JP5858961B2 - Copper alloy sheet with excellent stress relaxation properties - Google Patents
Copper alloy sheet with excellent stress relaxation properties Download PDFInfo
- Publication number
- JP5858961B2 JP5858961B2 JP2013182199A JP2013182199A JP5858961B2 JP 5858961 B2 JP5858961 B2 JP 5858961B2 JP 2013182199 A JP2013182199 A JP 2013182199A JP 2013182199 A JP2013182199 A JP 2013182199A JP 5858961 B2 JP5858961 B2 JP 5858961B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- stress relaxation
- copper
- alloy sheet
- precipitates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 40
- 239000002244 precipitate Substances 0.000 claims description 32
- 239000010949 copper Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 238000000137 annealing Methods 0.000 description 26
- 229910045601 alloy Inorganic materials 0.000 description 17
- 239000000956 alloy Substances 0.000 description 17
- 238000005096 rolling process Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 238000005097 cold rolling Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 229910017985 Cu—Zr Inorganic materials 0.000 description 8
- 238000005098 hot rolling Methods 0.000 description 8
- 230000020169 heat generation Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000017525 heat dissipation Effects 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910007746 Zr—O Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Description
本発明は銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。 TECHNICAL FIELD The present invention relates to a copper alloy plate and electronic parts for energization or heat dissipation, and in particular, electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. mounted on electric machines / electronic devices, automobiles and the like. The present invention relates to a copper alloy plate used as a material for the above and an electronic component using the copper alloy plate. Among these, copper alloys suitable for use in high current electronic parts such as high current connectors and terminals used in electric vehicles, hybrid cars, etc., or in heat dissipation electronic parts such as liquid crystal frames used in smartphones and tablet PCs. The present invention relates to a plate and an electronic component using the copper alloy plate.
電機・電子機器、自動車等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。 Electrical and electronic equipment, automobiles, etc. have built-in parts for conducting electricity or heat, such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. These parts are made of copper alloy. It is used. Here, electrical conductivity and thermal conductivity are in a proportional relationship.
近年、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、成長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等の著しく高い電流が流される部品があり、通電時の銅合金の発熱が問題になっている。発熱が過大になると、銅合金は高温環境に晒されることになる。 In recent years, with the miniaturization of electronic components, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In addition, electronic parts used in fast-growing electric vehicles and hybrid electric vehicles include parts through which a remarkably high current flows, such as a connector of a battery unit, and heat generation of a copper alloy during energization is a problem. When the heat generation becomes excessive, the copper alloy is exposed to a high temperature environment.
コネクタ等の電子部品の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金を高温下に長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。この問題に対処するため銅合金には、発熱量が減ずるよう導電性により優れることが求められ、また発熱しても接触力が低下しないよう応力緩和特性により優れることも求められている。 In an electrical contact of an electronic component such as a connector, a deflection is given to the copper alloy plate, and a contact force at the contact is obtained by a stress generated by the deflection. When a bent copper alloy is held at a high temperature for a long time, the stress, that is, the contact force is lowered due to the stress relaxation phenomenon, and the contact electric resistance is increased. In order to cope with this problem, the copper alloy is required to be more excellent in conductivity so that the amount of heat generation is reduced, and is also required to be superior in stress relaxation characteristics so that the contact force does not decrease even if heat is generated.
一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、応力緩和特性を高めると、外力による放熱板のクリープ変形が抑制され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善される、等の効果を期待できる。このため、放熱用途の銅合金板においても、応力緩和特性に優れることが望まれている。 On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, when stress relaxation characteristics are enhanced, creep deformation of the heat sink due to external force is suppressed, and the protection against liquid crystal components, IC chips, etc. disposed around the heat sink is improved. , Etc. can be expected. For this reason, it is desired that the copper alloy plate for heat dissipation also has excellent stress relaxation characteristics.
CuにZrを添加すると応力緩和特性が向上することが知られていている(例えば、特許文献1参照)。この良好な応力緩和特性は、Cu5Zrの微細析出物が均一に分散することにより発現する。
導電率が高く比較的高い強度と良好な応力緩和特性を有する実用材料として、例えばC15100(0.1質量%Zr−残Cu)、C15150(0.02質量%Zr−残Cu)等の合金が、CDA(Copper Development Association)に登録されている。
It is known that when Zr is added to Cu, the stress relaxation property is improved (see, for example, Patent Document 1). This good stress relaxation characteristic is manifested by the uniform dispersion of Cu 5 Zr fine precipitates.
Examples of practical materials having high electrical conductivity, relatively high strength, and good stress relaxation properties include alloys such as C15100 (0.1 mass% Zr-residual Cu) and C15150 (0.02 mass% Zr-residual Cu). And CDA (Copper Development Association).
しかしながら、CuにZrを添加した銅合金(以下、Cu−Zr系合金と記す)は、比較的良好な応力緩和特性を有するものの、その応力緩和特性のレベルは大電流を流す部品の用途又は大熱量を放散する部品の用途として必ずしも十分とはいえなかった。
例えば、特許文献1が開示する銅合金板は、0.05〜0.3質量%のZrを添加するとともに、Mg、Ti、Zn、Ga、Y、Nb、Mo、Ag、In、Snのうちの一種以上を0.01〜0.3質量%添加し、さらに中間焼鈍後の結晶粒径を20〜100μmに調整することにより、応力緩和特性を改善したものであるが、実施例における150℃で1000時間保持後の応力緩和率は最低でも17.2%である。
また、工業的に製造されるCu−Zr合金板においては、製品ごとの応力緩和特性のばらつきが大きいという課題もあった。
However, although a copper alloy in which Zr is added to Cu (hereinafter referred to as a Cu-Zr alloy) has relatively good stress relaxation characteristics, the level of the stress relaxation characteristics is the use of a component that conducts a large current or is large. It was not necessarily sufficient as an application of parts that dissipate heat.
For example, the copper alloy plate disclosed in Patent Document 1 includes 0.05 to 0.3% by mass of Zr, and Mg, Ti, Zn, Ga, Y, Nb, Mo, Ag, In, and Sn. The stress relaxation characteristics are improved by adding one or more of 0.01 to 0.3% by mass and adjusting the crystal grain size after intermediate annealing to 20 to 100 μm. The stress relaxation rate after holding for 1000 hours is at least 17.2%.
Moreover, in the Cu-Zr alloy plate manufactured industrially, there also existed the subject that the dispersion | variation in the stress relaxation characteristic for every product was large.
そこで、本発明は、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板を提供することを目的とし、具体的には、応力緩和特性が改善されたCu−Zr系合金を提供することを課題とする。さらには、本発明は大電流用途又は放熱用途に好適な電子部品を提供することをも目的とする。 Therefore, an object of the present invention is to provide a copper alloy plate having high strength, high conductivity, and excellent stress relaxation characteristics. Specifically, a Cu-Zr alloy having improved stress relaxation characteristics is provided. The issue is to provide. Furthermore, an object of the present invention is to provide an electronic component suitable for high current use or heat dissipation use.
本発明者は鋭意検討を重ねた結果、Cu−Zr系合金が含有する特定の化合物粒子と応力緩和特性との間に相関があることを見出した。すなわち、Cu−Zr系合金板を高温で加熱した後水冷(溶体化処理)すると、Cu5Zr等の析出物は銅母地に溶解するが、一部の析出物は溶解せず残留する。この非溶体化性の析出物が多いと、応力緩和特性が劣化した。
非溶体化性析出物には、直径が数μmを超える大きなものが多く、その組成は、Zr−C、Zr−S、Zr−O等であった。非溶体化性析出物は、インゴット鋳造の際の冷却過程、熱間圧延前のインゴットの加熱中等、合金製造の初期において生成した。また、熱的に安定なため、一旦生成すると分解することなく製品まで残留した。
熱間圧延後のCu−Zr合金板は冷間圧延と熱処理を繰り返し製品に加工され、応力緩和特性に有効なCu5Zr粒子は、比較的低温の熱処理を行うことで析出する。
非溶体化性析出物は、合金が含有するZrの一部を消費することにより、熱処理時のCu5Zrの析出量を減少させると考えられる。また、一般的に析出物は既に存在する異相上に核生成しやいため、非溶体化性析出物はCu5Zrの析出サイトとして作用し、これによりCu5Zrの微細分散を阻害すると考えられる。このように、非溶体化性析出物は、Cu5Zr析出物の量および形態の双方に影響し、応力緩和特性を劣化させると推察された。
As a result of intensive studies, the present inventor has found that there is a correlation between specific compound particles contained in the Cu—Zr-based alloy and stress relaxation characteristics. That is, when the Cu—Zr alloy plate is heated at a high temperature and then cooled with water (solution treatment), precipitates such as Cu 5 Zr are dissolved in the copper base, but some precipitates remain without being dissolved. When there are many non-solution-soluble precipitates, the stress relaxation characteristics deteriorated.
Many of the non-solution-soluble precipitates have a diameter exceeding several μm, and the composition thereof is Zr—C, Zr—S, Zr—O or the like. Non-solution-soluble precipitates were generated at the initial stage of alloy production, such as during the cooling process during ingot casting and during heating of the ingot before hot rolling. In addition, since it is thermally stable, once produced, it remains in the product without being decomposed.
The hot-rolled Cu—Zr alloy sheet is repeatedly processed into a product by cold rolling and heat treatment, and Cu 5 Zr particles effective for stress relaxation properties are precipitated by heat treatment at a relatively low temperature.
The non-solution-soluble precipitate is considered to reduce the amount of Cu 5 Zr deposited during heat treatment by consuming a part of Zr contained in the alloy. In general, since precipitates are likely to nucleate on the existing heterogeneous phase, the non-solution-soluble precipitates act as Cu 5 Zr precipitation sites, thereby inhibiting the fine dispersion of Cu 5 Zr. . Thus, it was speculated that the non-solution-soluble precipitate affects both the amount and form of the Cu 5 Zr precipitate and degrades the stress relaxation characteristics.
以上の知見を基礎として完成した本発明は一側面において、Zrを0.03〜0.20質量%含有し、残部が銅及び不可避的不純物からなる圧延材であり、該圧延材を950℃で30分間加熱し水冷した後に、圧延面において観察される直径2μm以上の粒子が2000個/mm2以下であることを特徴とする銅合金板を提供する。
また、この銅合金板は、Ti、Ag、Fe、Co、Ni、Cr、Mn、Zn、Mg、Si、P、SnおよびBのうちの一種以上を合計で0.1質量%以下含有してもよい。
さらに、300MPa以上の引張強さおよび75%IACS以上の導電率を有することが好ましい。
また、上述の何れかの銅合金板において、150℃で1000時間保持後の応力緩和率が15%以下であることが好ましい。
別の一側面から、本発明は、上述した何れかの銅合金板を用いた大電流用電子部品を提供する。
さらに、別の一側面から、本発明は、上述した何れかの銅合金板を用いた放熱用電子部品を提供する。
The present invention completed on the basis of the above knowledge is, in one aspect, a rolled material containing 0.03 to 0.20% by mass of Zr, the balance being copper and inevitable impurities, and the rolled material is at 950 ° C. Provided is a copper alloy sheet characterized in that the number of particles having a diameter of 2 μm or more observed on the rolling surface is 2000 / mm 2 or less after heating for 30 minutes and water cooling.
Moreover, this copper alloy plate contains at least 0.1% by mass in total of at least one of Ti, Ag, Fe, Co, Ni, Cr, Mn, Zn, Mg, Si, P, Sn and B. Also good.
Further, it preferably has a tensile strength of 300 MPa or more and a conductivity of 75% IACS or more.
In any of the above-described copper alloy plates, the stress relaxation rate after being held at 150 ° C. for 1000 hours is preferably 15% or less.
From another aspect, the present invention provides a high-current electronic component using any of the copper alloy plates described above.
Furthermore, from another aspect, the present invention provides a heat dissipating electronic component using any of the above-described copper alloy plates.
本発明によれば、高強度、高導電性および優れた応力緩和特性を兼ね備えた銅合金板及び大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。 According to the present invention, it is possible to provide a copper alloy plate having high strength, high conductivity, and excellent stress relaxation characteristics, and an electronic component suitable for large current use or heat radiation use. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. It is useful as a material for electronic parts that dissipate heat.
以下、本発明について説明する。
(目標特性)
本発明の実施の形態に係る銅合金板は、75%IACS以上の導電率を有し、且つ300MPa以上の引張強さを有する。導電率が75%IACS以上であれば、通電時の発熱が抑制され、また、電気および熱の伝導が促進される。また、引張強さが300MPa以上であれば、大電流を通電する部品の素材又は大熱量を放散する部品の素材として必要な強度を有しているといえる。
The present invention will be described below.
(Target characteristics)
The copper alloy plate according to the embodiment of the present invention has a conductivity of 75% IACS or more and a tensile strength of 300 MPa or more. If the electrical conductivity is 75% IACS or higher, heat generation during energization is suppressed, and conduction of electricity and heat is promoted. Further, if the tensile strength is 300 MPa or more, it can be said that the material has a strength necessary for a material for a component that conducts a large current or a material for a component that dissipates a large amount of heat.
本発明の実施の形態に係る銅合金板の応力緩和特性については、0.2%耐力の80%の応力を付加し、150℃で1000時間保持した時の銅合金板の応力緩和率(以下、単に応力緩和率と記す)が15%以下であり、より好ましくは10%以下である。応力緩和率を低減することで、コネクタに加工した後に大電流を通電しても接触力低下に伴う接触電気抵抗の増加が生じ難くなり、また、放熱板に加工した後に熱と外力が同時に加わってもクリープ変形が生じ難くなる。 Regarding the stress relaxation characteristics of the copper alloy plate according to the embodiment of the present invention, the stress relaxation rate of the copper alloy plate (hereinafter referred to as “80% stress of 0.2% proof stress”) is maintained at 150 ° C. for 1000 hours. , Simply referred to as stress relaxation rate) is 15% or less, more preferably 10% or less. By reducing the stress relaxation rate, even if a large current is applied after processing the connector, it is difficult for the contact electrical resistance to increase due to the decrease in contact force, and heat and external force are applied simultaneously after processing the heat sink. However, creep deformation hardly occurs.
(合金成分)
本発明の実施の形態に係る銅合金板は、Zrを0.03〜0.20質量%、より好ましくは0.05〜0.15質量%含有する。Zrが0.03質量%未満になると、300MPa以上の引張強さおよび15%以下の応力緩和率を得ることが難しくなる。Zrが0.20質量%を超えると、75%IACS以上の導電率を得ることが難しくなり、また熱間圧延割れ等により合金の製造が困難になる。
(Alloy components)
The copper alloy plate according to the embodiment of the present invention contains 0.03 to 0.20% by mass, more preferably 0.05 to 0.15% by mass of Zr. When Zr is less than 0.03% by mass, it becomes difficult to obtain a tensile strength of 300 MPa or more and a stress relaxation rate of 15% or less. When Zr exceeds 0.20 mass%, it becomes difficult to obtain a conductivity of 75% IACS or more, and it becomes difficult to produce an alloy due to hot rolling cracks or the like.
Cu−Zr系合金には、強度や耐熱性を改善するために、Ti、Ag、Fe、Co、Ni、Cr、Mn、Zn、Mg、Si、P、SnおよびBのうちの一種以上を含有させることができる。ただし、添加量が多すぎると、導電率が低下して75%IACSを下回ったり、合金の製造性が悪化したりする場合があるので、添加量は総量で0.1質量%以下、より好ましくは0.05質量%以下とする。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。 Cu-Zr alloy contains at least one of Ti, Ag, Fe, Co, Ni, Cr, Mn, Zn, Mg, Si, P, Sn and B in order to improve strength and heat resistance. Can be made. However, if the addition amount is too large, the electrical conductivity may be reduced to be less than 75% IACS or the productivity of the alloy may be deteriorated. Therefore, the addition amount is preferably 0.1% by mass or less, more preferably Is 0.05 mass% or less. Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.
(非溶体化性析出物)
非溶体化性析出物は、次の手順により観察できる。
(1)Cu−Zr系合金板を950℃で30分間加熱後、直ちに水冷する。
(2)圧延面を電解研磨し、銅母地を溶解し、析出物を表面に露呈させる。
(3)走査電子顕微鏡を用い、析出物の寸法と個数を計測する。
本発明者らの実験的検討によれば、非溶体化性析出物の計測対象を直径2μm以上の粒子とした場合に、応力緩和特性との間に良好な相関が得られた。なおここでいう直径とは、粒子を含む最小円の直径である。
直径2μm以上の粒子個数を2000個/mm2以下に制御することにより、応力緩和率が低減する。より好ましい個数は1000個/mm2以下、さらに好ましい個数は500個/mm2以下である。
また、非溶体化性析出物は生成時に集合して分布することが多く、これが圧延で伸ばされると製品の表面傷となることがある。このような表面傷は、外観が求められる用途においては、不良として扱われる。この点からも、非溶体化性析出物はより少ないことが求められる。
(Non-solution precipitate)
Non-solution soluble precipitates can be observed by the following procedure.
(1) The Cu—Zr alloy plate is heated at 950 ° C. for 30 minutes and then immediately cooled with water.
(2) Electropolishing the rolled surface, dissolving the copper matrix, and exposing the precipitates to the surface.
(3) The size and number of precipitates are measured using a scanning electron microscope.
According to an experimental study by the present inventors, when the measurement object of the non-solution-soluble precipitate is a particle having a diameter of 2 μm or more, a good correlation is obtained with the stress relaxation characteristics. In addition, the diameter here is the diameter of the smallest circle containing particles.
By controlling the number of particles having a diameter of 2 μm or more to 2000 particles / mm 2 or less, the stress relaxation rate is reduced. A more preferable number is 1000 / mm 2 or less, and a more preferable number is 500 / mm 2 or less.
In addition, non-solution-soluble precipitates are often collected and distributed at the time of production, and if this is stretched by rolling, it may cause surface scratches on the product. Such surface flaws are treated as defective in applications where appearance is required. Also from this point, it is required that there are fewer non-solution-soluble precipitates.
(厚み)
製品の厚みは0.1〜3.0mmであることが好ましい。厚みが薄すぎると、通電部断面積が小さくなり通電時の発熱が増加するため大電流を流すコネクタ等の素材として不適であり、また、わずかな外力で変形するようになるため放熱板等の素材としても不適である。一方で、厚みが厚すぎると、曲げ加工が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、通電時の発熱を抑えつつ、曲げ加工性を良好なものとすることができる。
(Thickness)
The thickness of the product is preferably 0.1 to 3.0 mm. If the thickness is too thin, the cross-sectional area of the current-carrying part will decrease and heat generation will increase during energization, making it unsuitable as a material for connectors that carry large currents, and because it will deform with a slight external force, It is also unsuitable as a material. On the other hand, if the thickness is too thick, bending becomes difficult. From such a viewpoint, a more preferable thickness is 0.2 to 1.5 mm. When the thickness is in the above range, the bending workability can be improved while suppressing heat generation during energization.
(用途)
本発明の実施の形態に係る銅合金板は、電機・電子機器、自動車等で用いられる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention is suitably used for applications of electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. used in electric / electronic devices, automobiles, etc. In particular, applications of high-current electronic components such as connectors and terminals for large currents used in electric vehicles, hybrid vehicles, etc., or uses of electronic components for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs Useful for.
(製造方法)
純銅原料として電気銅等を溶解し、Zrおよび必要に応じて他の合金元素を添加し、厚み20〜300mm程度のインゴットに鋳造する。次に、このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。
(Production method)
Electro copper or the like is melted as a pure copper raw material, Zr and other alloy elements are added as required, and cast into an ingot having a thickness of about 20 to 300 mm. Next, this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, and then cold rolling and recrystallization annealing are repeated and finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing is applied.
非溶体化性析出物は、溶解から熱間圧延までの工程で形成され、その後の工程ではほとんど変化しない。したがって、非溶体化性析出物を調整するためには、溶解から熱間圧延までの工程の条件を適正化する必要がある。例えば、溶解温度が高いほど、鋳造時の冷却速度が遅いほど、熱間圧延前のインゴットの加熱時間が長いほど、粗大な非溶体化性析出物が増加する傾向にある。 Non-solution-soluble precipitates are formed in the steps from melting to hot rolling, and hardly change in the subsequent steps. Therefore, in order to adjust the non-solution-soluble precipitate, it is necessary to optimize the process conditions from melting to hot rolling. For example, the higher the melting temperature, the slower the cooling rate at the time of casting, and the longer the heating time of the ingot before hot rolling, the larger the insoluble solution precipitates tend to increase.
熱間圧延から先の工程の一般的条件を以下に説明する。
再結晶焼鈍では、圧延組織の一部または全てを再結晶化させる。また、適当な条件で焼鈍することにより、Zrが析出し、合金の導電率が上昇する。最終冷間圧延前の再結晶焼鈍(最終再結晶焼鈍)では、銅合金板の平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、製品の引張強さを300MPa以上に調整することが難しくなる。
The general conditions of the previous process after hot rolling will be described below.
In recrystallization annealing, part or all of the rolling structure is recrystallized. Further, by annealing under appropriate conditions, Zr precipitates and the conductivity of the alloy increases. In recrystallization annealing (final recrystallization annealing) before final cold rolling, the average crystal grain size of the copper alloy sheet is adjusted to 50 μm or less. If the average crystal grain size is too large, it becomes difficult to adjust the tensile strength of the product to 300 MPa or more.
最終再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径および目標とする製品の導電率に基づき決定する。具体的には、バッチ炉または連続焼鈍炉を用い、炉内温度を250〜800℃として焼鈍を行えばよい。バッチ炉では250〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。一般的にはより低温でより長時間の条件で焼鈍を行うと、同じ結晶粒径でより高い導電率が得られる。 The conditions for the final recrystallization annealing are determined based on the target crystal grain size after annealing and the target product conductivity. Specifically, annealing may be performed by using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 250 to 800 ° C. In a batch furnace, the heating time may be appropriately adjusted within the range of 30 minutes to 30 hours at a furnace temperature of 250 to 600 ° C. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 450 to 800 ° C. Generally, when annealing is performed at a lower temperature for a longer time, higher conductivity can be obtained with the same crystal grain size.
最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。最終冷間圧延の加工度は25〜99%とするのが好ましい。ここで加工度r(%)は、r=(t0−t)/t0×100(t0:圧延前の板厚、t:圧延後の板厚)で与えられる。rが小さすぎると、引張強さを300MPa以上に調整することが難しくなる。rが大きすぎると、圧延材のエッジが割れることがある。 In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The degree of work of the final cold rolling is preferably 25 to 99%. Here, the working degree r (%) is given by r = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before rolling, t: plate thickness after rolling). If r is too small, it becomes difficult to adjust the tensile strength to 300 MPa or more. If r is too large, the edge of the rolled material may be broken.
歪取焼鈍では、歪取焼鈍後の引張強さを歪取焼鈍前(最終圧延上がり)の値に対し、10〜100MPa低い値に調整することが好ましい。バッチ炉を用いる場合には100〜500℃の炉内温度において15分から30時間の範囲で加熱時間を適宜調整し、また連続焼鈍炉を用いる場合には300〜700℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。この歪取焼鈍を行うことで応力緩和率が低減する。前記非溶体化性析出物の制御に加え、この歪取焼鈍を行うことにより15%以下の応力緩和率が得られる。 In strain relief annealing, it is preferable to adjust the tensile strength after strain relief annealing to a value that is 10 to 100 MPa lower than the value before strain relief annealing (final rolling rise). When using a batch furnace, the heating time is suitably adjusted in the range of 15 minutes to 30 hours at an in-furnace temperature of 100 to 500 ° C., and when using a continuous annealing furnace, the in-furnace temperature of 300 to 700 ° C. is 5 seconds. The heating time may be appropriately adjusted within a range of 10 minutes to 10 minutes. By performing the strain relief annealing, the stress relaxation rate is reduced. In addition to controlling the non-solution-dissolving precipitates, a stress relaxation rate of 15% or less can be obtained by performing this strain relief annealing.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
各発明例および各比較例につき、表1に示した条件で銅合金板を作製した。具体的には、以下のとおりである。
黒鉛るつぼ中で電気銅を溶解し、Zrおよび必要に応じ他の合金元素を添加した。その後、溶湯を1200℃または1300℃で10分間保持した。
その後、溶湯を鋳鉄製鋳型に鋳込み、厚み30mm、幅60mm、長さ100mmのインゴットを製造した。その際の冷却速度を変化させるため、鋳込み直後から5分経過した時点で、一つは鋳型ごと水槽に投入し、一つはそのまま室温まで空冷した。
次に、インゴットを950℃で、3時間または10時間加熱した後、厚さ15mmまで熱間圧延を行った。
熱間圧延後の板表面の酸化スケールを研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に歪取焼鈍を行った。
For each inventive example and each comparative example, a copper alloy plate was produced under the conditions shown in Table 1. Specifically, it is as follows.
Electrolytic copper was dissolved in a graphite crucible, and Zr and other alloying elements were added as required. Thereafter, the molten metal was held at 1200 ° C. or 1300 ° C. for 10 minutes.
Thereafter, the molten metal was cast into a cast iron mold to produce an ingot having a thickness of 30 mm, a width of 60 mm, and a length of 100 mm. In order to change the cooling rate at that time, when 5 minutes passed immediately after casting, one was put into the water tank together with the mold, and one was air-cooled to room temperature.
Next, the ingot was heated at 950 ° C. for 3 hours or 10 hours, and then hot-rolled to a thickness of 15 mm.
After grinding and removing the oxide scale on the surface of the plate after hot rolling, annealing and cold rolling were repeated and finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing was performed.
最終冷間圧延前の焼鈍(最終再結晶焼鈍)では、材料を400℃で3時間加熱した。
最終冷間圧延では加工度を種々変化させた。
歪取り焼鈍では、材料の加熱時間を30分として材料の加熱温度を200〜400℃の範囲で調整し、圧延方向の引張強さを約30MPa低下させた。
In the annealing before final cold rolling (final recrystallization annealing), the material was heated at 400 ° C. for 3 hours.
In the final cold rolling, the degree of processing was changed variously.
In the strain relief annealing, the heating time of the material was set to 30 minutes, the heating temperature of the material was adjusted in the range of 200 to 400 ° C., and the tensile strength in the rolling direction was reduced by about 30 MPa.
歪取焼鈍後の材料(製品)につき、次の測定を行った。
(成分)
合金元素濃度をICP−質量分析法で分析した。
The following measurements were performed on the material (product) after strain relief annealing.
(component)
The alloy element concentration was analyzed by ICP-mass spectrometry.
(非溶体化性析出物)
試料を950℃で30分間加熱後、直ちに水槽に投入した。次に、圧延面の電解研磨を行なった。電解研磨では、アノードを試料、カソードをステンレス板とし、りん酸中、電圧11Vで1分間通電した。電解研磨後の表面において、走査電子顕微鏡を用い、析出物の二次電子像を観察した。図1に非溶体化性析出物の観察例を示す。
(Non-solution precipitate)
The sample was heated at 950 ° C. for 30 minutes and then immediately put into a water bath. Next, electrolytic polishing of the rolled surface was performed. In electropolishing, the anode was a sample and the cathode was a stainless steel plate, and current was passed in phosphoric acid at a voltage of 11 V for 1 minute. A secondary electron image of the precipitate was observed on the surface after electropolishing using a scanning electron microscope. FIG. 1 shows an observation example of non-solution-soluble precipitates.
(引張強さ)
JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、引張強さ求めた。
(Tensile strength)
A No. 13B test piece defined in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and a tensile test was performed in parallel with the rolling direction in accordance with JIS Z2241, to determine the tensile strength.
(導電率)
試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
The test piece was sampled so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.
(応力緩和率)
幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図2のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、圧延方向の0.2%耐力(JIS Z2241に準拠して測定)の80%に相当する応力(s)を負荷した。y0は次式により求めた。
y0=(2/3)・l2・s / (E・t)
ここで、Eは圧延方向のヤング率であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図3のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
(表面傷)
光学顕微鏡を用い10倍の視野で、表面傷の有無を観察した。観察面積は0.05m2とした。
(Stress relaxation rate)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 2, a stress corresponding to 80% of the 0.2% proof stress (measured in accordance with JIS Z2241) in the rolling direction is applied to the test piece with the position of l = 50 mm as the working point, giving y 0 deflection. (S) was loaded. y 0 was determined by the following equation.
y 0 = (2/3) · l 2 · s / (E · t)
Here, E is the Young's modulus in the rolling direction, and t is the thickness of the sample. After unloading after heating at 150 ° C. for 1000 hours, the amount of permanent deformation (height) y is measured as shown in FIG. 3, and the stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%) } Was calculated.
(Surface damage)
The presence or absence of surface flaws was observed with a 10 × field of view using an optical microscope. The observation area was 0.05 m 2 .
表1に評価結果を示す。
発明例では、直径が2μm以上の非溶体化性析出物が2000個/mm2以下であり、15%以下の応力緩和率が得られた。比較例では、直径が2μm以上の非溶体化性析出物が2000個/mm2を超え、応力緩和率が15%を超えた。
また、非溶体化性析出物が500個/mm2未満の場合、表面傷が認められなかった。
表2には、表1の発明例1〜5、比較例1〜3について、歪取焼鈍前(最終冷間圧延上がり)の特性を上記方法により評価したデータを示す。15%以下の応力緩和率は得られていないものの、非溶体化性析出物を低減することにより、応力緩和率が明らかに小さくなっている。
Table 1 shows the evaluation results.
In the inventive examples, the number of insoluble precipitates having a diameter of 2 μm or more was 2000 pieces / mm 2 or less, and a stress relaxation rate of 15% or less was obtained. In the comparative example, the number of insoluble precipitates having a diameter of 2 μm or more exceeded 2000 pieces / mm 2 , and the stress relaxation rate exceeded 15%.
Further, when the number of non-solution soluble precipitates was less than 500 pieces / mm 2 , no surface scratch was observed.
Table 2 shows data obtained by evaluating the characteristics of the invention examples 1 to 5 and the comparative examples 1 to 3 in Table 1 before the strain relief annealing (final final cold rolling) by the above method. Although a stress relaxation rate of 15% or less has not been obtained, the stress relaxation rate is clearly reduced by reducing non-solution-soluble precipitates.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013182199A JP5858961B2 (en) | 2013-09-03 | 2013-09-03 | Copper alloy sheet with excellent stress relaxation properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013182199A JP5858961B2 (en) | 2013-09-03 | 2013-09-03 | Copper alloy sheet with excellent stress relaxation properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015048518A JP2015048518A (en) | 2015-03-16 |
JP5858961B2 true JP5858961B2 (en) | 2016-02-10 |
Family
ID=52698781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013182199A Active JP5858961B2 (en) | 2013-09-03 | 2013-09-03 | Copper alloy sheet with excellent stress relaxation properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5858961B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110527866A (en) * | 2019-09-29 | 2019-12-03 | 广东和润新材料股份有限公司 | A kind of highly conductive high-strength copper band and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6822889B2 (en) * | 2017-04-13 | 2021-01-27 | 株式会社Shカッパープロダクツ | Copper alloy material, manufacturing method of copper alloy material and cage rotor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10183274A (en) * | 1996-12-25 | 1998-07-14 | Nikko Kinzoku Kk | Copper alloy for electronic equipment |
JP3731600B2 (en) * | 2003-09-19 | 2006-01-05 | 住友金属工業株式会社 | Copper alloy and manufacturing method thereof |
JP4164517B2 (en) * | 2005-09-16 | 2008-10-15 | 株式会社神戸製鋼所 | Copper alloy sheet excellent in stress relaxation resistance and method for producing the same |
JP5320642B2 (en) * | 2009-04-17 | 2013-10-23 | 株式会社Shカッパープロダクツ | Copper alloy manufacturing method and copper alloy |
JP5411679B2 (en) * | 2009-12-07 | 2014-02-12 | 株式会社Shカッパープロダクツ | Copper alloy material |
JP5818724B2 (en) * | 2011-03-29 | 2015-11-18 | 株式会社神戸製鋼所 | Copper alloy material for electric and electronic parts, copper alloy material for plated electric and electronic parts |
-
2013
- 2013-09-03 JP JP2013182199A patent/JP5858961B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110527866A (en) * | 2019-09-29 | 2019-12-03 | 广东和润新材料股份有限公司 | A kind of highly conductive high-strength copper band and preparation method thereof |
CN110527866B (en) * | 2019-09-29 | 2021-02-05 | 广东和润新材料股份有限公司 | High-conductivity and high-strength copper strip and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2015048518A (en) | 2015-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5380621B1 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP6270417B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP6128976B2 (en) | Copper alloy and high current connector terminal material | |
JP6230341B2 (en) | Copper alloy sheet with excellent stress relaxation properties | |
JP5470483B1 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP2018159104A (en) | Copper alloy sheet having excellent strength and conductivity | |
JP2015098628A (en) | Copper alloy sheet, and electronic component for large current and electronic component for heat radiation comprising the same | |
JP6328380B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP2017179502A (en) | Copper alloy sheet excellent in strength and conductivity | |
JP6835636B2 (en) | Copper alloy plate with excellent strength and conductivity | |
JP2014189816A (en) | Copper alloy sheet, electronic component for heat release having the same, manufacturing method of copper alloy sheet | |
JP2017155340A (en) | Copper alloy sheet excellent in conductivity and stress relaxation characteristic | |
JP5858961B2 (en) | Copper alloy sheet with excellent stress relaxation properties | |
JP2017066532A (en) | Copper alloy sheet having excellent conductivity and stress relaxation properties | |
JP5470497B1 (en) | Copper alloy sheet with excellent stress relaxation properties | |
JP5449595B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
WO2014041865A1 (en) | Copper alloy plate having excellent electroconductive properties and stress relaxation properties | |
JP2016141878A (en) | Copper alloy strip and high current electronic component and heat release electronic component containing same | |
JP5620025B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP7133327B2 (en) | Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation | |
JP2017179503A (en) | Copper alloy sheet excellent in strength and conductivity | |
JP2014198891A (en) | Copper alloy sheet and electronic component for heat release having the same | |
JP7133326B2 (en) | Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation | |
JP2014208868A (en) | Copper alloy and high-current connector terminal material | |
JP2014055347A (en) | Copper alloy sheet excellent in conductivity and stress relief properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150807 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5858961 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |