JP5632063B1 - Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same - Google Patents

Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same Download PDF

Info

Publication number
JP5632063B1
JP5632063B1 JP2013239197A JP2013239197A JP5632063B1 JP 5632063 B1 JP5632063 B1 JP 5632063B1 JP 2013239197 A JP2013239197 A JP 2013239197A JP 2013239197 A JP2013239197 A JP 2013239197A JP 5632063 B1 JP5632063 B1 JP 5632063B1
Authority
JP
Japan
Prior art keywords
copper alloy
electronic component
mpa
mass
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013239197A
Other languages
Japanese (ja)
Other versions
JP2015098628A (en
Inventor
明宏 柿谷
明宏 柿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013239197A priority Critical patent/JP5632063B1/en
Priority to TW103128762A priority patent/TWI521073B/en
Priority to CN201480062948.8A priority patent/CN105765093A/en
Priority to PCT/JP2014/072822 priority patent/WO2015075990A1/en
Priority to KR1020167016227A priority patent/KR101788497B1/en
Application granted granted Critical
Publication of JP5632063B1 publication Critical patent/JP5632063B1/en
Publication of JP2015098628A publication Critical patent/JP2015098628A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

【課題】高強度、高導電性および優れた加工性を兼ね備えた銅合金、それを備える大電流用電子部品及び放熱用電子部品を提供する。【解決手段】本発明の銅合金板は、ZrおよびTiのうちの一種または二種を合計で0.01〜0.50質量%含有し、残部が銅及び不可避的不純物からなり、70%IACS以上の導電率、および350MPa以上の0.2%耐力を有し、かつ、0.2%耐力σ(MPa)と伸びL(%)とが、σ/L≰150の関係を満たすものである。【選択図】なしA copper alloy having high strength, high conductivity, and excellent workability, and a high-current electronic component and a heat dissipation electronic component including the copper alloy are provided. The copper alloy sheet of the present invention contains one or two of Zr and Ti in a total amount of 0.01 to 0.50% by mass, with the balance consisting of copper and inevitable impurities, and 70% IACS. It has the above conductivity, 0.2% proof stress of 350 MPa or more, and 0.2% proof stress σ (MPa) and elongation L (%) satisfy the relationship of σ / L≰150. . [Selection figure] None

Description

本発明は、放熱性、導電性、曲げ加工性および絞り加工性に優れる銅合金板に関し、詳細には端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレームなどの電子部品用途、特に、スマートフォンやパソコンなどに用いられる放熱性部品および電気自動車やハイブリッド自動車等に用いられる大電流部品の用途に好適な銅合金板に関する。   The present invention relates to a copper alloy plate excellent in heat dissipation, electrical conductivity, bending workability, and drawing workability, and more specifically for use in electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, especially smartphones. The present invention relates to a copper alloy plate suitable for heat-dissipating parts used in personal computers and large current parts used in electric vehicles and hybrid vehicles.

スマートフォン、タブレットPCおよびパソコン等の電機・電子機器等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電気接続を得るための部品及び機器が発する熱を放散するための部品が組み込まれている。
近年、スマートフォン、タブレットPCおよびパソコンの小型化に伴い、電気・電子機器内の液晶部品またはICチップ等に通電した際の蓄熱が大きくなる傾向がある。蓄熱が大きい状態はICチップや基盤への熱的損傷が大きいため、放熱部品の放熱性が問題となっている。
For electrical and electronic devices such as smartphones, tablet PCs and personal computers, components for obtaining electrical connections such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, and components for dissipating heat generated by the devices Is incorporated.
In recent years, with the miniaturization of smartphones, tablet PCs, and personal computers, heat storage tends to increase when power is supplied to liquid crystal components or IC chips in electric / electronic devices. When the heat storage is large, thermal damage to the IC chip and the substrate is large, and the heat dissipation of the heat dissipation component is a problem.

従来、スマートフォン、タブレットPCおよびパソコン等の電気・電子機器内の放熱部品にはオーステナイト系ステンレス鋼(SUS304)および純アルミニウム等が主に使用されてきた。例えばスマートフォンやタブレットPCの液晶に付属の放熱部品(液晶フレーム)には、高い放熱性に加えて構造体としての強度および、液晶への固定に必要な曲げ加工性または絞り加工性が求められている。また、用いられる放熱部品によっては曲げ加工性のみ、または絞り加工性のみ必要な場合がある。
オーステナイト系ステンレス鋼(SUS304)は曲げ性および絞り加工性は良好であるが、熱伝導性が低く、それを補うため高価な熱伝導シート等を併用している。そのため放熱部品の単価が高くなる。一方、純アルミニウムおよびアルミニウム合金では曲げ性および絞り加工性は良好であるが熱伝導性および構造体としての強度が足りていない。
Conventionally, austenitic stainless steel (SUS304), pure aluminum, and the like have been mainly used for heat dissipation components in electric and electronic devices such as smartphones, tablet PCs, and personal computers. For example, the heat-dissipating parts (liquid crystal frame) attached to the liquid crystal of smartphones and tablet PCs are required to have not only high heat dissipation but also strength as a structure and bending workability or drawing workability necessary for fixing to the liquid crystal. Yes. Further, depending on the heat dissipating component used, only bending workability or drawing workability may be required.
Austenitic stainless steel (SUS304) has good bendability and drawability, but has low thermal conductivity, and an expensive thermal conductive sheet or the like is used in combination to compensate for it. Therefore, the unit price of the heat dissipating component is increased. On the other hand, pure aluminum and aluminum alloys have good bendability and drawability, but lack thermal conductivity and strength as a structure.

また、端子、コネクタ等の通電部品においては、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。特に、成長著しい電気自動車やハイブリッド自動車で用いられる電子部品には、バッテリー部のコネクタ等の著しく高い電流が流される部品があり、通電時の銅合金の発熱が問題になっている。そこで発熱量が減ずるよう、通電材料には導電性に優れることが求められ、さらに部品の小型化や高機能化に対応できるよう、優れた曲げ加工性や絞り加工性も求められている。   Further, in current-carrying parts such as terminals and connectors, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In particular, electronic components used in fast-growing electric vehicles and hybrid vehicles include components such as a battery connector that allow a very high current to flow, and heat generation of the copper alloy during energization is a problem. Therefore, the current-carrying material is required to have excellent conductivity so as to reduce the heat generation amount, and further, excellent bending workability and drawing workability are required so as to cope with downsizing and high functionality of parts.

熱伝導性と導電性は比例関係にあることが知られており、比較的高い導電率と強度を有する合金として、CuにZrやTiを添加した材料が知られている。導電率が高く比較的高い強度を有する材料としては、例えばC15100(0.1質量%Zr−残Cu)、C15150(0.02質量%Zr−残Cu)、C18140(0.1質量%Zr−0.3質量%Cr−0.02質量%Si−残Cu)、C18145(0.1質量%Zr−0.2質量%Cr−0.2質量%Zn−残Cu)、C18070(0.1質量%Ti−0.3質量%Cr−0.02質量%Si−残Cu)、C18080(0.06質量%Ti−0.5質量%Cr−0.1質量%Ag−0.08質量%Fe−0.06質量%Si−残Cu)等の合金が、CDA(Copper Development Association)に登録されている。   It is known that thermal conductivity and conductivity are in a proportional relationship, and as an alloy having relatively high conductivity and strength, a material in which Zr or Ti is added to Cu is known. Examples of materials having high electrical conductivity and relatively high strength include C15100 (0.1 mass% Zr-residual Cu), C15150 (0.02 mass% Zr-residual Cu), and C18140 (0.1 mass% Zr- 0.3 mass% Cr-0.02 mass% Si-residual Cu), C18145 (0.1 mass% Zr-0.2 mass% Cr-0.2 mass% Zn-residual Cu), C18070 (0.1 Mass% Ti-0.3 mass% Cr-0.02 mass% Si-residual Cu), C18080 (0.06 mass% Ti-0.5 mass% Cr-0.1 mass% Ag-0.08 mass%) An alloy such as Fe-0.06 mass% Si-residual Cu) is registered in CDA (Copper Development Association).

しかし、従来のCuにZrまたはTiを添加した銅合金(Cu-Zr-Ti系合金とする)では強度および熱伝導特性は高いものの、要求される曲げ加工性または絞り加工性、場合によってはその両方を満たしていなかった。   However, a conventional copper alloy with Cu or Zr added to Cu (Cu-Zr-Ti alloy) has high strength and heat conduction characteristics, but the required bending workability or drawing workability, depending on circumstances. Both were not met.

したがって、Cu-Zr-Ti系合金で、所要の高い強度および導電率を維持したまま曲げ加工性および絞り加工性を改善することは、工業的に極めて意義深いといえる。   Therefore, it can be said that it is extremely significant industrially to improve the bending workability and the drawing workability while maintaining the required high strength and conductivity in the Cu—Zr—Ti alloy.

そこで、本発明は、高い強度および導電性ならびに、優れた曲げ加工性および絞り加工性を兼ね備えた銅合金板、それを備える大電流用電子部品および放熱用電子部品を提供することを目的とし、具体的には、安価で導電性と強度に優れるCu−Zr−Ti系合金の絞り加工性を改善することを課題とする。   Accordingly, an object of the present invention is to provide a copper alloy plate having high strength and conductivity as well as excellent bending workability and drawing workability, a high-current electronic component and a heat dissipation electronic component including the copper alloy plate, Specifically, it is an object to improve the drawability of a Cu—Zr—Ti alloy that is inexpensive and excellent in conductivity and strength.

本発明者は、Cu−Zr−Ti系合金において、伸びを指標に金属組織を調整すること、圧延面に配向する結晶粒の方位を制御することにより、曲げ加工性および絞り加工性が向上することを見出した。そして、以上の知見を背景に、以下の発明を完成させた。
本発明の銅合金板は、ZrおよびTiのうちの一種または二種を合計で0.01〜0.50質量%、好ましくは0.015〜0.3質量%含有し、残部が銅及び不可避的不純物からなり、70%IACS以上の導電率、および350MPa以上の0.2%耐力を有し、かつ、0.2%耐力σ(MPa)と伸びL(%)とが、σ/L≦150の関係を満たすものである。
The present inventor improves bending workability and drawing workability in a Cu-Zr-Ti alloy by adjusting the metal structure using elongation as an index and controlling the orientation of crystal grains oriented on the rolling surface. I found out. And the following invention was completed against the background of the above knowledge.
The copper alloy sheet of the present invention contains one or two of Zr and Ti in a total amount of 0.01 to 0.50% by mass, preferably 0.015 to 0.3% by mass, with the balance being copper and inevitable And having an electrical conductivity of 70% IACS or more and a 0.2% proof stress of 350 MPa or more, and 0.2% proof stress σ (MPa) and elongation L (%) are σ / L ≦ 150 relationships are satisfied.

本発明の銅合金板では、X線回折法を用い圧延面において厚み方向に求めた{220}面のX線回折積分強度をI{220}とし純銅粉末標準試料の{220}面からのX線回折積分強度をI0{220}としたときに、I{220}/I0{220}≧4.0であることが好ましい。 In the copper alloy sheet of the present invention, the X-ray diffraction integrated intensity of the {220} plane obtained in the thickness direction on the rolled surface using the X-ray diffraction method is I {220}, and the pure copper powder standard sample from the {220} plane is used. When the X-ray diffraction integrated intensity is I 0 {220}, it is preferable that I {220} / I 0 {220} ≧ 4.0.

また、本発明の銅合金板では、W曲げ試験における圧延平行方向(GW方向)および圧延直角方向(BW方向)の最小曲げ半径(MBR)の、板厚(t)に対する割合が、MBR/t≦2.0で与えられることが好ましい。
そしてまた、本発明の銅合金板では、エリクセン試験におけるエリクセン値/板厚が、0.5以上で与えられることが好ましい。
In the copper alloy sheet of the present invention, the ratio of the minimum bending radius (MBR) in the rolling parallel direction (GW direction) and the rolling perpendicular direction (BW direction) to the sheet thickness (t) in the W bending test is MBR / t. Preferably it is given by ≦ 2.0.
Moreover, in the copper alloy plate of the present invention, it is preferable that the Erichsen value / plate thickness in the Erichsen test is given as 0.5 or more.

発明の大電流用電子部品は、上記の何れかの銅合金板を備えるものである。また、本発明の放熱用電子部品は、上記の何れかの銅合金板を備えるものである。 An electronic component for large current of the present invention comprises any one of the above copper alloy plates. Moreover, the electronic component for heat dissipation of this invention is provided with one of said copper alloy plates.

本発明によれば、高強度、高導電性、優れた曲げ加工性および絞り加工性を兼ね備えた銅合金板を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、スマートフォンやパソコンなどに用いられる放熱性部品および電気自動車やハイブリッド自動車等に用いられる大電流部品の用途に好適な銅合金板に関する。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the copper alloy plate which has high intensity | strength, high electroconductivity, the outstanding bending workability, and drawing workability. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. The present invention relates to a copper alloy plate suitable for use in high-current parts used in automobiles, hybrid automobiles, and the like.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(特性)
本発明の一実施形態に係る銅合金板は、その銅合金板の導電率を70%IACS以上とし、0.2%耐力を350MPa以上とし、0.2%耐力/伸び(σ/L)を150以下とする。このような特性を兼ね備える銅合金板は、放熱用電子部品の用途に好適である。
(Characteristic)
The copper alloy plate according to an embodiment of the present invention has a conductivity of 70% IACS or higher, a 0.2% proof stress of 350 MPa or higher, and a 0.2% proof stress / elongation (σ / L). 150 or less. A copper alloy plate having such characteristics is suitable for use as an electronic component for heat dissipation.

(合金成分濃度)
本発明の実施の形態に係るCu−Zr−Ti系合金板は、Zr及びTiのうちの一種又は二種を合計で0.01〜0.50質量%含有するものであり、このZrとTiの総含有量は好ましくは、0.015〜0.3質量%、より好ましくは0.02〜0.20質量%とする。Zr及びTiのうちの一種又は二種の合計が0.01質量%未満になると、350MPa以上の引張強さを得ることが難しくなる。Zr及びTiのうちの一種又は二種の合計が0.5質量%を超えると、熱間圧延割れ等により合金の製造が困難になる。Zrを添加する場合にはその添加量を0.01〜0.45質量%に調整することが好ましく、Tiを添加する場合にはその添加量を0.01〜0.20質量%に調整することが好ましい。添加量が下限値を下回ると0.2%耐力が350MPa未満となり、添加量が上限値を超えると導電率や製造性の悪化を招くことがある。
(Alloy component concentration)
The Cu—Zr—Ti alloy plate according to the embodiment of the present invention contains 0.01 to 0.50 mass% of one or two of Zr and Ti in total. The total content of is preferably 0.015 to 0.3% by mass, more preferably 0.02 to 0.20% by mass. When the total of one or two of Zr and Ti is less than 0.01% by mass, it becomes difficult to obtain a tensile strength of 350 MPa or more. If the total of one or two of Zr and Ti exceeds 0.5% by mass, it becomes difficult to produce an alloy due to hot rolling cracks or the like. When adding Zr, it is preferable to adjust the addition amount to 0.01 to 0.45 mass%, and when adding Ti, the addition amount is adjusted to 0.01 to 0.20 mass%. It is preferable. If the addition amount is less than the lower limit value, the 0.2% proof stress is less than 350 MPa, and if the addition amount exceeds the upper limit value, conductivity and manufacturability may be deteriorated.

Cu−Zr−Ti系合金板には、強度や耐熱性を改善するために、Ag、Co、Ni、Cr、Mn、Zn、Mg、Si、Sn、Bのうちの一種以上を、合計2.0質量%以下で含有させることができる。ただし、添加量が多すぎると、導電率が低下して70%IACSを下回ったり、合金の製造性が悪化したりする場合があるので、添加量は総量で1.0質量%以下とすることが好ましく、より好ましくは0.5質量%以下とする。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。
In order to improve strength and heat resistance, the Cu—Zr—Ti alloy plate contains at least one of Ag, Co, Ni, Cr, Mn, Zn, Mg, Si, Sn, and B in total 2. It can be contained at 0% by mass or less. However, if the amount added is too large, the electrical conductivity may be reduced to be less than 70% IACS or the manufacturability of the alloy may be deteriorated, so the amount added should be 1.0% by mass or less in total. Is preferable, and more preferably 0.5% by mass or less. Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.

(厚み)
製品の厚み、つまり板厚(t)は0.05〜2.0mmであることが好ましい。厚みが小さすぎると、十分な放熱性が得られなくなるため、放熱用電子部品の素材として不適である。一方で、厚みが大きすぎると、曲げ加工および絞り加工が困難になる。このような観点から、より好ましい厚みは0.08〜1.5mmである。厚みが上記範囲となることにより、蓄熱を抑えつつ、曲げ加工性および絞り加工性を良好なものとすることができる。
(Thickness)
The thickness of the product, that is, the plate thickness (t) is preferably 0.05 to 2.0 mm. If the thickness is too small, sufficient heat dissipation cannot be obtained, which is unsuitable as a material for heat dissipation electronic components. On the other hand, if the thickness is too large, bending and drawing are difficult. From such a viewpoint, a more preferable thickness is 0.08 to 1.5 mm. When the thickness is in the above range, it is possible to improve bending workability and drawing workability while suppressing heat storage.

(導電率)
本発明では、JIS H0505に準拠して測定した導電率を70%IACS以上とする。導電率が70%IACS以上であれば、熱伝導率が良好であり、良好な放熱性を確保できる。より好ましくは75%IACS以上とする。
(conductivity)
In the present invention, the conductivity measured in accordance with JIS H0505 is 70% IACS or higher. If the electrical conductivity is 70% IACS or higher, the thermal conductivity is good and good heat dissipation can be ensured. More preferably, it is 75% IACS or more.

(0.2%耐力)
本発明では、銅合金板の0.2%耐力を350MPa以上とすることとし、これによれば、銅合金板が、構造材の素材として必要な強度を有しているといえる。
(0.2% yield strength)
In the present invention, the 0.2% proof stress of the copper alloy plate is set to 350 MPa or more. According to this, it can be said that the copper alloy plate has a strength necessary as a material for the structural material.

(伸び)
製品の伸び(El)をL(%)、0.2%耐力(YS)をσ(MPa)としたときに、σ/L≦150の関係を満たすように、より好ましくは、σ/L≦100の関係を満たすように調整することで、絞り加工性および曲げ性が向上する。0.2%耐力/伸びが150以下であれば、必要な絞り加工性を有しているといえる。σ/L>150の場合は絞り加工性および曲げ性が悪化する。この一方で、σ/Lの下限値は、30とすることが好ましい。σ/Lが小さいと、0.2%耐力が350MPaを満たさなくなることが懸念される。伸びLの上限値は特に規制されないが、通常は15%を超える値になると、強度が低下し、場合によっては0.2%耐力が350MPaを下回る可能性がある。従って、好ましい実施形態においては、伸びLは15%以下である。
ここでいう「伸び」は、JIS Z2241に定義される「破断伸び」をいい、また、「伸び」および「0.2%耐力」は、JIS Z2241に準拠して、試験片の圧延方向を引張方向に平行とする引張試験により測定するものとする。
(Elongation)
More preferably, σ / L ≦ 150 so that the relationship of σ / L ≦ 150 is satisfied, where L (%) is the product elongation (El) and σ (MPa) is 0.2% proof stress (YS). By adjusting so as to satisfy the relationship of 100, drawing workability and bendability are improved. If the 0.2% proof stress / elongation is 150 or less, it can be said that the required drawability is obtained. When σ / L> 150, drawability and bendability deteriorate. On the other hand, the lower limit of σ / L is preferably 30. If σ / L is small, there is a concern that the 0.2% proof stress will not satisfy 350 MPa. The upper limit value of the elongation L is not particularly limited, but usually when the value exceeds 15%, the strength decreases, and in some cases, the 0.2% proof stress may be less than 350 MPa. Therefore, in a preferred embodiment, the elongation L is 15% or less.
“Elongation” here refers to “breaking elongation” as defined in JIS Z2241, and “elongation” and “0.2% proof stress” refer to the rolling direction of the test piece in accordance with JIS Z2241. It shall be measured by a tensile test parallel to the direction.

(曲げ加工性)
本発明の曲げ加工性の評価は幅10mm×長さ30mmの短冊状の試験片を用いた、W曲げ試験(JIS H3130)により行う。試験片採取方向は、圧延平行方向(GW)および圧延直角方向(BW)とし、割れの発生しない最小曲げ半径MBR(Minimum Bend Radius)と板厚tの比MBR/tにて評価する。この最小曲げ半径(MBR)の割合(MBR/t)は、2.0以下とすることが、良好な曲げ性を確保するとの観点から好ましい。MBR/tのさらに好適な範囲は、1.8以下である。
(Bending workability)
Evaluation of the bending workability of this invention is performed by the W bending test (JIS H3130) using the strip-shaped test piece of width 10mm x length 30mm. The specimen collection direction is a rolling parallel direction (GW) and a rolling perpendicular direction (BW), and evaluation is performed by a ratio MBR / t of a minimum bending radius MBR (Minimum Bend Radius) and a thickness t where no crack is generated. The ratio (MBR / t) of the minimum bending radius (MBR) is preferably 2.0 or less from the viewpoint of ensuring good bendability. A more preferable range of MBR / t is 1.8 or less.

(絞り加工性)
本発明の銅合金板では、JIS Z2247に基づくエリクセン試験で測定したエリクセン値の、板厚に対する割合が、0.5以上であることが好ましい。エリクセン値/板厚が0.5以上であれば絞り加工性として実用的には問題ない。一方、このエリクセン値/板厚は、1.5以下とすることが好ましい。1.5を超えると、0.2%耐力が350MPa未満となる可能性があるからである。より好ましくは、エリクセン値/板厚を、0.5〜1.2の範囲とする。
(Drawing workability)
In the copper alloy plate of the present invention, the ratio of the Erichsen value measured by the Erichsen test based on JIS Z2247 to the plate thickness is preferably 0.5 or more. If the Erichsen value / thickness is 0.5 or more, there is no practical problem as drawing workability. On the other hand, the Erichsen value / plate thickness is preferably 1.5 or less. This is because if it exceeds 1.5, the 0.2% proof stress may be less than 350 MPa. More preferably, the Erichsen value / plate thickness is in the range of 0.5 to 1.2.

(結晶方位)
X線回折法を用い圧延面において厚み方向に求めた{220}面のX線回折積分強度をI{220}とし純銅粉末標準試料の{220}面からのX線回折積分強度をI0{220}としたときに、I{220}/I0{220}が4.0以上の場合、絞り加工性が向上する。I{220}/I0{220}が4.0未満の場合、集合組織の発達が小さいため、絞り加工性は劣る。特に上限は設けないが、I{220}/I0{220}は、4.0〜7.0とすることがより好ましい。なお、純銅粉末標準試料は、325メッシュ(JIS Z8801)の純度99.5%の銅粉末で定義されるものである。
(Crystal orientation)
The X-ray diffraction integrated intensity of the {220} plane obtained in the thickness direction on the rolled surface using the X-ray diffraction method is I {220}, and the X-ray diffraction integrated intensity from the {220} plane of the pure copper powder standard sample is I 0. When {220} is set and I {220} / I 0 {220} is 4.0 or more, drawing workability is improved. When I {220} / I 0 {220} is less than 4.0, since the texture development is small, the drawability is inferior. Although there is no particular upper limit, I {220} / I 0 {220} is more preferably 4.0 to 7.0. The pure copper powder standard sample is defined as a copper powder of 99.5% purity of 325 mesh (JIS Z8801).

以下、本発明に係る銅合金板の好適な製造方法の一例について説明する。   Hereinafter, an example of the suitable manufacturing method of the copper alloy plate which concerns on this invention is demonstrated.

純銅原料として電気銅等を溶解し、Zr、Tiおよび必要に応じ他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取焼鈍を施す。最終冷間圧延後の伸びは、2%に満たないほど低いが、その後の歪取焼鈍により上昇する。   As a pure copper raw material, electrolytic copper or the like is melted, Zr, Ti and other alloy elements are added as necessary, and cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, cold rolling and recrystallization annealing are repeated, and finally finished to a predetermined product thickness by cold rolling. Apply strain relief annealing. The elongation after the final cold rolling is so low that it is less than 2%, but increases by subsequent strain relief annealing.

再結晶焼鈍では、圧延組織の一部または全てを再結晶化させる。また、適当な条件で焼鈍することにより、Zr,Ti等が析出し、合金の導電率が上昇する。最終冷間圧延前の再結晶焼鈍では、銅合金板の平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、0.2%耐力を350MPa以上に調整することが難しくなる。   In recrystallization annealing, part or all of the rolling structure is recrystallized. Further, by annealing under appropriate conditions, Zr, Ti, etc. are precipitated, and the conductivity of the alloy is increased. In the recrystallization annealing before the final cold rolling, the average crystal grain size of the copper alloy sheet is adjusted to 50 μm or less. If the average crystal grain size is too large, it is difficult to adjust the 0.2% proof stress to 350 MPa or more.

最終冷間圧延前の再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径および目標とする製品の導電率に基づき決定する。具体的には、バッチ炉または連続焼鈍炉を用い、炉内温度を350〜800℃として焼鈍を行えばよい。バッチ炉では350〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。一般的にはより低温でより長時間の条件で焼鈍を行うと、同じ結晶粒径でより高い導電率が得られる。   The conditions for recrystallization annealing before the final cold rolling are determined based on the target crystal grain size after annealing and the target product conductivity. Specifically, annealing may be performed by using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 350 to 800 ° C. In a batch furnace, the heating time may be appropriately adjusted at a temperature in the furnace of 350 to 600 ° C. in the range of 30 minutes to 30 hours. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 450 to 800 ° C. Generally, when annealing is performed at a lower temperature for a longer time, higher conductivity can be obtained with the same crystal grain size.

最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。ここでは、最終冷間圧延の総加工度と1パスあたりの加工度を制御する。
総加工度R(%)は、R=(t0−t)/t0×100(t0:最終冷間圧延前の板厚、t:最終冷間圧延後の板厚)で与えられる。また、1パスあたりの加工度r(%)とは、圧延ロールを1回通過したときの板厚減少率であり、r=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。
In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. Here, the total workability of final cold rolling and the workability per pass are controlled.
The total workability R (%) is given by R = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before final cold rolling, t: plate thickness after final cold rolling). Further, the processing degree r (%) per pass is a sheet thickness reduction rate when the rolling roll passes once, and r = (T 0 −T) / T 0 × 100 (T 0 : rolling roll) Thickness before passing, T: Thickness after passing the rolling roll).

総加工度Rは40〜99%、好ましくは45〜98.5%、より好ましくは50〜98%とする。総加工度Rが小さすぎると、0.2%耐力を350MPa以上に調整することが難しく、I{220}/I0{220}を4.0以上に調整するのが難しくなる。総加工度Rが大きすぎると、圧延材のエッジが割れることがある。
1パスあたりの加工度rは15%以上とする。加工度rが小さすぎるとI{220}/I0{220}が低下し、全パスの中に加工度rが15%未満のパスが一つでも含まれるとI{220}/I0{220}を4.0以上に調整することが難しくなる。加工度rの上限は特にないが、圧延による板厚精度の制御を考慮すると40%未満が望ましい。
The total processing degree R is 40 to 99%, preferably 45 to 98.5%, more preferably 50 to 98%. If the total workability R is too small, it is difficult to adjust the 0.2% proof stress to 350 MPa or more, and it is difficult to adjust I {220} / I 0 {220} to 4.0 or more. If the total workability R is too large, the edge of the rolled material may be broken.
The degree of processing r per pass is 15% or more. If the degree of processing r is too small, I {220} / I 0 {220} decreases, and if any path with a degree of processing r of less than 15% is included in all the paths, I {220} / I 0 { 220} becomes difficult to adjust to 4.0 or more. There is no particular upper limit on the working degree r, but it is preferably less than 40% in consideration of control of sheet thickness accuracy by rolling.

本発明の歪取焼鈍は、炉内で銅合金板を平板状に保持することができる連続焼鈍炉を用いて行う。バッチ炉の場合、コイル状に巻き取った状態で材料を加熱するため、加熱中に材料が塑性変形を起こし材料に反りが生じる。したがって、バッチ炉は本発明の歪取焼鈍に不適である。   The strain relief annealing of the present invention is performed using a continuous annealing furnace capable of holding a copper alloy plate in a flat plate shape in the furnace. In the case of a batch furnace, the material is heated in a coiled state, so that the material undergoes plastic deformation during the heating, and the material is warped. Therefore, the batch furnace is not suitable for the strain relief annealing of the present invention.

連続焼鈍炉において、炉内温度を300〜700℃、好ましくは350〜650℃とし、5秒から10分の範囲で加熱時間を適宜調整し、歪取焼鈍後の0.2%耐力(σ)を歪取焼鈍前の0.2%耐力(σ0)に対し10〜50MPa低い値、好ましくは15〜45MPa低い値に調整する。これにより、最終冷間圧延上がりにおいて低かった伸びが上昇するとともに、曲げ加工性が改善する。 In a continuous annealing furnace, the furnace temperature is set to 300 to 700 ° C., preferably 350 to 650 ° C., the heating time is appropriately adjusted in the range of 5 seconds to 10 minutes, and 0.2% yield strength (σ) after strain relief annealing. Is adjusted to a value 10 to 50 MPa lower, preferably 15 to 45 MPa lower than the 0.2% proof stress (σ 0 ) before strain relief annealing. As a result, the elongation which was low after the final cold rolling is increased, and the bending workability is improved.

さらに、連続焼鈍炉内において材料に、たとえば圧延方向と平行な方向に張力を与え、ここで付加される張力を5MPa以下、好ましくは1〜5MPa、より好ましくは2〜4MPaに調整する。張力が大きすぎると、σ/Lを150以下に調整することが難しくなる。また、伸びの上昇が充分ではなくなる傾向にある。一方、張力が小さすぎると、焼鈍炉を通板中の材料が炉壁と接触し、材料の表面やエッジに傷が付くことがある。   Further, in the continuous annealing furnace, tension is applied to the material, for example, in a direction parallel to the rolling direction, and the tension applied here is adjusted to 5 MPa or less, preferably 1 to 5 MPa, more preferably 2 to 4 MPa. If the tension is too large, it is difficult to adjust σ / L to 150 or less. Further, the increase in elongation tends to be insufficient. On the other hand, if the tension is too small, the material in the passing plate of the annealing furnace may come into contact with the furnace wall, and the surface or edge of the material may be damaged.

本発明の一の実施形態は、σ/L≦150なる特徴およびI{220}/I0{220}≧4.0なる特徴をCu−Zr−Ti系合金に付与することにより、絞り加工性および曲げ加工性を改善することを一つの特徴としているが、そのための製造条件を整理して示すと、
(1)σ/L≦150のためには、
a.歪取焼鈍において、(σ0−σ)=10〜50MPaに調整する。
b.歪取焼鈍における炉内張力を5MPa以下に調整する。
(2)I{220}/I0{220}≧4.0のためには、
a.最終冷間圧延において、1パスあたりの加工度を15%以上に調整する。
b.最終冷間圧延の総加工度を40〜99%にする。
One embodiment of the present invention provides a drawability by imparting a feature of σ / L ≦ 150 and a feature of I {220} / I 0 {220} ≧ 4.0 to a Cu—Zr—Ti alloy. One of the features is to improve the bending workability.
(1) For σ / L ≦ 150,
a. In the strain relief annealing, (σ 0 −σ) = 10 to 50 MPa is adjusted.
b. The furnace tension in the strain relief annealing is adjusted to 5 MPa or less.
(2) For I {220} / I 0 {220} ≧ 4.0,
a. In the final cold rolling, the processing degree per pass is adjusted to 15% or more.
b. The total working degree of the final cold rolling is set to 40 to 99%.

以上のようにして製造された銅合金板は、様々な板厚の伸銅品に加工されて、たとえば、スマートフォン、タブレットPCおよびパソコン等の電気・電子機器内の放熱用電子部品等として用いることができる。   The copper alloy plate manufactured as described above is processed into a copper product having various plate thicknesses, and is used as, for example, an electronic component for heat dissipation in an electric / electronic device such as a smartphone, a tablet PC, and a personal computer. Can do.

以下に本発明の実施例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、950℃で熱間圧延を行って厚み15mmの板にした。熱間圧延板表面の酸化スケールをグラインダーで研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に連続焼鈍炉を用い歪取焼鈍を行った。
Examples of the present invention are shown below, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours and hot-rolled at 950 ° C. to obtain a plate having a thickness of 15 mm. After grinding and removing the oxide scale on the surface of the hot rolled plate with a grinder, annealing and cold rolling were repeated, and the product was finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing was performed using a continuous annealing furnace.

最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、バッチ炉を用い、加熱時間を5時間とし炉内温度を300〜700℃の範囲で調整し、焼鈍後の結晶粒径と導電率を変化させた。焼鈍後の結晶粒径の測定においては、圧延方向に直角な断面を鏡面研磨後に化学腐食し、切断法(JIS H0501(1999年))により平均結晶粒径を求めた。   Annealing before final cold rolling (final recrystallization annealing) uses a batch furnace, adjusts the furnace temperature in the range of 300 to 700 ° C. with a heating time of 5 hours, and sets the crystal grain size and conductivity after annealing. Changed. In the measurement of the crystal grain size after annealing, a cross section perpendicular to the rolling direction was subjected to chemical corrosion after mirror polishing, and the average crystal grain size was determined by a cutting method (JIS H0501 (1999)).

最終冷間圧延では、総加工度および1パスあたりの加工度を制御した。また、最終冷間圧延後の材料の0.2%耐力を求めた。
連続焼鈍炉を用いた歪取焼鈍では、炉内温度を500℃とし加熱時間を1秒から15分の間で調整し、焼鈍後の0.2%耐力を種々変化させた。また、炉内において材料に付加する張力を種々変化させた。なお、一部の材料については歪取焼鈍を省略した。
In the final cold rolling, the total workability and the workability per pass were controlled. Moreover, the 0.2% yield strength of the material after final cold rolling was calculated | required.
In strain relief annealing using a continuous annealing furnace, the furnace temperature was 500 ° C., the heating time was adjusted between 1 second and 15 minutes, and the 0.2% proof stress after annealing was variously changed. In addition, various tensions were added to the material in the furnace. For some materials, strain relief annealing was omitted.

実施例の製造条件を、発明例および比較例ごとに表1、2に示す。ここで、最終冷間圧延では複数のパスを実施したが、これら各パスの加工度の中での最小値を示してある。また、表1に示すところにおいて、最終再結晶焼鈍後の結晶粒径における「<5μm」の表記は、圧延組織の一部のみが再結晶化した場合を示す。
製造途中の材料および歪取焼鈍後の材料につき、次の測定を行った。
The production conditions of the examples are shown in Tables 1 and 2 for each invention example and comparative example. Here, a plurality of passes were carried out in the final cold rolling, but the minimum value in the degree of processing of each of these passes is shown. In Table 1, the notation “<5 μm” in the crystal grain size after the final recrystallization annealing indicates a case where only a part of the rolled structure is recrystallized.
The following measurement was performed on the material in the process of manufacturing and the material after strain relief annealing.

(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
(component)
The alloy element concentration of the material after strain relief annealing was analyzed by ICP-mass spectrometry.

(0.2%耐力)
最終冷間圧延後および歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、0.2%耐力を求めた。
(0.2% yield strength)
For the material after the final cold rolling and strain relief annealing, sample No. 13B specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and pulled in parallel with the rolling direction in accordance with JIS Z2241. Tests were performed to determine 0.2% yield strength.

(伸び)
歪取焼鈍後の材料から、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、標点間距離50mmとして伸びを測定した。
(Elongation)
From the material after strain relief annealing, No. 13B test piece defined in JIS Z2241 was sampled so that the tensile direction was parallel to the rolling direction, and the elongation was measured at a distance between gauge points of 50 mm.

(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
A test piece was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.

(結晶方位)
歪取焼鈍後の材料の表面に対し、厚み方向に{220}面のX線回折積分強度を測定した。同様に純銅粉末標準試料に対しても{220}面のX線回折積分強度を測定した。X線回折装置には(株)リガク製RINT2500を使用し、Cu管球にて、管電圧25kV、管電流20mAで測定を行った。
(Crystal orientation)
The X-ray diffraction integrated intensity of the {220} plane was measured in the thickness direction with respect to the surface of the material after strain relief annealing. Similarly, the X-ray diffraction integrated intensity of the {220} plane was measured for a pure copper powder standard sample. RINT 2500 manufactured by Rigaku Corporation was used as the X-ray diffractometer, and measurement was performed with a Cu tube bulb at a tube voltage of 25 kV and a tube current of 20 mA.

(エリクセン値)
歪取焼鈍後の材料に対し、エリクセン社製試験機を用い、試料形状Φ90mm、潤滑剤:グリス、ポンチの押し速度5mm/minの条件で試験を行い、エリクセン値を求めた。表2に評価結果を示す。
(Erichsen value)
The material after strain relief annealing was tested using an Erichsen testing machine under the conditions of sample shape Φ90 mm, lubricant: grease, punch pushing speed 5 mm / min, and the Erichsen value was determined. Table 2 shows the evaluation results.

(MBR/t)
JIS H3130に準拠して、曲げ軸が圧延方向と直角方向であるGW(Goodway)方向および、曲げ軸が圧延方向と同一方向であるBW(Badway)方向のそれぞれのW曲げ試験を行い、W字型の金型を用いて曲げ半径を変化させ、割れの発生しない最小曲げ半径(MBR)と厚さ(t)の比(MBR/t)を求めた。
(MBR / t)
In accordance with JIS H3130, a W-shaped test is performed in each of the GW (Goodway) direction in which the bending axis is perpendicular to the rolling direction and the BW (Badway) direction in which the bending axis is the same as the rolling direction. The bending radius was changed using the mold of the mold, and the ratio (MBR / t) of the minimum bending radius (MBR) and thickness (t) at which no crack occurred was obtained.

表1、2に示すところから解かるように、発明例1〜5、8、9、12、15、16、21では、ZrおよびTiのうちの一種または二種を合計で0.01〜0.50質量%含有し、最終冷間圧延前の再結晶焼鈍において、結晶粒径を50μm以下に調整し、最終冷間圧延において、総加工度を40〜99%に調整し、歪取焼鈍において、材料を連続焼鈍炉に張力1〜5MPaで通板して0.2%耐力を10〜50MPa低下させた。それにより、発明例1〜5、8、9、12、15、16、21の銅合金板は、σ/L≦150なる関係が得られ、70%IACS以上の導電率、350MPa以上の0.2%耐力、MBR/t≦2.0のW曲げ性を達成できた。なお、発明例5、9では、最終冷間圧延における1パス当たりの加工度が15%未満であったため、I{220}/I0{220}が4.0を未満となり、また、エリクセン値/板厚が0.5未満となったが、1パス当たりのこの加工度を15%以上とした発明例1〜4、8、12、15、16、21は、I{220}/I0{220}≧4.0の関係、および、エリクセン値/板厚≧0.5の関係を満たすものとなった。 As can be seen from Tables 1 and 2, in Invention Examples 1 to 5 , 8, 9 , 12, 15 , 16 , and 21 , a total of one or two of Zr and Ti is 0.01 to 0. In the recrystallization annealing prior to the final cold rolling, the crystal grain size is adjusted to 50 μm or less, and in the final cold rolling, the total workability is adjusted to 40 to 99%. The material was passed through a continuous annealing furnace with a tension of 1 to 5 MPa to reduce the 0.2% proof stress by 10 to 50 MPa. As a result, the copper alloy sheets of Invention Examples 1 to 5, 8 , 9 , 12 , 15 , 16 , and 21 have a relationship of σ / L ≦ 150, a conductivity of 70% IACS or more, a value of 0.7 MPa of 350 MPa or more. 2% proof stress and MB bendability of MBR / t ≦ 2.0 could be achieved. In Invention Examples 5 and 9, since the degree of processing per pass in the final cold rolling was less than 15%, I {220} / I 0 {220} was less than 4.0, and the Erichsen value Although the sheet thickness was less than 0.5, Invention Examples 1-4 , 8 , 12 , 15, 16, and 21 in which the degree of processing per pass was 15% or more were I {220} / I 0 The relationship of {220} ≧ 4.0 and the relationship of Erichsen value / plate thickness ≧ 0.5 were satisfied.

一方、比較例1、2は歪取焼鈍を行わなかったものであり、σ/Lが200を超え、曲げ性および絞り加工性が悪い。
比較例3〜6では、歪取焼鈍を行ったものの、炉内での材料張力が5MPaを超えたため、σ/Lが150以上であり、特に張力が高かった比較例5ではσ/Lが200より大きくなり、比較例3〜6の曲げ性および絞り加工性が悪かった。
比較例7、8は、歪取焼鈍における0.2%耐力の低下量が過小であり、(σ0−σ)が10〜50MPaの範囲から外れた。このためσ/Lが150を超え、絞り加工性および曲げ性が悪かった。
比較例9では、歪取焼鈍時の強度低下が大きいことから、歪取焼鈍後の0.2%耐力が350MPaに満たなかった。
On the other hand, Comparative Examples 1 and 2 were not subjected to strain relief annealing, σ / L exceeded 200, and the bendability and drawability were poor.
In Comparative Examples 3 to 6, although strain relief annealing was performed, the material tension in the furnace exceeded 5 MPa, so σ / L was 150 or more. In Comparative Example 5 in which the tension was particularly high, σ / L was 200 It became larger and the bendability and drawing workability of Comparative Examples 3 to 6 were poor.
In Comparative Examples 7 and 8, the amount of decrease in 0.2% proof stress during strain relief annealing was excessive, and (σ 0 −σ) was out of the range of 10 to 50 MPa. For this reason, σ / L exceeded 150, and drawability and bendability were poor.
In Comparative Example 9, since the strength decrease during strain relief annealing was large, the 0.2% proof stress after strain relief annealing was less than 350 MPa.

比較例10では、ZrおよびTiのうちの一種または二種の合計が0.01質量%未満だったため、歪取焼鈍後の0.2%耐力が350MPaに満たなかった。
比較例11ではZrおよびTiのうちの一種または二種の合計が0.5質量%を超えたため、導電率が70%IACSに満たなかった。
In Comparative Example 10, since the total of one or two of Zr and Ti was less than 0.01% by mass, the 0.2% proof stress after strain relief annealing was less than 350 MPa.
In Comparative Example 11, the total of one or two of Zr and Ti exceeded 0.5% by mass, so the conductivity was less than 70% IACS.

比較例12では最終冷間圧延前の再結晶焼鈍上がりの結晶粒径が50μmを超えたため、比較例13では最終冷間圧延における総加工度が40%に満たなかったため、歪取焼鈍後の0.2%耐力が350MPaに満たなかった。   In Comparative Example 12, the crystal grain size after recrystallization annealing before the final cold rolling exceeded 50 μm, and in Comparative Example 13, the total workability in the final cold rolling was less than 40%. The 2% proof stress was less than 350 MPa.

以上の結果から、本発明によれば、高い強度および導電性ならびに、優れた絞り加工性および曲げ加工性を兼ね備えた銅合金板、ならびに、それを備える大電流用電子部品および放熱用電子部品を提供できることが明らかである。   From the above results, according to the present invention, a copper alloy plate having high strength and conductivity, and excellent drawing workability and bending workability, and a high-current electronic component and a heat dissipation electronic component provided with the copper alloy plate are provided. It is clear that it can be provided.

Claims (7)

ZrおよびTiのうちの一種または二種を合計で0.01〜0.50質量%含有し、残部が銅及び不可避的不純物からなり、70%IACS以上の導電率、および350MPa以上の0.2%耐力を有し、かつ、0.2%耐力σ(MPa)と伸びL(%)とが、σ/L≦150の関係を満たす銅合金板。   One or two of Zr and Ti are contained in a total of 0.01 to 0.50 mass%, the balance is made of copper and inevitable impurities, the conductivity is 70% IACS or more, and 0.2 or more is 350 MPa or more. A copper alloy sheet having% proof stress and 0.2% proof stress σ (MPa) and elongation L (%) satisfy the relationship σ / L ≦ 150. ZrおよびTiのうちの一種または二種を合計で0.015〜0.3質量%含有する、請求項1に記載の銅合金板。   The copper alloy plate according to claim 1, comprising 0.015 to 0.3 mass% in total of one or two of Zr and Ti. X線回折法を用い圧延面において厚み方向に求めた{220}面のX線回折積分強度をI{220}とし純銅粉末標準試料の{220}面からのX線回折積分強度をI0{220}としたときに、I{220}/I0{220}≧4.0である請求項1または2に記載の銅合金板。 The X-ray diffraction integrated intensity of the {220} plane obtained in the thickness direction on the rolled surface using the X-ray diffraction method is I {220}, and the X-ray diffraction integrated intensity from the {220} plane of the pure copper powder standard sample is I 0. The copper alloy sheet according to claim 1 or 2, wherein {220} is I {220} / I 0 {220} ≥4.0. W曲げ試験における圧延平行方向(GW方向)および圧延直角方向(BW方向)の最小曲げ半径/板厚(MBR/t)が、MBR/t≦2.0で与えられる請求項1〜3の何れか1項に記載の銅合金板。   The minimum bending radius / sheet thickness (MBR / t) in the rolling parallel direction (GW direction) and the rolling perpendicular direction (BW direction) in the W bending test is given by MBR / t ≦ 2.0. The copper alloy plate according to claim 1. エリクセン試験におけるエリクセン値/板厚が、0.5以上である請求項1〜4の何れか1項に記載の銅合金板。   The copper alloy sheet according to any one of claims 1 to 4, wherein an Erichsen value / plate thickness in the Eriksen test is 0.5 or more. 請求項1〜の何れか1項に記載の銅合金板を備える大電流用電子部品。 A high-current electronic component comprising the copper alloy plate according to any one of claims 1 to 5 . 請求項1〜の何れか1項に記載の銅合金板を備える放熱用電子部品。 A heat dissipating electronic component comprising the copper alloy plate according to any one of claims 1 to 5 .
JP2013239197A 2013-11-19 2013-11-19 Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same Active JP5632063B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013239197A JP5632063B1 (en) 2013-11-19 2013-11-19 Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same
TW103128762A TWI521073B (en) 2013-11-19 2014-08-21 Copper alloy plate, and with its high current with electronic components and thermal electronic components
CN201480062948.8A CN105765093A (en) 2013-11-19 2014-08-29 Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
PCT/JP2014/072822 WO2015075990A1 (en) 2013-11-19 2014-08-29 Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
KR1020167016227A KR101788497B1 (en) 2013-11-19 2014-08-29 Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013239197A JP5632063B1 (en) 2013-11-19 2013-11-19 Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same

Publications (2)

Publication Number Publication Date
JP5632063B1 true JP5632063B1 (en) 2014-11-26
JP2015098628A JP2015098628A (en) 2015-05-28

Family

ID=52145011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013239197A Active JP5632063B1 (en) 2013-11-19 2013-11-19 Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same

Country Status (5)

Country Link
JP (1) JP5632063B1 (en)
KR (1) KR101788497B1 (en)
CN (1) CN105765093A (en)
TW (1) TWI521073B (en)
WO (1) WO2015075990A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125093A (en) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, terminal and bus bar
JP2016125080A (en) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, terminal and bus bar
JP2016125092A (en) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, terminal and bus bar

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6749121B2 (en) * 2016-03-30 2020-09-02 Jx金属株式会社 Copper alloy plate with excellent strength and conductivity
TWI674326B (en) * 2018-11-19 2019-10-11 財團法人工業技術研究院 Copper zirconium alloy heat dissipation element and method of manufacturing copper zirconium alloy housing
CN110592421B (en) * 2019-10-29 2020-07-07 吉林大学 Copper alloy, copper alloy sheet material, and preparation method and application thereof
CN112281023B (en) * 2020-11-23 2021-08-31 宁波博威合金材料股份有限公司 Copper alloy material with excellent bending property and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133185A (en) * 2003-10-31 2005-05-26 Nippon Mining & Metals Co Ltd Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP2010215935A (en) * 2009-03-13 2010-09-30 Mitsubishi Shindoh Co Ltd Copper alloy and method for producing the same
JP2010222624A (en) * 2009-03-23 2010-10-07 Mitsubishi Shindoh Co Ltd Copper alloy, and method for manufacturing the same
JP2011210730A (en) * 2009-01-26 2011-10-20 Furukawa Electric Co Ltd:The Wire conductor for wiring, method for manufacturing the same, electric wire for wiring, and copper alloy element wire
WO2012026611A1 (en) * 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same
JP2012172168A (en) * 2011-02-18 2012-09-10 Mitsubishi Shindoh Co Ltd Cu-Zr-BASED COPPER ALLOY PLATE, AND METHOD FOR PRODUCING THE SAME
JP2012207254A (en) * 2011-03-29 2012-10-25 Jx Nippon Mining & Metals Corp Titanium copper superior in strength, electrical conductivity, and bending workability, and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4157899B2 (en) 2006-11-17 2008-10-01 株式会社神戸製鋼所 High strength copper alloy sheet with excellent bending workability
CN100532599C (en) * 2007-08-01 2009-08-26 苏州有色金属研究院有限公司 Fatigue resistant Cu-Ti alloy and producing method thereof
JP5312920B2 (en) 2008-11-28 2013-10-09 Jx日鉱日石金属株式会社 Copper alloy plate or strip for electronic materials
JP5432201B2 (en) 2011-03-30 2014-03-05 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
JP6188273B2 (en) 2011-11-18 2017-08-30 Jx金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
JP5847787B2 (en) 2013-11-26 2016-01-27 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133185A (en) * 2003-10-31 2005-05-26 Nippon Mining & Metals Co Ltd Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP2011210730A (en) * 2009-01-26 2011-10-20 Furukawa Electric Co Ltd:The Wire conductor for wiring, method for manufacturing the same, electric wire for wiring, and copper alloy element wire
JP2010215935A (en) * 2009-03-13 2010-09-30 Mitsubishi Shindoh Co Ltd Copper alloy and method for producing the same
JP2010222624A (en) * 2009-03-23 2010-10-07 Mitsubishi Shindoh Co Ltd Copper alloy, and method for manufacturing the same
WO2012026611A1 (en) * 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same
JP2012172168A (en) * 2011-02-18 2012-09-10 Mitsubishi Shindoh Co Ltd Cu-Zr-BASED COPPER ALLOY PLATE, AND METHOD FOR PRODUCING THE SAME
JP2012207254A (en) * 2011-03-29 2012-10-25 Jx Nippon Mining & Metals Corp Titanium copper superior in strength, electrical conductivity, and bending workability, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125093A (en) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, terminal and bus bar
JP2016125080A (en) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, terminal and bus bar
JP2016125092A (en) * 2014-12-26 2016-07-11 三菱マテリアル株式会社 Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, terminal and bus bar

Also Published As

Publication number Publication date
KR101788497B1 (en) 2017-10-19
CN105765093A (en) 2016-07-13
TW201522671A (en) 2015-06-16
JP2015098628A (en) 2015-05-28
KR20160088379A (en) 2016-07-25
TWI521073B (en) 2016-02-11
WO2015075990A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP5632063B1 (en) Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same
JP5380621B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6270417B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5467163B1 (en) Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP5470499B1 (en) Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same
JP5822895B2 (en) Copper alloy plate and heat dissipating electronic component including the same
JP6207539B2 (en) Copper alloy strip, and electronic component for high current and heat dissipation provided with the same
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
JP5449595B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP5427968B1 (en) Copper alloy plate and heat dissipating electronic component including the same
JP5620025B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP2014208868A (en) Copper alloy and high-current connector terminal material
JP2014055347A (en) Copper alloy sheet excellent in conductivity and stress relief properties

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141008

R150 Certificate of patent or registration of utility model

Ref document number: 5632063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250