA−T307に記載の評価基準ではD以下と悪くなってしまう。よって、銅合金の平均結晶粒径の下限を5μm、上限を30μmとする。尚、より好ましい平均結晶粒径の下限は8μm、上限は25μmである。
(Average crystal grain size)
The average crystal grain size of the copper alloy is 5 μm to 30 μm. When the average crystal grain size is less than 5 μm, the stress relaxation resistance is deteriorated. On the other hand, when the average crystal grain size exceeds 30 μm, the bending workability of the copper alloy is deteriorated. For example, the evaluation standard described in the Japan Copper and Brass Association Technical Standard JBMA-T307 is worse than D or less. Therefore, the lower limit of the average crystal grain size of the copper alloy is 5 μm, and the upper limit is 30 μm. A more preferable lower limit of the average crystal grain size is 8 μm and an upper limit is 25 μm.

(平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率)
平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率(平均結晶粒径の2倍以上の結晶粒径を有する全結晶粒の面積/全結晶粒の面積)が3%未満の場合は、優れた耐応力緩和特性と優れた曲げ加工性を同時に実現することができなくなる。よって、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率の下限を3%とする。より好ましい下限は5%である。一方、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率は大きければ大きいほど、耐応力緩和特性と曲げ加工性を同時に向上させるのには有効であると推測できるが、実際には平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率を20%より大きくすることは現在の技術では困難である。
(Area ratio occupied by crystal grains having a crystal grain size more than twice the average crystal grain size)
The area ratio occupied by crystal grains having a crystal grain size more than twice the average crystal grain size (area of all crystal grains having a crystal grain size more than twice the average crystal grain size / area of all crystal grains) is 3%. When the ratio is less than 1, it is impossible to simultaneously realize excellent stress relaxation characteristics and excellent bending workability. Therefore, the lower limit of the area ratio occupied by crystal grains having a crystal grain size twice or more the average crystal grain size is set to 3%. A more preferred lower limit is 5%. On the other hand, it can be inferred that the larger the area ratio occupied by crystal grains having a crystal grain size more than twice the average crystal grain size, the more effective it is to simultaneously improve the stress relaxation resistance and bending workability. Actually, it is difficult with the current technology to make the area ratio occupied by crystal grains having a crystal grain size more than twice the average crystal grain size more than 20%.

(Cube方位粒が占める面積率)
Cube方位{001}<100>は、より多くのすべり系が活動できる方位である。平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積のうち、Cube方位粒が占める面積率(平均結晶粒径の2倍以上の結晶粒径を有するCube方位粒の面積/平均結晶粒径の2倍以上の結晶粒径を有する全結晶粒の面積)を50%以上とすることで、銅合金の曲げ加工性を向上させることが可能となる。その面積率が50%未満の場合は、銅合金の曲げ加工性が低下してしまい、例えば、日本伸銅協会技術標準JBMA−T307に記載の評価基準ではD以下と悪くなってしまう。より好ましいCube方位粒が占める面積率は70%以上である。
(Area ratio occupied by Cube orientation grains)
The Cube orientation {001} <100> is an orientation in which more slip systems can be active. Of the area occupied by crystal grains having a crystal grain size twice or more of the average crystal grain size, the area ratio occupied by Cube orientation grains (area of the Cube orientation grains having a crystal grain size more than twice the average crystal grain size / It is possible to improve the bending workability of the copper alloy by setting the area of all crystal grains having a crystal grain size twice or more the average crystal grain size to 50% or more. When the area ratio is less than 50%, the bending workability of the copper alloy is lowered. For example, the evaluation standard described in the Japan Copper and Brass Association Technical Standard JBMA-T307 is worse than D or less. The area ratio occupied by more preferable Cube-oriented grains is 70% or more.

(平均結晶粒径、集合組織の測定方法)
電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM)に、後方散乱電子回折像[EBSP:ElectronBack Scattering(Scattered)Pattern]システムを搭載した結晶方位解析法を用いて、本発明では、製品銅合金の板厚方向の表面部の集合組織を測定し、結晶粒径の測定を行う。
(Measuring method of average grain size and texture)
The present invention uses a crystal orientation analysis method in which a field emission scanning electron microscope (FESEM) is mounted on a field emission scanning electron microscope (FESEM). The texture of the surface portion of the alloy in the plate thickness direction is measured, and the crystal grain size is measured.

EBSP法では、FESEMの鏡筒内にセットした試料に、電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などと共に記録される。このプロセスが全測定点に対して自動的に行われるので、測定終了時には数万〜数十万点の結晶方位データを得ることができる。   In the EBSP method, an EBSP is projected onto a screen by irradiating an electron beam onto a sample set in a FESEM column. This is taken with a high-sensitivity camera and captured as an image on a computer. In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, tens of thousands to hundreds of thousands of crystal orientation data can be obtained at the end of measurement.

ここで、通常の銅合金板の場合、主に、以下に示すようなCube方位、Goss方位、Brass方位、Copper方位、S方位等と呼ばれる多くの方位因子からなる集合組織を形成し、それらに応じた結晶面が存在する。これらの事実は、例えば、長島晋一編著、「集合組織」(丸善株式会社刊)や軽金属学会「軽金属」解説Vol.43、1993、P285−293などに記載されている。これらの集合組織の形成は同じ結晶系の場合でも加工、熱処理方法によって異なる。圧延による板材の集合組織の場合は、圧延面と圧延方向で表されており、圧延面は{ABC}で表現され、圧延方向は<DEF>で表現される(ABCDEFは整数を示す)。その表現に基づき、各方位は下記のように表現される。   Here, in the case of a normal copper alloy sheet, mainly formed a texture composed of many orientation factors called Cube orientation, Goss orientation, Brass orientation, Copper orientation, S orientation, etc. as shown below. There is a corresponding crystal plane. These facts are described in, for example, “Cross Texture” (published by Maruzen Co., Ltd.) edited by Shinichi Nagashima and “Light Metal” commentary Vol. 43, 1993, P285-293, and the like. The formation of these textures differs depending on the processing and heat treatment methods even in the case of the same crystal system. In the case of a texture of a plate material by rolling, it is expressed by a rolling surface and a rolling direction, the rolling surface is expressed by {ABC}, and the rolling direction is expressed by <DEF> (ABCDEF indicates an integer). Based on the expression, each direction is expressed as follows.

Cube方位{001}<100>
Goss方位{011}<100>
Rotated−Goss方位{011}<011>
Brass方位{011}<211>
Copper方位{112}<111>
(若しくはD方位{4411}<11118>)
S方位{123}<634>
B/G方位{011}<511>
B/S方位{168}<211>
P方位{011}<111>
Cube orientation {001} <100>
Goss orientation {011} <100>
Rotated-Goss orientation {011} <011>
Brass orientation {011} <211>
Copper orientation {112} <111>
(Or D direction {4411} <11118>)
S orientation {123} <634>
B / G direction {011} <511>
B / S orientation {168} <211>
P direction {011} <111>

本発明においては、基本的にこれらの結晶面から±15°以内の方位のずれのものは、同一の結晶面(方位因子)に属するものとする。また、隣り合う結晶粒の方位差が5°以上の結晶粒の境界を結晶粒界と定義する。   In the present invention, basically, those whose orientations deviate within ± 15 ° from these crystal planes belong to the same crystal plane (orientation factor). Further, a boundary between crystal grains in which the orientation difference between adjacent crystal grains is 5 ° or more is defined as a crystal grain boundary.

そのうえで、本発明においては、測定エリア300×300μmに対して0.5μmピッチで電子線を照射し、上記結晶方位解析法により測定した結晶粒の数をn、それぞれの測定した結晶粒径をxとした時、平均結晶粒径を(Σx)/nで算出する。   In addition, in the present invention, the measurement area 300 × 300 μm is irradiated with an electron beam at a pitch of 0.5 μm, the number of crystal grains measured by the crystal orientation analysis method is n, and each measured crystal grain size is x The average grain size is calculated as (Σx) / n.

また、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率は、測定エリア300×300μmに対して0.5μmピッチで電子線を照射し、該当する結晶粒の合計面積を求めることで、(平均結晶粒径の2倍以上の結晶粒径を有する全結晶粒の面積/全結晶粒の面積)という計算により求める。   Further, the area ratio occupied by crystal grains having a crystal grain size more than twice the average crystal grain size is the total area of the corresponding crystal grains by irradiating the measurement area 300 × 300 μm with an electron beam at a pitch of 0.5 μm. Is obtained by a calculation of (area of all crystal grains having a crystal grain size more than twice the average crystal grain size / area of all crystal grains).

また、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積のうち、Cube方位粒が占める面積率は、測定エリア300×300μmに対して0.5μmピッチで電子線を照射し、上記結晶方位解析法により測定した該当するCube方位粒の面積を測定し、(平均結晶粒径の2倍以上の結晶粒径を有するCube方位粒の面積/平均結晶粒径の2倍以上の結晶粒径を有する全結晶粒の面積)という計算により求める。   The area ratio occupied by Cube orientation grains out of the area occupied by crystal grains having a crystal grain size more than twice the average crystal grain size is irradiated with electron beams at a pitch of 0.5 μm with respect to a measurement area of 300 × 300 μm. Then, the area of the corresponding Cube-oriented grains measured by the above-mentioned crystal orientation analysis method is measured, and (the area of Cube-oriented grains having a crystal grain size twice or more of the average crystal grain size / twice or more of the average crystal grain size) The area of all crystal grains having a crystal grain size of

尚、結晶方位分布は板厚方向に分布がある可能性がある。従って、板厚方向に何点か任意にとって平均を得ることによって求める方が好ましい。   The crystal orientation distribution may be distributed in the thickness direction. Therefore, it is preferable to obtain some points arbitrarily in the thickness direction by obtaining an average.

(銅合金の化学成分組成)
次に、本発明の銅合金の成分限定理由について説明する。以下、各元素の含有量(比率)については単に%と記載するが、全て質量%を示す。
(Chemical composition of copper alloy)
Next, the reasons for limiting the components of the copper alloy of the present invention will be described. Hereinafter, the content (ratio) of each element is simply described as%, but all indicate mass%.

Ni:1.5%〜3.6%
Niは、Siとの化合物を晶出または析出させることにより、銅合金の強度および導電率を確保する作用がある。Niの含有量が1.5%未満であると、析出物の生成量が不十分となり、所望の強度が得られなくなり、また、銅合金組織の結晶粒が粗大化してしまう。一方、Niの含有量が3.6%を超えると、導電率が低下することに加えて、粗大な析出物の数が多くなりすぎ、曲げ加工性が低下してしまう。従って、Niの含有量は1.5%〜3.6%の範囲とする。
Ni: 1.5% to 3.6%
Ni has the effect of securing the strength and conductivity of the copper alloy by crystallizing or precipitating a compound with Si. If the Ni content is less than 1.5%, the amount of precipitates generated becomes insufficient, the desired strength cannot be obtained, and the crystal grains of the copper alloy structure become coarse. On the other hand, if the Ni content exceeds 3.6%, the electrical conductivity is lowered, and the number of coarse precipitates is excessively increased, so that the bending workability is lowered. Therefore, the Ni content is in the range of 1.5% to 3.6%.

尚、Niの含有量により、達成可能な強度レベルは異なることとなる。Niの含有量が1.5%〜2.0%未満の場合は、圧延直角方向(T.D.方向)の0.2%耐力(YP)が650MPa以上、曲げ加工性が日本伸銅協会技術標準JBMA−T307に記載の評価基準B以上を、それぞれ達成することが可能となる。一方、Niの含有量が2.0%〜3.6%の場合は、圧延直角方向(T.D.方向)の0.2%耐力(YP)が700MPa以上、曲げ加工性が日本伸銅協会技術標準JBMA−T307に記載の評価基準C以上を、それぞれ達成することが可能となる。   The achievable strength level varies depending on the Ni content. When the Ni content is 1.5% to less than 2.0%, the 0.2% proof stress (YP) in the direction perpendicular to the rolling direction (TD direction) is 650 MPa or more, and the bending workability is the Japan Copper and Brass Association. It becomes possible to achieve each of the evaluation standards B and above described in the technical standard JBMA-T307. On the other hand, when the Ni content is 2.0% to 3.6%, the 0.2% proof stress (YP) in the direction perpendicular to the rolling direction (TD direction) is 700 MPa or more, and the bending workability is Nippon Shindoh. It becomes possible to achieve each of the evaluation criteria C and above described in the association technical standard JBMA-T307.

Si:0.3%〜1.0%
Siは、Niとの化合物を晶出または析出させることにより、銅合金の強度および導電率を向上させる。Siの含有量が0.3%未満であると、析出物の生成が不十分となり、所望の強度が得られなくなり、また、銅合金組織の結晶粒が粗大化してしまう。一方、Siの含有量が1.0%を超えると、粗大な析出物の数が多くなりすぎ、曲げ加工性が低下してしまう。従って、Siの含有量は0.3%〜1.0%の範囲とする。
Si: 0.3% to 1.0%
Si improves the strength and electrical conductivity of the copper alloy by crystallizing or precipitating a compound with Ni. If the Si content is less than 0.3%, the formation of precipitates becomes insufficient, the desired strength cannot be obtained, and the crystal grains of the copper alloy structure become coarse. On the other hand, when the content of Si exceeds 1.0%, the number of coarse precipitates is excessively increased and bending workability is deteriorated. Therefore, the Si content is in the range of 0.3% to 1.0%.

尚、Siの含有量によっても、達成可能な強度レベルは異なることとなる。Siの含有量が0.3%〜0.5%未満の場合は、圧延直角方向(T.D.方向)の0.2%耐力(YP)が650MPa以上、曲げ加工性が日本伸銅協会技術標準JBMA−T307に記載の評価基準B以上を、それぞれ達成することが可能となる。一方、Siの含有量が0.5%〜1.0%の場合は、圧延直角方向(T.D.方向)の0.2%耐力(YP)が700MPa以上、曲げ加工性が日本伸銅協会技術標準JBMA−T307に記載の評価基準C以上を、それぞれ達成することが可能となる。   The achievable strength level varies depending on the Si content. When the Si content is less than 0.3% to less than 0.5%, the 0.2% yield strength (YP) in the direction perpendicular to the rolling direction (TD direction) is 650 MPa or more, and the bending workability is Japan Copper and Brass Association. It becomes possible to achieve each of the evaluation standards B and above described in the technical standard JBMA-T307. On the other hand, when the Si content is 0.5% to 1.0%, the 0.2% proof stress (YP) in the direction perpendicular to the rolling direction (TD direction) is 700 MPa or more, and the bending workability is Nippon Shindoh. It becomes possible to achieve each of the evaluation criteria C and above described in the association technical standard JBMA-T307.

本発明の銅合金は、以上の元素のほかは、銅と不可避的不純物で構成されるが、以下の元素を単独で、或いは複合して含有しても良い。   The copper alloy of the present invention is composed of copper and unavoidable impurities in addition to the above elements, but may contain the following elements alone or in combination.

Zn:0.05%〜3.0%
Znは、電子部品の接合に用いるSnめっきやハンダの耐熱剥離性を改善し、熱剥離を抑制するのに有効な元素である。このような効果を有効に発揮させるためには、0.05%以上含有させる必要がある。しかし、Znの含有量が3.0%を超えると、却って溶融Snやハンダの濡れ広がり性を劣化させ、また、導電率も大きく低下してしまう。従って、Znを含有させる場合は、耐熱剥離性向上効果と導電率低下作用とを考慮したうえで、0.05%〜3.0%の範囲とする。
Zn: 0.05% to 3.0%
Zn is an element effective for improving the heat-resistant peelability of Sn plating and solder used for joining electronic components and suppressing thermal peeling. In order to exhibit such an effect effectively, it is necessary to contain 0.05% or more. However, if the Zn content exceeds 3.0%, the wet-spreading property of molten Sn and solder is deteriorated, and the electrical conductivity is greatly reduced. Therefore, when Zn is contained, the range of 0.05% to 3.0% is taken into consideration in consideration of the effect of improving the heat-resistant peelability and the effect of decreasing the electrical conductivity.

Sn:0.05%〜3.0%
Snは、銅合金中に固溶して強度向上に寄与する。この効果を有効に発揮させるためには、0.05%以上含有させる必要がある。しかし、Snの含有量が3.0%を超えると、その効果が飽和すると共に、導電率を大きく低下させてしまう。従って、Snを含有させる場合は、強度向上効果と導電率低下作用とを考慮したうえで、0.05%〜3.0%の範囲とする。
Sn: 0.05% to 3.0%
Sn dissolves in the copper alloy and contributes to strength improvement. In order to exhibit this effect effectively, it is necessary to contain 0.05% or more. However, if the Sn content exceeds 3.0%, the effect is saturated and the conductivity is greatly reduced. Therefore, when Sn is contained, the range of 0.05% to 3.0% is set in consideration of the strength improvement effect and the conductivity lowering effect.

Fe、Mn、Mg、Co、Ti、Cr、Zrのうち一種または二種以上を合計で0.01%〜3.0%
これらの元素は、結晶粒の微細化に効果がある。また、Siとの間に化合物を形成させることで、強度、導電率が向上する。これらの効果を有効に発揮させる場合には、選択的に、Fe、Mn、Mg、Co、Ti、Cr、Zrのうち一種または二種以上を、合計で0.01%以上含有させる必要がある。しかし、これらの元素の合計含有量が3.0%を超えると、化合物が粗大になり、曲げ加工性を損なう。従って、選択的に含有させる場合のこれら元素の含有量は、合計で0.01%〜3.0%の範囲とする。
Totally 0.01% to 3.0% of one or more of Fe, Mn, Mg, Co, Ti, Cr and Zr
These elements are effective in reducing the crystal grains. Further, by forming a compound with Si, the strength and conductivity are improved. In order to effectively exhibit these effects, it is necessary to selectively contain one or more of Fe, Mn, Mg, Co, Ti, Cr, and Zr in a total of 0.01% or more. . However, if the total content of these elements exceeds 3.0%, the compound becomes coarse and the bending workability is impaired. Therefore, the content of these elements when selectively contained is in the range of 0.01% to 3.0% in total.

(製造条件)
本発明の銅合金(銅合金板)は、一般的な銅合金を製造する場合と同様に、熱間圧延、冷間圧延、溶体化処理、時効処理、冷間圧延を経て製造することができるが、本発明の銅合金を製造するための製造条件を、本発明者らが鋭意検討したところ、特に熱間圧延工程を工夫することにより、本発明で意図する高強度、優れた曲げ加工性、および優れた耐応力緩和特性を兼ね備えた銅合金を製造することができることを確認した。以下にその製造条件を詳細に説明する。
(Production conditions)
The copper alloy (copper alloy plate) of the present invention can be produced through hot rolling, cold rolling, solution treatment, aging treatment, and cold rolling, as in the case of producing a general copper alloy. However, when the present inventors diligently examined the production conditions for producing the copper alloy of the present invention, particularly by devising the hot rolling process, the high strength intended by the present invention, excellent bending workability It was also confirmed that a copper alloy having excellent stress relaxation characteristics can be produced. The manufacturing conditions will be described in detail below.

尚、本発明の銅合金は、基本的には、圧延された銅合金板であり、これを幅方向にスリットした条や、これら板、条をコイル化したものも本発明の銅合金に含まれる。   Incidentally, the copper alloy of the present invention is basically a rolled copper alloy plate, and the strip formed by slitting the strip in the width direction, and those obtained by coiling these plates and strips are also included in the copper alloy of the present invention. It is.

熱間圧延工程は、熱間圧延終了後の冷却途中の400〜600℃の温度域で、10分以上保持する条件で行い、次いで急冷することが望ましい。保持温度が400℃未満または600℃を超える、あるいは保持時間が10分未満であると、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率が3%未満となりやすい。またはその平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積のうち、Cube方位粒が占める面積率が50%未満となりやすい。その場合は曲げ加工性と耐応力緩和特性を同時に向上させることができなくなる。   It is desirable that the hot rolling step be performed under the condition of holding for 10 minutes or more in a temperature range of 400 to 600 ° C. during cooling after the hot rolling is completed, and then rapidly cooling. When the holding temperature is less than 400 ° C. or more than 600 ° C., or the holding time is less than 10 minutes, the area ratio occupied by crystal grains having a crystal grain size twice or more the average crystal grain size tends to be less than 3%. Or, the area ratio occupied by the Cube orientation grains tends to be less than 50% of the area occupied by the crystal grains having a crystal grain size twice or more of the average crystal grain size. In that case, it becomes impossible to improve bending workability and stress relaxation resistance simultaneously.

続く溶体化処理の昇温速度は0.1℃/s以下とすることが望ましく、降温速度は100℃/s以上とすることが望ましい。昇温速度が0.1℃/sよりも大きい場合は、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率が3%未満となってしまうことがあり、その場合は曲げ加工性と耐応力緩和特性を同時に向上させることができなくなる。一方、降温速度が100℃/sよりも遅いと、冷却中に析出が起きてしまうことがあり、その場合は続く時効処理において、十分な析出が得られず強度低下を引き起こす原因となってしまう。   The rate of temperature rise in the subsequent solution treatment is desirably 0.1 ° C./s or less, and the rate of temperature decrease is desirably 100 ° C./s or more. When the rate of temperature increase is greater than 0.1 ° C./s, the area ratio occupied by crystal grains having a crystal grain size more than twice the average crystal grain size may be less than 3%. Cannot improve the bending workability and the stress relaxation resistance at the same time. On the other hand, if the rate of temperature decrease is lower than 100 ° C./s, precipitation may occur during cooling, and in that case, sufficient precipitation cannot be obtained in the subsequent aging treatment, causing a decrease in strength. .

また、溶体化処理温度は750〜900℃とすることが望ましい。溶体化処理温度が750℃より低くなると、結晶粒の平均結晶粒径が5μmより小さくなりやすく、耐応力緩和特性が劣化しやすくなる。一方、溶体化処理温度が900℃より高くなると、結晶粒の平均結晶粒径が30μmより大きくなりやすく、曲げ加工性が劣化しやすくなる。   The solution treatment temperature is desirably 750 to 900 ° C. When the solution treatment temperature is lower than 750 ° C., the average crystal grain size of the crystal grains tends to be smaller than 5 μm, and the stress relaxation resistance is likely to deteriorate. On the other hand, when the solution treatment temperature is higher than 900 ° C., the average crystal grain size of the crystal grains tends to be larger than 30 μm, and the bending workability tends to deteriorate.

溶体化処理後は、通常の銅合金の製造工程と同様に、時効処理−最終冷間圧延(−低温焼鈍)という工程を経ることで本発明の銅合金は製造される。時効処理における時効温度は、通常の銅合金の製造を行う場合と同様に、400〜550℃とすることが望ましい。   After the solution treatment, the copper alloy of the present invention is produced through a process of aging treatment-final cold rolling (-low temperature annealing), similarly to the ordinary copper alloy production process. The aging temperature in the aging treatment is desirably 400 to 550 ° C., as in the case of producing a normal copper alloy.

また、最終冷間圧延の圧下率は25〜60%とすることが望ましい。その圧下率が25%より小さい場合は、圧延直角方向(T.D.方向)の0.2%耐力(YP)が小さくなり強度が低下しやすくなる。一方、圧下率が60%を超えた場合は、十分な曲げ加工性を得ることができなくなる場合がある。   Further, the rolling reduction of the final cold rolling is desirably 25 to 60%. If the rolling reduction is less than 25%, the 0.2% proof stress (YP) in the direction perpendicular to the rolling direction (TD direction) becomes small and the strength tends to decrease. On the other hand, if the rolling reduction exceeds 60%, sufficient bending workability may not be obtained.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

以下、本発明の実施例について説明する。表1および表2に示す種々の化学成分組成のCu−Ni−Si−Zn−Sn系銅合金の銅合金薄板を、表1および表2に示す種々の条件で製造し、平均結晶粒径や集合組織などの板組織、強度や導電率、曲げ加工性、耐応力緩和特性などの板特性を各々調査して評価した。それらの結果を表3〜表6に示す。   Examples of the present invention will be described below. Copper alloy thin plates of Cu—Ni—Si—Zn—Sn based copper alloys having various chemical composition shown in Tables 1 and 2 were produced under various conditions shown in Tables 1 and 2, and the average crystal grain size and The plate properties such as the texture, the plate properties such as the strength, conductivity, bending workability and stress relaxation resistance were investigated and evaluated. The results are shown in Tables 3 to 6.

具体的な銅合金板の製造方法は、クリプトル炉において、大気中、木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、表1および表2に記載する化学組成を有する厚さ50mmの鋳塊を得た。そして、その鋳塊の表面を面削した後、950℃の温度で、厚さが30〜6mmになるまで熱間圧延し、750℃以上の温度から、空冷により600〜300℃に冷却し、600〜300℃に加熱したバッチ焼鈍炉を用いて1分〜120分保持した後、水中で急冷した。次に、酸化スケールを除去した後、冷間圧延を行い、厚さが0.20〜0.33mmの板を得た。   A specific method for producing a copper alloy plate is a 50 mm thick casting having a chemical composition as shown in Tables 1 and 2 by melting in the kryptor furnace in the atmosphere under a charcoal coating and casting into a cast iron book mold. A lump was obtained. And after chamfering the surface of the ingot, it is hot-rolled at a temperature of 950 ° C. until the thickness becomes 30 to 6 mm, and is cooled to 600 to 300 ° C. by air cooling from a temperature of 750 ° C. or higher. After holding for 1 minute to 120 minutes using a batch annealing furnace heated to 600 to 300 ° C., it was rapidly cooled in water. Next, after removing the oxide scale, cold rolling was performed to obtain a plate having a thickness of 0.20 to 0.33 mm.

次いで、昇温速度が0.03〜0.05℃のバッチ炉、および昇温速度が10〜50℃/sの塩浴炉、または通電加熱機を使用し、表1および表2に記載する種々の条件で、溶体化処理を行い、その後、水冷を行った。   Then, using a batch furnace with a temperature rising rate of 0.03 to 0.05 ° C., a salt bath furnace with a temperature rising rate of 10 to 50 ° C./s, or an electric heater, listed in Table 1 and Table 2. Solution treatment was performed under various conditions, followed by water cooling.

これら溶体化処理(焼鈍)後の試料について、時効処理−最終冷間圧延、或いは、最終冷間圧延−時効処理という工程を経て、厚さが0.15mmの冷延板とした。この冷延板に対し、塩浴炉において、480℃×30sの低温焼鈍処理を施して最終の銅合金板を得た。   About the sample after these solution treatment (annealing), it passed through the process of aging treatment-final cold rolling, or final cold rolling-aging treatment, and it was set as the cold rolled sheet with a thickness of 0.15 mm. The cold-rolled sheet was subjected to a low-temperature annealing treatment of 480 ° C. × 30 s in a salt bath furnace to obtain a final copper alloy sheet.

(組織)
平均結晶粒径、本発明で規定する各面積率:
得られた各銅合金薄板から組織観察片を採取し、上述した要領で、平均結晶粒径および本発明で規定する各面積率を、電界放出型走査電子顕微鏡に後方散乱電子回折像システムを搭載した結晶方位解析法により測定した。具体的には、銅合金薄板の圧延面表面を機械研磨し、更に、バフ研磨に次いで電解研磨して、表面を調整した試料を準備した。その後、日本電子社製FESEM(JEOL JSM 5410)を用いて、EBSPによる結晶方位測定並びに結晶粒径測定を行った。測定領域は300μm×300μmの領域であり、測定ステップ間隔を0.5μmとした。
(Organization)
Average crystal grain size, each area ratio defined in the present invention:
Take a structure observation piece from each obtained copper alloy thin plate, and mount the backscattered electron diffraction image system on the field emission scanning electron microscope with the average crystal grain size and each area ratio specified in the present invention as described above. The crystal orientation analysis method was used. Specifically, the surface of the rolled surface of the copper alloy thin plate was mechanically polished, and further subjected to electrolytic polishing after buffing to prepare a sample whose surface was adjusted. Thereafter, crystal orientation measurement and crystal grain size measurement by EBSP were performed using FESEM (JEOL JSM 5410) manufactured by JEOL Ltd. The measurement area was an area of 300 μm × 300 μm, and the measurement step interval was 0.5 μm.

測定領域は300μm×300μmの領域であり、測定ステップ間隔を0.5μmとした。測定面は板厚の1/4t部と1/2t部の夫々3箇所ずつとし、計6点の平均から本発明で規定する各面積率を算出した。   The measurement area was an area of 300 μm × 300 μm, and the measurement step interval was 0.5 μm. The measurement surfaces were each 3 points of 1/4 t part and 1/2 t part of the plate thickness, and each area ratio defined by the present invention was calculated from the average of a total of 6 points.

引張試験:
引張試験は、試験片の長手方向を圧延方向としたJIS13号B試験片を用いて、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で実施し、0.2%耐力(MPa)を測定した。尚、この引張試験では、同一条件の試験片を3本試験し、それらの平均値を採用した。
Tensile test:
The tensile test was performed using a JIS No. 13 B test piece in which the longitudinal direction of the test piece was the rolling direction, at a room temperature, a test speed of 10.0 mm / min, and GL = 50 mm using a 5882 type Instron universal testing machine And 0.2% proof stress (MPa) was measured. In this tensile test, three test pieces under the same conditions were tested, and the average value thereof was adopted.

導電率:
導電率は、試験片の長手方向を圧延方向として、ミーリングにより、幅10mm×長さ300mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により算出した。尚、この測定でも、同一条件の試験片を3本測定し、それらの平均値を採用した。
conductivity:
Conductivity is measured by measuring the electrical resistance with a double-bridge resistance measuring device by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling with the longitudinal direction of the test piece as the rolling direction. Calculated by the method. In this measurement as well, three test pieces under the same conditions were measured and the average value thereof was adopted.

曲げ加工性:
銅合金板試料の曲げ試験は、以下の方法により実施した。銅合金板試料より幅10mm、長さ30mmの板材を切出し、1000kgf(約9800N)の荷重をかけて曲げ半径0.15mmで、GoodWay(曲げ軸が圧延方向に直角)に90°曲げを行った。その後、1000kgf(約9800N)の荷重をかけて180°密着曲げを実施し、曲げ部における割れの発生の有無を、50倍の光学顕微鏡で目視観察した。その際に、割れの評価は日本伸銅協会技術標準JBMA−T307に記載のA〜Eにより評価した。
Bending workability:
The bending test of the copper alloy plate sample was performed by the following method. A plate material having a width of 10 mm and a length of 30 mm was cut out from the copper alloy plate sample, and a load of 1000 kgf (about 9800 N) was applied to bend 90 degrees to Good Way (the bending axis was perpendicular to the rolling direction) with a bending radius of 0.15 mm. . Thereafter, 180 ° contact bending was performed with a load of 1000 kgf (about 9800 N), and the presence or absence of cracks in the bent portion was visually observed with a 50 × optical microscope. In that case, the evaluation of the crack was evaluated by A to E described in the Japan Copper and Brass Association Technical Standard JBMA-T307.

耐応力緩和特性:
耐応力緩和特性(応力緩和率)は、銅合金板試料より試験片を採取し、図1および図2に示す片持ち梁方式を用いて測定した。具体的には、まず、銅合金板試料より、長さ方向が板材の圧延方向に対して直角方向になるようにして幅10mmの短冊状試験片1を切り出した。続いて、その短冊状試験片1の一端を剛体試験台2に固定した後、その短冊状試験片1のスパン長Lの部位に、図1に示すように、d(=10mm)の大きさのたわみ量を与えた。尚、前記スパン長Lは、材料耐力の80%に相当する表面応力が材料に負荷されるようにして決定する。この状態で、オーブン中に短冊状試験片1を180℃にて24時間保持した後に取り出し、たわみ量dを取り去ったときの永久歪みδ(図2に示す)を測定し、RS=(δ/d)×100という計算式から応力緩和率(RS:%)を求めた。
Stress relaxation resistance:
The stress relaxation resistance (stress relaxation rate) was measured using a cantilever method shown in FIGS. 1 and 2 by collecting a test piece from a copper alloy plate sample. Specifically, first, a strip-shaped test piece 1 having a width of 10 mm was cut out from a copper alloy plate sample so that the length direction was a direction perpendicular to the rolling direction of the plate material. Subsequently, after fixing one end of the strip-shaped test piece 1 to the rigid body test stand 2, a size of d (= 10 mm) as shown in FIG. The amount of deflection was given. The span length L is determined such that a surface stress corresponding to 80% of the material yield strength is applied to the material. In this state, the strip-shaped test piece 1 was held in an oven at 180 ° C. for 24 hours and then taken out, and the permanent distortion δ (shown in FIG. 2) when the deflection amount d was removed was measured, and RS = (δ / d) The stress relaxation rate (RS:%) was determined from the formula of x100.

以上の各試験の結果、引張試験での圧延直角方向(T.D.方向)の0.2%耐力(YP)が650MPa以上、導電率が30%IACS以上、曲げ試験での評価がA〜B、応力緩和率が20%以下のもの、或いは、引張試験での圧延直角方向(T.D.方向)の0.2%耐力(YP)が700MPa以上、導電率が30%IACS以上、曲げ試験での評価がA〜C、応力緩和率が20%以下のものを、本発明の高強度、高導電性、優れた曲げ加工性、優れた耐応力緩和特性を兼ね備えた銅合金であると評価する。   As a result of the above tests, the 0.2% proof stress (YP) in the direction perpendicular to the rolling (TD direction) in the tensile test is 650 MPa or more, the conductivity is 30% IACS or more, and the evaluation in the bending test is A to A. B, with a stress relaxation rate of 20% or less, or 0.2% yield strength (YP) in the direction perpendicular to the rolling (TD direction) in the tensile test is 700 MPa or more, conductivity is 30% IACS or more, bending When the evaluation in the test is A to C and the stress relaxation rate is 20% or less, the copper alloy having the high strength, high conductivity, excellent bending workability, and excellent stress relaxation resistance of the present invention. evaluate.

表1および表2に示すように、実施例(発明例)である試料No.1〜18は、化学成分組成、平均結晶粒径、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積のうちCube方位粒が占める面積率が、各々規定の範囲内に制御されている。   As shown in Tables 1 and 2, Sample No. 1 to 18 are a chemical component composition, an average crystal grain size, an area ratio occupied by a crystal grain having a crystal grain size more than twice the average crystal grain size, and a crystal having a crystal grain size more than twice the average crystal grain size Of the area occupied by the grains, the area ratio occupied by the Cube-oriented grains is controlled within a specified range.

その結果、試料No.1〜4,6〜18は、引張試験での圧延直角方向(T.D.方向)の0.2%耐力(YP)が700MPa以上、導電率が30%IACS以上、曲げ試験での評価がA〜C、応力緩和率が20%以下という、本発明の銅合金に関する要件を満足する結果となった。   As a result, sample no. 1-4, 6-18 have a 0.2% proof stress (YP) in the direction perpendicular to the rolling (TD direction) in the tensile test of 700 MPa or more, a conductivity of 30% IACS or more, and an evaluation in a bending test. It became the result of satisfying the requirements regarding the copper alloy of this invention that AC and stress relaxation rate were 20% or less.

また、試料No.5は、引張試験での圧延直角方向(T.D.方向)の0.2%耐力(YP)が650MPa以上、導電率が30%IACS以上、曲げ試験での評価がA〜B、応力緩和率が20%以下という、本発明の銅合金に関する要件を満足する結果となった。   Sample No. 5: 0.2% proof stress (YP) in the direction perpendicular to the rolling (TD direction) in the tensile test is 650 MPa or more, conductivity is 30% IACS or more, evaluation in the bending test is A to B, stress relaxation The result was that the requirement for the copper alloy of the present invention was 20% or less.

一方、比較例である試料No.19〜23は、何れかの元素の含有量が本発明で規定する範囲を満たしていない。また、試料No.24〜31では、平均結晶粒径、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率、平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積のうちCube方位粒が占める面積率の何れか1つ以上を、本発明で規定する範囲内に制御することができなかった。   On the other hand, sample No. which is a comparative example. In 19 to 23, the content of any element does not satisfy the range defined in the present invention. Sample No. In 24-31, the average crystal grain size, the area ratio occupied by crystal grains having a crystal grain size twice or more than the average crystal grain size, the area occupied by crystal grains having a crystal grain size twice or more the average crystal grain size Of these, any one or more of the area ratios occupied by the Cube-oriented grains could not be controlled within the range defined by the present invention.

その結果、これら比較例では、表3に示すように、引張試験での圧延直角方向(T.D.方向)の0.2%耐力(YP)が650MPa以上、導電率が30%IACS以上、曲げ試験での評価がA〜B、応力緩和率が20%以下、或いは、引張試験での圧延直角方向(T.D.方向)の0.2%耐力(YP)が700MPa以上、導電率が30%IACS以上、曲げ試験での評価がA〜C、応力緩和率が20%以下という要件を、少なくとも1項目で満足できないという結果となった。   As a result, in these comparative examples, as shown in Table 3, the 0.2% proof stress (YP) in the direction perpendicular to the rolling (TD direction) in the tensile test is 650 MPa or more, the conductivity is 30% IACS or more, The evaluation in the bending test is A to B, the stress relaxation rate is 20% or less, or the 0.2% proof stress (YP) in the direction perpendicular to the rolling (TD direction) in the tensile test is 700 MPa or more, and the conductivity is As a result, at least one item could not satisfy the requirements of 30% IACS or more, A to C in the bending test, and stress relaxation rate of 20% or less.

1…短冊状試験片
2…剛体試験台
1 ... Strip-shaped specimen 2 ... Rigid body test stand

Claims (3)

質量%で、Ni:1.5〜3.6%、Si:0.3〜1.0%を含有し、残部が銅および不可避的不純物からなる銅合金であって、
この銅合金の結晶粒の平均結晶粒径が5μm〜30μmであると共に、
その平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積率が3%〜20%であり、
且つ、その平均結晶粒径の2倍以上の結晶粒径を有する結晶粒が占める面積のうち、Cube方位粒が占める面積率が50%以上であることを特徴とする銅合金。
It is a copper alloy containing Ni: 1.5-3.6%, Si: 0.3-1.0%, and the balance consisting of copper and inevitable impurities,
The average grain size of the crystal grains of this copper alloy is 5 μm to 30 μm,
The area ratio occupied by crystal grains having a crystal grain size more than twice the average crystal grain size is 3% to 20% ,
And the copper alloy characterized by the area ratio which a Cube azimuth grain occupies is 50% or more among the area which the crystal grain which has a crystal grain size 2 times or more of the average crystal grain size occupies.
更に、質量%で、Sn:0.05〜3.0%および/またはZn:0.05〜3.0%を含有する請求項1記載の銅合金。   Furthermore, the copper alloy of Claim 1 which contains Sn: 0.05-3.0% and / or Zn: 0.05-3.0% by the mass%. 更に、質量%で、Fe、Mn、Mg、Co、Ti、Cr、Zrのうち一種または二種以上を、合計で0.01〜3.0%含有する請求項1または2記載の銅合金。 Furthermore, the copper alloy of Claim 1 or 2 which contains 0.01-3.0% in total of 1 type, or 2 or more types among Fe, Mn, Mg, Co, Ti, Cr, Zr by the mass%.
JP2011040393A 2010-12-13 2011-02-25 Copper alloy Expired - Fee Related JP5690169B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011040393A JP5690169B2 (en) 2011-02-25 2011-02-25 Copper alloy
US13/299,828 US9845521B2 (en) 2010-12-13 2011-11-18 Copper alloy
EP11009294A EP2463393A1 (en) 2010-12-13 2011-11-23 Copper alloy
EP12007912A EP2562280A1 (en) 2010-12-13 2011-11-23 Copper alloy
CN201110408401.7A CN102534298B (en) 2010-12-13 2011-12-09 Copper alloy
KR1020110132859A KR101387263B1 (en) 2010-12-13 2011-12-12 Copper alloy
KR1020130122577A KR101396616B1 (en) 2010-12-13 2013-10-15 Copper alloy
KR1020130122579A KR101396766B1 (en) 2010-12-13 2013-10-15 Copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040393A JP5690169B2 (en) 2011-02-25 2011-02-25 Copper alloy

Publications (2)

Publication Number Publication Date
JP2012177152A JP2012177152A (en) 2012-09-13
JP5690169B2 true JP5690169B2 (en) 2015-03-25

Family

ID=46979185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040393A Expired - Fee Related JP5690169B2 (en) 2010-12-13 2011-02-25 Copper alloy

Country Status (1)

Country Link
JP (1) JP5690169B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5988745B2 (en) * 2012-07-18 2016-09-07 三菱伸銅株式会社 Cu-Ni-Si based copper alloy plate with Sn plating and method for producing the same
JP6181392B2 (en) * 2013-03-12 2017-08-16 Jx金属株式会社 Cu-Ni-Si copper alloy
JP2016204757A (en) * 2016-07-20 2016-12-08 Jx金属株式会社 Cu-Ni-Si-BASED COPPER ALLOY
JP6440760B2 (en) 2017-03-21 2018-12-19 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working
JP6345290B1 (en) 2017-03-22 2018-06-20 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118832B2 (en) * 2004-04-14 2008-07-16 三菱伸銅株式会社 Copper alloy and manufacturing method thereof
US8268098B2 (en) * 2006-05-26 2012-09-18 Kobe Steel, Ltd. Copper alloy having high strength, high electric conductivity and excellent bending workability
JP4357536B2 (en) * 2007-02-16 2009-11-04 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent strength and formability
KR101515668B1 (en) * 2007-11-05 2015-04-27 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material
JP4563495B1 (en) * 2009-04-27 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012177152A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
KR101396766B1 (en) Copper alloy
JP5690170B2 (en) Copper alloy
JP4809935B2 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP3838521B1 (en) Copper alloy having high strength and excellent bending workability and method for producing the same
TWI433939B (en) Cu-mg-p based copper alloy material and method of producing the same
JP4830048B1 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
JP5525247B2 (en) Copper alloy with high strength and excellent bending workability
WO2011068135A1 (en) Copper alloy sheet and process for producing same
WO2013018228A1 (en) Copper alloy
TW201132768A (en) Cu-mg-p-based copper alloy bar and method for producing same
JP6317967B2 (en) Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP2014029031A (en) Copper alloy sheet material and production method of the same
JP5690169B2 (en) Copper alloy
JP5750070B2 (en) Copper alloy
JP6696770B2 (en) Copper alloy plate and connector
JP5314663B2 (en) Copper alloy
JP2015036452A (en) Copper alloy sheet material and connector using the same, and production method of copper alloy sheet material
JP2013104082A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP5030191B1 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
TWI541366B (en) Cu-Ni-Si type copper alloy sheet excellent in deep drawing workability and a method for producing the same
JP2021046589A (en) Copper alloy, drawn copper article and electronic apparatus component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5690169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees