JP4642119B2 - Copper alloy and method for producing the same - Google Patents

Copper alloy and method for producing the same Download PDF

Info

Publication number
JP4642119B2
JP4642119B2 JP2009069923A JP2009069923A JP4642119B2 JP 4642119 B2 JP4642119 B2 JP 4642119B2 JP 2009069923 A JP2009069923 A JP 2009069923A JP 2009069923 A JP2009069923 A JP 2009069923A JP 4642119 B2 JP4642119 B2 JP 4642119B2
Authority
JP
Japan
Prior art keywords
rolling
copper alloy
crystal grain
thickness
grain layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009069923A
Other languages
Japanese (ja)
Other versions
JP2010222624A (en
Inventor
雅彦 石田
智幸 松井
槙也 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2009069923A priority Critical patent/JP4642119B2/en
Publication of JP2010222624A publication Critical patent/JP2010222624A/en
Application granted granted Critical
Publication of JP4642119B2 publication Critical patent/JP4642119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気接続用コネクタ、端子、リードフレーム、導線、箔等に用いられ、導電性とともに機械的強度に優れる銅合金及びその製造方法に関する。   The present invention relates to a copper alloy used for electrical connection connectors, terminals, lead frames, conducting wires, foils, etc., and having excellent mechanical strength as well as conductivity, and a method for producing the same.

電気接続用コネクタ、端子、リードフレーム、導線、箔等に用いられる銅合金として、Cu−Zr合金がよく知られている。
例えば特許文献1には、圧延法を用いて母材の強度を高めようとする際、圧延率を高くした場合に、銅合金からなる母材の強度を増大させると共に、その伸びも向上させることができ、ひいては良好な曲げ加工性を備え、耐熱クリープ特性にも優れた銅合金として、ジルコニウムを重量%で0.005以上0.5以下の範囲で含有し、微細な結晶粒と大きな結晶粒とを組み合わせた特定の結晶粒径の分布を有するものが記載されている。この銅合金においては、微細な結晶粒と大きな結晶粒とを組み合わせた形態が、結晶粒同士の界面において生じるクロスすべりを抑制するように働き、銅合金に強度と伸びのバランスをもたらすとともに、微細な結晶粒のみで構成された場合に見られる熱クリープ特性の劣化も防止することができ、強度と伸びをバランスよく備えるとともに、良好な曲げ加工性も併せ持つことができるものである。
A Cu—Zr alloy is well known as a copper alloy used for electrical connectors, terminals, lead frames, conducting wires, foils and the like.
For example, in Patent Document 1, when trying to increase the strength of a base material using a rolling method, when the rolling rate is increased, the strength of the base material made of a copper alloy is increased and the elongation is also improved. As a copper alloy with excellent bending workability and excellent heat-resistant creep characteristics, it contains zirconium in the range of 0.005 to 0.5 by weight%, and has fine and large crystal grains. And having a specific crystal grain size distribution in combination. In this copper alloy, the combination of fine crystal grains and large crystal grains works to suppress cross-slip that occurs at the interface between crystal grains, bringing the balance of strength and elongation to the copper alloy, Therefore, it is possible to prevent the deterioration of the thermal creep characteristics that are observed when the material is composed of only crystal grains, and to have a good balance between strength and elongation, as well as good bending workability.

また、特許文献2には、Cu−Zr二元系あるいはCu−Zr−B三元系からなる単純な合金組成において、電子部品の用途に応じて広い範囲で選択することができる強度と導電性を兼備した銅合金として、特定の組成式で表され、Cu母相と、Cu母相とCu−Zr間あるいはCu−Zr−B間のいずれかまたは双方の化合物との共晶相とが互いに層状となす組織で構成され、隣り合うCu母相結晶粒同士が断続的に接する2相組織を呈する銅合金が示されている。   Patent Document 2 discloses strength and conductivity that can be selected in a wide range according to the use of electronic components in a simple alloy composition comprising a Cu-Zr binary system or a Cu-Zr-B ternary system. As a copper alloy having both, the Cu matrix phase and the eutectic phase of the Cu matrix phase and either the Cu matrix phase and the Cu-Zr or Cu-Zr-B or both compounds are mutually bonded. A copper alloy having a two-phase structure in which adjacent Cu matrix crystals are intermittently in contact with each other is shown.

特許文献3には、Co、Zr、Pを含む銅合金として、Coを、母相中に固溶体、単体及び/又は化合物として、0.02乃至0.5質量%(化合物の場合はCo換算値)含有し、Pを、母相中に固溶体、単体及び/又は化合物として、0.005乃至0.2質量%(化合物の場合はP換算値)含有し、残部がCuと不可避的不純物からなり、表面の残留炭素量が10mg/m2以下であり、更に、Zrを、母相中に固溶体、単体及び/又は化合物として、0.005乃至0.3質量%(化合物の場合はZr換算値)含有する銅合金部材が示されている。   In Patent Document 3, as a copper alloy containing Co, Zr, and P, Co is 0.02 to 0.5% by mass (in terms of Co in the case of a compound) as a solid solution, a simple substance and / or a compound in a matrix. ) And P is contained in the matrix as a solid solution, simple substance and / or compound, 0.005 to 0.2% by mass (in the case of a compound, converted to P), and the balance is composed of Cu and inevitable impurities. The amount of residual carbon on the surface is 10 mg / m 2 or less, and further Zr is 0.005 to 0.3% by mass as a solid solution, simple substance and / or compound in the parent phase (in the case of a compound, Zr equivalent value). The copper alloy member to contain is shown.

特許第4118832号公報Japanese Patent No. 4118832 特開2005−281757号公報JP 2005-281757 A 特開2008−274426号公報JP 2008-274426 A

ところで、特許文献1記載の銅合金は、強度と伸びをバランスよく備える、良好な曲げ加工性を有するものであるが、近年の電子部品の小型化、薄肉化の一層の要請に伴い、強度と伸びのバランスのさらなる向上が求められてきており、これらを高いレベルでバランスさせた銅合金が要望されている。   By the way, although the copper alloy described in Patent Document 1 has good bending workability with a good balance between strength and elongation, with the recent demand for smaller and thinner electronic parts, There has been a demand for further improvement in the balance of elongation, and a copper alloy in which these are balanced at a high level is desired.

一方、特許文献2記載の銅合金は、溶湯を炉壁に極力接触させないようにして溶解するレビテーション溶解等の無耐火物溶解法によって製造され、また、共晶相を得やすくするために冷間加工の前に熱処理を必要とするなど、複雑な製造管理が必要である。   On the other hand, the copper alloy described in Patent Document 2 is manufactured by a refractory melting method such as levitation melting that melts the molten metal so as not to contact the furnace wall as much as possible. Complicated production management is required, for example, heat treatment is required before inter-processing.

特許文献3記載の銅合金部材は、微量のCo、Zr、Pを含む銅合金部材であり、水が接触する部分にスケールが付着せず、使用の過程で熱交換性能が低下せず、水質によって稀に発生する孔食が発生しないスケール付着抑制機能を有する事を特徴としており、強度と伸びのバランスについては記載されていない。   The copper alloy member described in Patent Document 3 is a copper alloy member containing a small amount of Co, Zr, and P, scale does not adhere to the portion in contact with water, heat exchange performance does not deteriorate during use, and water quality It is characterized by having a function of suppressing the adhesion of scales that does not generate pitting corrosion that occurs rarely due to the above, and the balance between strength and elongation is not described.

本発明はこのような事情に鑑みてなされたもので、電子部品としての強度と伸びを高いレベルでバランスさせるとともに、製造管理も容易にすることができる銅合金及びその製造方法の提供を目的とする。 The present invention was made in view of such circumstances, and an object thereof is to provide a copper alloy capable of balancing strength and elongation as an electronic component at a high level and facilitating manufacturing management, and a manufacturing method thereof. To do.

一般に、強度の向上には結晶粒をナノスケールまで微細化することが有効であるとされているが、単に微細化するだけでは伸びを向上させることはできない。本発明者は、圧延方向(R.D.方向)に沿う縦断面組織の構造に着目し、微細で扁平な結晶粒が層状に連なるとともに、その結晶粒層が積み重なった層状組織を有しており、しかも、その結晶粒層の厚さ(間隔)が各層で均一で層状組織として安定していると、強度と伸びが高いレベルでバランスすることを見出した。   In general, it is considered effective to refine crystal grains to the nanoscale to improve the strength, but it is not possible to improve the elongation simply by miniaturization. The inventor pays attention to the structure of the longitudinal cross-sectional structure along the rolling direction (RD direction), and has a lamellar structure in which fine and flat crystal grains are arranged in layers and the crystal grain layers are stacked. Moreover, when the thickness (interval) of the crystal grain layer is uniform in each layer and is stable as a layered structure, it has been found that strength and elongation balance at a high level.

すなわち、本発明の銅合金は、量比率でZrを0.005%〜0.5%、Coを0.001%〜0.3%の範囲で含有し、残部がCu及び不可避不純物からなる銅合金であって、複数の扁平な結晶粒が面方向に連続してなる結晶粒層が板厚方向に積み重なって構成された層状組織を有し、前記結晶粒層の厚さが5nm〜550nmの範囲であり、前記層状組織中の前記結晶粒層の厚さのヒストグラムにおけるピーク値が50nm〜300nmの範囲内でかつ総度数の28%以上の頻度で存在し、その半値幅が180nm以下であることを特徴とする。 That is, the copper alloy of the present invention is from 0.005% to 0.5% of Zr in mass ratio of Co contained in the range of 0.001% to 0.3%, it the balance of Cu and inevitable impurities A copper alloy having a lamellar structure in which a plurality of flat crystal grains are continuously stacked in a plane direction, and the thickness of the crystal grain layer is 5 nm to The peak value in the histogram of the thickness of the crystal grain layer in the lamellar structure is in the range of 50 nm to 300 nm and at a frequency of 28% or more of the total frequency, and the half width is 180 nm or less. It is characterized by being.

この銅合金は、層状組織における各結晶粒層の個々の厚さは5nm〜550nmの範囲内とされ、その厚さのヒストグラムにおいて、ピーク値が28%以上の高い頻度で存在し、しかも半値幅が180nm以下と狭く、そのヒストグラム曲線は、幅が狭く鋭利な山形に突出した形状となっている。言い換えれば、層状組織における各結晶粒層の厚さが薄くかつ均一になっているのである。結晶粒層の厚さは、薄くかつ均一である方が強度が大きく、そのピーク値が300nmを超えると、十分な強度が得られない。一方、ピーク値を50nm未満とするのは製造技術的に困難であり、現実的でない。50nm〜250nmの範囲内にピーク値があるのがより好ましい。また、ピーク値の頻度が28%未満の場合も、ヒストグラム曲線がなだらかとなって、結晶粒層の厚さのばらつきが大きくなるため、強度向上を期待できない。
そして、このような層状組織の安定した銅合金とすることにより、強度と伸びのバランスが高いレベルで向上する。
In this copper alloy, the individual thickness of each grain layer in the layered structure is in the range of 5 nm to 550 nm, and in the histogram of the thickness, the peak value exists at a high frequency of 28% or more, and the half width Is as narrow as 180 nm or less, and its histogram curve has a shape that protrudes into a sharp mountain with a narrow width. In other words, the thickness of each crystal grain layer in the layered structure is thin and uniform. When the thickness of the crystal grain layer is thin and uniform, the strength is large. When the peak value exceeds 300 nm, sufficient strength cannot be obtained. On the other hand, it is difficult in terms of manufacturing technology to make the peak value less than 50 nm, which is not practical. More preferably, the peak value is in the range of 50 nm to 250 nm. Further, when the frequency of the peak value is less than 28%, the histogram curve becomes gentle and the variation in the thickness of the crystal grain layer becomes large, so that the strength improvement cannot be expected.
And by using such a stable copper alloy having a layered structure, the balance between strength and elongation is improved at a high level.

ここで、Zrの添加は強度の向上に有効であるが、その添加量が量比率で0.005%未満であると強度が十分に向上せず、また、0.5%を超えても、それ以上の強度の向上効果は期待できない。また、Zrを0.005%以上含有することで層状組織が発達して安定化する。逆に、0.5%を超えると、伸びが低下して好ましくない。したがって、Zrの含有率は量比率で0.005%〜0.5%とした。 Here, the addition of Zr is effective in improving the strength, the strength that the addition amount is less than 0.005% by mass ratio is not sufficiently improved, also it exceeds 0.5% No further improvement in strength can be expected. In addition, when the Zr content is 0.005% or more, the layered structure is developed and stabilized. On the other hand, if it exceeds 0.5%, the elongation decreases, which is not preferable. Accordingly, the content of Zr is set to 0.005% to 0.5% by mass ratio.

Coを微量に添加することは層状組織が均一で緻密になって安定する効果があり、適切な伸び(延性)を付与するが、その添加量が量比率で0.001%未満では、層状組織の各結晶粒層の厚さのばらつきを小さくする効果に乏しく、0.3%を超えても、それ以上の効果は期待できず、逆に、延性が著しく大きくなって引張強さを低下させ、また、導電率も低下する不具合がある。したがって、Coの含有率は量比率で0.001%〜0.3%とした。 Adding Co to trace has the effect of stably become uniform and dense lamellar structure, it imparts an appropriate elongation (ductility), in the less than 0.001%, the amount of addition mass ratio, stratified The effect of reducing the variation in the thickness of each grain layer in the structure is poor, and even if it exceeds 0.3%, no further effect can be expected, and conversely, the ductility is significantly increased and the tensile strength is reduced. In addition, there is a problem that the conductivity is also lowered. Therefore, the Co content was 0.001% to 0.3% by mass ratio.

また、本発明の銅合金の製造方法は、量比率でZrを0.005%〜0.5%、Coを0.001%〜0.3%の範囲で含有し、残部がCu及び不可避不純物からなる銅合金からなる母材に対して、930℃〜1030℃の温度で圧延するとともに、この温度下での最終パスの圧延率を20%以上とする熱間圧延処理とその後の水冷による急冷処理とからなる溶体化処理を施す第1工程と、該第1工程を経た母材に対して圧延率が90%以上の冷間圧延処理を施す第2工程と、該第2工程を経た母材に対して300℃〜380℃で1時間〜8時間の熱処理を施す第3工程とを備えたことを特徴とする。 Further, the method of manufacturing the copper alloy of the present invention is from 0.005% to 0.5% of Zr in mass ratio, contained in a range of 0.001% to 0.3% of Co, the balance being Cu and incidental against the base material consisting of Na Ru copper alloy from impurities, 930 ° C. while rolling at a temperature of ~1030 ℃, hot rolling process and subsequent water cooling to the rolling of the final pass under the temperature of 20% or more A first step of performing a solution treatment consisting of a rapid cooling process by the second step, a second step of performing a cold rolling treatment with a rolling rate of 90% or more on the base material that has undergone the first step, and the second step. And a third step of performing heat treatment at 300 ° C. to 380 ° C. for 1 hour to 8 hours with respect to the passed base material.

所定量のZr、Coを含有する銅合金を930℃〜1030℃の高温で溶体化処理することにより、Zrを母材に十分に固溶させ、後の第3工程での析出硬化作用を有効にする。その温度が930℃に達しないと、Zrを十分に固溶させることができず、後の時効による析出が不十分になる。
また、この熱間圧延のときの熱によって結晶粒が粗大になる傾向があるところ、熱間圧延時の最終圧延パスの圧延率を通常よりも大きい20%以上の強圧下とすることによって、結晶粒の成長を抑制するとともに、その大きな変形によって結晶粒を微細化させつつ圧延方向に扁平な形状とする。そして、この高熱の熱間圧延から急冷することにより、固溶したZrを過飽和状態とする。
A copper alloy containing a predetermined amount of Zr and Co is subjected to a solution treatment at a high temperature of 930 ° C. to 1030 ° C., thereby sufficiently dissolving Zr in the base material, and effective precipitation hardening in the subsequent third step. To. If the temperature does not reach 930 ° C., Zr cannot be sufficiently dissolved, and precipitation due to later aging becomes insufficient.
In addition, where the crystal grains tend to be coarse due to heat during the hot rolling, the rolling rate of the final rolling pass during the hot rolling is reduced by 20% or more, which is larger than usual, to produce crystals. While suppressing the growth of the grains, the shape is flattened in the rolling direction while making the grains fine by the large deformation. Then, by rapidly cooling from this hot hot rolling, the dissolved Zr is brought into a supersaturated state.

そして、続く第2工程の冷間圧延処理によってさらに薄肉化するとともに歪みを付与し、結晶粒をさらに微細化して強度を高める。また、この冷間圧延によって扁平な結晶粒が層状に発達し、その結晶粒層の厚さを小さくし、扁平な結晶粒層が板厚方向に積み重なった層状組織を構成していく。この層状組織においては、結晶粒は板厚方向に圧縮されて面方向に広がるように変形されており、転位に対する粒界が大きくなって強度が向上する。この冷間圧延の圧延率が90%未満であると、層状組織の各結晶粒層の厚さが不均一になる。   Then, it is further thinned by a subsequent cold rolling treatment in the second step and imparted with strain, and the crystal grains are further refined to increase the strength. Moreover, flat crystal grains develop into a layer by this cold rolling, the thickness of the crystal grain layer is reduced, and a lamellar structure in which the flat crystal grain layers are stacked in the plate thickness direction is formed. In this lamellar structure, the crystal grains are deformed so as to be compressed in the plate thickness direction and spread in the plane direction, and the grain boundaries for dislocations become large and the strength is improved. When the rolling ratio of this cold rolling is less than 90%, the thickness of each crystal grain layer of the layered structure becomes non-uniform.

次の熱処理によって、過飽和状態に固溶していたZrが析出しつつ一部はCoとも反応して、強度と伸びが高いレベルでバランスした銅合金を得ることができる。Zrは、溶体化処理によって母材に固溶していたものが、その後の熱処理によって析出すると、その析出物が合金の強度を向上させる効果があるが、反面、伸びを低下させることになる。一般に高強度化を図ろうとすると伸びが低下する。本発明においては、過飽和状態で固溶していたZrが時効により徐々に析出するのではあるが、その熱処理を比較的低温としたことにより、析出しきれずに結晶粒内に残っているZrがCoと反応して化合物を形成し、この化合物が層状組織を発達させるので、強度と伸びを高いレベルでバランスさせるものと想定される。この熱処理温度が380℃を超えると、伸びの向上効果を得ることができない。また、8時間を超えるほどに長過ぎても、再結晶化を招くため好ましくない。
この製造方法により得られる銅合金は、高強度と同時に良好な伸び特性を有し、曲げ加工等の加工性にも優れるものとなる。
By the next heat treatment, Zr that has been dissolved in a supersaturated state is precipitated, but a part thereof also reacts with Co to obtain a copper alloy that balances strength and elongation at a high level. Zr, which has been dissolved in the base material by solution treatment, is precipitated by the subsequent heat treatment, the precipitate has an effect of improving the strength of the alloy, but on the other hand, the elongation is reduced. In general, the elongation decreases when the strength is increased. In the present invention, Zr that has been dissolved in the supersaturated state gradually precipitates due to aging, but by setting the heat treatment to a relatively low temperature, Zr remaining in the crystal grains without being completely precipitated can be obtained. Since it reacts with Co to form a compound and this compound develops a layered structure, it is assumed that strength and elongation are balanced at a high level. If the heat treatment temperature exceeds 380 ° C., the effect of improving the elongation cannot be obtained. Further, if it is too long to exceed 8 hours, recrystallization is caused, which is not preferable.
The copper alloy obtained by this manufacturing method has good elongation characteristics as well as high strength, and is excellent in workability such as bending.

本発明によれば、Zr、Coの添加と扁平な結晶粒層による均一な層状組織との複合効果により、強度と伸びが高いレベルでバランスした銅合金を得ることができ、電子部品の小型化、薄肉化に好適に対応することができる。しかも、その製造方法も特別複雑な管理を必要とせず、容易に製造することができる。   According to the present invention, the combined effect of the addition of Zr and Co and the uniform layered structure of the flat crystal grain layer makes it possible to obtain a copper alloy that balances strength and elongation at a high level, thereby reducing the size of electronic components. Therefore, it is possible to suitably cope with the thinning. Moreover, the manufacturing method does not require special complicated management, and can be manufactured easily.

本発明に係る銅合金をTEMにより観察した層状組織の模式図である。It is the schematic diagram of the layered structure which observed the copper alloy which concerns on this invention by TEM. 図1の層状組織における各結晶粒層の厚さの分布を示すヒストグラム曲線である。It is a histogram curve which shows distribution of the thickness of each crystal grain layer in the layered structure of FIG.

以下、本発明の実施形態を説明する。
この実施形態の銅合金は、量比率でZrを0.005%〜0.5%の範囲で含有しているとともに、Coを量比率で0.001%〜0.3%の範囲で含有しており、図1に示すように、複数の扁平な結晶粒1からなる結晶粒層2が板厚方向に積み重なって構成された層状組織3を有している。
Embodiments of the present invention will be described below.
Copper alloy of this embodiment, along with being contained in a range from 0.005% to 0.5% of Zr in mass ratio, in the range of 0.001% to 0.3% of Co at mass ratio As shown in FIG. 1, it has a layered structure 3 in which a crystal grain layer 2 composed of a plurality of flat crystal grains 1 is stacked in the thickness direction.

Zrは、後述する溶体化処理後の時効処理によって結晶粒表面に析出して強度を向上させる効果がある。その含有量が量比率で0.005%未満であると強度が十分に向上せず、また、0.5%を超えても、強度の向上効果は飽和して、それ以上は期待できない。むしろ、0.5%を超えると伸びの低下を招く。
また、Zrを0.005%以上含有することで層状組織が発達して安定化する。
Coを微量に添加することは層状組織が均一になって安定する効果があり、適切な伸びを付与するが、その添加量が量比率で0.001%未満では、層状組織の各結晶粒層の厚さのばらつきを小さくする効果に乏しく、0.3%を超えても、効果が飽和し、逆に導電率が低下する不具合がある。
Zr has the effect of precipitating on the crystal grain surface and improving the strength by an aging treatment after the solution treatment described later. Its content is not strength is less than 0.005% by mass ratio is sufficiently improved and also more than 0.5% the effect of improving the strength is saturated, more can not be expected. Rather, if it exceeds 0.5%, the elongation is reduced.
In addition, when the Zr content is 0.005% or more, the layered structure is developed and stabilized.
Adding Co to trace has the effect of stably become uniform lamellar structure, imparts an appropriate elongation in the less than 0.001%, the amount of addition mass ratio, the crystal grains of the lamellar structure The effect of reducing the variation in layer thickness is poor, and even if it exceeds 0.3%, the effect is saturated, and conversely, the conductivity is lowered.

図1に示すように、層状組織3は、扁平な結晶粒1が面方向に連続してなる結晶粒層2が積み重なって構成されたものである。この図1は、圧延方向(R.D.方向)に沿う縦断面(T.D.方向に見た面)の組織を模式的に表したものであり、図1の紙面上の横方向(左右方向)が圧延方向(R.D.方向)、縦方向(上下方向)が板厚方向(N.D.方向)となっている。そして、その一つの結晶粒1をハッチングして示したように、各結晶粒1はいずれも扁平で圧延方向(R.D.方向)に引き延ばされているとともに、隣の結晶粒1が圧延方向(R.D.方向)に連なるように配置されて、これら連続状態の複数の結晶粒1により層が構成されている。本発明では、結晶粒1が層状に連続してなるものを結晶粒層2と称しており、その結晶粒層2が板厚方向(N.D.方向)に複数積み重なった状態のものを層状組織3と称している。このような層状組織3は、圧延方向(R.D.方向)の縦断面(T.D.方向に見た面)を透過型電子顕微鏡(TEM;Transmission Electron Microscope)で観察することにより確認することができる。   As shown in FIG. 1, the layered structure 3 is formed by stacking crystal grain layers 2 in which flat crystal grains 1 are continuous in a plane direction. 1 schematically shows the structure of a longitudinal section (the surface viewed in the TD direction) along the rolling direction (RD direction). The horizontal direction is the rolling direction (RD direction), and the vertical direction (vertical direction) is the plate thickness direction (ND direction). Then, as shown by hatching one crystal grain 1, each crystal grain 1 is flat and elongated in the rolling direction (RD direction), and the adjacent crystal grain 1 is The layers are constituted by the plurality of crystal grains 1 in a continuous state, arranged so as to be continuous in the rolling direction (RD direction). In the present invention, a crystal grain layer 1 in which crystal grains 1 are continuously formed is referred to as a crystal grain layer 2, and a plurality of crystal grain layers 2 stacked in the plate thickness direction (ND direction) are layered. It is called organization 3. Such a layered structure 3 is confirmed by observing a longitudinal section (surface viewed in the TD direction) in the rolling direction (RD direction) with a transmission electron microscope (TEM). be able to.

この層状組織3において、各結晶粒層2の厚さは5nm〜550nmの範囲内とされている。この結晶粒層の厚さの分布をヒストグラム曲線で表すと、図2に示すようになる。このヒストグラムは、TEMで観察した層状組織において、図1に一点鎖線で示したように、圧延方向(R.D.方向)に垂直な板厚方向(N.D.方向)に任意の直線Xを引き、この直線Xと各結晶粒層2間の界面との交点の間の距離(間隔)Tを測定し、その距離Tを結晶粒層2の厚さとして、これを200個測定して分布にしたものである。その測定値をヒストグラムにするときの階級の間隔は、例えば50nmとされる。この図2のヒストグラム曲線において、ピーク値をP、その半値幅をLとすると、ピーク値Pは50nm〜300nmの範囲内にあり、そのピーク値Pの頻度が総度数の28%以上とされ、また、半値幅Lが180nm以下とされる。つまり、ヒストグラム曲線の幅が狭く、上方に突出した鋭利な山形形状となっている。
これを言い換えると、層状組織3における各結晶粒層2の厚さが均一で揃っていることを意味している。結晶粒層2としては薄くて均一な方が強度向上に有利であり、50nm〜200nmの範囲にピーク値Pが存在しているのがより好ましい。半値幅も150nm以下であると、層状組織3がさらに均一になってより好ましい。
In this layered structure 3, the thickness of each crystal grain layer 2 is in the range of 5 nm to 550 nm. The thickness distribution of the crystal grain layer is represented by a histogram curve as shown in FIG. This histogram shows an arbitrary straight line X in the plate thickness direction (ND direction) perpendicular to the rolling direction (RD direction) in the layered structure observed by TEM, as shown by the one-dot chain line in FIG. , And measure the distance (interval) T between the intersections of the straight line X and the interface between the crystal grain layers 2, and measure the distance T as the thickness of the crystal grain layer 2 to measure 200 pieces. It is a distribution. The class interval when the measurement value is used as a histogram is, for example, 50 nm. In the histogram curve of FIG. 2, when the peak value is P and the half width is L, the peak value P is in the range of 50 nm to 300 nm, and the frequency of the peak value P is 28% or more of the total frequency, Further, the half width L is set to 180 nm or less. In other words, the histogram curve has a narrow width and a sharp mountain shape protruding upward.
In other words, it means that the thickness of each crystal grain layer 2 in the layered structure 3 is uniform and uniform. The thin and uniform crystal grain layer 2 is advantageous in improving the strength, and it is more preferable that the peak value P exists in the range of 50 nm to 200 nm. It is more preferable that the half width is 150 nm or less because the layered structure 3 becomes more uniform.

次に、このような銅合金を製造する方法について説明する。
この製造方法は、耐火物炉で銅原料を溶解し、その溶銅に少なくとも量比率でZrを0.005%〜0.5%、Coを0.001%〜0.3%の範囲で添加して銅合金母材を鋳造した。そして、その鋳造した母材に対して熱間圧延しつつ溶体化処理を施す第1工程、その後冷間圧延する第2工程、冷間圧延後の母材を時効又は焼鈍のための熱処理を施す第3工程の各処理を順次行う。以下、この工程順に説明する。
Next, a method for producing such a copper alloy will be described.
This manufacturing method can be prepared by dissolving the copper feedstock in a refractory furnace, 0.005% to 0.5% of Zr with at least mass ratio to the molten copper, the range of Co 0.001% to 0.3% The copper alloy base material was cast by adding. Then, a first step of performing solution treatment while hot rolling the cast base material, a second step of performing cold rolling thereafter, and a heat treatment for aging or annealing the base material after cold rolling Each process in the third step is sequentially performed. Hereinafter, it demonstrates in order of this process.

<第1工程>
第1工程は母材を高温で熱間圧延した後急冷する処理となる。
熱間圧延は、母材を930℃〜1030℃の温度に加熱して赤熱状態とし、これを複数回(5回〜10回)圧延ロールの間に通しながら徐々に圧延ロール間のギャップを小さくして、所定の厚さまで母材を圧延する。このときの圧延率は、最終パスの前までは、16%以上、例えば19%程度とされる。この段階での圧延率を16%以上とすることにより、結晶粒の均一化を図ることができる。この圧延率は、圧延ロールを通す前の母材の板厚に対する圧延ロール通過後の母材の板厚の減少率(又は前回パス時の圧延ロール間のギャップに対する今回パスの圧延ロール間のギャップの減少率)であり、この段階での圧延率は毎回の圧延率の平均である。
<First step>
The first step is a process in which the base material is hot-rolled at a high temperature and then rapidly cooled.
In hot rolling, the base material is heated to a temperature of 930 ° C. to 1030 ° C. to a red hot state, and the gap between the rolling rolls is gradually reduced while passing between the rolling rolls a plurality of times (5 to 10 times). Then, the base material is rolled to a predetermined thickness. The rolling rate at this time is 16% or more, for example, about 19% before the final pass. By making the rolling rate at this stage 16% or more, the crystal grains can be made uniform. This rolling rate is the reduction rate of the thickness of the base material after passing the rolling roll relative to the thickness of the base material before passing the rolling roll (or the gap between the rolling rolls of the current pass with respect to the gap between the rolling rolls in the previous pass) The reduction rate at this stage is an average of the rolling rates at each time.

そして、この熱間圧延の最終パスにおいて、20%以上の圧延率で加工する。この最終パスの圧延率を20%以上に大きくするのは、加熱による結晶粒の成長を強圧下によって抑制するとともに、その大きな変形力による歪みを付与して結晶粒を微細化させつつ圧延方向に扁平な形状とするためであり、後の冷間圧延後の層状組織における結晶粒層を均一化することができる。より好ましくは、この最終パスを24%以上の圧延率、例えば40%の圧延率とするのが良い。
また、この熱間圧延によって、Zrが母材に十分に固溶される。この熱間圧延終了後の母材は、10mm〜20mm程度の板厚の板材となる。
And in the final pass of this hot rolling, it processes with a rolling rate of 20% or more. Increasing the rolling rate of this final pass to 20% or more suppresses the growth of crystal grains by heating under high pressure, and imparts strain due to the large deformation force in the rolling direction while refining the crystal grains. This is to make the shape flat, and the crystal grain layer in the layered structure after the subsequent cold rolling can be made uniform. More preferably, the final pass should have a rolling rate of 24% or more, for example, a rolling rate of 40%.
Further, Zr is sufficiently dissolved in the base material by this hot rolling. The base material after the hot rolling is finished is a plate having a thickness of about 10 mm to 20 mm.

そして、この熱間圧延後の母材を水冷することにより急冷する。急冷の速度としては10℃/秒以上、好ましくは30℃/秒〜50℃/秒とされる。この急冷により、Zrが過飽和状態に固溶した母材が得られる。
また、この母材に対して面削、粗圧延、研磨等の加工がされ、最終的に板厚が1.2mm〜6.0mm程度となる。
And it cools rapidly by water-cooling the base material after this hot rolling. The rapid cooling rate is 10 ° C./second or more, preferably 30 ° C./second to 50 ° C./second. By this rapid cooling, a base material in which Zr is dissolved in a supersaturated state is obtained.
Further, the base material is subjected to processing such as chamfering, rough rolling, and polishing, and finally the plate thickness becomes about 1.2 mm to 6.0 mm.

<第2工程>
次に、90%以上の圧延率で冷間圧延する。この冷間圧延でも母材を圧延ロール間に複数回(5回〜20回)通過させるが、そのときの毎回の圧延率は15%〜30%とされる。そして、その複数回の圧延で圧延率が90%以上、例えば98%〜99%の圧延率となり、母材を0.12mm〜0.75mmの板厚にまで減少させる。
この冷間圧延処理を経ることにより、後述の層状組織における各結晶粒層の厚さが均一化し、その厚さの分布をヒストグラムにしたときピーク値が大きくなってくる。
<Second step>
Next, cold rolling is performed at a rolling rate of 90% or more. Even in this cold rolling, the base material is passed between the rolling rolls a plurality of times (5 to 20 times), and the rolling rate at each time is set to 15% to 30%. And the rolling rate becomes 90% or more, for example, a rolling rate of 98%-99% by the rolling of the plurality of times, and the base material is reduced to a plate thickness of 0.12 mm-0.75 mm.
By passing through this cold rolling process, the thickness of each crystal grain layer in the layered structure described later becomes uniform, and the peak value becomes large when the thickness distribution is made into a histogram.

<第3工程>
次に、第2工程を経た母材に対して300℃〜380℃で1時間〜8時間の熱処理を施す。この熱処理は時効処理又は歪み取り焼鈍のための処理である。この熱処理により、過飽和状態で固溶していたZrが時効により徐々に析出するのであるが、その熱処理が比較的低温であることにより、析出しきれずに結晶粒内に残っているZrがCoと反応して化合物を形成する。このZrとCoとの化合物が母材の伸びを向上させるものと想定され、この第3工程を経た銅合金は、強度と伸びが高いレベルでバランスしている。
この熱処理において、温度が300℃未満では強度向上効果に乏しく、一方、380℃を超えると、強度は大きくなるが伸びは十分でない。また、この熱処理時間が8時間を超えるほどに長過ぎると、再結晶化するため好ましくない。
<Third step>
Next, the base material that has undergone the second step is subjected to heat treatment at 300 ° C. to 380 ° C. for 1 hour to 8 hours. This heat treatment is a treatment for aging treatment or strain relief annealing. By this heat treatment, Zr dissolved in a supersaturated state gradually precipitates due to aging. However, since the heat treatment is relatively low temperature, Zr remaining in the crystal grains without being completely precipitated can be converted into Co and Reacts to form a compound. It is assumed that the compound of Zr and Co improves the elongation of the base material, and the copper alloy that has undergone the third step balances strength and elongation at a high level.
In this heat treatment, if the temperature is less than 300 ° C., the effect of improving the strength is poor. Further, if the heat treatment time is too long to exceed 8 hours, recrystallization occurs, which is not preferable.

次に、このように製造した銅合金の性能を確認するために行った試験結果について説明する。
ZrとCoを表1に示す比率で添加した銅合金を鋳造し、第1工程から第3工程までの処理を経て製造した。第1工程における熱間圧延条件、第2工程の冷間圧延時の圧延率、第3工程の熱処理条件を表1のように組み合わせた。試料1〜試料14が本実施例、試料15〜試料21、試料23、試料25〜試料29が比較例としてZrやCoの添加量、熱間圧延、冷間圧延、熱処理の条件が本発明の範囲から外れるものも製作した。最終の板厚はいずれも0.64mmとした。
Next, the test results conducted to confirm the performance of the copper alloy thus manufactured will be described.
A copper alloy to which Zr and Co were added in the ratios shown in Table 1 was cast and manufactured through the processes from the first step to the third step. The hot rolling conditions in the first step, the rolling rate during the cold rolling in the second step, and the heat treatment conditions in the third step were combined as shown in Table 1. Samples 1 to 14 are in this embodiment, Samples 15 to 21, Sample 23, and Samples 25 to 29 are comparative examples. The amount of Zr or Co added, hot rolling, cold rolling, and heat treatment conditions are the present invention. Some of them were out of range. The final plate thickness was 0.64 mm in all cases.

Figure 0004642119
Figure 0004642119

得られた銅合金の板材を圧延方向に切断して、その断面組織をTEMで観察し、前述したように、圧延方向(R.D.方向)に垂直な板厚方向(N.D.方向)に沿って各結晶粒層の界面間の距離(間隔)を測定し、その距離を結晶粒層の厚さとして、これを200個測定した。その結晶粒層の厚さの測定値のうち、最小値、最大値、ヒストグラムにしたときのピーク値、その頻度、半値をそれぞれ求めた。ヒストグラムは、50nmの幅で階級を決め、その階級毎に各結晶粒層の厚さの測定値の度数(頻度)を求めた。その結果を表2に示す。 The obtained copper alloy sheet was cut in the rolling direction, and its cross-sectional structure was observed with a TEM. As described above, the sheet thickness direction (ND direction) perpendicular to the rolling direction (RD direction). ), The distance (interval) between the interfaces of each crystal grain layer was measured, and the distance was defined as the thickness of the crystal grain layer. Among the measurement values of the thickness of the crystal grain layer, the minimum value, maximum value, a peak value when the histogram was determined the frequency, the half-width, respectively. In the histogram, the class was determined with a width of 50 nm, and the frequency (frequency) of the measured value of the thickness of each crystal grain layer was determined for each class. The results are shown in Table 2.

Figure 0004642119
Figure 0004642119

この表2の結果より、本実施例は、層状組織の結晶粒層の厚さが均一で、ヒストグラムのピーク値が小さくかつ高い頻度で半値幅も小さく、そのヒストグラム曲線が鋭利な山形に形成されることがわかる。
なお、具体的数値は省略するが、第3工程の熱処理の前後でピーク値は若干変化し、第3工程前の母材に対して、第3工程を経た母材のピーク値は1割程度小さくなる。
From the results of Table 2, in this example, the thickness of the crystal grain layer of the layered structure is uniform, the peak value of the histogram is small, the half value width is small frequently, and the histogram curve is formed in a sharp mountain shape. I understand that
Although specific numerical values are omitted, the peak value slightly changes before and after the heat treatment in the third step, and the peak value of the base material after the third step is about 10% of the base material before the third step. Get smaller.

次に、これら実施例及び比較例の銅合金の板材について、引張強さ、0.2%耐力、伸び、ビッカース強度、導電率をそれぞれ測定した。
ここで、引張強さ(N/mm)、伸び(%)及び0.2%耐力(N/mm)は、インストロン型万能試験機用いて、JIS(Z2241)に規定される方法により測定した。試験片は、JIS5号試験片とし、試験片の長手方向を圧延方向(R.D.方向)と平行なL.D.試験片とした。また、伸び試験における標点距離は50mmとした。ビッカース硬さ(HV)は、JIS(Z2244)に規定される方法により測定した。導電率(%IACS)は、JIS(H0505)に規定される方法により測定した。
その結果を表3に示す。
Next, the tensile strength, 0.2% proof stress, elongation, Vickers strength, and conductivity were measured for the copper alloy plate materials of these examples and comparative examples.
Here, the tensile strength (N / mm 2 ), elongation (%), and 0.2% proof stress (N / mm 2 ) are determined by the method prescribed in JIS (Z2241) using an Instron universal testing machine. It was measured. The test piece is a JIS No. 5 test piece, and the longitudinal direction of the test piece is L.P. parallel to the rolling direction (RD direction). D. A test piece was obtained. The gauge distance in the elongation test was 50 mm. Vickers hardness (HV) was measured by a method defined in JIS (Z2244). The conductivity (% IACS) was measured by the method defined in JIS (H0505).
The results are shown in Table 3.

Figure 0004642119
Figure 0004642119

この表3からわかるように、実施例の試料は、引張強さが大きく、しかも伸びとも高いレベルでバランスしている。また、同時に測定した0.2%耐力、ビッカース硬さ及び導電率においても、本実施例の銅合金は実用上、十分に満足できる特性を示している。
このように本実施例の銅合金は、機械的特性に優れるので、電子部品の小型化、薄肉化に好適に対応することができる。
なお、第3工程の熱処理後であれば、例えば400℃〜450℃程度で歪み取りのための焼鈍処理を必要に応じて行ってもよい。
As can be seen from Table 3, the samples of the examples have a high tensile strength and a high level of balance with the elongation. Moreover, also in the 0.2% yield strength, Vickers hardness, and electrical conductivity which were measured simultaneously, the copper alloy of a present Example has the characteristic which can be fully satisfied practically.
Thus, since the copper alloy of a present Example is excellent in a mechanical characteristic, it can respond suitably to size reduction and thickness reduction of an electronic component.
In addition, if it is after the heat processing of a 3rd process, you may perform the annealing process for distortion removal as needed, for example at about 400 to 450 degreeC.

1 結晶粒
2 結晶粒層
3 層状組織
1 Crystal grain 2 Crystal grain layer 3 Layered structure

Claims (2)

量比率でZrを0.005%〜0.5%、Coを0.001%〜0.3%の範囲で含有し、残部がCu及び不可避不純物からなる銅合金であって、複数の扁平な結晶粒が面方向に連続してなる結晶粒層が板厚方向に積み重なって構成された層状組織を有し、前記結晶粒層の厚さが5nm〜550nmの範囲であり、前記層状組織中の前記結晶粒層の厚さのヒストグラムにおけるピーク値が50nm〜300nmの範囲内でかつ総度数の28%以上の頻度で存在し、その半値幅が180nm以下であることを特徴とする銅合金。 0.005% to 0.5% of Zr in mass ratio of Co contained in the range of 0.001% to 0.3%, the balance being a copper alloy ing of Cu and unavoidable impurities, a plurality of A crystal grain layer in which flat crystal grains are continuous in a plane direction has a layered structure formed by stacking in a plate thickness direction, and the thickness of the crystal grain layer is in a range of 5 nm to 550 nm, and the layered structure A copper alloy characterized in that a peak value in a histogram of the thickness of the crystal grain layer is present in a range of 50 nm to 300 nm, with a frequency of 28% or more of the total frequency, and a half value width of 180 nm or less. . 量比率でZrを0.005%〜0.5%、Coを0.001%〜0.3%の範囲で含有し、残部がCu及び不可避不純物からなる銅合金からなる母材に対して、930℃〜1030℃の温度で圧延するとともに、この温度下での最終パスの圧延率を20%以上とする熱間圧延処理とその後の水冷による急冷処理とからなる溶体化処理を施す第1工程と、該第1工程を経た母材に対して圧延率が90%以上の冷間圧延処理を施す第2工程と、該第2工程を経た母材に対して300℃〜380℃で1時間〜8時間の熱処理を施す第3工程とを備えたことを特徴とする銅合金の製造方法。 0.005% to 0.5% of Zr in mass ratio, contained in a range of 0.001% to 0.3% of Co, to preform the balance being Cu and Na Ru copper alloy incidental impurities In addition, rolling is performed at a temperature of 930 ° C. to 1030 ° C., and a solution treatment comprising a hot rolling process in which the rolling rate of the final pass at this temperature is 20% or more and a subsequent rapid cooling process by water cooling is performed. 1 step, a second step of performing a cold rolling treatment with a rolling rate of 90% or more on the base material that has passed through the first step, and a base material that has passed through the second step at 300 ° C. to 380 ° C. And a third step of performing a heat treatment for 1 hour to 8 hours.
JP2009069923A 2009-03-23 2009-03-23 Copper alloy and method for producing the same Active JP4642119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069923A JP4642119B2 (en) 2009-03-23 2009-03-23 Copper alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069923A JP4642119B2 (en) 2009-03-23 2009-03-23 Copper alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010222624A JP2010222624A (en) 2010-10-07
JP4642119B2 true JP4642119B2 (en) 2011-03-02

Family

ID=43040133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069923A Active JP4642119B2 (en) 2009-03-23 2009-03-23 Copper alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4642119B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479002B2 (en) * 2009-09-08 2014-04-23 三菱伸銅株式会社 Copper alloy foil
JP5060625B2 (en) 2011-02-18 2012-10-31 三菱伸銅株式会社 Cu-Zr-based copper alloy plate and manufacturing method thereof
CN103827330B (en) 2011-09-29 2016-06-08 日本碍子株式会社 Copper alloy wire and manufacture method thereof
JP5955718B2 (en) * 2012-09-20 2016-07-20 三菱伸銅株式会社 Cu-Zr-Co copper alloy plate and manufacturing method thereof
JP5427971B1 (en) * 2013-03-25 2014-02-26 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP5632063B1 (en) * 2013-11-19 2014-11-26 Jx日鉱日石金属株式会社 Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270739A (en) * 1986-05-16 1987-11-25 Mitsubishi Electric Corp Copper alloy for lead frame
JP2005298931A (en) * 2004-04-14 2005-10-27 Mitsubishi Shindoh Co Ltd Copper alloy and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270739A (en) * 1986-05-16 1987-11-25 Mitsubishi Electric Corp Copper alloy for lead frame
JP2005298931A (en) * 2004-04-14 2005-10-27 Mitsubishi Shindoh Co Ltd Copper alloy and its production method

Also Published As

Publication number Publication date
JP2010222624A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5156316B2 (en) Cu-Sn-P copper alloy sheet, method for producing the same, and connector
CN101842506B (en) Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JPWO2011068134A1 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
KR20130109161A (en) Cu-ni-si-co copper alloy for electron material and method for producing same
KR101866129B1 (en) Copper alloy for electronic materials
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP4642119B2 (en) Copper alloy and method for producing the same
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
KR20130089656A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
WO2010067863A1 (en) Ni-Si-Co COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP5479002B2 (en) Copper alloy foil
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4708497B1 (en) Cu-Co-Si alloy plate and method for producing the same
JP4550148B1 (en) Copper alloy and manufacturing method thereof
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2022042515A (en) Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component
JP2018062705A (en) Copper alloy for electronic material
JP6310004B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2019077889A (en) Copper alloy for electronic material
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100701

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100701

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101130

R150 Certificate of patent or registration of utility model

Ref document number: 4642119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250