JP2014055347A - Copper alloy sheet excellent in conductivity and stress relief properties - Google Patents

Copper alloy sheet excellent in conductivity and stress relief properties Download PDF

Info

Publication number
JP2014055347A
JP2014055347A JP2013106500A JP2013106500A JP2014055347A JP 2014055347 A JP2014055347 A JP 2014055347A JP 2013106500 A JP2013106500 A JP 2013106500A JP 2013106500 A JP2013106500 A JP 2013106500A JP 2014055347 A JP2014055347 A JP 2014055347A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy sheet
mpa
less
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013106500A
Other languages
Japanese (ja)
Inventor
Takaaki Hatano
隆紹 波多野
Akihiro Kakitani
明宏 柿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013106500A priority Critical patent/JP2014055347A/en
Publication of JP2014055347A publication Critical patent/JP2014055347A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy sheet having high strength, high conductivity and excellent in stress relief properties, to provide a method of manufacturing the copper alloy sheet and to provide an electronic component for a large current and an electronic component for heat release using the copper alloy sheet.SOLUTION: The copper alloy sheet contains Zn of 2 to 22 mass% and the remainder copper with its inevitable impurities, has a conductivity of 30% IACS or more and a 0.2% bearing force of 350 MPa or more, and a stress relief rate after adding stress of 80% of the 0.2% bearing force and maintaining at 150°C for 1000 hours of 50% or less.

Description

本発明は、銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。   The present invention relates to a copper alloy plate and electronic parts for energization or heat dissipation, and in particular, electronic devices such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. mounted on electric machines / electronic devices, automobiles, etc. The present invention relates to a copper alloy plate used as a component material and an electronic component using the copper alloy plate. Among them, copper alloys suitable for use in high current electronic parts such as connectors and terminals for large currents used in electric cars, hybrid cars, etc., or for use in electronic parts for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs The present invention relates to a plate and an electronic component using the copper alloy plate.

自動車や電機・電子機器等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。
近年、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、伸長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等、著しく高い電流が流されるものがあり、通電時の銅合金の発熱が問題になっている。
Parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc., that transmit electricity or heat are built into automobiles, electrical equipment, electronic devices, etc., and these parts are made of copper alloy. It is used. Here, electrical conductivity and thermal conductivity are in a proportional relationship.
In recent years, with the miniaturization of electronic components, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In addition, some electronic parts used in an electric vehicle and a hybrid electric vehicle that are remarkably growing, such as a connector of a battery part, allow a very high current to flow, and heat generation of a copper alloy during energization is a problem.

コネクタ等の電子部品の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金を高温下で長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。
そこで、前記発熱の問題に対処するため、銅合金には、発熱量が減ずるよう導電性により優れることが求められ、さらに発熱しても接触力が低下しないよう応力緩和特性により優れることも求められている。
一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、応力緩和特性を高めると、外力による放熱板のクリープ変形が抑制され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善される、等の効果を期待できる。このため、放熱用途の銅合金板においても、応力緩和特性に優れることが望まれている。
In an electrical contact of an electronic component such as a connector, a deflection is given to the copper alloy plate, and a contact force at the contact is obtained by a stress generated by the deflection. When a bent copper alloy is held at a high temperature for a long time, the stress, that is, the contact force is reduced due to the stress relaxation phenomenon, and the contact electric resistance is increased.
Therefore, in order to cope with the problem of heat generation, the copper alloy is required to be superior in conductivity so that the amount of heat generation is reduced, and further to be excellent in stress relaxation characteristics so that the contact force does not decrease even if heat is generated. ing.
On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, when stress relaxation characteristics are enhanced, creep deformation of the heat sink due to external force is suppressed, and the protection against liquid crystal components, IC chips, etc. disposed around the heat sink is improved. , Etc. can be expected. For this reason, it is desired that the copper alloy plate for heat dissipation also has excellent stress relaxation characteristics.

比較的高い導電率と強度を有し、安価に製造できる銅合金として丹銅(Cu−Zn合金)が知られており、例えばJSI合金番号C2100(Cu−5質量%Zn)、C2200(Cu−10質量%Zn)、C2300(Cu−15質量%Zn)、C2400(Cu−20質量%Zn)等が実用に供されている。また、Cu−Zn合金にSnを添加し強度を改善した合金が、例えば特許文献1に開示されている。   As a copper alloy having relatively high electrical conductivity and strength and capable of being manufactured at low cost, red copper (Cu—Zn alloy) is known. For example, JSI alloy numbers C2100 (Cu-5 mass% Zn), C2200 (Cu— 10 mass% Zn), C2300 (Cu-15 mass% Zn), C2400 (Cu-20 mass% Zn), etc. are provided for practical use. Further, for example, Patent Document 1 discloses an alloy in which Sn is added to a Cu—Zn alloy to improve the strength.

特開2007−046159号公報JP 2007-046159 A

銅合金の応力緩和特性は、特定の合金元素を添加することにより改善できる。応力緩和改善効果が顕著な元素として、例えばZr、Ti等があげられる。ところが、これら元素は極めて活性であるため、インゴット溶製時にその一部が酸化する。この酸化物がインゴットに巻き込まれると、製品表面に傷が発生したり、圧延中の材料が切れたりする。また、これら元素は固体銅中で析出物を形成し、その析出形態によって機械的特性や応力緩和特性が変化するため、熱間圧延や各熱処理の条件を厳密に調整する必要がある。このように、合金元素添加による応力緩和特性の改善は、一般的に、銅合金の製造コストの著しい上昇を招く。   The stress relaxation characteristics of the copper alloy can be improved by adding a specific alloy element. Examples of the element having a remarkable stress relaxation improving effect include Zr and Ti. However, since these elements are extremely active, some of them are oxidized during ingot melting. When this oxide is caught in an ingot, the surface of the product is damaged or the material being rolled is cut. Moreover, since these elements form precipitates in solid copper and the mechanical characteristics and stress relaxation characteristics change depending on the form of precipitation, it is necessary to strictly adjust the conditions for hot rolling and each heat treatment. As described above, the improvement of the stress relaxation characteristic by adding the alloy element generally causes a significant increase in the manufacturing cost of the copper alloy.

したがって、合金元素の添加に頼らず、製造プロセスの調整により、銅合金の応力緩和特性を改善できれば、工業的に極めて意義深いといえる。   Therefore, if the stress relaxation characteristics of the copper alloy can be improved by adjusting the manufacturing process without depending on the addition of alloy elements, it can be said that it is extremely significant industrially.

そこで、本発明は、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金を提供することを目的とし、具体的には、安価で導電性と強度に優れるCu−Zn系合金の応力緩和特性を改善することを課題とする。さらには、本発明は、該銅合金板の製造方法、及び大電流用途又は放熱用途に好適な電子部品を提供することをも目的とする。   Therefore, an object of the present invention is to provide a copper alloy having high strength, high conductivity, and excellent stress relaxation properties. Specifically, the present invention is an inexpensive Cu-Zn alloy that is excellent in conductivity and strength. It is an object to improve stress relaxation characteristics. Furthermore, another object of the present invention is to provide a method for producing the copper alloy plate and an electronic component suitable for high current use or heat dissipation use.

本発明者らは、Cu−Zn系合金において、ばね限界値を指標に金属組織を調整すること、圧延面に配向する結晶粒の方位を制御することにより、応力緩和特性が向上することを見出した。
以上の知見を背景に、以下の発明を完成させた。
(1)2〜22質量%のZnを含有し、残部が銅およびその不可避的不純物から成り、30%IACS以上の導電率、および350MPa以上の0.2%耐力を有し、かつ、0.2%耐力の80%の応力を付加し150℃で1000時間保持後の応力緩和率が50%以下であることを特徴とする、銅合金板。
(2)ばね限界値Kb(MPa)と、0.2%耐力σ(MPa)との関係が、Kb≧(σ−100)で与えられることを特徴とする、(1)に記載の銅合金板。
(3)X線回折法を用い圧延面において厚み方向に求めた(111)面および(311)面の回折積分強度をそれぞれI(111)およびI(311)としたときに、I(111)/I(311)が5.0以下であることを特徴とする(1)または(2)に記載の銅合金板。
(4)1.0質量%以下のSnを含有することを特徴とする、(1)〜(3)の何れかに記載の銅合金板。
(5)Ag、Fe、Co、Ni、Cr、Mn、Mg、Si、PおよびBのうちの一種以上を1.0質量%以下含有することを特徴とする(1)〜(4)の何れかに記載の銅合金板。
(6)(1)〜(5)の何れかに記載の銅合金板を用いた高電流用電子部品。
(7)(1)〜(5)の何れかに記載の銅合金板を用いた放熱用電子部品。
(8)インゴットを、800〜1000℃で厚み3〜30mmまで熱間圧延した後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延の後、歪取焼鈍を施す銅合金板の製造工程であって、
(A)該最終冷間圧延前の再結晶焼鈍において、炉内温度を350〜800℃として、銅合金板の平均結晶粒径を2〜50μmに調整し、
(B)該最終冷間圧延において、総加工度を25〜99%、1パスあたりの圧延加工度を20%以下とし、
(C)該歪取焼鈍において、連続焼鈍炉を用い、炉内温度を300〜700℃、炉内で銅合金板に付加される張力を1〜5MPaとして、銅合金板を通板し、0.2%耐力を10〜50MPa低下させる、
ことを特徴とする、(1)〜(5)の何れかに記載の銅合金板の製造方法。
The present inventors have found that, in a Cu—Zn-based alloy, the stress relaxation characteristics are improved by adjusting the metal structure using the spring limit value as an index and controlling the orientation of crystal grains oriented on the rolling surface. It was.
Based on the above findings, the following invention has been completed.
(1) It contains 2 to 22% by mass of Zn, the balance is made of copper and its inevitable impurities, has a conductivity of 30% IACS or more, a 0.2% proof stress of 350 MPa or more, and 0. A copper alloy sheet, wherein a stress relaxation rate after applying 80% stress of 2% proof stress and holding at 150 ° C. for 1000 hours is 50% or less.
(2) The copper alloy according to (1), wherein the relationship between the spring limit value Kb (MPa) and the 0.2% yield strength σ (MPa) is given by Kb ≧ (σ−100) Board.
(3) When the integrated diffraction intensities of the (111) plane and (311) plane obtained in the thickness direction on the rolled surface using the X-ray diffraction method are I (111) and I (311) , respectively, I (111) The copper alloy sheet according to (1) or (2), wherein / I (311) is 5.0 or less.
(4) The copper alloy plate according to any one of (1) to (3), characterized by containing 1.0 mass% or less of Sn.
(5) Any one of (1) to (4) containing 1.0% by mass or less of at least one of Ag, Fe, Co, Ni, Cr, Mn, Mg, Si, P and B A copper alloy plate according to any one of the above.
(6) An electronic component for high current using the copper alloy plate according to any one of (1) to (5).
(7) A heat dissipating electronic component using the copper alloy plate according to any one of (1) to (5).
(8) After hot rolling the ingot at a temperature of 800 to 1000 ° C. to a thickness of 3 to 30 mm, the cold rolling and the recrystallization annealing are repeated, and after the final cold rolling, the copper alloy sheet is subjected to strain relief annealing. Manufacturing process,
(A) In the recrystallization annealing before the final cold rolling, the furnace temperature is 350 to 800 ° C., the average crystal grain size of the copper alloy plate is adjusted to 2 to 50 μm,
(B) In the final cold rolling, the total working degree is 25 to 99%, the rolling work degree per pass is 20% or less,
(C) In the strain relief annealing, using a continuous annealing furnace, the furnace temperature is 300 to 700 ° C., the tension applied to the copper alloy sheet in the furnace is 1 to 5 MPa, and the copper alloy sheet is passed through, 0 .2% yield strength is reduced by 10-50 MPa,
The method for producing a copper alloy plate according to any one of (1) to (5).

本発明によれば、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板及びその製造方法、並びに大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the copper alloy board which has high intensity | strength, high electroconductivity, and the outstanding stress relaxation characteristic, its manufacturing method, and an electronic component suitable for a large current use or a heat dissipation use. This copper alloy can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc., especially for electronic parts that carry a large current or a large amount of heat. It is useful as a material for electronic parts that dissipate the energy.

応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate.

以下、本発明について説明する。
(特性)
本発明では、銅合金板の導電率および0.2%耐力を、それぞれ30%IACS以上および350MPa以上に調整することを目標とする。導電率が30%IACS以上であれば、通電時の発熱が減少し、応力緩和による接触力低下が軽減される。また、0.2%耐力が350MPa以上であれば、大電流を通電する部品の素材又は大熱量を放散する部品の素材として必要な強度を有しているといえる。
応力緩和特性については、0.2%耐力の80%の応力を付加し150℃で1000時間保持した時の応力緩和率を50%以下、より好ましくは40%以下、さらに好ましくは30%に低減することを目標とする。通常のCu−Zn系合金の該応力緩和率は70〜80%程度であり、これを50%以下にすることで、コネクタに加工した後に大電流を通電しても接触力低下に伴う接触電気抵抗の増加が生じ難くなり、また、放熱板に加工した後に熱と外力が同時に加わってもクリープ変形が生じ難くなる。
上記特性を兼ね備える本発明の銅合金板は、高電流用電子部品の用途に好適である。
The present invention will be described below.
(Characteristic)
In this invention, it aims at adjusting the electrical conductivity and 0.2% yield strength of a copper alloy board to 30% IACS or more and 350MPa or more, respectively. If the electrical conductivity is 30% IACS or more, heat generation during energization is reduced, and a reduction in contact force due to stress relaxation is reduced. In addition, if the 0.2% proof stress is 350 MPa or more, it can be said that the material has the strength necessary for a material for a component that conducts a large current or a material for a component that dissipates a large amount of heat.
Regarding stress relaxation characteristics, the stress relaxation rate when 80% stress of 0.2% proof stress is applied and held at 150 ° C. for 1000 hours is reduced to 50% or less, more preferably 40% or less, and even more preferably 30%. The goal is to do. The stress relaxation rate of a normal Cu—Zn alloy is about 70 to 80%, and by making this 50% or less, contact electricity accompanying a decrease in contact force even when a large current is applied after processing into a connector. Resistance does not easily increase, and creep deformation does not easily occur even if heat and external force are applied simultaneously after processing to a heat sink.
The copper alloy plate of the present invention having the above characteristics is suitable for use in high-current electronic components.

(合金成分濃度)
Zn濃度は2〜22質量%、好ましくは2〜12質量%とする。Znが22質量%を超えると、30%IACS以上の導電率を得ることが難しくなり、Znが2%未満になると、350MPa以上の0.2%耐力を得ることが難しくなる。
(Alloy component concentration)
The Zn concentration is 2 to 22% by mass, preferably 2 to 12% by mass. When Zn exceeds 22% by mass, it becomes difficult to obtain a conductivity of 30% IACS or more, and when Zn is less than 2%, it becomes difficult to obtain a 0.2% proof stress of 350 MPa or more.

本発明のCu−Zn系合金には、1質量%以下のSnを添加することができる。Snには圧延の際の合金の加工硬化を促進し、合金の強度を改善する効果がある。また、前述したZrやTiほどではないが、Snには応力緩和特性を改善する効果もある。
Snが1質量%を超えると、導電率の低下が大きくなる。Sn添加の効果を得るためには、Snの添加量を0.001質量%以上にすることが好ましい。より好ましいSn濃度の範囲は0.1〜0.6質量%である。
なお、Snは溶銅中で酸化物を形成しにくいため、1%以下の濃度で添加する限り、Sn添加が合金の製造性や品質を悪化させることはない。また、Snは固体銅中に安定して固溶するため、1%以下の濃度で添加する限り、Snの製品特性に対する効果は安定して発現する。
1 mass% or less of Sn can be added to the Cu-Zn type alloy of this invention. Sn has the effect of promoting work hardening of the alloy during rolling and improving the strength of the alloy. Further, although not as much as Zr and Ti described above, Sn also has an effect of improving stress relaxation characteristics.
When Sn exceeds 1% by mass, the decrease in conductivity is increased. In order to acquire the effect of Sn addition, it is preferable to make the addition amount of Sn 0.001 mass% or more. A more preferable range of the Sn concentration is 0.1 to 0.6% by mass.
In addition, since it is difficult for Sn to form an oxide in molten copper, as long as it is added at a concentration of 1% or less, Sn addition does not deteriorate the manufacturability and quality of the alloy. Further, since Sn is stably dissolved in solid copper, the effect of Sn on the product characteristics is stably exhibited as long as it is added at a concentration of 1% or less.

本発明のCu−Zn系合金には、強度や耐熱性を改善するために、Ag、Fe、Co、Ni、Cr、Mn、Mg、Si、PおよびBのうちの一種以上を含有させることができる。ただし、添加量が多すぎると、導電率が低下したり、製造性が悪化したりするので、添加量は総量で1.0質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下に制限される。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。   In order to improve strength and heat resistance, the Cu—Zn alloy of the present invention may contain one or more of Ag, Fe, Co, Ni, Cr, Mn, Mg, Si, P and B. it can. However, if the addition amount is too large, the electrical conductivity is lowered or the productivity is deteriorated, so the addition amount is 1.0% by mass or less, more preferably 0.1% by mass or less, more preferably, in total. It is limited to 0.05% by mass or less. Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.

(ばね限界値)
製品のばね限界値をKb(MPa)、0.2%耐力をσ(MPa)としたときに、Kb≧(σ−100)の関係に、より好ましくは、Kb≧(σ−50)の関係に調整することで、応力緩和特性が向上する。Kb<(σ−100)の場合は、応力緩和率が50%を超える。Kbの上限値は特に規制されないが、通常はσを超える値になることは少ない。
(Spring limit value)
When the spring limit value of the product is Kb (MPa) and the 0.2% proof stress is σ (MPa), the relationship is Kb ≧ (σ−100), more preferably the relationship Kb ≧ (σ−50). The stress relaxation property is improved by adjusting to. In the case of Kb <(σ-100), the stress relaxation rate exceeds 50%. The upper limit value of Kb is not particularly restricted, but normally it is rare that it exceeds σ.

(圧延面の結晶方位)
製品の圧延面において、I(111)/I(311)を5.0以下、好ましくは2.0以下に調整することにより、応力緩和特性が向上する。ここで、I(111)およびI(311)はそれぞれX線回折法を用い厚み方向に求めた(111)面および(311)面の回折積分強度である。I(111)/I(311)が5.0を超えると、応力緩和率が50%を超える。I(111)/I(311)の下限値は応力緩和特性改善の点からは制限されないものの、I(111)/I(311)は典型的には0.01以上の値をとる。
(Crystal orientation of rolling surface)
By adjusting I (111) / I (311) to 5.0 or less, preferably 2.0 or less on the rolled surface of the product, the stress relaxation characteristics are improved. Here, I (111) and I (311) are diffraction integrated intensities of the (111) plane and the (311) plane obtained in the thickness direction using the X-ray diffraction method, respectively. When I (111) / I (311) exceeds 5.0, the stress relaxation rate exceeds 50%. Although the lower limit of I (111) / I (311 ) is not limited in terms of the stress relaxation characteristics improved, I (111) / I ( 311) typically takes a value of more than 0.01.

(厚み)
製品の厚みは0.1〜2.0mmであることが好ましい。厚みが小さすぎると、通電部断面積が小さくなり通電時の発熱が増加するため、大電流を流すコネクタ等の素材として不適であり、また、わずかな外力で変形するようになるため放熱板等の素材としても不適である。一方で、厚みが厚すぎると、曲げ加工が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、通電時の発熱を抑えつつ、曲げ加工性を良好なものとすることができる。
(Thickness)
The thickness of the product is preferably 0.1 to 2.0 mm. If the thickness is too small, the cross-sectional area of the current-carrying part will decrease and heat generation will increase during energization, making it unsuitable as a connector or other material that carries a large current. It is also unsuitable as a material. On the other hand, if the thickness is too thick, bending becomes difficult. From such a viewpoint, a more preferable thickness is 0.2 to 1.5 mm. When the thickness is in the above range, the bending workability can be improved while suppressing heat generation during energization.

(用途)
本発明の実施の形態に係る銅合金板は、電機・電子機器、自動車等で用いられる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention is suitably used for applications of electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. used in electric / electronic devices, automobiles, etc. In particular, applications of high-current electronic components such as connectors and terminals for large currents used in electric vehicles, hybrid vehicles, etc., or uses of electronic components for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs Useful for.

(製造方法)
純銅原料として電気銅等を溶解し、Znおよび必要に応じ他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。最終冷間圧延後のばね限界値は、100MPaに満たないほど低いが、その後の歪取焼鈍により上昇する。
(Production method)
As a pure copper raw material, electrolytic copper or the like is dissolved, Zn and other alloy elements are added as required, and cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, cold rolling and recrystallization annealing are repeated, and finally finished to a predetermined product thickness by cold rolling. Apply strain relief annealing. The spring limit value after the final cold rolling is so low that it does not reach 100 MPa, but rises by subsequent strain relief annealing.

最終冷間圧延前の再結晶焼鈍において、銅合金板の平均結晶粒径を2〜50μmに調整する。平均結晶粒径が小さすぎると、I(111)/I(311)を5.0以下に調整することが難しくなる。一方で、平均結晶粒径が大きすぎると、0.2%耐力を350MPa以上に調整することが難しくなる。 In the recrystallization annealing before the final cold rolling, the average crystal grain size of the copper alloy sheet is adjusted to 2 to 50 μm. If the average grain size is too small, it becomes difficult to adjust I (111) / I (311) to 5.0 or less. On the other hand, if the average crystal grain size is too large, it is difficult to adjust the 0.2% proof stress to 350 MPa or more.

最終冷間圧延前の再結晶焼鈍は、炉内温度を350〜800℃にして実施され、バッチ炉を用いてもよいし、連続焼鈍炉を用いてもよい。バッチ炉では350〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整することにより、また、連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整することにより、平均結晶粒径を2〜50μmに調整できる。   The recrystallization annealing before the final cold rolling is performed at a furnace temperature of 350 to 800 ° C., and a batch furnace or a continuous annealing furnace may be used. In a batch furnace, by appropriately adjusting the heating time in the range of 30 minutes to 30 hours at an in-furnace temperature of 350 to 600 ° C., and in a continuous annealing furnace, a range of 5 seconds to 10 minutes at an in-furnace temperature of 450 to 800 ° C. By appropriately adjusting the heating time, the average crystal grain size can be adjusted to 2 to 50 μm.

最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げてゆく。最終冷間圧延の総加工度と1パスあたりの加工度を制御する。
総加工度R(%)は、R=(t0−t)/t0×100(t0:最終冷間圧延前の板厚、t:最終冷間圧延後の板厚)で与えられる。また、1パスあたりの加工度r(%)とは、圧延ロールを1回通過したときの板厚減少率であり、r=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。
総加工度Rは25〜99%とする。Rが小さすぎると、0.2%耐力を350MPa以上に調整することが難しくなる。Rが大きすぎると、圧延材のエッジが割れることがある。
In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The total workability of final cold rolling and the workability per pass are controlled.
The total workability R (%) is given by R = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before final cold rolling, t: plate thickness after final cold rolling). Further, the processing degree r (%) per pass is a sheet thickness reduction rate when the rolling roll passes once, and r = (T 0 −T) / T 0 × 100 (T 0 : rolling roll) Thickness before passing, T: Thickness after passing the rolling roll).
The total processing degree R is 25 to 99%. If R is too small, it is difficult to adjust the 0.2% proof stress to 350 MPa or more. When R is too large, the edge of the rolled material may be broken.

1パスあたりの加工度rは20%以下とする。rが大きすぎるとI(111)/I(311)が増加し、全パスの中にrが20%を超えるパスが一つでも含まれるとI(111)/I(311)を5.0以下に調整することが難しくなる。 The degree of processing r per pass is 20% or less. If r is too large increases I (111) / I (311 ), the path that r is more than 20% among all paths include even one I a (111) / I (311) 5.0 It becomes difficult to adjust to the following.

本発明の歪取焼鈍は連続焼鈍炉を用いて行う。バッチ炉の場合、コイル状に巻き取った状態で材料を加熱するため、加熱中に材料が塑性変形を起こし材料に反りが生じる。したがって、バッチ炉は本発明の歪取焼鈍に不適である。   The strain relief annealing of the present invention is performed using a continuous annealing furnace. In the case of a batch furnace, the material is heated in a coiled state, so that the material undergoes plastic deformation during the heating, and the material is warped. Therefore, the batch furnace is not suitable for the strain relief annealing of the present invention.

連続焼鈍炉において、炉内温度を300〜700℃とし、5秒から10分の範囲で加熱時間を適宜調整し、歪取焼鈍後の0.2%耐力(σ)を歪取焼鈍前の0.2%耐力(σ0)に対し10〜50MPa低い値、好ましくは15〜45MPa低い値に調整する。これにより、最終冷間圧延上がりにおいて低かったKbが充分に上昇する。(σ0−σ)が小さすぎても大きすぎても、Kbが充分に上昇せず、前記Kb≧(σ−100)の関係を得ることが難しくなる。 In the continuous annealing furnace, the furnace temperature is set to 300 to 700 ° C., the heating time is appropriately adjusted in the range of 5 seconds to 10 minutes, and the 0.2% proof stress (σ) after the stress relief annealing is 0 before the stress relief annealing. Adjust to a value 10 to 50 MPa lower, preferably 15 to 45 MPa lower than 2% proof stress (σ 0 ). Thereby, Kb which was low in the final cold rolling is sufficiently increased. If (σ 0 −σ) is too small or too large, Kb does not rise sufficiently, and it becomes difficult to obtain the relationship of Kb ≧ (σ−100).

さらに、連続焼鈍炉内において材料に付加される張力を1〜5MPa、より好ましくは1〜4MPaに調整する。張力が大きすぎると、I(111)/I(311)を5.0以下に調整することが難しくなる。また、Kbの上昇が充分ではなくなる傾向にある。一方、張力が小さすぎると、焼鈍炉を通板中の材料が炉壁と接触し、材料の表面やエッジに傷が付くことがある。 Further, the tension applied to the material in the continuous annealing furnace is adjusted to 1 to 5 MPa, more preferably 1 to 4 MPa. If the tension is too large, it becomes difficult to adjust I (111) / I (311) to 5.0 or less. Further, the increase in Kb tends to be insufficient. On the other hand, if the tension is too small, the material in the passing plate of the annealing furnace may come into contact with the furnace wall, and the surface or edge of the material may be damaged.

本発明は、Kb≧(σ−100)なる特徴およびI(111)/I(311)≦5.0なる特徴をCu−Zn合金に付与することにより、応力緩和特性を改善することを一つの特徴としているが、そのための製造条件を整理して示すと、
(1)Kb≧σ−100のためには、
a.歪取焼鈍において、(σ0−σ)=10〜50MPaに調整する。
b.歪取焼鈍における炉内張力を5MPa以下に調整する。
(2)I(111)/I(311)≦5.0のためには、
a.最終冷間圧延前の再結晶焼鈍において、平均結晶粒径を2μm以上に調整する。
b.最終冷間圧延において、1パスあたりの加工度を20%以下に調整する。
c.歪取焼鈍における炉内張力を5MPa以下に調整する。
One aspect of the present invention is to improve stress relaxation characteristics by imparting a feature of Kb ≧ (σ−100) and a feature of I (111) / I (311) ≦ 5.0 to a Cu—Zn alloy. It is a feature, but if you organize and show the manufacturing conditions for that,
(1) For Kb ≧ σ−100,
a. In the strain relief annealing, (σ 0 −σ) = 10 to 50 MPa is adjusted.
b. The furnace tension in the strain relief annealing is adjusted to 5 MPa or less.
(2) For I (111) / I (311) ≦ 5.0,
a. In the recrystallization annealing before the final cold rolling, the average crystal grain size is adjusted to 2 μm or more.
b. In the final cold rolling, the degree of processing per pass is adjusted to 20% or less.
c. The furnace tension in the strain relief annealing is adjusted to 5 MPa or less.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを850℃で3時間加熱し、熱間圧延により厚み15mmの板にした。熱間圧延板表面の酸化スケールをグラインダーで研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に連続焼鈍炉を用い歪取焼鈍を行った。
Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 850 ° C. for 3 hours and formed into a plate having a thickness of 15 mm by hot rolling. After grinding and removing the oxide scale on the surface of the hot rolled plate with a grinder, annealing and cold rolling were repeated, and the product was finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing was performed using a continuous annealing furnace.

最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、焼鈍時の厚みが2mmを超える場合はバッチ炉を、厚みが2mm以下の場合は連続焼鈍炉を用いて行った。バッチ炉の場合は加熱時間を5時間とし炉内温度を300〜700℃の範囲で調整し、焼鈍後の結晶粒径を変化させた。連続焼鈍炉の場合は炉内温度を700℃とし加熱時間を1秒から15分の間で適宜調整し、焼鈍後の結晶粒径を変化させた。焼鈍後の結晶粒径の測定においては、圧延方向に直角な断面を鏡面研磨後に化学腐食し、切断法(JIS H0501(1999年))により平均結晶粒径を求めた。   The annealing before the final cold rolling (final recrystallization annealing) was performed using a batch furnace when the thickness during annealing exceeded 2 mm, and a continuous annealing furnace when the thickness was 2 mm or less. In the case of a batch furnace, the heating time was 5 hours, the furnace temperature was adjusted in the range of 300 to 700 ° C., and the crystal grain size after annealing was changed. In the case of a continuous annealing furnace, the furnace temperature was set to 700 ° C., and the heating time was appropriately adjusted between 1 second and 15 minutes to change the crystal grain size after annealing. In the measurement of the crystal grain size after annealing, a cross section perpendicular to the rolling direction was subjected to chemical corrosion after mirror polishing, and the average crystal grain size was determined by a cutting method (JIS H0501 (1999)).

最終冷間圧延では、総加工度および1パスあたりの加工度を制御した。また、最終冷間圧延後の材料の0.2%耐力を求めた。
連続焼鈍炉を用いた歪取り焼鈍では、炉内温度を500℃とし加熱時間を1秒から15分の間で調整し、焼鈍後の0.2%耐力を種々変化させた。また、炉内において材料に付加する張力を種々変化させた。なお、一部の例では歪取り焼鈍を行わなかった。
製造途中の材料および歪取焼鈍後の材料につき、次の測定を行った。
In the final cold rolling, the total workability and the workability per pass were controlled. Moreover, the 0.2% yield strength of the material after final cold rolling was calculated | required.
In strain relief annealing using a continuous annealing furnace, the furnace temperature was 500 ° C., the heating time was adjusted between 1 second and 15 minutes, and the 0.2% proof stress after annealing was variously changed. In addition, various tensions were added to the material in the furnace. In some cases, strain relief annealing was not performed.
The following measurement was performed on the material in the process of manufacturing and the material after strain relief annealing.

(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
(component)
The alloy element concentration of the material after strain relief annealing was analyzed by ICP-mass spectrometry.

(0.2%耐力)
最終冷間圧延後および歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、0.2%耐力を求めた。
(0.2% yield strength)
For the material after the final cold rolling and strain relief annealing, sample No. 13B specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and pulled in parallel with the rolling direction in accordance with JIS Z2241. Tests were performed to determine 0.2% yield strength.

(ばね限界値)
歪取焼鈍後の材料から、幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取し、JIS H3130に規定されているモーメント式試験により圧延方向と平行な方向のばね限界値を測定した。
(Spring limit value)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and was subjected to a moment type test specified in JIS H3130. The spring limit value in the direction parallel to the rolling direction was measured.

(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
A test piece was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.

(結晶方位)
歪取焼鈍後の材料の表面に対し、厚み方向に(111)面および(311)面のX線回折積分強度を測定した。X線回折装置には(株)リガク製RINT2500を使用し、Cu管球にて、管電圧25kV、管電流20mAで測定を行った。
(Crystal orientation)
The X-ray diffraction integrated intensity of the (111) plane and (311) plane was measured in the thickness direction with respect to the surface of the material after strain relief annealing. RINT 2500 manufactured by Rigaku Corporation was used as the X-ray diffractometer, and measurement was performed with a Cu tube bulb at a tube voltage of 25 kV and a tube current of 20 mA.

(応力緩和率)
歪取焼鈍後の材料から、幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図1のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、圧延方向の0.2%耐力の80%に相当する応力(s)を負荷した。y0は次式により求めた。
0=(2/3)・l2・s / (E・t)
ここで、Eは圧延方向のヤング率であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図2のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
(Stress relaxation rate)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 1, with the position of l = 50 mm as the working point, a deflection of y 0 was given to the test piece, and a stress (s) corresponding to 80% of the 0.2% proof stress in the rolling direction was applied. y 0 was determined by the following equation.
y 0 = (2/3) · l 2 · s / (E · t)
Here, E is the Young's modulus in the rolling direction, and t is the thickness of the sample. Unloading after heating at 150 ° C. for 1000 hours, and measuring the amount of permanent deformation (height) y as shown in FIG. 2, stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%) } Was calculated.

表1に評価結果を示す。ここで、最終冷間圧延では複数のパスを実施したが、これら各パスの加工度の中での最大値を示してある。
Zn濃度を2〜22%に調整し、最終冷間圧延前の再結晶焼鈍において、結晶粒径を2〜50μmに調整し、最終冷間圧延において、総加工度を25〜99%に、1パスあたりの加工度を20%以下に調整し、歪取焼鈍において、材料を連続焼鈍炉に張力1〜5MPaで通板して0.2%耐力を10〜50MPa低下させた、本発明の銅合金板では、Kb≧(σ−100)なる関係およびI(111)/I(311)≦5.0なる関係が得られ、30%IACS以上の導電率、350MPa以上の0.2%耐力、50%以下の応力緩和率を達成できた。
Table 1 shows the evaluation results. Here, in the final cold rolling, a plurality of passes were performed, and the maximum value of the degree of processing of each pass is shown.
The Zn concentration is adjusted to 2 to 22%, the crystal grain size is adjusted to 2 to 50 μm in the recrystallization annealing before the final cold rolling, and the total workability is set to 25 to 99% in the final cold rolling. The copper according to the present invention, in which the workability per pass was adjusted to 20% or less, and in strain relief annealing, the material was passed through a continuous annealing furnace at a tension of 1 to 5 MPa to reduce the 0.2% proof stress by 10 to 50 MPa. In the alloy plate, a relationship of Kb ≧ (σ−100) and a relationship of I (111) / I (311) ≦ 5.0 are obtained, conductivity of 30% IACS or more, 0.2% proof stress of 350 MPa or more, A stress relaxation rate of 50% or less was achieved.

比較例3は歪取焼鈍を行わなかったものであり、応力緩和率が極めて大きい。
比較例1、2では、歪取焼鈍を行ったものの、炉内での材料張力が5MPaを超えたため、I(111)/I(311)が5.0を超え、特に張力が高かった比較例2では(σ−Kb)も100を超えた。比較例1、2の応力緩和率は50%を超えた。
比較例5、6では、歪取焼鈍における0.2%耐力の低下量がそれぞれ過小および過大であり、(σ0−σ)が10〜50MPaの範囲から外れた。このため(σ−Kb)が100を超え、応力緩和率が50%を超えた。
In Comparative Example 3, strain relief annealing was not performed, and the stress relaxation rate was extremely large.
In Comparative Examples 1 and 2, although strain relief annealing was performed, since the material tension in the furnace exceeded 5 MPa, I (111) / I (311) exceeded 5.0 and the comparatively high tension. 2 (σ−Kb) also exceeded 100. The stress relaxation rate of Comparative Examples 1 and 2 exceeded 50%.
In Comparative Examples 5 and 6, the amount of decrease in 0.2% proof stress during strain relief annealing was too small and too large, and (σ 0 −σ) deviated from the range of 10 to 50 MPa. For this reason, (σ−Kb) exceeded 100 and the stress relaxation rate exceeded 50%.

比較例4では、最終冷間圧延における1パス当たりの加工度が20%を超えたため、I(111)/I(311)が5.0を超え、応力緩和率が50%を超えた。
比較例11では、最終冷間圧延における総加工度が25%に満たなかったため、歪取焼鈍後の0.2%耐力が350MPaに満たなかった。
比較例7では、最終冷間圧延前の再結晶焼鈍上がりの結晶粒径が2μmに満たなかったため、I(111)/I(311)が5.0を超え、応力緩和率が50%を超えた。
In Comparative Example 4, since the degree of work per pass in the final cold rolling exceeded 20%, I (111) / I (311) exceeded 5.0 and the stress relaxation rate exceeded 50%.
In Comparative Example 11, the total work degree in the final cold rolling was less than 25%, so the 0.2% yield strength after strain relief annealing was less than 350 MPa.
In Comparative Example 7, since the crystal grain size after recrystallization annealing before the final cold rolling was less than 2 μm, I (111) / I (311) exceeded 5.0 and the stress relaxation rate exceeded 50%. It was.

比較例8では、最終冷間圧延前の再結晶焼鈍上がりの結晶粒径が50μmを超えたため、歪取焼鈍後の0.2%耐力が350MPaに満たなかった。
比較例9では、Zn濃度が2質量%未満だったため、歪取焼鈍後の0.2%耐力が350MPaに満たなかった。
比較例10では、Zn濃度が22質量%を超えたため、導電率が30%IACSに満たなかった。
In Comparative Example 8, since the crystal grain size after recrystallization annealing before the final cold rolling exceeded 50 μm, the 0.2% proof stress after strain relief annealing was less than 350 MPa.
In Comparative Example 9, since the Zn concentration was less than 2% by mass, the 0.2% proof stress after strain relief annealing was less than 350 MPa.
In Comparative Example 10, since the Zn concentration exceeded 22% by mass, the conductivity was less than 30% IACS.

Figure 2014055347
Figure 2014055347

Claims (8)

2〜22質量%のZnを含有し、残部が銅およびその不可避的不純物から成り、30%IACS以上の導電率、および350MPa以上の0.2%耐力を有し、かつ、0.2%耐力の80%の応力を付加し150℃で1000時間保持後の応力緩和率が50%以下であることを特徴とする、銅合金板。   It contains 2 to 22% by mass of Zn, the balance is made of copper and its inevitable impurities, has a conductivity of 30% IACS or more, a 0.2% proof stress of 350 MPa or more, and a 0.2% proof stress A copper alloy sheet characterized by having a stress relaxation rate of 50% or less after being applied at 80 ° C. and holding at 150 ° C. for 1000 hours. ばね限界値Kb(MPa)と、0.2%耐力σ(MPa)との関係が、Kb≧(σ−100)で与えられることを特徴とする、請求項1に記載の銅合金板。   The copper alloy sheet according to claim 1, wherein the relationship between the spring limit value Kb (MPa) and the 0.2% yield strength σ (MPa) is given by Kb ≧ (σ−100). X線回折法を用い圧延面において厚み方向に求めた(111)面および(311)面の回折積分強度をそれぞれI(111)およびI(311)としたときに、I(111)/I(311)が5.0以下であることを特徴とする請求項1または2に記載の銅合金板。 When the integrated diffraction intensities of the (111) plane and (311) plane obtained in the thickness direction on the rolled surface using the X-ray diffraction method are I (111) and I (311) , respectively, I (111) / I ( The copper alloy sheet according to claim 1 or 2, wherein 311) is 5.0 or less. 1.0質量%以下のSnを含有することを特徴とする、請求項1〜3の何れか1項に記載の銅合金板。   The copper alloy sheet according to any one of claims 1 to 3, comprising 1.0 mass% or less of Sn. Ag、Fe、Co、Ni、Cr、Mn、Mg、Si、PおよびBのうちの一種以上を1.0質量%以下含有することを特徴とする請求項1〜4の何れか1項に記載の銅合金板。   5. One or more of Ag, Fe, Co, Ni, Cr, Mn, Mg, Si, P, and B are contained in an amount of 1.0% by mass or less. 5. Copper alloy plate. 請求項1〜5の何れか1項に記載の銅合金板を用いた高電流用電子部品。   The electronic component for high currents using the copper alloy plate of any one of Claims 1-5. 請求項1〜5の何れか1項に記載の銅合金板を用いた放熱用電子部品。   The electronic component for heat dissipation using the copper alloy plate of any one of Claims 1-5. インゴットを、800〜1000℃で厚み3〜30mmまで熱間圧延した後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延の後、歪取焼鈍を施す銅合金板の製造工程であって、
(A)該最終冷間圧延前の再結晶焼鈍において、炉内温度を350〜800℃として、銅合金板の平均結晶粒径を2〜50μmに調整し、
(B)該最終冷間圧延において、総加工度を25〜99%、1パスあたりの圧延加工度を20%以下とし、
(C)該歪取焼鈍において、連続焼鈍炉を用い、炉内温度を300〜700℃、炉内で銅合金板に付加される張力を1〜5MPaとして、銅合金板を通板し、0.2%耐力を10〜50MPa低下させる、
ことを特徴とする、請求項1〜5の何れか1項に記載の銅合金板の製造方法。
In the process of manufacturing a copper alloy sheet, after ingot is hot-rolled at a temperature of 800 to 1000 ° C. to a thickness of 3 to 30 mm, cold rolling and recrystallization annealing are repeated, and after final cold rolling, strain relief annealing is performed. There,
(A) In the recrystallization annealing before the final cold rolling, the furnace temperature is 350 to 800 ° C., the average crystal grain size of the copper alloy plate is adjusted to 2 to 50 μm,
(B) In the final cold rolling, the total working degree is 25 to 99%, the rolling work degree per pass is 20% or less,
(C) In the strain relief annealing, using a continuous annealing furnace, the furnace temperature is 300 to 700 ° C., the tension applied to the copper alloy sheet in the furnace is 1 to 5 MPa, and the copper alloy sheet is passed through, 0 .2% yield strength is reduced by 10-50 MPa,
The method for producing a copper alloy plate according to any one of claims 1 to 5, wherein
JP2013106500A 2012-08-16 2013-05-20 Copper alloy sheet excellent in conductivity and stress relief properties Pending JP2014055347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106500A JP2014055347A (en) 2012-08-16 2013-05-20 Copper alloy sheet excellent in conductivity and stress relief properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012180594 2012-08-16
JP2012180594 2012-08-16
JP2013106500A JP2014055347A (en) 2012-08-16 2013-05-20 Copper alloy sheet excellent in conductivity and stress relief properties

Publications (1)

Publication Number Publication Date
JP2014055347A true JP2014055347A (en) 2014-03-27

Family

ID=50612915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106500A Pending JP2014055347A (en) 2012-08-16 2013-05-20 Copper alloy sheet excellent in conductivity and stress relief properties

Country Status (1)

Country Link
JP (1) JP2014055347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208861A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and stress relaxation characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208861A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and stress relaxation characteristic

Similar Documents

Publication Publication Date Title
JP5847787B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5380621B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
TWI532859B (en) Conductive and bending deformation coefficient of copper alloy plate
JP6270417B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
CN104334759B (en) Copper alloy sheet having excellent conductivity and flexural coefficient
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2015098628A (en) Copper alloy sheet, and electronic component for large current and electronic component for heat radiation comprising the same
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP5892974B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
JP2017002407A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP5449595B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP5620025B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5352750B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017179503A (en) Copper alloy sheet excellent in strength and conductivity
JP2014055347A (en) Copper alloy sheet excellent in conductivity and stress relief properties
JP2014205864A (en) Copper alloy sheet excellent in conductivity and stress relaxation property
JP2014208868A (en) Copper alloy and high-current connector terminal material