JP2014208868A - Copper alloy and high-current connector terminal material - Google Patents

Copper alloy and high-current connector terminal material Download PDF

Info

Publication number
JP2014208868A
JP2014208868A JP2013124758A JP2013124758A JP2014208868A JP 2014208868 A JP2014208868 A JP 2014208868A JP 2013124758 A JP2013124758 A JP 2013124758A JP 2013124758 A JP2013124758 A JP 2013124758A JP 2014208868 A JP2014208868 A JP 2014208868A
Authority
JP
Japan
Prior art keywords
less
mass
copper alloy
mpa
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013124758A
Other languages
Japanese (ja)
Inventor
由記 川崎
Yuki Kawasaki
由記 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013124758A priority Critical patent/JP2014208868A/en
Publication of JP2014208868A publication Critical patent/JP2014208868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy having high strength, high conductivity, and excellent stress relaxation characteristic.SOLUTION: A copper alloy contains: not less than 0.01 mass% and not more than 0.5 mass% of Fe; P whose percentage by mass is 1/6 to 1 time of the percentage by mass of the Fe; and copper, not more than 0.01 mass% of oxygen, and inevitable impurities as remainder. Residual stress generated in a direction parallel to a rolling direction with respect to a (113) plane obtained by an X-ray diffraction method is 270 MPa or less.

Description

本発明は、導電率及び応力緩和特性に優れる銅合金に関し、端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板などの電子部品用途、特に、電気自動車やハイブリッド自動車などで用いられる高電流用コネクタや端子の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金に関する。   The present invention relates to a copper alloy having excellent electrical conductivity and stress relaxation characteristics, and is used in electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, particularly electric vehicles and hybrid vehicles. The present invention relates to a copper alloy suitable for use as a high-current connector or terminal, or as a heat dissipation electronic component such as a liquid crystal frame used in a smartphone or tablet PC.

自動車や電機・電子機器等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。
近年、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、伸長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等、著しく高い電流が流されるものがあり、通電時の銅合金の発熱が問題になっている。
Parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc., that transmit electricity or heat are built into automobiles, electrical equipment, electronic devices, etc., and these parts are made of copper alloy. It is used. Here, electrical conductivity and thermal conductivity are in a proportional relationship.
In recent years, with the miniaturization of electronic components, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In addition, some electronic parts used in an electric vehicle and a hybrid electric vehicle that are remarkably growing, such as a connector of a battery part, allow a very high current to flow, and heat generation of a copper alloy during energization is a problem.

コネクタ等の電子部品の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金を高温下で長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。
そこで、前記発熱の問題に対処するため、銅合金には、発熱量が減ずるよう導電性により優れることが求められ、さらに発熱しても接触力が低下しないよう応力緩和特性により優れることも求められている。
In an electrical contact of an electronic component such as a connector, a deflection is given to the copper alloy plate, and a contact force at the contact is obtained by a stress generated by the deflection. When a bent copper alloy is held at a high temperature for a long time, the stress, that is, the contact force is reduced due to the stress relaxation phenomenon, and the contact electric resistance is increased.
Therefore, in order to cope with the problem of heat generation, the copper alloy is required to be superior in conductivity so that the amount of heat generation is reduced, and further to be excellent in stress relaxation characteristics so that the contact force does not decrease even if heat is generated. ing.

一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、応力緩和特性を高めると、外力による放熱板のクリープ変形が抑制され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善される、等の効果を期待できる。このため、放熱用途の銅合金板においても、応力緩和特性に優れることが望まれている。   On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, when stress relaxation characteristics are enhanced, creep deformation of the heat sink due to external force is suppressed, and the protection against liquid crystal components, IC chips, etc. disposed around the heat sink is improved. , Etc. can be expected. For this reason, it is desired that the copper alloy plate for heat dissipation also has excellent stress relaxation characteristics.

比較的高い導電率と強度を有し、安価に製造できる銅合金としてCu−Fe−P系合金が知られており、例えばJIS合金番号C1921(Cu−0.1質量%Fe−0.03質量%P)、C1940(Cu−2.4質量%Fe−0.1質量%P−0.1質量%Zn)等が実用に供されている。また。Cu−Fe−P系合金の改良技術が、例えば特許文献1〜5に開示されている。   A Cu-Fe-P-based alloy is known as a copper alloy that has relatively high electrical conductivity and strength and can be manufactured at low cost. For example, JIS alloy number C1921 (Cu-0.1 mass% Fe-0.03 mass) % P), C1940 (Cu-2.4 mass% Fe-0.1 mass% P-0.1 mass% Zn), and the like are practically used. Also. For example, Patent Documents 1 to 5 disclose improved techniques for Cu-Fe-P alloys.

特開2004−099978号公報JP 2004-099978 A 特開2005−139501号公報JP 2005-139501 A 特開2005−206891号公報JP 2005-206871 A 特開2006−083465号公報JP 2006-083465 A 特開2007−031794号公報JP 2007-031794 A

銅合金の応力緩和特性は、特定の合金元素を添加することにより改善できる。応力緩和改善効果が顕著な元素として、例えばZr、Ti等があげられる。ところが、これら元素は極めて活性であるため、インゴット溶製時にその一部が酸化する。この酸化物がインゴットに巻き込まれると、製品表面に傷が発生したり、圧延中の材料が切れたりする。そのために、Zr、Ti等の添加による応力緩和特性の改善は、一般的に、銅合金の製造コストの著しい上昇を招く。   The stress relaxation characteristics of the copper alloy can be improved by adding a specific alloy element. Examples of the element having a remarkable stress relaxation improving effect include Zr and Ti. However, since these elements are extremely active, some of them are oxidized during ingot melting. When this oxide is caught in an ingot, the surface of the product is damaged or the material being rolled is cut. Therefore, improvement of stress relaxation characteristics by adding Zr, Ti or the like generally causes a significant increase in the manufacturing cost of the copper alloy.

したがって、Zr、Ti等の添加に頼らず、製造プロセスの調整により、銅合金の応力緩和特性を改善することが、工業的に求められていた。   Therefore, it has been industrially demanded to improve the stress relaxation characteristics of the copper alloy by adjusting the manufacturing process without depending on the addition of Zr, Ti or the like.

そこで、本発明は、Zr、Ti等の添加を行うことなく高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金を提供することを目的とし、具体的には、安価で導電性と強度に優れるCu−Fe−P系合金の応力緩和特性を改善することを課題とする。さらには、本発明は、該銅合金板の製造方法、及び大電流用途又は放熱用途に好適な電子部品を提供することをも目的とする。   Therefore, the present invention aims to provide a copper alloy having high strength, high conductivity, and excellent stress relaxation properties without adding Zr, Ti, etc., specifically, inexpensive and conductive. It is an object of the present invention to improve the stress relaxation characteristics of a Cu—Fe—P alloy having excellent strength. Furthermore, another object of the present invention is to provide a method for producing the copper alloy plate and an electronic component suitable for high current use or heat dissipation use.

本発明者等は、鋭意検討を重ねた結果、銅に一定割合のFeおよびPを添加し、表面の残留応力を所定の範囲となるよう調整することにより、安価で、高強度および高導電性を有するCu−Fe−P系銅合金の応力緩和特性が向上することを見出した。   As a result of intensive studies, the inventors have added a certain proportion of Fe and P to copper and adjusted the residual stress on the surface to be within a predetermined range, thereby being inexpensive, high strength and high conductivity. It has been found that the stress relaxation characteristics of a Cu-Fe-P-based copper alloy having bismuth are improved.

そこで、本発明は以下のとおりである。
(1)0.01〜0.5質量%のFeを含有し、さらにFeの質量%濃度に対し1/6倍〜1倍の質量%のPを含有し、残部が銅、0.01質量%以下の酸素及び不可避的不純物からなり、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じる残留応力が270MPa以下であることを特徴とする銅合金。
(2)0.01〜0.5質量%のFeを含有し、さらにFeの質量%濃度に対し1/6倍〜1倍の質量%のPを含有し、Ag、Sn、Co、Ni、Cr、Mn、Zn、Mg、Siの少なくとも1種を合計で1.0質量%以下含有し、残部が銅、0.01質量%以下の酸素及び不可避的不純物からなり、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じる残留応力が270MPa以下であることを特徴とする銅合金。
(3)圧延方向と直交する断面の組織より求めた幅方向の平均結晶粒径Bが50μm以下である(1)〜(2)の何れかに記載の銅合金。
(4)引張強さが350MPa以上であり、導電率が65%IACS以上であり、150℃で1000時間保持後の応力緩和率が50%以下である(1)〜(3)の何れかに記載の銅合金。
(5)(1)〜(4)の何れかに記載の銅合金を用いた高電流用コネクタ端子材。
(6)(1)〜(4)の何れかに記載の銅合金を用いた放熱用電子部品。
(7)銅合金のインゴットから、熱間圧延、冷間圧延、及び焼鈍の処理を含む方法によって、銅合金板材を製造する方法であって、
銅合金が、0.01〜0.5質量%のFeを含有し、さらにFeの質量%濃度に対し1/6倍〜1倍の質量%のPを含有し、残部が銅、0.01質量%以下の酸素及び不可避的不純物からなる銅合金であり、
最終の冷間圧延の工程が設けられており、
最終の冷間圧延の工程の前に、最終の再結晶焼鈍の工程が設けられ、
最終の冷間圧延の工程の後に、歪取り焼鈍の工程が設けられ、
最終の再結晶焼鈍の工程が、最終の再結晶焼鈍によって銅合金板の平均結晶粒径を50μm以下とする工程であり、
最終の冷間圧延の工程が、大径ロールによる圧延の処理と、その後に行われる小径ロールによる1回以上の圧延の処理によって行われ、最終冷間圧延の加工度を25%以上とする工程であり、
歪取り焼鈍の工程が、最終冷間圧延後の銅合金板に対して200〜800℃で5秒〜3時間、歪取焼鈍を行って、銅合金板の残留応力を270MPa以下とする工程である、製造方法。
Therefore, the present invention is as follows.
(1) It contains 0.01 to 0.5% by mass of Fe, further contains 1% to 1% by mass of P with respect to the mass% concentration of Fe, and the balance is copper, 0.01% by mass % Of oxygen and inevitable impurities, and the residual stress generated in the direction parallel to the rolling direction with respect to the (113) plane determined by X-ray diffraction is 270 MPa or less.
(2) containing 0.01 to 0.5% by mass of Fe, further containing 1% to 1% by mass of P with respect to the mass% concentration of Fe, Ag, Sn, Co, Ni, It contains at least one of Cr, Mn, Zn, Mg, and Si in a total amount of 1.0% by mass or less, and the balance is made of copper, 0.01% by mass or less of oxygen and unavoidable impurities, and is determined by an X-ray diffraction method. Furthermore, the copper alloy characterized by the residual stress which arises in a direction parallel to a rolling direction with respect to (113) plane being 270 Mpa or less.
(3) The copper alloy according to any one of (1) to (2), wherein the average crystal grain size B in the width direction obtained from the cross-sectional structure orthogonal to the rolling direction is 50 μm or less.
(4) The tensile strength is 350 MPa or more, the electrical conductivity is 65% IACS or more, and the stress relaxation rate after holding for 1000 hours at 150 ° C. is 50% or less. The described copper alloy.
(5) A connector terminal material for high current using the copper alloy according to any one of (1) to (4).
(6) A heat dissipation electronic component using the copper alloy according to any one of (1) to (4).
(7) From a copper alloy ingot, a method of producing a copper alloy sheet by a method including hot rolling, cold rolling, and annealing,
The copper alloy contains 0.01 to 0.5% by mass of Fe, and further contains 1% to 1% by mass of P with respect to the mass% concentration of Fe, with the balance being copper, 0.01% It is a copper alloy composed of oxygen and unavoidable impurities of mass% or less,
There is a final cold rolling process,
Before the final cold rolling step, a final recrystallization annealing step is provided,
After the final cold rolling process, a process of stress relief annealing is provided,
The final recrystallization annealing step is a step in which the average crystal grain size of the copper alloy plate is 50 μm or less by the final recrystallization annealing,
The final cold rolling step is performed by a rolling process with a large diameter roll and a subsequent rolling process with a small diameter roll, and the degree of workability of the final cold rolling is 25% or more. And
The step of strain relief annealing is a step of performing stress relief annealing at 200 to 800 ° C. for 5 seconds to 3 hours with respect to the copper alloy plate after the final cold rolling so that the residual stress of the copper alloy plate is 270 MPa or less. A manufacturing method.

本発明によれば、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金を提供することが可能である。また、このような銅合金は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、特に、電気自動車やハイブリッド自動車などで用いられる高電流用コネクタや端子の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適に使用することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the copper alloy which has high intensity | strength, high electroconductivity, and the outstanding stress relaxation characteristic. In addition, such copper alloys can be suitably used as materials for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc., especially in electric vehicles and hybrid vehicles. It can be suitably used for applications of high current connectors and terminals used, or applications of heat dissipating electronic components such as liquid crystal frames used in smartphones and tablet PCs.

残留応力の測定原理を示す図である。It is a figure which shows the measurement principle of a residual stress. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate. 応力緩和率の測定原理を説明する図である。It is a figure explaining the measurement principle of a stress relaxation rate.

以下、本発明について説明する。
<合金成分>
本発明の銅合金の好適な一実施形態は、Feを0.01質量%以上0.5質量%以下、Pを0.01質量%以上0.3質量%以下含有し、残部は銅と0.01質量%以下の酸素及び不可避的不純物からなる。本発明の銅合金の成分には、Zr、Tiが添加されていない。
The present invention will be described below.
<Alloy components>
In a preferred embodiment of the copper alloy of the present invention, Fe is contained in an amount of 0.01% by mass to 0.5% by mass, P is contained in an amount of 0.01% by mass to 0.3% by mass, and the balance is 0% with copper. .01 mass% or less of oxygen and inevitable impurities. Zr and Ti are not added to the components of the copper alloy of the present invention.

Fe添加量が少なすぎると所望の引張強さおよび応力緩和率が得られない傾向にあり、一方で多すぎると後述する高導電性の実現が難しくなる。このような観点から、銅に添加されるFeは、0.01質量%以上、0.5質量%以下とする。また、酸素が0.01%を超えるとFeが酸化物として析出し、Feによる引張強さおよび応力緩和の改善効果が阻害されるので、酸素は0.01質量%以下とする。   If the added amount of Fe is too small, the desired tensile strength and stress relaxation rate tend not to be obtained. On the other hand, if the added amount is too large, it is difficult to realize high conductivity described later. From such a viewpoint, Fe added to copper is set to 0.01 mass% or more and 0.5 mass% or less. Further, if oxygen exceeds 0.01%, Fe precipitates as an oxide, and the effect of improving the tensile strength and stress relaxation by Fe is hindered. Therefore, the oxygen is set to 0.01% by mass or less.

好適な実施の態様において、Feは、0.01〜0.5質量%の範囲、好ましくは0.05〜0.4質量%の範囲、さらに好ましくは0.05〜0.3質量%の範囲とすることができる。   In a preferred embodiment, Fe is in the range of 0.01 to 0.5 mass%, preferably in the range of 0.05 to 0.4 mass%, more preferably in the range of 0.05 to 0.3 mass%. It can be.

本発明の銅合金には、Feに加えてPを添加する。Pには合金の製造プロセスにおいて、溶湯を脱酸する効果がある。また、Feと化合物を形成することにより、合金の導電率や強度を高める効果がある。   In addition to Fe, P is added to the copper alloy of the present invention. P has the effect of deoxidizing the molten metal in the alloy manufacturing process. Further, by forming a compound with Fe, there is an effect of increasing the conductivity and strength of the alloy.

Feの質量%濃度(%Fe)とPの質量%濃度(%P)との比(%Fe/%P)は、0.7〜7の範囲、好ましくは1〜6の範囲、さらに好ましくは2〜5の範囲に調整する。%Fe/%Pをこのように調整することで、より高い導電率が得られる。Pの含有は、上記%Fe/%Pとしたうえで、好ましくは0.01〜0.3質量%の範囲、さらに好ましくは0.03〜0.3質量%の範囲とすることができる。   The ratio (% Fe /% P) of the mass% concentration of Fe (% Fe) to the mass% concentration of P (% P) is in the range of 0.7-7, preferably in the range of 1-6, more preferably Adjust to the range of 2-5. By adjusting% Fe /% P in this way, higher conductivity can be obtained. The content of P is preferably in the range of 0.01 to 0.3% by mass, more preferably in the range of 0.03 to 0.3% by mass, based on the above-described% Fe /% P.

本発明の他の実施形態である銅合金は、Fe、Pの他にさらにAg、Sn、Co、Ni、Cr、Mn、Zn、Mg、Siの少なくとも1種以上を、それぞれの合計で1.0質量%以下となるように添加したものである。Ag、Sn、Co、Ni、Cr、Mn、Mg、Siはいずれも強度向上に寄与する。さらに、SnはZrやTiほどではないが、応力緩和特性を改善する効果もあり、ZnはSnめっきの耐熱性剥離性を改善する。ただし、いずれの元素も添加量が多過ぎると導電率が低下したり、製造性が悪化したりするのでこれらの添加量は総量で1.0質量%以下、より好ましくは0.5質量%以下に制限される。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。   In addition to Fe and P, the copper alloy according to another embodiment of the present invention further contains at least one of Ag, Sn, Co, Ni, Cr, Mn, Zn, Mg, and Si in a total of 1. It is added so that it may become 0 mass% or less. Ag, Sn, Co, Ni, Cr, Mn, Mg, and Si all contribute to strength improvement. Furthermore, although Sn is not as much as Zr and Ti, it also has an effect of improving stress relaxation characteristics, and Zn improves the heat-resistant peelability of Sn plating. However, if any element is added in an excessive amount, the electrical conductivity is lowered or the productivity is deteriorated. Therefore, the total amount of these elements is 1.0% by mass or less, more preferably 0.5% by mass or less. Limited to Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.

<特性>
好適な実施の態様において、本発明の銅合金は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品用途、特に、電気自動車やハイブリッド自動車などで用いられる高電流用コネクタや端子などの用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適に使用することができるよう、高強度および高導電性を有する。
<Characteristic>
In a preferred embodiment, the copper alloy of the present invention is a high current used in electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, especially electric vehicles and hybrid vehicles. It has high strength and high electrical conductivity so that it can be suitably used for applications such as connectors and terminals, or electronic components for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs.

好適な実施の態様において、これらの高強度及び高伝導性について、具体的には、引張り強さを350MPa以上、好ましくは400MPa以上、導電率を65%IACS以上、好ましくは69%IACS以上、さらに好ましくは70%IACS以上、さらに好ましくは71%IACS以上に調整されるこれらの値には、上限の制約は特段にはないが、例えば1000MPa以下とすることができ、例えば100%IACS未満とすることができる。引張強さが350MPa未満であると、例えばコネクタとして使用した際に接点部の接圧が低いため、接触電気抵抗が高くなり導通不良を招く可能性がある。また、導電率が65%IACS未満であると通電時の発熱量が大きくなり、例えばコネクタとして使用した際に応力緩和により接圧が低下してしまう可能性がある。   In a preferred embodiment, for these high strength and high conductivity, specifically, the tensile strength is 350 MPa or more, preferably 400 MPa or more, the conductivity is 65% IACS or more, preferably 69% IACS or more, These values that are preferably adjusted to 70% IACS or more, more preferably 71% IACS or more are not particularly limited in the upper limit, but can be, for example, 1000 MPa or less, for example, less than 100% IACS be able to. When the tensile strength is less than 350 MPa, for example, when used as a connector, the contact pressure at the contact portion is low, so that the contact electrical resistance may be increased, leading to poor conduction. Further, if the electrical conductivity is less than 65% IACS, the amount of heat generated during energization increases, and for example, when used as a connector, the contact pressure may decrease due to stress relaxation.

好適な実施の態様において、応力緩和特性については、150℃で1000時間保持した時の応力緩和率を50%以下、好ましくは47%以下、より好ましくは46%以下、より好ましくは45%以下、より好ましくは41%以下に低減したものとすることができる。この値には、下限の制約は特段にないが、例えば0.1%以上、例えば1%以上とすることができる。通常のCu−Fe−Pの該応力緩和特性は70〜80%程度であり、これを50%以下にすることで、コネクタに加工した後に大電流を通電しても接触力低下に伴う接触電気抵抗の増加が生じ難くなり、また、放熱板に加工した後に熱と外力が同時に加わってもクリープ変形が生じ難くなる。   In a preferred embodiment, for stress relaxation characteristics, the stress relaxation rate when held at 150 ° C. for 1000 hours is 50% or less, preferably 47% or less, more preferably 46% or less, more preferably 45% or less, More preferably, it can be reduced to 41% or less. This value is not particularly limited by a lower limit, but can be, for example, 0.1% or more, for example, 1% or more. The stress relaxation characteristic of ordinary Cu—Fe—P is about 70 to 80%, and by making this 50% or less, contact electricity accompanying a decrease in contact force even when a large current is applied after processing into a connector. Resistance does not easily increase, and creep deformation does not easily occur even if heat and external force are applied simultaneously after processing to a heat sink.

<残留応力>
好適な実施の態様において、製品表面の残留応力を270MPa以下、好ましくは265MPa以下、さらに好ましくは240MPa以下、さらに好ましくは220MPa以下、さらに好ましくは160MPa以下に調整することで、前記応力緩和率が50%以下になる。残留応力が270MPaを超えると所望の応力緩和特性が得られない。この値には、下限の制約は特段にないが、例えば0.1MPa以上、例えば1MPa以上とすることができる。ここで、本発明の残留応力は、X線回折法を用い、X線入射角度に対する(113)面間隔の変化を測定することにより求めるものである。測定方向としては、(113)面に対して圧延方向と平行な方向を測定し、この方向に生じている残留応力値を求めた。他の結晶面や方向に対しても残留応力値を測定することは可能であるが、当該条件で測定した場合に、測定のばらつきが最も小さく、残留応力値と応力緩和との間に最も良好な相関が得られた。なお、銅合金板の残留応力は、板の片側表面をエッチングしたときの板の反り量からの算出されることが多いが(須藤一:残留応力とゆがみ、内田老鶴圃社、(1988)、p.46.)、このエッチング法で求めた残留応力値には応力緩和との相関が認められなかった。
<Residual stress>
In a preferred embodiment, by adjusting the residual stress of the product surface to 270 MPa or less, preferably 265 MPa or less, more preferably 240 MPa or less, more preferably 220 MPa or less, and further preferably 160 MPa or less, the stress relaxation rate is 50 % Or less. If the residual stress exceeds 270 MPa, desired stress relaxation characteristics cannot be obtained. This value is not particularly limited by a lower limit, but can be set to, for example, 0.1 MPa or more, for example, 1 MPa or more. Here, the residual stress of the present invention is determined by measuring the change in (113) plane spacing with respect to the X-ray incident angle using the X-ray diffraction method. As a measurement direction, a direction parallel to the rolling direction with respect to the (113) plane was measured, and a residual stress value generated in this direction was obtained. Although it is possible to measure residual stress values for other crystal planes and directions, the measurement variation is the smallest when measured under these conditions, and the best between residual stress values and stress relaxation A good correlation was obtained. The residual stress of a copper alloy plate is often calculated from the amount of warpage of the plate when one side surface of the plate is etched (Kazuto Sudo: Residual Stress and Distortion, Uchida Otsuru Farm Co., (1988) P.46.), The residual stress value obtained by this etching method was not correlated with stress relaxation.

<結晶粒形態>
銅合金の圧延方向と直交する断面(以下、圧延直角断面)において、厚み方向の平均結晶粒径をA、幅方向(圧延方向と厚み方向のそれぞれに対し直交する方向)の平均結晶粒径をBとしたとき、本発明では、AとBの平均値を、最終冷間圧延前の再結晶焼鈍後の平均結晶粒径とし、Bの値を、歪取焼鈍後(製品)の平均結晶粒径とした。そして、好適な実施の態様において、最終冷間圧延前の再結晶焼鈍後の平均結晶粒径、及び歪取焼鈍後の平均結晶粒径Bの上限はいずれも50μm以下、好ましくは40μm以下、さらに好ましくは35μm以下、さらに好ましくは15μm以下とすることができる。この値には、下限の制約は特段になく、再結晶化させない部分では明確な結晶粒が観察されないものとでき、再結晶化させた部分については、例えば0.1μm以上、例えば1μm以上とすることができる。最終冷間圧延前の再結晶焼鈍後の平均結晶粒径、及び製品の平均結晶粒径Bが50μmを超えると引張強さが350MPa未満になることがある。
<Crystal grain morphology>
In a cross section orthogonal to the rolling direction of the copper alloy (hereinafter referred to as a rolling cross section), the average crystal grain size in the thickness direction is A, and the average crystal grain size in the width direction (the direction orthogonal to the rolling direction and the thickness direction) is When B is used, in the present invention, the average value of A and B is the average crystal grain size after recrystallization annealing before the final cold rolling, and the value of B is the average crystal grain after strain relief annealing (product). The diameter. In a preferred embodiment, the upper limit of the average crystal grain size after recrystallization annealing before the final cold rolling and the average crystal grain size B after strain relief annealing are both 50 μm or less, preferably 40 μm or less. Preferably it is 35 micrometers or less, More preferably, it can be 15 micrometers or less. There is no particular lower limit to this value, and no clear crystal grains can be observed in the portion that is not recrystallized, and the recrystallized portion is, for example, 0.1 μm or more, for example, 1 μm or more. be able to. When the average crystal grain size after recrystallization annealing before the final cold rolling and the average crystal grain size B of the product exceed 50 μm, the tensile strength may be less than 350 MPa.

<厚み>
製品の厚みは0.1〜2.0mmであることが好ましい。厚みが小さすぎると、通電部断面積が小さくなることで通電時の発熱が増加するため、大電流を流す電子部品の素材として不適であり、また、僅かな外力で変形するようになるため、放熱板等の素材としても不適である。一方で、厚みが大きすぎると、曲げ加工性が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、製品の通電時の発熱を抑えつつ、曲げ加工性を良好なものとすることができる。
<Thickness>
The thickness of the product is preferably 0.1 to 2.0 mm. If the thickness is too small, since the heat generation at the time of energization increases because the cross-sectional area of the energized portion becomes small, it is not suitable as a material for electronic parts that carry a large current, and it will deform with a slight external force, It is also unsuitable as a material for heat sinks. On the other hand, if the thickness is too large, bending workability becomes difficult. From such a viewpoint, a more preferable thickness is 0.2 to 1.5 mm. When the thickness is within the above range, the bending workability can be improved while suppressing the heat generation when the product is energized.

<製造方法>
純銅原料として電気銅等を溶解し、カーボン脱酸等により酸素濃度を調整した後、Fe、Pおよび必要に応じ他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と焼鈍を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。最終冷間圧延後の残留応力値は270MPaを超えるが、その後の歪取焼鈍により減少する。
<Manufacturing method>
After electrolytic copper or the like is dissolved as a pure copper raw material and the oxygen concentration is adjusted by carbon deoxidation or the like, Fe, P and other alloy elements are added as necessary, and cast into an ingot having a thickness of about 30 to 300 mm. The ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling, and then cold rolling and annealing are repeated to finish to a predetermined product thickness by the final cold rolling, and finally strain relief annealing is performed. The residual stress value after the final cold rolling exceeds 270 MPa, but decreases due to subsequent strain relief annealing.

再結晶焼鈍では、圧延組織の一部または全てを再結晶化させる。また、適当な条件で焼鈍することにより、FeまたはFeとPとの化合物が析出し、合金の導電率が上昇する。最終冷間圧延前の再結晶焼鈍によって、銅合金板の最終冷間圧延前の再結晶焼鈍後の平均結晶粒径、及び歪取焼鈍後(製品)の圧延直角断面の幅方向の平均結晶粒径Bを50μm以下、好ましくは40μm以下に調整する。平均結晶粒径が大きすぎると、引張強さを350MPa以上に調整することが難しくなる。   In recrystallization annealing, part or all of the rolling structure is recrystallized. Further, by annealing under appropriate conditions, Fe or a compound of Fe and P is precipitated, and the electrical conductivity of the alloy is increased. Average crystal grain size after recrystallization annealing before final cold rolling of copper alloy sheet by recrystallization annealing before final cold rolling, and average grain size in width direction of rolling perpendicular section after strain relief annealing (product) The diameter B is adjusted to 50 μm or less, preferably 40 μm or less. If the average crystal grain size is too large, it becomes difficult to adjust the tensile strength to 350 MPa or more.

最終冷間圧延前の再結晶焼鈍には、バッチ炉を用いてもよいし、連続焼鈍炉を使用しても良い。バッチ炉では250〜750℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整することにより、また、連続焼鈍炉では450〜800℃の炉内温度において5秒から15分の範囲で加熱時間を適宜調整することにより、最終冷間圧延前の再結晶焼鈍後の平均結晶粒径、及び歪取焼鈍後(製品)の圧延直角断面の幅方向の平均結晶粒径Bを50μm以下、好ましくは40μm以下に調整できる。   For recrystallization annealing before final cold rolling, a batch furnace may be used, or a continuous annealing furnace may be used. In a batch furnace, the heating time is suitably adjusted in the range of 30 minutes to 30 hours at a furnace temperature of 250 to 750 ° C. By appropriately adjusting the heating time, the average crystal grain size after recrystallization annealing before the final cold rolling and the average crystal grain size B in the width direction of the rolling cross section after strain relief annealing (product) are 50 μm or less. Preferably, it can be adjusted to 40 μm or less.

最終冷間圧延は、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。最終冷間圧延の加工度は25%以上とする。ここで加工度r(%)は、
r=(to−t)/to×100(to:圧延前の板厚、t:圧延後の板厚)
で与えられる。加工度が25%未満であると引張強さが350MPa間圧延の加工度は25%以上とする。加工度が小さ過ぎると、引張強さを350MPa以上に調整することが難しくなる。好適な実施の態様において、最終冷間圧延の加工度は、25%以上100%未満の範囲、好ましくは45%以上100%未満の範囲、さらに好ましくは80%以上100%未満の範囲とすることができる。
In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The degree of work of the final cold rolling is 25% or more. Here, the processing degree r (%) is
r = (to-t) / to × 100 (to: plate thickness before rolling, t: plate thickness after rolling)
Given in. When the workability is less than 25%, the workability of the rolling with a tensile strength of 350 MPa is set to 25% or more. If the working degree is too small, it becomes difficult to adjust the tensile strength to 350 MPa or more. In a preferred embodiment, the workability of the final cold rolling is in the range of 25% or more and less than 100%, preferably in the range of 45% or more and less than 100%, more preferably in the range of 80% or more and less than 100%. Can do.

また、最終冷間圧延では圧延ロールの径と、通板回数とを調整することにより、銅合金の残留応力を調整することができる。一般的に使用されている大径ロールを用いて圧延した場合、表面部に引張応力、厚み方向中央部に圧縮応力が残留する。一方、小径ロールを用いて低い加工度で圧延した場合、表面部に圧縮応力、厚み方向中央部に引張応力が残留する。よって、大径ロールで圧延した後に小径ロールで軽圧下圧延を数回行えば、それまでの圧延で表面に蓄積した引張残留応力がキャンセルされ、銅合金の残留応力は減少する。好適な実施の態様において、大径ロールでの圧延後の小径ロールでの圧延の回数は、例えば1〜20回、例えば1〜10回、例えば1〜6回、例えば2〜6回とすることができる。大径ロール及び小径ロールは、目的とする製品に応じて、当業者が適宜選択できるものであるが、好適な実施の態様において、例えば大径ロールとして直径90mm〜500mmのロールを使用することができ、例えば小径ロールとして直径10〜90mmのロールを使用することができ、例えば大径ロールとして小径ロールの直径の2〜10倍の直径のロールを使用することができ、例えば小径ロールとして製品板圧の10〜2000倍の直径のロールを使用することができる。   Further, in the final cold rolling, the residual stress of the copper alloy can be adjusted by adjusting the diameter of the rolling roll and the number of sheet passing. When rolling is performed using a generally used large-diameter roll, tensile stress remains in the surface portion and compressive stress remains in the central portion in the thickness direction. On the other hand, when rolling is performed at a low workability using a small-diameter roll, compressive stress remains in the surface portion and tensile stress remains in the central portion in the thickness direction. Therefore, if rolling with a small diameter roll is performed several times with a small diameter roll after rolling with a large diameter roll, the tensile residual stress accumulated on the surface by the previous rolling is canceled and the residual stress of the copper alloy is reduced. In a preferred embodiment, the number of times of rolling with the small diameter roll after rolling with the large diameter roll is, for example, 1 to 20 times, for example 1 to 10 times, for example 1 to 6 times, for example 2 to 6 times. Can do. The large-diameter roll and the small-diameter roll can be appropriately selected by those skilled in the art depending on the target product. In a preferred embodiment, for example, a roll having a diameter of 90 mm to 500 mm may be used as the large-diameter roll. For example, a roll having a diameter of 10 to 90 mm can be used as the small-diameter roll, and a roll having a diameter 2 to 10 times the diameter of the small-diameter roll can be used as the large-diameter roll. Rolls with a diameter of 10 to 2000 times the pressure can be used.

歪取焼鈍処理は、残留応力を上述した範囲に調整するために行う。歪取焼鈍処理を行うことで、得られる銅合金板の残留応力が270MPa以下となり、応力緩和率が50%以下となる。具体的には、最終冷間圧延後の銅合金板に対して200〜800℃、好ましくは220〜750℃、さらに好ましくは250〜650℃で、5秒〜3時間の範囲、好ましくは30秒〜3時間の範囲、さらに好ましくは1分〜2時間の範囲で歪取焼鈍を行う。ここで、炉内温度が200℃未満、あるいは焼鈍時間が5秒未満であると得られる銅合金の残留応力が減少せず、十分な応力緩和特性が得られない傾向がある。また、炉内温度が800℃を超える、あるいは焼鈍時間が3時間を超えると得られる銅合金の強度が大きく低下する傾向がある。   The strain relief annealing is performed in order to adjust the residual stress to the above-described range. By performing the strain relief annealing, the residual stress of the obtained copper alloy sheet becomes 270 MPa or less, and the stress relaxation rate becomes 50% or less. Specifically, it is 200 to 800 ° C., preferably 220 to 750 ° C., more preferably 250 to 650 ° C. with respect to the copper alloy sheet after the final cold rolling, and a range of 5 seconds to 3 hours, preferably 30 seconds. The strain relief annealing is performed in the range of ˜3 hours, more preferably in the range of 1 minute to 2 hours. Here, when the furnace temperature is less than 200 ° C. or the annealing time is less than 5 seconds, the residual stress of the obtained copper alloy does not decrease, and sufficient stress relaxation characteristics tend not to be obtained. Moreover, when the furnace temperature exceeds 800 ° C. or the annealing time exceeds 3 hours, the strength of the obtained copper alloy tends to be greatly reduced.

以下、本発明の様態を実施例により説明するが、本発明は実施例に限定されるものではない。
カーボン脱酸により酸素濃度を0.01質量%以下とした溶銅にFe、P成分および必要に応じてAg、Sn、Co、Ni、Cr、Mn、Zn、Mg、Siの成分を表1に示した量となるように添加した後、厚み100mmのインゴットに鋳造した。このインゴットを950℃で3時間加熱し、厚みが20mmとなるように熱間圧延を行い、表面の酸化スケールをグラインダーで研削、除去した。その後、焼鈍と冷間圧延を繰り返し、表2に示した加工度で最終冷間圧延を行った。最後に、表2に示した条件で歪取り焼鈍を行った。
Hereinafter, the embodiments of the present invention will be described with reference to examples, but the present invention is not limited to the examples.
Table 1 shows the Fe, P components and, if necessary, the components of Ag, Sn, Co, Ni, Cr, Mn, Zn, Mg, and Si in molten copper having an oxygen concentration of 0.01% by mass or less by carbon deoxidation. After adding to the indicated amount, it was cast into an ingot having a thickness of 100 mm. The ingot was heated at 950 ° C. for 3 hours, hot-rolled to a thickness of 20 mm, and the oxidized scale on the surface was ground and removed with a grinder. Thereafter, annealing and cold rolling were repeated, and final cold rolling was performed at a working degree shown in Table 2. Finally, strain relief annealing was performed under the conditions shown in Table 2.

最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、焼鈍時の厚みが2mmを超える場合はバッチ炉を、厚みが2mm以下の場合は連続焼鈍炉を用いて行った。バッチ炉の場合は加熱時間を5時間とし炉内温度を250〜750℃の範囲で調整し、焼鈍後の結晶粒径を変化させた。連続焼鈍炉の場合は炉内温度を700℃とし加熱時間を5秒から15分の間で適宜調整し、焼鈍後の結晶粒径を調整した。   The annealing before the final cold rolling (final recrystallization annealing) was performed using a batch furnace when the thickness during annealing exceeded 2 mm, and a continuous annealing furnace when the thickness was 2 mm or less. In the case of a batch furnace, the heating time was 5 hours, the furnace temperature was adjusted in the range of 250 to 750 ° C., and the crystal grain size after annealing was changed. In the case of a continuous annealing furnace, the furnace temperature was 700 ° C., and the heating time was appropriately adjusted between 5 seconds and 15 minutes to adjust the crystal grain size after annealing.

最終冷間圧延の前半では、直径200mmの大径ロールを使用し、後半では直径50mmの小径ロールを用いた。後半の小径ロールによる圧延は一回の通板当たりの加工度を3%として数回に分けて実施し、これにより残留応力を調整した。表2には、直径50mm、加工度3%の通板の実施回数を示す。   In the first half of the final cold rolling, a large-diameter roll having a diameter of 200 mm was used, and in the latter half, a small-diameter roll having a diameter of 50 mm was used. Rolling with the small-diameter rolls in the latter half was carried out in several times with the degree of processing per pass sheet being 3%, thereby adjusting the residual stress. Table 2 shows the number of times of passing plates having a diameter of 50 mm and a processing degree of 3%.

最終冷間圧延後には、表2に示す条件で歪取焼鈍を実施し、銅合金の下記項目を調査した。以下にその調査方法詳細を示す。また、その測定結果を表3に示す。   After the final cold rolling, strain relief annealing was performed under the conditions shown in Table 2, and the following items of the copper alloy were investigated. The details of the investigation method are shown below. The measurement results are shown in Table 3.

(1)結晶粒径
(イ)最終冷間圧延前の再結晶焼鈍後の平均結晶粒径
圧延直角断面を機械研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させた。この金属組織上において、JIS H 0501の切断法に従い測定し、平均結晶粒径を求めた。具体的には、この金属組織上において、圧延直角断面の厚み方向に直線を引き、直線によって切断された結晶粒の個数を求めた。そして、直線の長さをこの結晶粒の個数で割った値を厚み方向の平均結晶粒径Aとした。同様に、圧延直角断面の幅方向に直線を引き、直線によって切断される結晶粒の個数を求め、直線の長さをこの結晶粒径の個数で割った値を幅方向の平均結晶粒径Bとした。AおよびBの平均値を最終冷間圧延前の再結晶焼鈍後の平均結晶粒径とした。
(ロ)歪取焼鈍後(製品)の平均結晶粒径
圧延直角断面を機械研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させた。この金属組織上において、圧延直角断面の幅方向に直線を引き、直線によって切断される結晶粒の個数を求め、直線の長さをこの結晶粒径個数で割った値(B)を歪取焼鈍後(製品)の平均結晶粒径とした。
(1) Crystal grain size (a) Average crystal grain size after recrystallization annealing before final cold rolling After rolling the right-angled section to a mirror surface by mechanical polishing, a grain boundary was revealed by etching. On this metal structure, the average crystal grain size was determined by measuring according to the cutting method of JIS H 0501. Specifically, on this metal structure, a straight line was drawn in the thickness direction of the cross section perpendicular to the rolling, and the number of crystal grains cut by the straight line was determined. The value obtained by dividing the length of the straight line by the number of crystal grains was defined as the average crystal grain size A in the thickness direction. Similarly, a straight line is drawn in the width direction of the perpendicular cross section of rolling, the number of crystal grains cut by the straight line is obtained, and the value obtained by dividing the length of the straight line by the number of crystal grain sizes is the average crystal grain size B in the width direction. It was. The average value of A and B was taken as the average crystal grain size after recrystallization annealing before the final cold rolling.
(B) Average crystal grain size after strain relief annealing (product) After rolling the right-angled cross section into a mirror surface by mechanical polishing, crystal grain boundaries were revealed by etching. On this metallographic structure, a straight line is drawn in the width direction of the cross section perpendicular to the rolling, the number of crystal grains cut by the straight line is obtained, and the value (B) obtained by dividing the length of the straight line by the number of crystal grain diameters is strain-relieved annealed It was set as the average crystal grain size of the latter (product).

(2)引張強さ
JIS B 7721に規定される引張試験機を用いて、JIS Z 2241に準拠して測定した。
(2) Tensile strength Measured according to JIS Z 2241 using a tensile tester specified in JIS B 7721.

(3)導電率
JIS H 0505に準拠して測定した。
(3) Conductivity Measured according to JIS H 0505.

(4)残留応力
X線回折法により(113)面に対し、圧延方向と平行な方向に生じている残留応力を求めた。応力測定の原理および計算式を以下に示す。
・残留応力測定原理
図1のように、試料面法線Nと格子面法線N’とのなす角度ψを変化させてその回折角度(2θ)の変化を調査すると、次式によって残留応力σを求めることができる。
(4) Residual stress The residual stress generated in the direction parallel to the rolling direction with respect to the (113) plane was determined by X-ray diffraction. The principle of stress measurement and the calculation formula are shown below.
・ Residual Stress Measurement Principle As shown in FIG. 1, when the angle ψ between the sample surface normal N and the lattice surface normal N ′ is changed and the change in the diffraction angle (2θ) is investigated, the residual stress σ is expressed by the following equation: Can be requested.

Figure 2014208868
Figure 2014208868

上式において、K(応力定数)は材料および測定波長により決定される定数である。測定値から2θ/sin2ψの線図を書き、次いで最小二乗法で勾配を求め、Kを乗じて残留応力を得る。 In the above equation, K (stress constant) is a constant determined by the material and the measurement wavelength. Write a 2θ / sin 2 ψ diagram from the measured value, then obtain the gradient by the least squares method and multiply by K to obtain the residual stress.

なお、表3には圧縮または引張残留応力の絶対値を示す。   Table 3 shows the absolute values of compressive or tensile residual stress.

(5)応力緩和特性
歪取焼鈍後の材料から、幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図2のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、0.2%耐力の80%に相当する応力(s)を負荷した。y0は次式により求めた。
0=(2/3)・l2・s / (E・t)
ここで、Eはヤング率であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図3のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
(5) Stress relaxation characteristics A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 2, with the position of l = 50 mm as the working point, the test piece was given a deflection of y 0 and a stress (s) corresponding to 80% of the 0.2% proof stress was applied. y 0 was determined by the following equation.
y 0 = (2/3) · l 2 · s / (E · t)
Here, E is Young's modulus, and t is the thickness of the sample. After unloading after heating at 150 ° C. for 1000 hours, the amount of permanent deformation (height) y is measured as shown in FIG. 3, and the stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%) } Was calculated.

Figure 2014208868
Figure 2014208868

Figure 2014208868
Figure 2014208868

Figure 2014208868
Figure 2014208868

発明例1〜52はいずれもFe濃度が0.01質量%以上0.5質量%以下、P濃度をFe濃度の1/6倍〜1倍に調整した銅合金、あるいは、Fe濃度が0.01質量%以上0.5質量%以下でAg、Sn、Co、Ni、Cr、Mn、Zn、Mg、Siを合計濃度が1.0質量%以下となるよう添加された銅合金であり、これらはいずれもX線回折法により求めた(113)面に対して圧延方向と平行な方向に生じる残留応力が270MPa以下であり、歪取焼鈍後(製品)の圧延直角断面の幅方向の平均結晶粒径Bが50μm以下であるものであり、いずれも引張強さ、導電率および応力緩和率に優れていた。
ただし、大径ロールで圧延後に小径ロールで圧延を行わなかった発明例51の場合、残留応力が220MPaを超える比較的高い値であり、応力緩和率も45%を超える比較的高い値であった。
In Invention Examples 1 to 52, the Fe concentration was 0.01% by mass or more and 0.5% by mass or less, the copper concentration was adjusted to 1/6 to 1 times the Fe concentration, or the Fe concentration was 0.00. It is a copper alloy in which Ag, Sn, Co, Ni, Cr, Mn, Zn, Mg, and Si are added so as to have a total concentration of 1.0% by mass or less in the range of 01% by mass to 0.5% by mass. In both cases, the residual stress generated in the direction parallel to the rolling direction with respect to the (113) plane obtained by X-ray diffraction method is 270 MPa or less, and the average crystal in the width direction of the cross-section perpendicular to rolling after strain relief annealing (product) The particle size B was 50 μm or less, and all were excellent in tensile strength, electrical conductivity, and stress relaxation rate.
However, in the case of Invention Example 51 in which rolling was not performed with a small-diameter roll after rolling with a large-diameter roll, the residual stress was a relatively high value exceeding 220 MPa, and the stress relaxation rate was a relatively high value exceeding 45%. .

Fe濃度が0.01質量%未満、%Fe/%Pが1未満であった比較例16は、最終冷間圧延加工度を25%以上としても強度が350MPa未満となった。また、最終冷間圧延後に歪取焼鈍を実施しても残留応力が270MPa以下まで減少せず、応力緩和率は50%を超えた。
Fe濃度が0.5質量%を超えた比較例17は、引張強さが350MPa以上、応力緩和率が50%未満であるが、導電率が65%IACS未満であった。
P濃度が0.3質量%を超え、%Fe/%Pが1未満であった比較例18は、引張強さが350MPa以上、応力緩和率が50%未満であるが、導電率が65%IACS未満であった。
%Fe/%Pが6を超えた比較例19は、引張強さが350MPa以上、応力緩和率が50%未満であるが、導電率が65%IACS未満であった。
In Comparative Example 16, in which the Fe concentration was less than 0.01% by mass and% Fe /% P was less than 1, the strength was less than 350 MPa even when the final cold rolling degree was 25% or more. Further, even if stress relief annealing was performed after the final cold rolling, the residual stress did not decrease to 270 MPa or less, and the stress relaxation rate exceeded 50%.
In Comparative Example 17 in which the Fe concentration exceeded 0.5 mass%, the tensile strength was 350 MPa or more and the stress relaxation rate was less than 50%, but the conductivity was less than 65% IACS.
Comparative Example 18 in which the P concentration exceeded 0.3% by mass and% Fe /% P was less than 1 had a tensile strength of 350 MPa or more and a stress relaxation rate of less than 50%, but the conductivity was 65%. It was less than IACS.
In Comparative Example 19 in which% Fe /% P exceeded 6, the tensile strength was 350 MPa or more and the stress relaxation rate was less than 50%, but the conductivity was less than 65% IACS.

加工度が25%未満であった比較例24は、引張強さが350MPa未満となった。また、残留応力値が270MPaを超え、応力緩和率が50%を超えた。   In Comparative Example 24 in which the degree of processing was less than 25%, the tensile strength was less than 350 MPa. Further, the residual stress value exceeded 270 MPa, and the stress relaxation rate exceeded 50%.

最終冷間圧延前の再結晶焼鈍上がりの平均結晶粒径が50μmを超え、歪取焼鈍後(製品)の圧延直角断面の幅方向の平均結晶粒径Bが50μmを超えた比較例33は、残留応力値が270MPa以下となり、応力緩和率は50%以下であったが、引張強さが350MPa未満となった。   Comparative Example 33 in which the average crystal grain size after recrystallization annealing before the final cold rolling exceeds 50 μm, and the average crystal grain size B in the width direction of the cross-section perpendicular to the rolling after the strain relief annealing (product) exceeds 50 μm, The residual stress value was 270 MPa or less and the stress relaxation rate was 50% or less, but the tensile strength was less than 350 MPa.

歪取焼鈍の焼鈍時間が5秒未満であった比較例43、炉内温度が200℃未満であった比較例44は、いずれも残留応力が270MPa以下まで減少せず、応力緩和率は50%を超えた。
歪取焼鈍の焼鈍時間が3時間を越えた比較例45、炉内温度が800℃を超えた比較例46はいずれも残留応力が270MPa以下となり、応力緩和率は50%以下であったが、引張強さが350MPa未満となった。
In Comparative Example 43 in which the annealing time for strain relief annealing was less than 5 seconds and in Comparative Example 44 in which the furnace temperature was less than 200 ° C., the residual stress did not decrease to 270 MPa or less, and the stress relaxation rate was 50%. Exceeded.
In Comparative Example 45 in which the annealing time for strain relief annealing exceeded 3 hours and Comparative Example 46 in which the furnace temperature exceeded 800 ° C., the residual stress was 270 MPa or less, and the stress relaxation rate was 50% or less. The tensile strength was less than 350 MPa.

歪取焼鈍を行わなかった比較例47は、残留応力が270MPaを超え、応力緩和率は50%を超えた。   In Comparative Example 47 in which the strain relief annealing was not performed, the residual stress exceeded 270 MPa, and the stress relaxation rate exceeded 50%.

大径ロールで圧延後の小径ロールによる軽圧下圧延および歪取焼鈍を行わなかった比較例48は、残留応力が270MPaを超え、応力緩和率が50%を超えた。   In Comparative Example 48 in which light rolling under a small diameter roll after rolling with a large diameter roll and no stress relief annealing were performed, the residual stress exceeded 270 MPa and the stress relaxation rate exceeded 50%.

本発明によれば、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金を提供することが可能である。このような銅合金は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、特に電気自動車やハイブリッド自動車などで用いられる高電流用コネクタおよび端子材、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の素材として好適に使用することができる。本発明は、産業上有用な発明である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the copper alloy which has high intensity | strength, high electroconductivity, and the outstanding stress relaxation characteristic. Such a copper alloy can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc., and is particularly suitable for electric vehicles and hybrid vehicles. It can be suitably used as a material for heat dissipation electronic components such as a current connector and a terminal material, or a liquid crystal frame used in a smartphone or a tablet PC. The present invention is an industrially useful invention.

Claims (6)

0.01〜0.5質量%のFeを含有し、さらにFeの質量%濃度に対し1/6倍〜1倍の質量%のPを含有し、残部が銅、0.01質量%以下の酸素及び不可避的不純物からなり、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じる残留応力が270MPa以下であることを特徴とする銅合金。   It contains 0.01 to 0.5% by mass of Fe, and further contains 1% to 1% by mass of P with respect to the mass% concentration of Fe, with the balance being copper and 0.01% by mass or less. A copper alloy comprising oxygen and inevitable impurities and having a residual stress of 270 MPa or less in a direction parallel to a rolling direction with respect to a (113) plane obtained by an X-ray diffraction method. 0.01〜0.5質量%のFeを含有し、さらにFeの質量%濃度に対し1/6倍〜1倍の質量%のPを含有し、Ag、Sn、Co、Ni、Cr、Mn、Zn、Mg、Siの少なくとも1種を合計で1.0質量%以下含有し、残部が銅、0.01質量%以下の酸素及び不可避的不純物からなり、X線回折法により求めた(113)面に対して圧延方向と平行な方向に生じる残留応力が270MPa以下であることを特徴とする銅合金。   0.01 to 0.5% by mass of Fe, further containing 1% to 1% by mass of P with respect to the mass% concentration of Fe, Ag, Sn, Co, Ni, Cr, Mn , Zn, Mg, and Si are contained in a total amount of 1.0% by mass or less, and the balance is copper, oxygen of 0.01% by mass or less, and unavoidable impurities, and was determined by an X-ray diffraction method (113). ) A copper alloy characterized in that the residual stress generated in a direction parallel to the rolling direction with respect to the surface is 270 MPa or less. 圧延方向と直交する断面の組織より求めた幅方向の平均結晶粒径Bが50μm以下である請求項1〜2の何れか1項に記載の銅合金。   The copper alloy according to any one of claims 1 to 2, wherein an average crystal grain size B in a width direction obtained from a structure of a cross section perpendicular to the rolling direction is 50 µm or less. 引張強さが350MPa以上であり、導電率が65%IACS以上であり、150℃で1000時間保持後の応力緩和率が50%以下である請求項1〜3の何れか1項に記載の銅合金。   The copper according to any one of claims 1 to 3, wherein the tensile strength is 350 MPa or more, the electrical conductivity is 65% IACS or more, and the stress relaxation rate after holding at 150 ° C for 1000 hours is 50% or less. alloy. 請求項1〜4の何れか1項に記載の銅合金を用いた高電流用コネクタ端子材。   The connector terminal material for high currents using the copper alloy of any one of Claims 1-4. 請求項1〜4の何れか1項に記載の銅合金を用いた放熱用電子部品。   The electronic component for thermal radiation using the copper alloy of any one of Claims 1-4.
JP2013124758A 2013-03-28 2013-06-13 Copper alloy and high-current connector terminal material Pending JP2014208868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013124758A JP2014208868A (en) 2013-03-28 2013-06-13 Copper alloy and high-current connector terminal material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013070426 2013-03-28
JP2013070426 2013-03-28
JP2013124758A JP2014208868A (en) 2013-03-28 2013-06-13 Copper alloy and high-current connector terminal material

Publications (1)

Publication Number Publication Date
JP2014208868A true JP2014208868A (en) 2014-11-06

Family

ID=51903265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124758A Pending JP2014208868A (en) 2013-03-28 2013-06-13 Copper alloy and high-current connector terminal material

Country Status (1)

Country Link
JP (1) JP2014208868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083887A1 (en) * 2016-11-07 2018-05-11 住友電気工業株式会社 Connector terminal wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083887A1 (en) * 2016-11-07 2018-05-11 住友電気工業株式会社 Connector terminal wire
CN109923224A (en) * 2016-11-07 2019-06-21 住友电气工业株式会社 Bonder terminal wire rod
JPWO2018083887A1 (en) * 2016-11-07 2019-09-19 住友電気工業株式会社 Wire for connector terminal
EP3536816A4 (en) * 2016-11-07 2019-11-20 Sumitomo Electric Industries, Ltd. Connector terminal wire
JP7129911B2 (en) 2016-11-07 2022-09-02 住友電気工業株式会社 Wire rod for connector terminal

Similar Documents

Publication Publication Date Title
JP5847787B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP5380621B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6270417B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5632063B1 (en) Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
JP6230341B2 (en) Copper alloy sheet with excellent stress relaxation properties
JP2014189816A (en) Copper alloy sheet, electronic component for heat release having the same, manufacturing method of copper alloy sheet
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP5892974B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
JP2017002407A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP2015000990A (en) Copper alloy sheet excellent in conductivity and deflection coefficient
JP5449595B1 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP5620025B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5858961B2 (en) Copper alloy sheet with excellent stress relaxation properties
JP5470497B1 (en) Copper alloy sheet with excellent stress relaxation properties
JP5427968B1 (en) Copper alloy plate and heat dissipating electronic component including the same
JP2017179503A (en) Copper alloy sheet excellent in strength and conductivity
JP2014208868A (en) Copper alloy and high-current connector terminal material
JP5536258B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP2014055347A (en) Copper alloy sheet excellent in conductivity and stress relief properties