JP2014198891A - Copper alloy sheet and electronic component for heat release having the same - Google Patents

Copper alloy sheet and electronic component for heat release having the same Download PDF

Info

Publication number
JP2014198891A
JP2014198891A JP2013075235A JP2013075235A JP2014198891A JP 2014198891 A JP2014198891 A JP 2014198891A JP 2013075235 A JP2013075235 A JP 2013075235A JP 2013075235 A JP2013075235 A JP 2013075235A JP 2014198891 A JP2014198891 A JP 2014198891A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
concentration
rolling
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075235A
Other languages
Japanese (ja)
Other versions
JP5427968B1 (en
Inventor
原田 宏司
Koji Harada
宏司 原田
明宏 柿谷
Akihiro Kakitani
明宏 柿谷
郁也 黒▲崎▼
Ikuya Kurosaki
郁也 黒▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013075235A priority Critical patent/JP5427968B1/en
Application granted granted Critical
Publication of JP5427968B1 publication Critical patent/JP5427968B1/en
Publication of JP2014198891A publication Critical patent/JP2014198891A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy sheet having high strength, high conductivity and excellent processability, and an electronic component for heat release having the same.SOLUTION: The copper alloy sheet contains Fe of 0.01 to 0.5 mass% and P with a ratio of the mass% concentration of Fe (%Fe) to the mass% concentration of P (%P) of 1.0 to 6.0 and the balance copper with inevitable impurities, has a conductivity of 65% IACS or more and 0.2% bearing force of 400 MPa or more, and a sheet thickness anisotropy r defined by (r+r+2×r)/4 of 1.2 or more, where r, rand rare respective Lankford values of a parallel direction, a right angle direction and a direction having 45° to a rolling direction.

Description

本発明は、放熱性、導電性および絞り加工性に優れる銅合金板に関し、詳細には端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレームなどの電子部品用途、特に、スマートフォンやパソコンなどに用いられる放熱性部品および高電流部品の用途に好適な銅合金板に関する。   The present invention relates to a copper alloy plate excellent in heat dissipation, conductivity and drawing workability, and more specifically for use in electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, particularly smartphones and personal computers. The present invention relates to a copper alloy plate suitable for use in heat-radiating components and high-current components.

スマートフォン、タブレットPCおよびパソコン等の電機・電子機器等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電気接続を得るための部品が組み込まれている。
近年、スマートフォン、タブレットPCおよびパソコンの小型化に伴い、電気・電子機器内の液晶部品またはICチップ等に通電した際の蓄熱が大きくなる傾向がある。蓄熱が大きい状態はICチップや基盤への熱的損傷が大きいため、放熱部品の放熱性が問題になっている。
Parts for obtaining electrical connections such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, and the like are incorporated in electric / electronic devices such as smartphones, tablet PCs, and personal computers.
In recent years, with the miniaturization of smartphones, tablet PCs, and personal computers, heat storage tends to increase when power is supplied to liquid crystal components or IC chips in electric / electronic devices. When heat storage is large, the thermal damage to the IC chip and the substrate is large, and the heat dissipation of the heat dissipation component is a problem.

従来、スマートフォン、タブレットPCおよびパソコン等の電気・電子機器内の放熱部品にはオーステナイト系ステンレス鋼および純アルミニウム等が主に使用されてきた。例えばスマートフォンやタブレットPCの液晶に付属の放熱部品(液晶フレーム)には、高い放熱性に加えて構造体としての強度および液晶への固定に必要な曲げ性または絞り加工性が求められている。
オーステナイト系ステンレス鋼は曲げ性および絞り加工性は良好であるが、熱伝導性が低く、それを補うため高価な熱伝導シート等を併用している。そのため放熱部品の単価が高くなる。一方、純アルミニウムおよびアルミニウム合金では曲げ性および絞り加工性は良好であるが熱伝導性および構造体としての強度が足りていない。
Conventionally, austenitic stainless steel, pure aluminum, and the like have been mainly used for heat dissipation components in electric and electronic devices such as smartphones, tablet PCs, and personal computers. For example, a heat dissipation component (liquid crystal frame) attached to a liquid crystal of a smartphone or a tablet PC is required to have strength as a structure and bendability or drawability necessary for fixing to a liquid crystal in addition to high heat dissipation.
Austenitic stainless steel has good bendability and drawability, but has low thermal conductivity, and an expensive thermal conductive sheet or the like is used in combination to compensate for it. Therefore, the unit price of the heat dissipating component is increased. On the other hand, pure aluminum and aluminum alloys have good bendability and drawability, but lack thermal conductivity and strength as a structure.

これに対し、銅合金のなかでもCu−Fe−P系合金は、熱伝導性と比例関係にあることが知られている導電率が比較的高く、しかも所要の強度を有するとともに、安価に製造できることから、特に、例えばJIS合金番号C1921(Cu−0.1質量%Fe−0.03質量%P)、C1940(Cu−2.4質量%Fe−0.1質量%P−0.1質量%Zn)等が、上記のような電気・電子機器の放熱部品としての実用に供されている。Cu−Fe−P系合金の改良技術は、例えば特許文献1〜5に開示されている。   On the other hand, among copper alloys, Cu-Fe-P alloys have a relatively high electrical conductivity, which is known to be proportional to thermal conductivity, and have the required strength and are manufactured at low cost. In particular, for example, JIS alloy number C1921 (Cu-0.1 mass% Fe-0.03 mass% P), C1940 (Cu-2.4 mass% Fe-0.1 mass% P-0.1 mass) % Zn) and the like are put to practical use as heat dissipation parts for the above-mentioned electric and electronic devices. Improvement techniques for Cu—Fe—P alloys are disclosed in, for example, Patent Documents 1 to 5.

特開2004−099978号公報JP 2004-099978 A 特開2005−139501号公報JP 2005-139501 A 特開2005−206891号公報JP 2005-206871 A 特開2006−083465号公報JP 2006-083465 A 特開2007−031794号公報JP 2007-031794 A

しかし、従来のCu−Fe−P合金では強度および熱伝導特性は高いものの、要求される曲げ性または絞り加工性、場合によってはその両方を満たしていなかった。   However, although the conventional Cu-Fe-P alloy has high strength and heat conduction characteristics, it does not satisfy the required bendability or drawability, or in some cases.

したがって、Cu−Fe−P合金で、強度および導電率を維持したまま曲げ性および絞り加工性を改善することは、工業的に極めて意義深いといえる。   Therefore, it can be said that it is industrially significant to improve the bendability and the drawing workability while maintaining the strength and the electrical conductivity in the Cu—Fe—P alloy.

そこで、本発明は、高強度、高導電および優れた絞り加工性および曲げ加工性を兼ね備えた銅合金板および、それを備える放熱用電子部品を提供することを課題とする。   Then, this invention makes it a subject to provide the copper alloy board which has high intensity | strength, high electroconductivity, and the outstanding drawability and bending workability, and an electronic component for heat dissipation provided with the same.

本発明者らは、Cu−Fe−P系合金において、面内の3つの方位で測定したランクフォード値から求めた板厚異方性の値を制御することにより、絞り加工性および曲げ加工性が向上することを見出した。
以上の知見を背景に、以下の発明を完成させた。
本発明の銅合金板は、0.01〜0.5質量%のFeを含有し、さらにPを含有し、このPの質量%濃度(%P)に対するFeの質量%濃度(%Fe)の割合(%Fe/%P)を1.0〜6.0とし、残部が銅およびその不可避的不純物から成り、65%IACS以上の導電率、および400MPa以上の0.2%耐力を有し、かつ、圧延方向に対し、平行な方向、直角な方向および、45°をなす方向のそれぞれのランクフォード値をそれぞれr0、r90、r45としたときに、(r0+r90+2×r45)/4で定義される板厚異方性rが1.2以上としたものである。
By controlling the thickness anisotropy value obtained from the Rankford value measured in three in-plane directions in the Cu—Fe—P based alloy, the inventors have made drawing workability and bending workability. Found to improve.
Based on the above findings, the following invention has been completed.
The copper alloy sheet of the present invention contains 0.01 to 0.5% by mass of Fe, and further contains P. The mass% concentration of Fe (% Fe) with respect to the mass% concentration (% P) of P The ratio (% Fe /% P) is 1.0 to 6.0, the balance is made of copper and its inevitable impurities, has a conductivity of 65% IACS or more, and a 0.2% proof stress of 400MPa or more, When the rankford values in the direction parallel to the rolling direction, the direction perpendicular to the rolling direction, and the direction forming 45 ° are r 0 , r 90 , and r 45 , respectively, (r 0 + r 90 + 2 × r 45 ) The plate thickness anisotropy r defined by / 4 is 1.2 or more.

本発明の銅合金板では、W曲げ試験における圧延平行方向(GW方向)および圧延直角方向(BW方向)の最小曲げ半径/板厚(MBR/t)が、MBR/t≦2.0で与えられるものとすることが好ましい。   In the copper alloy sheet of the present invention, the minimum bending radius / sheet thickness (MBR / t) in the rolling parallel direction (GW direction) and the perpendicular direction (BW direction) in the W bending test is given by MBR / t ≦ 2.0. It is preferable that

なお、本発明の銅合金板では、0.5質量%以下のSnをさらに含有すること、1.0質量%以下のZnをさらに含有することがそれぞれ好ましく、また、Ag、Co、Ni、Cr、Mn、Mg、SiおよびBからなる群から選ばれる一種以上の元素を2.0質量%以下でさらに含有することが好ましい。   In addition, it is preferable that the copper alloy plate of the present invention further contains 0.5% by mass or less of Sn and 1.0% by mass or less of Zn, respectively, and Ag, Co, Ni, Cr It is preferable to further contain at least 2.0% by mass of one or more elements selected from the group consisting of Mn, Mg, Si and B.

また、本発明の放熱用電子部品は、上記の何れかの銅合金板を備えるものである。   Moreover, the electronic component for heat dissipation of this invention is provided with one of said copper alloy plates.

本発明によれば、高強度、高導電性および優れた絞り加工性を兼ね備えた銅合金板を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電子部品の素材として好適に使用することができ、スマートフォンやパソコンなどに用いられる放熱性部品および高電流部品の用途に好適な銅合金に関する。   According to the present invention, it is possible to provide a copper alloy plate having high strength, high conductivity, and excellent drawing workability. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, busbars, lead frames, etc., and is used for heat dissipation and high current parts used in smartphones and personal computers. The present invention relates to a copper alloy suitable for use.

以下、本発明の実施の形態について詳細に説明する。
本発明の一実施形態に係る銅合金板は、0.01〜0.5質量%のFeおよび、Pを含有し、このPの質量%濃度(%P)に対するFeの質量%濃度(%Fe)の割合(%Fe/%P)を1.0〜6.0とし、残部が銅および不可避的不純物からなる組成を有するものであり、この銅合金板で、導電率を65%IACS以上とし、0.2%耐力を400MPa以上とし、ランクフォード値から求めた板厚異方性を1.2以上に調整する。このような特性を兼ね備える本発明の銅合金板は、放熱用電子部品の用途に好適である。
Hereinafter, embodiments of the present invention will be described in detail.
The copper alloy plate according to an embodiment of the present invention contains 0.01 to 0.5 mass% Fe and P, and the mass% concentration of Fe (% Fe) relative to the mass% concentration (% P) of P. ) Ratio (% Fe /% P) is 1.0 to 6.0, and the balance is composed of copper and inevitable impurities, and this copper alloy sheet has a conductivity of 65% IACS or higher. The 0.2% proof stress is 400 MPa or more, and the plate thickness anisotropy obtained from the Rankford value is adjusted to 1.2 or more. The copper alloy plate of the present invention having such characteristics is suitable for use as an electronic component for heat dissipation.

(合金成分濃度)
Fe濃度は0.01〜0.5質量%とする。Feが0.5質量%を超えると、65%IACS以上の導電率を得ることが難しくなる。Feが0.01質量%未満になると、400MPa以上の0.2%耐力を得ることが難しくなる。このような観点から、Fe濃度は0.05〜0.5とすることが好ましい。
(Alloy component concentration)
Fe concentration shall be 0.01-0.5 mass%. When Fe exceeds 0.5 mass%, it becomes difficult to obtain a conductivity of 65% IACS or more. When Fe is less than 0.01% by mass, it becomes difficult to obtain a 0.2% yield strength of 400 MPa or more. From such a viewpoint, the Fe concentration is preferably 0.05 to 0.5.

本発明の銅合金には、Feに加えPを添加する。そして、このPの質量%濃度(%P)とFeの質量%濃度(%Fe)との比(%Fe/%P)が1.0〜6.0、好ましくは2.0〜5.0となるように調整する。%Fe/%Pをこのように調整することで、より高い導電率が得られる。
より具体的には、P濃度は0.01〜0.3質量%とすることが好ましい。Pには合金の製造プロセスにおいて、溶湯を脱酸する効果がある。また、Feと化合物を形成することにより、合金の導電率や強度を高める効果がある。
In addition to Fe, P is added to the copper alloy of the present invention. The ratio (% Fe /% P) of the mass% concentration (% P) of P to the mass% concentration (% Fe) of Fe is 1.0 to 6.0, preferably 2.0 to 5.0. Adjust so that By adjusting% Fe /% P in this way, higher conductivity can be obtained.
More specifically, the P concentration is preferably 0.01 to 0.3% by mass. P has the effect of deoxidizing the molten metal in the alloy manufacturing process. Further, by forming a compound with Fe, there is an effect of increasing the conductivity and strength of the alloy.

本発明のCu−Fe−P系合金には、0.5質量%以下のSnを添加することができる。Snには圧延の際の合金の加工硬化を促進し、合金の強度を改善する効果がある。
Snが0.5質量%を超えると、導電率の低下が大きくなる。Sn添加の効果を得るためには、Snの添加量を0.001質量%以上にすることが好ましい。より好ましいSn濃度の範囲は0.005〜0.3質量%、さらに好ましいSn濃度の範囲は0.01〜0.1質量%である。
なお、Snは溶銅中で酸化物を形成しにくいため、0.5質量%以下の濃度で添加する限り、Sn添加が合金の製造性や品質を悪化させることはない。
0.5 mass% or less of Sn can be added to the Cu-Fe-P alloy of the present invention. Sn has the effect of promoting work hardening of the alloy during rolling and improving the strength of the alloy.
When Sn exceeds 0.5% by mass, the decrease in conductivity is increased. In order to acquire the effect of Sn addition, it is preferable to make the addition amount of Sn 0.001 mass% or more. A more preferable Sn concentration range is 0.005 to 0.3% by mass, and a further preferable Sn concentration range is 0.01 to 0.1% by mass.
In addition, since Sn does not easily form an oxide in molten copper, as long as it is added at a concentration of 0.5% by mass or less, Sn addition does not deteriorate the productivity and quality of the alloy.

また、本発明のCu−Fe−P系合金には、Snめっきの耐熱剥離性を改善するために、1.0質量%以下のZnを添加することができる。Znが1.0質量%を超えると、導電率の低下が大きくなる。Zn添加の効果を得るためには、Znの添加量を0.001質量%以上にすることが好ましい。より好ましいZn濃度の範囲は0.01〜0.5質量%である。Znについても溶銅中で酸化物を形成しにくいため、1.0質量%以下の濃度で添加する限り、合金の製造性や品質を悪化させることはない。   Moreover, in order to improve the heat-resistant peelability of Sn plating, 1.0 mass% or less of Zn can be added to the Cu-Fe-P alloy of the present invention. When Zn exceeds 1.0 mass%, the fall of electrical conductivity will become large. In order to obtain the effect of adding Zn, the amount of Zn added is preferably 0.001% by mass or more. A more preferable range of Zn concentration is 0.01 to 0.5% by mass. Since Zn does not easily form an oxide in molten copper, as long as it is added at a concentration of 1.0% by mass or less, the manufacturability and quality of the alloy are not deteriorated.

さらに、本発明のCu−Fe−P系合金には、強度や耐熱性を改善するために、Ag、Co、Ni、Cr、Mn、Mg、SiおよびBからなる群から選ばれる一種以上の元素をさらに含有することができる。ただし、添加量が多すぎると、導電率が低下したり、製造性が悪化したりするので、添加量は総量で2.0質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下に制限される。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。   Furthermore, in order to improve strength and heat resistance, the Cu—Fe—P alloy of the present invention includes one or more elements selected from the group consisting of Ag, Co, Ni, Cr, Mn, Mg, Si, and B. Can further be contained. However, if the addition amount is too large, the electrical conductivity decreases or the manufacturability deteriorates, so the addition amount is 2.0% by mass or less, more preferably 0.5% by mass or less, more preferably, in total. It is limited to 0.1% by mass or less. Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.

(導電率)
本発明では、JIS H0505に準拠して測定した導電率を65%IACS以上とする。導電率が65%IASC以上であれば、熱伝導率が良好であり、良好な放熱性を確保できる。
(conductivity)
In the present invention, the conductivity measured according to JIS H0505 is set to 65% IACS or more. If the electrical conductivity is 65% IASC or more, the thermal conductivity is good and good heat dissipation can be secured.

(0.2%耐力)
本発明では、銅合金板の0.2%耐力を400MPa以上とすることとし、この場合は、銅合金板が、構造材の素材として必要な強度を有しているといえる。
(0.2% yield strength)
In the present invention, the 0.2% proof stress of the copper alloy plate is set to 400 MPa or more. In this case, it can be said that the copper alloy plate has a strength necessary as a material for the structural material.

(絞り加工性)
試験片の圧延平行、直角、45°方向に、それぞれ2.5%の伸び歪を加え、試験片の長さおよび幅方向の寸法変化から、各方向のランクフォード値であるr0、r90、r45を求め、r=(r0+r90+2×r45)/4で定義される板厚異方性rを算出した。この板厚異方性rは、一般に値が大きいほど絞り加工性が良好であることが知られている。また、一般伸銅品の板厚異方性rは0.8〜1.1程度であり、この値が1.2以上となるように調整することで、優れた絞り加工性が得られる。
ここでいうランクフォード値は、JIS Z2254に規定されるものであり、上記の各ランクフォード値r0、r90、r45を測定するに当っては、JIS Z2254に準拠して行うものとする。ただし、本発明品は構造材として必要な強度を維持するため伸びが低く、負荷ひずみを2.5%としている。
(Drawing workability)
The test piece was subjected to 2.5% elongation strain in the rolling parallel, right-angle, and 45 ° directions, respectively. From the dimensional change in the length and width direction of the test piece, the rankford values in each direction, r 0 and r 90 , R 45 was determined, and the plate thickness anisotropy r defined by r = (r 0 + r 90 + 2 × r 45 ) / 4 was calculated. It is known that the plate thickness anisotropy r generally has better drawing workability as the value increases. Moreover, the plate | board thickness anisotropy r of a general copper-stretched product is about 0.8-1.1, and the outstanding drawability is obtained by adjusting so that this value may be 1.2 or more.
The Rankford value here is defined in JIS Z2254, and the above-mentioned Rankford values r 0 , r 90 , and r 45 are measured according to JIS Z2254. . However, the product of the present invention is low in elongation to maintain the strength required as a structural material, and the load strain is 2.5%.

(厚み)
製品の厚み、つまり板厚(t)は0.05〜2.0mmであることが好ましい。厚みが小さすぎると、十分な放熱性が得られなくなるため、放熱用電子部品の素材として不適である。一方で、厚みが大きすぎると、絞り加工および曲げ加工が困難になる。このような観点から、より好ましい厚みは0.08〜1.5mmである。厚みが上記範囲となることにより、放熱性に優れ、かつ、曲げ加工性を良好なものとすることができる。
(Thickness)
The thickness of the product, that is, the plate thickness (t) is preferably 0.05 to 2.0 mm. If the thickness is too small, sufficient heat dissipation cannot be obtained, which is unsuitable as a material for heat dissipation electronic components. On the other hand, if the thickness is too large, drawing and bending become difficult. From such a viewpoint, a more preferable thickness is 0.08 to 1.5 mm. When the thickness is in the above range, heat dissipation is excellent and bending workability can be improved.

(曲げ加工性)
銅合金板の最小曲げ半径(MBR)を、JIS H3130に準拠して測定するものとし、上記の板厚(t)に対する、この最小曲げ半径(MBR)の割合(MBR/t)は、2.0以下とすることが、良好な曲げ性を確保するとの観点から好ましい。より好ましくは、MBR/tを1.8以下とする。
(Bending workability)
The minimum bending radius (MBR) of the copper alloy plate is measured according to JIS H3130. The ratio (MBR / t) of the minimum bending radius (MBR) to the plate thickness (t) is 2. It is preferable to make it 0 or less from the viewpoint of securing good bendability. More preferably, MBR / t is 1.8 or less.

(製造方法)
以下、本発明に係る銅合金板の好適な製造方法の一例について説明する。
純銅原料として電気銅等を溶解し、Fe、Pおよび必要に応じ他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。最終冷間圧延後の伸びは、2%に満たないほど低いが、その後の歪取焼鈍により上昇する。
(Production method)
Hereinafter, an example of the suitable manufacturing method of the copper alloy plate which concerns on this invention is demonstrated.
Electro copper or the like is melted as a pure copper raw material, Fe, P and other alloy elements are added as required, and cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, cold rolling and recrystallization annealing are repeated, and finally finished to a predetermined product thickness by cold rolling. Apply strain relief annealing. The elongation after the final cold rolling is so low that it is less than 2%, but increases by subsequent strain relief annealing.

再結晶焼鈍では、圧延組織の一部または全てを再結晶化させる。また、適当な条件で焼鈍することにより、FeまたはFeとPとの化合物が析出し、合金の導電率が上昇する。
最終冷間圧延前の再結晶焼鈍では、銅合金板の平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、0.2%耐力を400MPa以上に調整することが難しくなる。
In recrystallization annealing, part or all of the rolling structure is recrystallized. Further, by annealing under appropriate conditions, Fe or a compound of Fe and P is precipitated, and the electrical conductivity of the alloy is increased.
In the recrystallization annealing before the final cold rolling, the average crystal grain size of the copper alloy sheet is adjusted to 50 μm or less. If the average crystal grain size is too large, it will be difficult to adjust the 0.2% yield strength to 400 MPa or more.

最終冷間圧延前の再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径および目標とする製品の導電率に基づき決定する。具体的には、バッチ炉または連続焼鈍炉を用い、炉内温度を350〜800℃として焼鈍を行えばよい。バッチ炉では350〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。一般的にはより低温でより長時間の条件で焼鈍を行うと、同じ結晶粒径でより高い導電率が得られる。   The conditions for recrystallization annealing before the final cold rolling are determined based on the target crystal grain size after annealing and the target product conductivity. Specifically, annealing may be performed by using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 350 to 800 ° C. In a batch furnace, the heating time may be appropriately adjusted at a temperature in the furnace of 350 to 600 ° C. in the range of 30 minutes to 30 hours. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 450 to 800 ° C. Generally, when annealing is performed at a lower temperature for a longer time, higher conductivity can be obtained with the same crystal grain size.

最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げてゆく。最終冷間圧延の総加工度を制御する。
総加工度R(%)は、R=(t0−t)/t0×100(t0:最終冷間圧延前の板厚、t:最終冷間圧延後の板厚)で与えられる。
総加工度Rは40〜99%、好ましくは45〜98.5、より好ましくは50〜98とする。Rが小さすぎると、0.2%耐力を400MPa以上に調整することが難しく、Rが大きすぎると、圧延材のエッジが割れることがある。
In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. Control the total degree of work in the final cold rolling.
The total workability R (%) is given by R = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before final cold rolling, t: plate thickness after final cold rolling).
The total processing degree R is 40 to 99%, preferably 45 to 98.5, and more preferably 50 to 98. If R is too small, it is difficult to adjust the 0.2% proof stress to 400 MPa or more. If R is too large, the edge of the rolled material may be cracked.

本発明の歪取焼鈍は、炉内で銅合金板を平板状に保持することができる連続焼鈍炉を用いて行う。バッチ炉の場合、コイル状に巻き取った状態で材料を加熱するため、加熱中に材料が塑性変形を起こし材料に反りが生じる。したがって、バッチ炉は本発明の歪取焼鈍に不適である。   The strain relief annealing of the present invention is performed using a continuous annealing furnace capable of holding a copper alloy plate in a flat plate shape in the furnace. In the case of a batch furnace, the material is heated in a coiled state, so that the material undergoes plastic deformation during the heating, and the material is warped. Therefore, the batch furnace is not suitable for the strain relief annealing of the present invention.

圧延後の歪取焼鈍では、連続焼鈍炉内において材料に負荷される張力を1〜5MPa、より好ましくは2〜4MPaに調整する。張力が大きすぎると、板厚異方性rが低下し、1.2以上に調整することが困難となる。一方、張力が小さすぎると、焼鈍炉を通過中の材料が炉壁と接触して材料表面やエッジに傷が付くなど、生産性の低下を引き起こす可能性がある。   In the strain relief annealing after rolling, the tension applied to the material in the continuous annealing furnace is adjusted to 1 to 5 MPa, more preferably 2 to 4 MPa. If the tension is too large, the plate thickness anisotropy r decreases and it becomes difficult to adjust the thickness to 1.2 or more. On the other hand, if the tension is too small, the material passing through the annealing furnace may come into contact with the furnace wall and the surface of the material or the edge may be damaged, leading to a decrease in productivity.

連続焼鈍炉において、炉内温度を300〜700℃、好ましくは350〜650℃とし、5秒から10分の範囲で加熱時間を適宜調整し、歪取焼鈍後の0.2%耐力(σ)を歪取焼鈍前の0.2%耐力(σ0)に対し10〜50MPa低い値、好ましくは15〜45MPa低い値に調整する。これにより、最終冷間圧延上がりにおいて低かった伸びが上昇するとともに、曲げ性が改善する。 In a continuous annealing furnace, the furnace temperature is set to 300 to 700 ° C., preferably 350 to 650 ° C., the heating time is appropriately adjusted in the range of 5 seconds to 10 minutes, and 0.2% yield strength (σ) after strain relief annealing. Is adjusted to a value 10 to 50 MPa lower, preferably 15 to 45 MPa lower than the 0.2% proof stress (σ 0 ) before strain relief annealing. As a result, the elongation which was low after the final cold rolling is increased and the bendability is improved.

本発明は、上述の歪取焼鈍に加えて、ランクフォード値から求めた板厚異方性r≧1.2なる特徴をCu−Fe−P系合金に付与することにより、絞り加工性および曲げ加工性を改善することを一つの特徴としているが、そのための製造条件を整理して示すと、以下の通りである。
a.歪取焼鈍において、(σ0−σ)=10〜50MPaに調整する。
b.歪取焼鈍における炉内張力を5MPa以下に調整する。
c.仕上圧延の総加工度を99%以下にする。
In addition to the above-described strain relief annealing, the present invention provides a Cu-Fe-P-based alloy with a feature that the plate thickness anisotropy r ≧ 1.2 determined from the Rankford value, thereby reducing drawability and bending. One of the features is to improve the workability. The manufacturing conditions for this purpose are summarized as follows.
a. In the strain relief annealing, (σ 0 −σ) = 10 to 50 MPa is adjusted.
b. The furnace tension in the strain relief annealing is adjusted to 5 MPa or less.
c. The total degree of finish rolling is 99% or less.

以上のようにして製造された銅合金板は、様々な板厚の伸銅品に加工されて、たとえば、スマートフォン、タブレットPCおよびパソコン等の電気・電子機器内の放熱用電子部品等として用いることができる。   The copper alloy plate manufactured as described above is processed into a copper product having various plate thicknesses, and is used as, for example, an electronic component for heat dissipation in an electric / electronic device such as a smartphone, a tablet PC, and a personal computer. Can do.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、950℃で熱間圧延により厚み15mmの板にした。熱間圧延板表面の酸化スケールをグラインダーで研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に連続焼鈍炉を用い歪取焼鈍を行った。
Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours, and hot rolled at 950 ° C. to form a plate having a thickness of 15 mm. After grinding and removing the oxide scale on the surface of the hot rolled plate with a grinder, annealing and cold rolling were repeated, and the product was finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing was performed using a continuous annealing furnace.

最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、バッチ炉を用い、加熱時間を5時間とし炉内温度を300〜700℃の範囲で調整し、焼鈍後の結晶粒径と導電率を変化させた。焼鈍後の結晶粒径の測定においては、圧延方向に直角な断面を鏡面研磨後に化学腐食し、切断法(JIS H0501(1999年))により平均結晶粒径を求めた。   Annealing before final cold rolling (final recrystallization annealing) uses a batch furnace, adjusts the furnace temperature in the range of 300 to 700 ° C. with a heating time of 5 hours, and sets the crystal grain size and conductivity after annealing. Changed. In the measurement of the crystal grain size after annealing, a cross section perpendicular to the rolling direction was subjected to chemical corrosion after mirror polishing, and the average crystal grain size was determined by a cutting method (JIS H0501 (1999)).

最終冷間圧延では、総加工度および1パスあたりの加工度を制御した。また、最終冷間圧延後の材料の0.2%耐力を求めた。
連続焼鈍炉を用いた歪取り焼鈍では、炉内温度を500℃とし加熱時間を1秒から15分の間で調整し、焼鈍後の0.2%耐力を種々変化させた。また、炉内において材料に付加する張力を種々変化させた。なお、一部の材料については歪取焼鈍を省略した。
製造途中の材料および歪取焼鈍後の材料につき、次の測定を行った。
In the final cold rolling, the total workability and the workability per pass were controlled. Moreover, the 0.2% yield strength of the material after final cold rolling was calculated | required.
In strain relief annealing using a continuous annealing furnace, the furnace temperature was 500 ° C., the heating time was adjusted between 1 second and 15 minutes, and the 0.2% proof stress after annealing was variously changed. In addition, various tensions were added to the material in the furnace. For some materials, strain relief annealing was omitted.
The following measurement was performed on the material in the process of manufacturing and the material after strain relief annealing.

(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
(component)
The alloy element concentration of the material after strain relief annealing was analyzed by ICP-mass spectrometry.

(0.2%耐力)
最終冷間圧延後および歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、0.2%耐力を求めた。
(0.2% yield strength)
For the material after the final cold rolling and strain relief annealing, sample No. 13B specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and pulled in parallel with the rolling direction in accordance with JIS Z2241. Tests were performed to determine 0.2% yield strength.

(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
A test piece was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.

(板厚異方性)
試験片の圧延平行、直角、45°方向に、JIS Z2241に規定するJIS13B号試験片を採取した。この試験片に対し、引張試験器を用いてそれぞれ2.5%の伸び歪を加え、板厚異方性を算出した。
(Thickness anisotropy)
A JIS No. 13B test piece defined in JIS Z2241 was taken in the rolling parallel, right-angle, 45 ° direction of the test piece. Each test piece was subjected to an elongation strain of 2.5% using a tensile tester, and the thickness anisotropy was calculated.

(MBR/t)
幅10mm×長さ30mmの短冊状の試験片を作製し、W曲げ試験(JIS H3130)によって行った。試験片採取方向は、圧延平行方向(GW)および圧延直角方向(BW)とし、割れの発生しない最小曲げ半径MBR(Minimum Bend Radius)と板厚tの比MBR/tにて評価した。
(MBR / t)
A strip-shaped test piece having a width of 10 mm and a length of 30 mm was prepared and subjected to a W bending test (JIS H3130). The specimen collection direction was a rolling parallel direction (GW) and a rolling perpendicular direction (BW), and evaluation was performed by a ratio MBR / t of a minimum bending radius MBR (Minimum Bend Radius) and a thickness t where no cracks occurred.

表1に評価結果を示す。なお、表1に示すところにおいて、最終再結晶焼鈍後の結晶粒径における「<10μm」の表記は、圧延組織の全てが再結晶化しその平均結晶粒径が10μm未満であった場合、および圧延組織の一部のみが再結晶化した場合の双方を含んでいる。   Table 1 shows the evaluation results. In Table 1, the notation of “<10 μm” in the crystal grain size after the final recrystallization annealing means that all of the rolled structure was recrystallized and the average crystal grain size was less than 10 μm, and the rolling It includes both cases where only a part of the structure is recrystallized.

Figure 2014198891
Figure 2014198891

表1に示すところから解かるように、発明例1〜23は、いずれも0.01〜0.5質量%のFeおよび、0.01〜0.3質量%のPを含有し、このPの質量%濃度(%P)に対するFeの質量%濃度(%Fe)の割合(%Fe/%P)を1.0〜6.0とし、また、最終再結晶焼鈍の結晶粒径が50μm以下、最終圧延の総加工度が40〜99%、歪取焼鈍における張力が1〜5MPaと規定の範囲になっているため、歪取焼鈍後の0.2%耐力が400MPa以上、導電率が65%以上、板厚異方性rが1.2以上で、放熱性、強度および加工性に良好な材料が得られている。さらに、発明例13、23以外は、最終圧延後の0.2%耐力と歪取焼鈍後における0.2%耐力の差が10〜50MPaであるため、曲げ加工性がGW、BW共に2.0以下で良好である。   As shown in Table 1, Invention Examples 1 to 23 all contain 0.01 to 0.5 mass% Fe and 0.01 to 0.3 mass% P. The ratio (% Fe /% P) of the mass% concentration (% Fe) of Fe to the mass% concentration (% P) of the steel is 1.0 to 6.0, and the crystal grain size of the final recrystallization annealing is 50 μm or less. In addition, since the total workability of final rolling is 40 to 99% and the tension in strain relief annealing is 1 to 5 MPa, the 0.2% proof stress after strain relief annealing is 400 MPa or more, and the conductivity is 65. % And a plate thickness anisotropy r of 1.2 or more, a material having good heat dissipation, strength and workability is obtained. Further, except for Invention Examples 13 and 23, the difference between the 0.2% proof stress after final rolling and the 0.2% proof stress after strain relief annealing is 10 to 50 MPa, so that the bending workability is 2. Good at 0 or less.

一方、比較例1、2は、歪取焼鈍を行ったが、張力が規定範囲の上限を超えており、板厚異方性が1.2未満となり、絞り加工性が悪い。比較例3は、歪取焼鈍における0.2%耐力の低下量が過大であり、歪取焼鈍後の耐力が400MPa未満で、強度が不十分である。比較例4はFeの添加濃度が低すぎるため、耐力が400MPa未満で、強度が不十分である。   On the other hand, in Comparative Examples 1 and 2, strain relief annealing was performed, but the tension exceeded the upper limit of the specified range, the plate thickness anisotropy was less than 1.2, and the drawability was poor. In Comparative Example 3, the amount of decrease in 0.2% yield strength in strain relief annealing is excessive, the yield strength after strain relief annealing is less than 400 MPa, and the strength is insufficient. In Comparative Example 4, since the Fe concentration is too low, the yield strength is less than 400 MPa and the strength is insufficient.

また、比較例5は、Feの添加濃度が過剰であり、導電率が65%未満となって、放熱性が悪い。比較例6、7は、Feの質量%濃度に対するPの添加濃度が規定範囲外のため、導電率が65%未満となって、放熱性が悪い。比較例8は、再結晶焼鈍における結晶粒径が50μmを超えているため、強度が不十分である。比較例9は、最終圧延における総加工度が40%未満となっているため、強度が不十分である。   In Comparative Example 5, the Fe concentration is excessive, the conductivity is less than 65%, and the heat dissipation is poor. In Comparative Examples 6 and 7, since the addition concentration of P with respect to the mass% concentration of Fe is outside the specified range, the conductivity is less than 65% and the heat dissipation is poor. In Comparative Example 8, since the crystal grain size in recrystallization annealing exceeds 50 μm, the strength is insufficient. In Comparative Example 9, the total degree of processing in the final rolling is less than 40%, so that the strength is insufficient.

Claims (6)

0.01〜0.5質量%のFeを含有し、さらにPを含有し、このPの質量%濃度(%P)に対するFeの質量%濃度(%Fe)の割合(%Fe/%P)を1.0〜6.0とし、残部が銅およびその不可避的不純物から成り、65%IACS以上の導電率、および400MPa以上の0.2%耐力を有し、かつ、圧延方向に対し、平行な方向、直角な方向および、45°をなす方向のそれぞれのランクフォード値をそれぞれr0、r90、r45としたときに、(r0+r90+2×r45)/4で定義される板厚異方性rが1.2以上である銅合金板。 The ratio of the mass% concentration (% Fe) of Fe to the mass% concentration (% P) of P containing 0.01 to 0.5% by mass of Fe and further containing P (% Fe /% P) 1.0 to 6.0, the balance is made of copper and its inevitable impurities, has a conductivity of 65% IACS or more, a 0.2% proof stress of 400 MPa or more, and parallel to the rolling direction. (R 0 + r 90 + 2 × r 45 ) / 4, where the rankford values in the right direction, the right angle direction, and the 45 ° direction are r 0 , r 90 , and r 45 , respectively. A copper alloy plate having a plate thickness anisotropy r of 1.2 or more. W曲げ試験における圧延平行方向(GW方向)および圧延直角方向(BW方向)の最小曲げ半径(MBR)の、板厚(t)に対する割合が、MBR/t≦2.0で与えられる請求項1に記載の銅合金板。   The ratio of the minimum bending radius (MBR) in the rolling parallel direction (GW direction) and the rolling perpendicular direction (BW direction) in the W bending test to the sheet thickness (t) is given by MBR / t ≦ 2.0. The copper alloy plate described in 1. 0.5質量%以下のSnをさらに含有する、請求項1または2に記載の銅合金板。   The copper alloy plate according to claim 1 or 2, further containing 0.5 mass% or less of Sn. 1.0質量%以下のZnをさらに含有する、請求項1〜3の何れか1項に記載の銅合金板。   The copper alloy plate according to any one of claims 1 to 3, further containing 1.0% by mass or less of Zn. Ag、Co、Ni、Cr、Mn、Mg、SiおよびBからなる群から選ばれる一種以上の元素を2.0質量%以下でさらに含有する、請求項1〜4の何れか1項に記載の銅合金板。   5. The composition according to claim 1, further containing at least 2.0% by mass of one or more elements selected from the group consisting of Ag, Co, Ni, Cr, Mn, Mg, Si and B. Copper alloy plate. 請求項1〜5の何れか1項に記載の銅合金板を備える放熱用電子部品。   A heat dissipating electronic component comprising the copper alloy plate according to any one of claims 1 to 5.
JP2013075235A 2013-03-29 2013-03-29 Copper alloy plate and heat dissipating electronic component including the same Expired - Fee Related JP5427968B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075235A JP5427968B1 (en) 2013-03-29 2013-03-29 Copper alloy plate and heat dissipating electronic component including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075235A JP5427968B1 (en) 2013-03-29 2013-03-29 Copper alloy plate and heat dissipating electronic component including the same

Publications (2)

Publication Number Publication Date
JP5427968B1 JP5427968B1 (en) 2014-02-26
JP2014198891A true JP2014198891A (en) 2014-10-23

Family

ID=50287363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075235A Expired - Fee Related JP5427968B1 (en) 2013-03-29 2013-03-29 Copper alloy plate and heat dissipating electronic component including the same

Country Status (1)

Country Link
JP (1) JP5427968B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822895B2 (en) * 2013-11-08 2015-11-25 Jx日鉱日石金属株式会社 Copper alloy plate and heat dissipating electronic component including the same
CN108866384A (en) * 2018-07-31 2018-11-23 合肥华盖光伏科技有限公司 A kind of preparation method of copper alloy with high strength and high conductivity wire rod

Also Published As

Publication number Publication date
JP5427968B1 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5632063B1 (en) Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same
JP5380621B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6270417B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5467163B1 (en) Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP5822895B2 (en) Copper alloy plate and heat dissipating electronic component including the same
JP5470499B1 (en) Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
KR101822374B1 (en) Copper alloy strip, electronic component for heavy-current and electronic component for heat release containing the same
JP2017002407A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
JP5427968B1 (en) Copper alloy plate and heat dissipating electronic component including the same
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP2014208862A (en) Copper alloy sheet having excellent conductivity and bending deflection coefficient
JP5525101B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP2017089011A (en) Copper alloy sheet excellent in conductivity and flexure deflection coefficient
JP2014208868A (en) Copper alloy and high-current connector terminal material
JP2014205864A (en) Copper alloy sheet excellent in conductivity and stress relaxation property

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5427968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees