JP5467163B1 - Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate - Google Patents

Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate Download PDF

Info

Publication number
JP5467163B1
JP5467163B1 JP2013064762A JP2013064762A JP5467163B1 JP 5467163 B1 JP5467163 B1 JP 5467163B1 JP 2013064762 A JP2013064762 A JP 2013064762A JP 2013064762 A JP2013064762 A JP 2013064762A JP 5467163 B1 JP5467163 B1 JP 5467163B1
Authority
JP
Japan
Prior art keywords
copper alloy
alloy plate
mass
mpa
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013064762A
Other languages
Japanese (ja)
Other versions
JP2014189816A (en
Inventor
明宏 柿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013064762A priority Critical patent/JP5467163B1/en
Application granted granted Critical
Publication of JP5467163B1 publication Critical patent/JP5467163B1/en
Publication of JP2014189816A publication Critical patent/JP2014189816A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】高強度、高導電性および優れた加工性を兼ね備えた銅合金、それを備える放熱用電子部品および、銅合金板の製造方法を提供する。
【解決手段】本発明の銅合金板は、0.01〜0.5質量%のFeを含有し、さらにPを含有し、このPの質量%濃度(%P)に対するFeの質量%濃度(%Fe)の割合(%Fe/%P)を1.0〜6.0とし、残部が銅および不可避的不純物から成り、65%IACS以上の導電率、および400MPa以上の0.2%耐力を有し、かつ、0.2%耐力σ(MPa)と伸びL(%)とが、σ/L≦150の関係を満たすものである。
【選択図】なし
A copper alloy having high strength, high conductivity, and excellent workability, a heat dissipating electronic component having the copper alloy, and a method for producing a copper alloy plate are provided.
The copper alloy sheet of the present invention contains 0.01 to 0.5 mass% Fe, and further contains P, and the Fe mass% concentration (% P) with respect to the P mass% concentration (% P). % Fe) ratio (% Fe /% P) is 1.0 to 6.0, the balance is made of copper and inevitable impurities, the conductivity is 65% IACS or more, and the 0.2% proof stress is 400 MPa or more. And 0.2% proof stress σ (MPa) and elongation L (%) satisfy the relationship of σ / L ≦ 150.
[Selection figure] None

Description

本発明は、放熱性、導電性、絞り加工性および曲げ加工性に優れる銅合金に関し、詳細には端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレームなどの電子部品用途、特に、スマートフォンやパソコンなどに用いられる放熱性部品および高電流部品の用途に好適な銅合金に関する。   The present invention relates to a copper alloy excellent in heat dissipation, electrical conductivity, drawing workability and bending workability, and more specifically for use in electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, especially smartphones and The present invention relates to a copper alloy suitable for heat-dissipating parts and high-current parts used in personal computers.

スマートフォン、タブレットPCおよびパソコン等の電機・電子機器等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電気接続を得るための部品が組み込まれている。
近年、スマートフォン、タブレットPCおよびパソコンの小型化に伴い、電気・電子機器内の液晶部品またはICチップ等に通電した際の蓄熱が大きくなる傾向がある。蓄熱が大きい状態はICチップや基盤への熱的損傷が大きいため、放熱部品の放熱性が問題となっている。
Parts for obtaining electrical connections such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, and the like are incorporated in electric / electronic devices such as smartphones, tablet PCs, and personal computers.
In recent years, with the miniaturization of smartphones, tablet PCs, and personal computers, heat storage tends to increase when power is supplied to liquid crystal components or IC chips in electric / electronic devices. When the heat storage is large, thermal damage to the IC chip and the substrate is large, and the heat dissipation of the heat dissipation component is a problem.

従来、スマートフォン、タブレットPCおよびパソコン等の電気・電子機器内の放熱部品にはオーステナイト系ステンレス鋼(SUS304)および純アルミニウム等が主に使用されてきた。例えばスマートフォンやタブレットPCの液晶に付属の放熱部品(液晶フレーム)には、高い放熱性に加えて構造体としての強度および、液晶への固定に必要な曲げ加工性または絞り加工性が求められている。また、用いられる放熱部品によっては曲げ加工性のみ、または絞り加工性のみ必要な場合がある。
オーステナイト系ステンレス鋼(SUS304)は曲げ性および絞り加工性は良好であるが、熱伝導性が低く、それを補うため高価な熱伝導シート等を併用している。そのため放熱部品の単価が高くなる。一方、純アルミニウムおよびアルミニウム合金では曲げ性および絞り加工性は良好であるが熱伝導性および構造体としての強度が足りていない。
Conventionally, austenitic stainless steel (SUS304), pure aluminum, and the like have been mainly used for heat dissipation components in electric and electronic devices such as smartphones, tablet PCs, and personal computers. For example, the heat-dissipating parts (liquid crystal frame) attached to the liquid crystal of smartphones and tablet PCs are required to have not only high heat dissipation but also strength as a structure and bending workability or drawing workability necessary for fixing to the liquid crystal. Yes. Further, depending on the heat dissipating component used, only bending workability or drawing workability may be required.
Austenitic stainless steel (SUS304) has good bendability and drawability, but has low thermal conductivity, and an expensive thermal conductive sheet or the like is used in combination to compensate for it. Therefore, the unit price of the heat dissipating component is increased. On the other hand, pure aluminum and aluminum alloys have good bendability and drawability, but lack thermal conductivity and strength as a structure.

これに対し、銅合金のなかでもCu−Fe−P系合金は、熱伝導性と比例関係にあることが知られている導電率が比較的高く、しかも所要の強度を有するとともに、安価に製造できることから、特に、例えばJIS合金番号C1921(Cu−0.1質量%Fe−0.03質量%P)、C1940(Cu−2.4質量%Fe−0.1質量%P−0.1質量%Zn)等が、上記のような電気・電子機器の放熱部品としての実用に供されている。Cu−Fe−P系合金の改良技術は、例えば特許文献1〜5に開示されている。   On the other hand, among copper alloys, Cu-Fe-P alloys have a relatively high electrical conductivity, which is known to be proportional to thermal conductivity, and have the required strength and are manufactured at low cost. In particular, for example, JIS alloy number C1921 (Cu-0.1 mass% Fe-0.03 mass% P), C1940 (Cu-2.4 mass% Fe-0.1 mass% P-0.1 mass) % Zn) and the like are put to practical use as heat dissipation parts for the above-mentioned electric and electronic devices. Improvement techniques for Cu—Fe—P alloys are disclosed in, for example, Patent Documents 1 to 5.

特開2004−099978号公報JP 2004-099978 A 特開2005−139501号公報JP 2005-139501 A 特開2005−206891号公報JP 2005-206871 A 特開2006−083465号公報JP 2006-083465 A 特開2007−031794号公報JP 2007-031794 A

しかし、従来のCu−Fe−P合金では強度および熱伝導特性は高いものの、要求される曲げ性または絞り加工性、場合によってはその両方を満たしていなかった。   However, although the conventional Cu-Fe-P alloy has high strength and heat conduction characteristics, it does not satisfy the required bendability or drawability, or in some cases.

したがって、Cu−Fe−P合金で、所要の高い強度および導電率を維持したまま曲げ性および絞り加工性を改善することは、工業的に極めて意義深いといえる。   Therefore, it can be said that it is industrially significant to improve the bendability and the drawability while maintaining the required high strength and conductivity with the Cu—Fe—P alloy.

そこで、本発明は、高い強度および導電性ならびに、優れた絞り加工性および曲げ加工性を兼ね備えた銅合金板、それを備える放熱用電子部品および、銅合金板の製造方法を提供することを目的とし、具体的には、安価で導電性と強度に優れるCu−Fe−P系合金の絞り加工性を改善することを課題とする。   Therefore, the present invention aims to provide a copper alloy plate having high strength and conductivity, and excellent drawing workability and bending workability, a heat dissipating electronic component comprising the same, and a method for producing the copper alloy board. Specifically, it is an object to improve the drawing workability of a Cu—Fe—P-based alloy that is inexpensive and excellent in conductivity and strength.

本発明者は、Cu−Fe−P系合金において、伸びを指標に金属組織を調整すること、圧延面に配向する結晶粒の方位を制御することにより、絞り加工性および曲げ加工性が向上することを見出した。そして、以上の知見を背景に、以下の発明を完成させた。
本発明の銅合金板は、0.01〜0.5質量%のFeを含有し、さらにPを含有し、このPの質量%濃度(%P)に対するFeの質量%濃度(%Fe)の割合(%Fe/%P)を1.0〜6.0とし、残部が銅および不可避的不純物から成り、65%IACS以上の導電率、および400MPa以上の0.2%耐力を有し、かつ、0.2%耐力σ(MPa)と伸びL(%)とが、σ/L≦150の関係を満たすものである。
The present inventor improves drawing workability and bending workability in a Cu-Fe-P alloy by adjusting the metal structure using elongation as an index and controlling the orientation of crystal grains oriented on the rolling surface. I found out. And the following invention was completed against the background of the above knowledge.
The copper alloy sheet of the present invention contains 0.01 to 0.5% by mass of Fe, and further contains P. The mass% concentration of Fe (% Fe) with respect to the mass% concentration (% P) of P The ratio (% Fe /% P) is 1.0 to 6.0, the balance is made of copper and inevitable impurities, the conductivity is 65% IACS or more, and the 0.2% proof stress is 400MPa or more, and 0.2% proof stress σ (MPa) and elongation L (%) satisfy the relationship of σ / L ≦ 150.

本発明の銅合金板では、X線回折法を用い圧延面において厚み方向に求めた{220}面のX線回折積分強度をI{220}とし純銅粉末標準試料の{220}面からのX線回折積分強度をI0{220}としたときに、I{220}/I0{220}≧4.0であることが好ましい。 In the copper alloy sheet of the present invention, the X-ray diffraction integrated intensity of the {220} plane obtained in the thickness direction on the rolled surface using the X-ray diffraction method is I {220}, and the pure copper powder standard sample from the {220} plane is used. When the X-ray diffraction integrated intensity is I 0 {220}, it is preferable that I {220} / I 0 {220} ≧ 4.0.

また、本発明の銅合金板では、W曲げ試験における圧延平行方向(GW方向)および圧延直角方向(BW方向)の最小曲げ半径(MBR)の、板厚(t)に対する割合が、MBR/t≦2.0で与えられることが好ましい。
そしてまた、本発明の銅合金板では、エリクセン試験におけるエリクセン値/板厚が、0.5以上で与えられることが好ましい。
In the copper alloy sheet of the present invention, the ratio of the minimum bending radius (MBR) in the rolling parallel direction (GW direction) and the rolling perpendicular direction (BW direction) to the sheet thickness (t) in the W bending test is MBR / t. Preferably it is given by ≦ 2.0.
Moreover, in the copper alloy plate of the present invention, it is preferable that the Erichsen value / plate thickness in the Erichsen test is given as 0.5 or more.

なお、本発明の銅合金板では、0.5質量%以下のSnをさらに含有すること、1.0質量%以下のZnをさらに含有することがそれぞれ好ましい。
また、本発明の銅合金板では、Ag、Co、Ni、Cr、Mn、Mg、SiおよびBからなる群から選ばれる一種以上の元素を0.1質量%以下でさらに含有することが好ましい。
In addition, in the copper alloy plate of this invention, it is preferable to further contain 0.5 mass% or less of Sn, and to further contain 1.0 mass% or less of Zn, respectively.
The copper alloy sheet of the present invention preferably further contains at least 0.1 % by mass of one or more elements selected from the group consisting of Ag, Co, Ni, Cr, Mn, Mg, Si and B.

本発明の放熱用電子部品は、上記の何れかの銅合金板を備えるものである。
また、本発明の銅合金板の製造方法は、上記の何れかの銅合金板を製造するに当たり、インゴットを、800〜1000℃で熱間圧延した後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延の後、歪取焼鈍を施す銅合金板の製造方法であって、該最終冷間圧延前の再結晶焼鈍において、炉内温度を350〜800℃として、銅合金板の平均結晶粒径を50μm以下に調整し、該歪取焼鈍において、炉内温度を300〜700℃とし、炉内で銅合金板を平板状に保持した状態で、5MPa以下の張力を与えながら、0.2%耐力を10〜50MPa低下させるものである。
この製造方法では、前記最終冷間圧延において、総加工度を40〜99%、1パスあたりの圧延加工度を15%以上とすることが好ましく、また、前記歪取焼鈍において、連続焼鈍炉を用いて銅合金板を通板することが好ましい。
The heat dissipating electronic component of the present invention comprises any one of the above copper alloy plates.
Moreover, in the manufacturing method of the copper alloy plate of the present invention, in manufacturing any of the above copper alloy plates, the ingot is hot-rolled at 800 to 1000 ° C., and then cold rolling and recrystallization annealing are repeated. A method for producing a copper alloy sheet that is subjected to strain relief annealing after the final cold rolling, and in the recrystallization annealing before the final cold rolling, the furnace temperature is set to 350 to 800 ° C. The average crystal grain size is adjusted to 50 μm or less, and in the strain relief annealing, the furnace temperature is set to 300 to 700 ° C., and the copper alloy plate is held in a flat plate shape in the furnace while applying a tension of 5 MPa or less, The 0.2% yield strength is reduced by 10 to 50 MPa.
In this manufacturing method, in the final cold rolling, the total workability is preferably 40 to 99%, and the rolling workability per pass is preferably 15% or more. In the strain relief annealing, a continuous annealing furnace is used. It is preferable to use and pass a copper alloy plate.

本発明によれば、高強度、高導電性および優れた絞り加工性を兼ね備えた銅合金板、それを備える放熱用電子部品および、銅合金板の製造方法を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電子部品の素材として好適に使用することができ、スマートフォンやパソコンなどに用いられる放熱性部品および高電流部品の用途に好適である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the copper alloy plate which has high intensity | strength, high electroconductivity, and the outstanding drawability, the electronic component for thermal radiation provided with the same, and the manufacturing method of a copper alloy plate. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, busbars, lead frames, etc., and is used for heat dissipation and high current parts used in smartphones and personal computers. Suitable for use.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(特性)
本発明の一実施形態に係る銅合金板は、0.01〜0.5質量%のFeおよび、Pを含有し、このPの質量%濃度(%P)に対するFeの質量%濃度(%Fe)の割合(%Fe/%P)を1.0〜6.0とし、必要に応じて、0.5質量%以下のSn、1.0質量%以下のZnを含有し、また必要に応じて、Ag、Co、Ni、Cr、Mn、Mg、SiおよびBからなる群から選ばれる一種以上の元素を2質量%以下で含有し、残部が銅および不可避的不純物からなる組成を有する銅合金板であり、その銅合金板の導電率を65%IASC以上とし、0.2%耐力を400MPa以上とし、0.2%耐力/伸び(σ/L)を150以下とする。このような特性を兼ね備える銅合金板は、放熱用電子部品の用途に好適である。
(Characteristic)
The copper alloy plate according to an embodiment of the present invention contains 0.01 to 0.5 mass% Fe and P, and the mass% concentration of Fe (% Fe) relative to the mass% concentration (% P) of P. ) Ratio (% Fe /% P) is 1.0 to 6.0, and if necessary, 0.5% by mass or less of Sn, 1.0% by mass or less of Zn is contained, and if necessary A copper alloy containing at least 2% by mass of at least one element selected from the group consisting of Ag, Co, Ni, Cr, Mn, Mg, Si and B, with the balance being composed of copper and inevitable impurities The copper alloy plate has a conductivity of 65% IASC or more, a 0.2% proof stress of 400 MPa or more, and a 0.2% proof stress / elongation (σ / L) of 150 or less. A copper alloy plate having such characteristics is suitable for use as an electronic component for heat dissipation.

(合金成分濃度)
Fe濃度は0.01〜0.5質量%とする。Feが0.5質量%を超えると、65%IACS以上の導電率を得ることが難しくなる。Feが0.01質量%未満になると、400MPa以上の0.2%耐力を得ることが難しくなる。上記の理由から、Fe濃度は、0.01〜0.5質量%とすることが好ましく、さらには、0.05〜0.5質量%とすることが好ましい。
(Alloy component concentration)
Fe concentration shall be 0.01-0.5 mass%. When Fe exceeds 0.5 mass%, it becomes difficult to obtain a conductivity of 65% IACS or more. When Fe is less than 0.01% by mass, it becomes difficult to obtain a 0.2% yield strength of 400 MPa or more. For the above reason, the Fe concentration is preferably 0.01 to 0.5% by mass, and more preferably 0.05 to 0.5% by mass.

本発明の銅合金には、Feに加えPを添加する。Feの質量%濃度(%Fe)とPの質量%濃度(%P)との比(%Fe/%P)は1.0〜6.0、好ましくは2.0〜5.0に調整する。%Fe/%Pをこのように調整することで、より高い導電率が得られる。
より具体的には、P濃度は0.01〜0.3質量%とすることが好ましい。Pには合金の製造プロセスにおいて、溶湯を脱酸する効果がある。また、Feと化合物を形成することにより、合金の導電率や強度を高める効果がある。
In addition to Fe, P is added to the copper alloy of the present invention. The ratio (% Fe /% P) of the mass% concentration (% Fe) of Fe to the mass% concentration (% P) of P is adjusted to 1.0 to 6.0, preferably 2.0 to 5.0. . By adjusting% Fe /% P in this way, higher conductivity can be obtained.
More specifically, the P concentration is preferably 0.01 to 0.3% by mass. P has the effect of deoxidizing the molten metal in the alloy manufacturing process. Further, by forming a compound with Fe, there is an effect of increasing the conductivity and strength of the alloy.

本発明のCu−Fe−P系合金には、0.5質量%以下のSnを添加することができる。Snには圧延の際の合金の加工硬化を促進し、合金の強度を改善する効果がある。
Snが0.5質量%を超えると、導電率の低下が大きくなる。Sn添加の効果を得るためには、Snの添加量を0.001質量%以上にすることが好ましい。より好ましいSn濃度の範囲は0.005〜0.3質量%、さらに好ましいSn濃度の範囲は0.01〜0.1質量%である。
なお、Snは溶銅中で酸化物を形成しにくいため、0.5質量%以下の濃度で添加する限り、Sn添加が合金の製造性や品質を悪化させることはない。
0.5 mass% or less of Sn can be added to the Cu-Fe-P alloy of the present invention. Sn has the effect of promoting work hardening of the alloy during rolling and improving the strength of the alloy.
When Sn exceeds 0.5% by mass, the decrease in conductivity is increased. In order to acquire the effect of Sn addition, it is preferable to make the addition amount of Sn 0.001 mass% or more. A more preferable Sn concentration range is 0.005 to 0.3% by mass, and a further preferable Sn concentration range is 0.01 to 0.1% by mass.
In addition, since Sn does not easily form an oxide in molten copper, as long as it is added at a concentration of 0.5% by mass or less, Sn addition does not deteriorate the productivity and quality of the alloy.

また、本発明のCu−Fe−P系合金には、Snめっきの耐熱剥離性を改善するために、1質量%以下のZnを添加することができる。Znが1質量%を超えると、導電率の低下が大きくなる。Zn添加の効果を得るためには、Znの添加量を0.001質量%以上にすることが好ましい。より好ましいZn濃度の範囲は0.01〜0.5質量%である。Znについても溶銅中で酸化物を形成しにくいため、1質量%以下の濃度で添加する限り、合金の製造性や品質を悪化させることはない。   In addition, 1% by mass or less of Zn can be added to the Cu—Fe—P-based alloy of the present invention in order to improve the heat peelability of Sn plating. When Zn exceeds 1 mass%, the fall of electrical conductivity will become large. In order to obtain the effect of adding Zn, the amount of Zn added is preferably 0.001% by mass or more. A more preferable range of Zn concentration is 0.01 to 0.5% by mass. Since it is difficult to form an oxide in molten copper, Zn does not deteriorate the manufacturability and quality of the alloy as long as it is added at a concentration of 1% by mass or less.

さらに、本発明のCu−Fe−P系合金には、強度や耐熱性を改善するために、Ag、Co、Ni、Cr、Mn、Mg、SiおよびBからなる群から選択される一種以上を含有させることができる。ただし、添加量が多すぎると、導電率が低下したり、製造性が悪化したりするので、添加量は総量で2質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下に制限される。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。   Furthermore, in order to improve strength and heat resistance, the Cu—Fe—P alloy of the present invention includes at least one selected from the group consisting of Ag, Co, Ni, Cr, Mn, Mg, Si and B. It can be included. However, if the amount added is too large, the electrical conductivity decreases or the manufacturability deteriorates. Therefore, the amount added is 2% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.8% by mass. It is limited to 1% by mass or less. Moreover, in order to acquire the effect by addition, it is preferable to make addition amount 0.001 mass% or more in total amount.

(導電率)
本発明では、JIS H0505に準拠して測定した導電率を65%IACS以上とする。導電率が65%IASC以上であれば、熱伝導率が良好であり、良好な放熱性を確保できる。
(conductivity)
In the present invention, the conductivity measured according to JIS H0505 is set to 65% IACS or more. If the electrical conductivity is 65% IASC or more, the thermal conductivity is good and good heat dissipation can be secured.

(0.2%耐力)
本発明では、銅合金板の0.2%耐力を400MPa以上とすることとし、これによれば、銅合金板が、構造材の素材として必要な強度を有しているといえる。
(0.2% yield strength)
In the present invention, the 0.2% proof stress of the copper alloy plate is set to 400 MPa or more. According to this, it can be said that the copper alloy plate has a strength necessary as a material for the structural material.

(伸び)
製品の伸び(El)をL(%)、0.2%耐力(YS)をσ(MPa)としたときに、σ/L≦150の関係を満たすように、より好ましくは、σ/L≦100の関係を満たすように調整することで、絞り加工性および曲げ性が向上する。0.2%耐力/伸びが150以下であれば、必要な絞り加工性を有しているといえる。σ/L>150の場合は絞り加工性および曲げ性が悪化する。この一方で、σ/Lの下限値は、30とすることが好ましく、σ/Lがこの下限値を下回ると、0.2%耐力が400MPaを満たさなくなる。伸びLの上限値は特に規制されないが、通常は15%を超える値になると、強度が低下し、場合によっては0.2%耐力が400MPaを下回る。従って、好ましい実施形態においては、伸びLは15%以下である。
ここでいう「伸び」は、JIS Z2241に定義される「破断伸び」をいい、また、「伸び」および「0.2%耐力」は、JIS Z2241に準拠して、試験片の圧延方向を引張方向に平行とする引張試験により測定するものとする。
(Elongation)
More preferably, σ / L ≦ 150 so that the relationship of σ / L ≦ 150 is satisfied, where L (%) is the product elongation (El) and σ (MPa) is 0.2% proof stress (YS). By adjusting so as to satisfy the relationship of 100, drawing workability and bendability are improved. If the 0.2% proof stress / elongation is 150 or less, it can be said that the required drawability is obtained. When σ / L> 150, drawability and bendability deteriorate. On the other hand, the lower limit value of σ / L is preferably set to 30, and when σ / L is lower than the lower limit value, the 0.2% proof stress does not satisfy 400 MPa. The upper limit of the elongation L is not particularly limited, but usually when the value exceeds 15%, the strength decreases, and in some cases, the 0.2% proof stress is less than 400 MPa. Therefore, in a preferred embodiment, the elongation L is 15% or less.
“Elongation” here refers to “breaking elongation” as defined in JIS Z2241, and “elongation” and “0.2% proof stress” refer to the rolling direction of the test piece in accordance with JIS Z2241. It shall be measured by a tensile test parallel to the direction.

(厚み)
製品の厚み、つまり板厚(t)は0.05〜2.0mmであることが好ましい。厚みが小さすぎると、十分な放熱性が得られなくなるため、放熱用電子部品の素材として不適である。一方で、厚みが大きすぎると、絞り加工および曲げ加工が困難になる。このような観点から、より好ましい厚みは0.08〜1.5mmである。厚みが上記範囲となることにより、蓄熱を抑えつつ、曲げ加工性を良好なものとすることができる。
(Thickness)
The thickness of the product, that is, the plate thickness (t) is preferably 0.05 to 2.0 mm. If the thickness is too small, sufficient heat dissipation cannot be obtained, which is unsuitable as a material for heat dissipation electronic components. On the other hand, if the thickness is too large, drawing and bending become difficult. From such a viewpoint, a more preferable thickness is 0.08 to 1.5 mm. When the thickness is in the above range, it is possible to improve the bending workability while suppressing heat storage.

(曲げ加工性)
幅10mm×長さ30mmの短冊状の試験片を作製し、W曲げ試験(JIS H3130)によって行った。試験片採取方向は、圧延平行方向(GW)および圧延直角方向(BW)とし、割れの発生しない最小曲げ半径MBR(Minimum Bend Radius)と板厚tの比MBR/tにて評価した。この最小曲げ半径(MBR)の割合(MBR/t)は、2.0以下とすることが、良好な曲げ性を確保するとの観点から好ましい。MBR/tのさらに好適な範囲は、1.8以下である。
(Bending workability)
A strip-shaped test piece having a width of 10 mm and a length of 30 mm was prepared and subjected to a W bending test (JIS H3130). The specimen collection direction was a rolling parallel direction (GW) and a rolling perpendicular direction (BW), and evaluation was performed by a ratio MBR / t of a minimum bending radius MBR (Minimum Bend Radius) and a thickness t where no cracks occurred. The ratio (MBR / t) of the minimum bending radius (MBR) is preferably 2.0 or less from the viewpoint of ensuring good bendability. A more preferable range of MBR / t is 1.8 or less.

(絞り加工性)
本発明の銅合金板では、JIS Z2247に基づくエリクセン試験で測定したエリクセン値の、板厚に対する割合が、0.5以上であることが好ましい。エリクセン値/板厚が0.5以上であれば絞り加工性として実用的には問題ない。一方、このエリクセン値/板厚は、1.5以下とすることができる。1.5を超えると、0.2%耐力が400MPa未満となる可能性があるからである。より好ましくは、エリクセン値/板厚を、0.5〜1.2の範囲とする。
(Drawing workability)
In the copper alloy plate of the present invention, the ratio of the Erichsen value measured by the Erichsen test based on JIS Z2247 to the plate thickness is preferably 0.5 or more. If the Erichsen value / thickness is 0.5 or more, there is no practical problem as drawing workability. On the other hand, this Erichsen value / plate thickness can be 1.5 or less. This is because if it exceeds 1.5, the 0.2% proof stress may be less than 400 MPa. More preferably, the Erichsen value / plate thickness is in the range of 0.5 to 1.2.

(結晶方位)
X線回折法を用い圧延面において厚み方向に求めた{220}面のX線回折積分強度をI{220}とし純銅粉末標準試料の{220}面からのX線回折積分強度をI0{220}としたときに、I{220}/I0{220}が4.0以上の場合、絞り加工性が向上する。I{220}/I0{220}が4.0未満の場合、集合組織の発達が小さいため、絞り加工性は向上しない。特に上限は設けないが、I{220}/I0{220}は、4.0〜6.0とすることがより好ましい。なお、純銅粉末標準試料は、325メッシュ(JIS Z8801)の純度99.5%の銅粉末で定義されるものである。
(Crystal orientation)
The X-ray diffraction integrated intensity of the {220} plane obtained in the thickness direction on the rolled surface using the X-ray diffraction method is I {220}, and the X-ray diffraction integrated intensity from the {220} plane of the pure copper powder standard sample is I 0. When {220} is set and I {220} / I 0 {220} is 4.0 or more, drawing workability is improved. When I {220} / I 0 {220} is less than 4.0, since the texture development is small, drawing workability is not improved. Although there is no particular upper limit, I {220} / I 0 {220} is more preferably 4.0 to 6.0. The pure copper powder standard sample is defined as a copper powder of 99.5% purity of 325 mesh (JIS Z8801).

以下、本発明に係る銅合金板の好適な製造方法の一例について説明する。   Hereinafter, an example of the suitable manufacturing method of the copper alloy plate which concerns on this invention is demonstrated.

(製造方法)
純銅原料として電気銅等を溶解し、Fe、Pおよび必要に応じ他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取焼鈍を施す。最終冷間圧延後の伸びは、2%に満たないほど低いが、その後の歪取焼鈍により上昇する。
(Production method)
Electro copper or the like is melted as a pure copper raw material, Fe, P and other alloy elements are added as required, and cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling at 800 to 1000 ° C., for example, cold rolling and recrystallization annealing are repeated, and finally finished to a predetermined product thickness by cold rolling. Apply strain relief annealing. The elongation after the final cold rolling is so low that it is less than 2%, but increases by subsequent strain relief annealing.

再結晶焼鈍では、圧延組織の一部または全てを再結晶化させる。また、適当な条件で焼鈍することにより、FeまたはFeとPとの化合物が析出し、合金の導電率が上昇する。
最終冷間圧延前の再結晶焼鈍では、銅合金板の平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、0.2%耐力を400MPa以上に調整することが難しくなる。
In recrystallization annealing, part or all of the rolling structure is recrystallized. Further, by annealing under appropriate conditions, Fe or a compound of Fe and P is precipitated, and the electrical conductivity of the alloy is increased.
In the recrystallization annealing before the final cold rolling, the average crystal grain size of the copper alloy sheet is adjusted to 50 μm or less. If the average crystal grain size is too large, it will be difficult to adjust the 0.2% yield strength to 400 MPa or more.

最終冷間圧延前の再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径および目標とする製品の導電率に基づき決定する。具体的には、バッチ炉または連続焼鈍炉を用い、炉内温度を350〜800℃として焼鈍を行えばよい。バッチ炉では350〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。一般的にはより低温でより長時間の条件で焼鈍を行うと、同じ結晶粒径でより高い導電率が得られる。   The conditions for recrystallization annealing before the final cold rolling are determined based on the target crystal grain size after annealing and the target product conductivity. Specifically, annealing may be performed by using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 350 to 800 ° C. In a batch furnace, the heating time may be appropriately adjusted at a temperature in the furnace of 350 to 600 ° C. in the range of 30 minutes to 30 hours. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 450 to 800 ° C. Generally, when annealing is performed at a lower temperature for a longer time, higher conductivity can be obtained with the same crystal grain size.

最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。ここでは、最終冷間圧延の総加工度と1パスあたりの加工度を制御する。
総加工度R(%)は、R=(t0−t)/t0×100(t0:最終冷間圧延前の板厚、t:最終冷間圧延後の板厚)で与えられる。また、1パスあたりの加工度r(%)とは、圧延ロールを1回通過したときの板厚減少率であり、r=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。
In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. Here, the total workability of final cold rolling and the workability per pass are controlled.
The total workability R (%) is given by R = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before final cold rolling, t: plate thickness after final cold rolling). Further, the processing degree r (%) per pass is a sheet thickness reduction rate when the rolling roll passes once, and r = (T 0 −T) / T 0 × 100 (T 0 : rolling roll) Thickness before passing, T: Thickness after passing the rolling roll).

総加工度Rは40〜99%、好ましくは45〜98.5、より好ましくは50〜98とする。総加工度Rが小さすぎると、0.2%耐力を400MPa以上に調整することが難しく、I{220}/I0{220}を4.0以上に調整するのが難しくなる。総加工度Rが大きすぎると、圧延材のエッジが割れることがある。
1パスあたりの加工度rは15%以上とする。加工度rが小さすぎるとI{220}/I0{220}が低下し、全パスの中に加工度rが15%未満のパスが一つでも含まれるとI{220}/I0{220}を4.0以上に調整することが難しくなる。加工度rの上限は特にないが、圧延による板厚公差の制御を考慮すると40%未満が望ましい。
The total processing degree R is 40 to 99%, preferably 45 to 98.5, and more preferably 50 to 98. If the total workability R is too small, it is difficult to adjust the 0.2% proof stress to 400 MPa or more, and it becomes difficult to adjust I {220} / I 0 {220} to 4.0 or more. If the total workability R is too large, the edge of the rolled material may be broken.
The degree of processing r per pass is 15% or more. If the degree of processing r is too small, I {220} / I 0 {220} decreases, and if any path with a degree of processing r of less than 15% is included in all the paths, I {220} / I 0 { 220} becomes difficult to adjust to 4.0 or more. There is no particular upper limit on the working degree r, but it is preferably less than 40% in consideration of control of the thickness tolerance by rolling.

本発明の歪取焼鈍は、炉内で銅合金板を平板状に保持することができる連続焼鈍炉を用いて行う。バッチ炉の場合、コイル状に巻き取った状態で材料を加熱するため、加熱中に材料が塑性変形を起こし材料に反りが生じる。したがって、バッチ炉は本発明の歪取焼鈍に不適である。   The strain relief annealing of the present invention is performed using a continuous annealing furnace capable of holding a copper alloy plate in a flat plate shape in the furnace. In the case of a batch furnace, the material is heated in a coiled state, so that the material undergoes plastic deformation during the heating, and the material is warped. Therefore, the batch furnace is not suitable for the strain relief annealing of the present invention.

連続焼鈍炉において、炉内温度を300〜700℃、好ましくは350〜650℃とし、5秒から10分の範囲で加熱時間を適宜調整し、歪取焼鈍後の0.2%耐力(σ)を歪取焼鈍前の0.2%耐力(σ0)に対し10〜50MPa低い値、好ましくは15〜45MPa低い値に調整する。これにより、最終冷間圧延上がりにおいて低かった伸びが上昇するとともに、曲げ性が改善する。 In a continuous annealing furnace, the furnace temperature is set to 300 to 700 ° C., preferably 350 to 650 ° C., the heating time is appropriately adjusted in the range of 5 seconds to 10 minutes, and 0.2% yield strength (σ) after strain relief annealing. Is adjusted to a value 10 to 50 MPa lower, preferably 15 to 45 MPa lower than the 0.2% proof stress (σ 0 ) before strain relief annealing. As a result, the elongation which was low after the final cold rolling is increased and the bendability is improved.

さらに、連続焼鈍炉内において材料に、たとえば圧延方向と平行な方向に張力を与え、ここで付加される張力を5MPa以下、好ましくは1〜5MPa、より好ましくは2〜4MPaに調整する。張力が大きすぎると、σ/Lを150以下に調整することが難しくなる。また、伸びの上昇が充分ではなくなる傾向にある。一方、張力が小さすぎると、焼鈍炉を通板中の材料が炉壁と接触し、材料の表面やエッジに傷が付くことがある。   Further, in the continuous annealing furnace, tension is applied to the material, for example, in a direction parallel to the rolling direction, and the tension applied here is adjusted to 5 MPa or less, preferably 1 to 5 MPa, more preferably 2 to 4 MPa. If the tension is too large, it is difficult to adjust σ / L to 150 or less. Further, the increase in elongation tends to be insufficient. On the other hand, if the tension is too small, the material in the passing plate of the annealing furnace may come into contact with the furnace wall, and the surface or edge of the material may be damaged.

本発明の一の実施形態は、σ/L≦150なる特徴およびI{220}/I0{220}≧4.0なる特徴をCu−Fe−P系合金に付与することにより、絞り加工性および曲げ加工性を改善することを一つの特徴としているが、そのための製造条件を整理して示すと、
(1)σ/L≦150のためには、
a.歪取焼鈍において、(σ0−σ)=10〜50MPaに調整する。
b.歪取焼鈍における炉内張力を5MPa以下に調整する。
(2)I{220}/I0{220}≧4.0のためには、
a.最終冷間圧延において、1パスあたりの加工度を15%以上に調整する。
b.最終冷間圧延の総加工度を40〜99%にする。
One embodiment of the present invention provides a drawability by imparting a feature of σ / L ≦ 150 and a feature of I {220} / I 0 {220} ≧ 4.0 to a Cu—Fe—P based alloy. One of the features is to improve the bending workability.
(1) For σ / L ≦ 150,
a. In the strain relief annealing, (σ 0 −σ) = 10 to 50 MPa is adjusted.
b. The furnace tension in the strain relief annealing is adjusted to 5 MPa or less.
(2) For I {220} / I 0 {220} ≧ 4.0,
a. In the final cold rolling, the processing degree per pass is adjusted to 15% or more.
b. The total working degree of the final cold rolling is set to 40 to 99%.

以上のようにして製造された銅合金板は、様々な板厚の伸銅品に加工されて、たとえば、スマートフォン、タブレットPCおよびパソコン等の電気・電子機器内の放熱用電子部品等として用いることができる。   The copper alloy plate manufactured as described above is processed into a copper product having various plate thicknesses, and is used as, for example, an electronic component for heat dissipation in an electric / electronic device such as a smartphone, a tablet PC, and a personal computer. Can do.

以下に本発明の実施例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、950℃で熱間圧延を行って厚み15mmの板にした。熱間圧延板表面の酸化スケールをグラインダーで研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に連続焼鈍炉を用い歪取焼鈍を行った。
Examples of the present invention are shown below, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours and hot-rolled at 950 ° C. to obtain a plate having a thickness of 15 mm. After grinding and removing the oxide scale on the surface of the hot rolled plate with a grinder, annealing and cold rolling were repeated, and the product was finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing was performed using a continuous annealing furnace.

最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、バッチ炉を用い、加熱時間を5時間とし炉内温度を300〜700℃の範囲で調整し、焼鈍後の結晶粒径と導電率を変化させた。焼鈍後の結晶粒径の測定においては、圧延方向に直角な断面を鏡面研磨後に化学腐食し、切断法(JIS H0501(1999年))により平均結晶粒径を求めた。   Annealing before final cold rolling (final recrystallization annealing) uses a batch furnace, adjusts the furnace temperature in the range of 300 to 700 ° C. with a heating time of 5 hours, and sets the crystal grain size and conductivity after annealing. Changed. In the measurement of the crystal grain size after annealing, a cross section perpendicular to the rolling direction was subjected to chemical corrosion after mirror polishing, and the average crystal grain size was determined by a cutting method (JIS H0501 (1999)).

最終冷間圧延では、総加工度および1パスあたりの加工度を制御した。また、最終冷間圧延後の材料の0.2%耐力を求めた。
連続焼鈍炉を用いた歪取焼鈍では、炉内温度を500℃とし加熱時間を1秒から15分の間で調整し、焼鈍後の0.2%耐力を種々変化させた。また、炉内において材料に付加する張力を種々変化させた。なお、一部の材料については歪取焼鈍を省略した。
製造途中の材料および歪取焼鈍後の材料につき、次の測定を行った。
In the final cold rolling, the total workability and the workability per pass were controlled. Moreover, the 0.2% yield strength of the material after final cold rolling was calculated | required.
In strain relief annealing using a continuous annealing furnace, the furnace temperature was 500 ° C., the heating time was adjusted between 1 second and 15 minutes, and the 0.2% proof stress after annealing was variously changed. In addition, various tensions were added to the material in the furnace. For some materials, strain relief annealing was omitted.
The following measurement was performed on the material in the process of manufacturing and the material after strain relief annealing.

(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
(component)
The alloy element concentration of the material after strain relief annealing was analyzed by ICP-mass spectrometry.

(0.2%耐力)
最終冷間圧延後および歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、0.2%耐力を求めた。
(0.2% yield strength)
For the material after the final cold rolling and strain relief annealing, sample No. 13B specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and pulled in parallel with the rolling direction in accordance with JIS Z2241. Tests were performed to determine 0.2% yield strength.

上述した主な条件を、発明例および比較例ごとに表1に示す。ここで、最終冷間圧延では複数のパスを実施したが、これら各パスの加工度の中での最小値を示してある。また、表1に示すところにおいて、最終再結晶焼鈍後の結晶粒径における「<10μm」の表記は、圧延組織の全てが再結晶化しその平均結晶粒径が10μm未満であった場合、および圧延組織の一部のみが再結晶化した場合の双方を含んでいる。   The main conditions described above are shown in Table 1 for each invention example and comparative example. Here, a plurality of passes were carried out in the final cold rolling, but the minimum value in the degree of processing of each of these passes is shown. Moreover, in the place shown in Table 1, the notation of “<10 μm” in the crystal grain size after the final recrystallization annealing indicates that all of the rolled structure was recrystallized and the average crystal grain size was less than 10 μm, and the rolling It includes both cases where only a part of the structure is recrystallized.

Figure 0005467163
Figure 0005467163

(伸び)
このようにして得られた歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、標点間距離50mmとして伸びを測定した。
(Elongation)
With respect to the material after strain relief annealing thus obtained, a No. 13B test piece defined in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and the elongation was measured with a distance between the gauge points of 50 mm.

(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
A test piece was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.

(結晶方位)
歪取焼鈍後の材料の表面に対し、厚み方向に{220}面のX線回折積分強度を測定した。同様に純銅粉末標準試料に対しても{220}面のX線回折積分強度を測定した。X線回折装置には(株)リガク製RINT2500を使用し、Cu管球にて、管電圧25kV、管電流20mAで測定を行った。
(Crystal orientation)
The X-ray diffraction integrated intensity of the {220} plane was measured in the thickness direction with respect to the surface of the material after strain relief annealing. Similarly, the X-ray diffraction integrated intensity of the {220} plane was measured for a pure copper powder standard sample. RINT 2500 manufactured by Rigaku Corporation was used as the X-ray diffractometer, and measurement was performed with a Cu tube bulb at a tube voltage of 25 kV and a tube current of 20 mA.

(エリクセン値)
歪取焼鈍後の材料に対し、エリクセン社製試験機を用い、試料形状Φ90mm、潤滑剤:グリス、ポンチの押し速度5mm/minの条件で試験を行い、エリクセン値を求めた。表2に評価結果を示す。
(Erichsen value)
The material after strain relief annealing was tested using an Erichsen testing machine under the conditions of sample shape Φ90 mm, lubricant: grease, punch pushing speed 5 mm / min, and the Erichsen value was determined. Table 2 shows the evaluation results.

(MBR/t)
JIS H3130に準拠して、曲げ軸が圧延方向と直角方向であるGW(Goodway)方向および、曲げ軸が圧延方向と同一方向であるBW(Badway)方向のそれぞれのW曲げ試験を行い、W字型の金型を用いて曲げ半径を変化させ、割れの発生しない最小曲げ半径(MBR)と厚さ(t)の比(MBR/t)を求めた。
(MBR / t)
In accordance with JIS H3130, a W-shaped test is performed in each of the GW (Goodway) direction in which the bending axis is perpendicular to the rolling direction and the BW (Badway) direction in which the bending axis is the same as the rolling direction. The bending radius was changed using the mold of the mold, and the ratio (MBR / t) of the minimum bending radius (MBR) and thickness (t) at which no crack occurred was obtained.

Figure 0005467163
Figure 0005467163

表1及び2に示すところから解かるように、発明例1〜22では、Fe濃度を0.01〜0.5質量%、P濃度に対するFe濃度の割合(%Fe/%P)を1.0〜6.0に調整し、最終冷間圧延前の再結晶焼鈍において、結晶粒径を50μm以下に調整し、最終冷間圧延において、総加工度を40〜99%に調整し、歪取焼鈍において、材料を連続焼鈍炉に張力1〜5MPaで通板して0.2%耐力を10〜50MPa低下させた。それにより、発明例1〜22の銅合金板は、σ/L≦150なる関係が得られ、65%IACS以上の導電率、400MPa以上の0.2%耐力、MBR/t≦2.0のW曲げ性を達成できた。なお、発明例5、9では、最終冷間圧延における1パス当たりの加工度が15%未満であったため、I{220}/I0{220}が4.0未満となり、また、エリクセン値/板厚が5未満となったが、1パス当たりのこの加工度を15%以上とした発明例1〜4、6〜8、10〜22は、I{220}/I0{220}≧4.0の関係、および、エリクセン値/板厚≧0.5の関係を満たすものとなった。

As can be seen from Tables 1 and 2, in Invention Examples 1 to 22 , the Fe concentration is 0.01 to 0.5% by mass, and the ratio of Fe concentration to P concentration (% Fe /% P) is 1. 0 to 6.0, the crystal grain size is adjusted to 50 μm or less in the recrystallization annealing before the final cold rolling, the total workability is adjusted to 40 to 99% in the final cold rolling, and the distortion is removed. In the annealing, the material was passed through a continuous annealing furnace with a tension of 1 to 5 MPa to reduce the 0.2% proof stress by 10 to 50 MPa. Thereby, the copper alloy plates of Invention Examples 1 to 22 have a relationship of σ / L ≦ 150, conductivity of 65% IACS or higher, 0.2% proof stress of 400 MPa or higher, MBR / t ≦ 2.0. W bendability could be achieved. In Invention Examples 5 and 9, since the degree of processing per pass in the final cold rolling was less than 15%, I {220} / I 0 {220} was 4. 0 becomes less than, Although Erichsen value / thickness is less than 5, the invention examples 1~4,6~8,10~ 22 the working ratio per pass was 15% or more, I { 220} / I 0 {220} ≧ 4.0 and Erichsen value / plate thickness ≧ 0.5.

一方、比較例1は歪取焼鈍を行わなかったものであり、σ/Lが200を超え、曲げ性および絞り加工性が悪い。
比較例2、3では、歪取焼鈍を行ったものの、炉内での材料張力が5MPaを超えたため、σ/Lが150以上であり、特に張力が高かった比較例3ではσ/Lが200となり、比較例2、3の曲げ性および絞り加工性が悪かった。
比較例4は、歪取焼鈍における0.2%耐力の低下量が過小であり、(σ0−σ)が10〜50MPaの範囲から外れた。このためσ/Lが150を超え、絞り加工性および曲げ性が悪かった。
比較例5では、歪取焼鈍時の強度低下が大きいことから、歪取焼鈍後の0.2%耐力が400MPaに満たなかった。
On the other hand, Comparative Example 1 was not subjected to strain relief annealing, σ / L exceeded 200, and the bendability and drawability were poor.
In Comparative Examples 2 and 3, strain relief annealing was performed, but since the material tension in the furnace exceeded 5 MPa, σ / L was 150 or more, and in Comparative Example 3 in which the tension was particularly high, σ / L was 200. Thus, the bendability and drawability of Comparative Examples 2 and 3 were poor.
In Comparative Example 4, the amount of decrease in 0.2% proof stress in strain relief annealing was too small, and (σ 0 −σ) deviated from the range of 10 to 50 MPa. For this reason, σ / L exceeded 150, and drawability and bendability were poor.
In Comparative Example 5, since the strength reduction during strain relief annealing was large, the 0.2% proof stress after strain relief annealing was less than 400 MPa.

比較例6では、Fe濃度0.01質量%未満だったため、歪取焼鈍後の0.2%耐力が400MPaに満たなかった。
比較例7ではFe濃度が0.5質量%を超えたため、比較例8、9では%Fe/%Pが1.0〜6.0の範囲から外れたため、導電率が65%IACSに満たなかった。
In Comparative Example 6, since the Fe concentration was less than 0.01% by mass, the 0.2% proof stress after strain relief annealing was less than 400 MPa.
In Comparative Example 7, since the Fe concentration exceeded 0.5 mass%, in Comparative Examples 8 and 9, since% Fe /% P was out of the range of 1.0 to 6.0, the conductivity was less than 65% IACS. It was.

比較例10では最終冷間圧延前の再結晶焼鈍上がりの結晶粒径が50μmを超えたため、比較例11では最終冷間圧延における総加工度が40%に満たなかったため、歪取焼鈍後の0.2%耐力が400MPaに満たなかった。   In Comparative Example 10, the crystal grain size after the recrystallization annealing before the final cold rolling exceeded 50 μm, and in Comparative Example 11, the total degree of work in the final cold rolling was less than 40%. The 2% proof stress was less than 400 MPa.

以上の結果から、本発明によれば、高い強度および導電性ならびに、優れた絞り加工性および曲げ加工性を兼ね備えた銅合金板、それを備える放熱用電子部品および、銅合金板の製造方法を提供できることが明らかである。   From the above results, according to the present invention, a copper alloy plate having high strength and conductivity, and excellent drawing workability and bending workability, a heat dissipating electronic component comprising the same, and a method for producing a copper alloy plate are provided. It is clear that it can be provided.

Claims (11)

0.01〜0.5質量%のFeを含有し、さらにPを含有し、このPの質量%濃度(%P)に対するFeの質量%濃度(%Fe)の割合(%Fe/%P)を1.0〜6.0とし、残部が銅および不可避的不純物から成り、65%IACS以上の導電率、および400MPa以上の0.2%耐力を有し、かつ、0.2%耐力σ(MPa)と伸びL(%)とが、σ/L≦150の関係を満たす銅合金板。   The ratio of the mass% concentration (% Fe) of Fe to the mass% concentration (% P) of P containing 0.01 to 0.5% by mass of Fe and further containing P (% Fe /% P) 1.0 to 6.0, with the balance being copper and inevitable impurities, having a conductivity of 65% IACS or higher, a 0.2% proof stress of 400 MPa or higher, and a 0.2% proof stress σ ( (MPa) and elongation L (%) satisfy | fill the relationship of (sigma) / L <= 150. X線回折法を用い圧延面において厚み方向に求めた{220}面のX線回折積分強度をI{220}とし純銅粉末標準試料の{220}面からのX線回折積分強度をI0{220}としたときに、I{220}/I0{220}≧4.0である請求項1に記載の銅合金板。 The X-ray diffraction integrated intensity of the {220} plane obtained in the thickness direction on the rolled surface using the X-ray diffraction method is I {220}, and the X-ray diffraction integrated intensity from the {220} plane of the pure copper powder standard sample is I 0. 2. The copper alloy sheet according to claim 1, wherein {220} is I {220} / I 0 {220} ≧ 4.0. W曲げ試験における圧延平行方向(GW方向)および圧延直角方向(BW方向)の最小曲げ半径(MBR)の、板厚(t)に対する割合が、MBR/t≦2.0で与えられる請求項1または2に記載の銅合金板。   The ratio of the minimum bending radius (MBR) in the rolling parallel direction (GW direction) and the perpendicular direction (BW direction) in the W bending test to the sheet thickness (t) is given by MBR / t ≦ 2.0. Or the copper alloy plate of 2. エリクセン試験におけるエリクセン値/板厚が、0.5以上である請求項1〜3の何れか1項に記載の銅合金板。   The copper alloy sheet according to any one of claims 1 to 3, wherein an Erichsen value / plate thickness in the Eriksen test is 0.5 or more. 0.5質量%以下のSnをさらに含有する請求項1〜4の何れか1項に記載の銅合金板。   The copper alloy plate according to any one of claims 1 to 4, further containing 0.5 mass% or less of Sn. 1.0質量%以下のZnをさらに含有する請求項1〜5の何れか1項に記載の銅合金板。   The copper alloy plate according to any one of claims 1 to 5, further containing 1.0% by mass or less of Zn. Ag、Co、Ni、Cr、Mn、Mg、SiおよびBからなる群から選ばれる一種以上の元素を0.1質量%以下でさらに含有する請求項1〜6の何れか1項に記載の銅合金板。 The copper according to any one of claims 1 to 6, further containing at least 0.1 % by mass of one or more elements selected from the group consisting of Ag, Co, Ni, Cr, Mn, Mg, Si and B. Alloy plate. 請求項1〜7の何れか1項に記載の銅合金板を備える放熱用電子部品。   A heat dissipating electronic component comprising the copper alloy plate according to claim 1. 請求項1〜7の何れか1項に記載の銅合金板を製造するに当たり、インゴットを、800〜1000℃で熱間圧延した後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延の後、歪取焼鈍を施す銅合金板の製造方法であって、
該最終冷間圧延前の再結晶焼鈍において、炉内温度を350〜800℃として、銅合金板の平均結晶粒径を50μm以下に調整し、
該歪取焼鈍において、炉内温度を300〜700℃とし、炉内で銅合金板を平板状に保持した状態で、5MPa以下の張力を与えながら、0.2%耐力を10〜50MPa低下させる、銅合金板の製造方法。
In producing the copper alloy sheet according to any one of claims 1 to 7, after ingot is hot-rolled at 800 to 1000 ° C, cold rolling and recrystallization annealing are repeated, and the final cold A method for producing a copper alloy sheet that is subjected to strain relief annealing after rolling,
In the recrystallization annealing before the final cold rolling, the furnace temperature is set to 350 to 800 ° C., and the average crystal grain size of the copper alloy plate is adjusted to 50 μm or less,
In the strain relief annealing, the furnace temperature is set to 300 to 700 ° C., and the 0.2% proof stress is reduced by 10 to 50 MPa while applying a tension of 5 MPa or less with the copper alloy plate held in a flat plate shape in the furnace. The manufacturing method of a copper alloy plate.
前記最終冷間圧延において、総加工度を40〜99%、1パスあたりの圧延加工度を15%以上とする、請求項9に記載の銅合金板の製造方法。   The method for producing a copper alloy sheet according to claim 9, wherein in the final cold rolling, the total workability is 40 to 99%, and the roll workability per pass is 15% or more. 前記歪取焼鈍において、連続焼鈍炉を用いて銅合金板を通板する、請求項9または10に記載の銅合金板の製造方法。   The manufacturing method of the copper alloy plate of Claim 9 or 10 which passes a copper alloy plate using the continuous annealing furnace in the said strain relief annealing.
JP2013064762A 2013-03-26 2013-03-26 Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate Expired - Fee Related JP5467163B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064762A JP5467163B1 (en) 2013-03-26 2013-03-26 Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064762A JP5467163B1 (en) 2013-03-26 2013-03-26 Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate

Publications (2)

Publication Number Publication Date
JP5467163B1 true JP5467163B1 (en) 2014-04-09
JP2014189816A JP2014189816A (en) 2014-10-06

Family

ID=50619490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064762A Expired - Fee Related JP5467163B1 (en) 2013-03-26 2013-03-26 Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate

Country Status (1)

Country Link
JP (1) JP5467163B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026935B2 (en) * 2013-03-27 2016-11-16 株式会社神戸製鋼所 Copper alloy strip for LED lead frame
WO2016152648A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Copper alloy sheet for heat dissipating component and heat dissipating component
JP6031576B2 (en) 2015-03-23 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
JP6031548B2 (en) 2015-03-27 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
JP6031549B2 (en) 2015-03-27 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
JP6446007B2 (en) 2015-12-25 2018-12-26 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206891A (en) * 2004-01-23 2005-08-04 Kobe Steel Ltd Copper alloy with high strength and high electroconductivity
JP2006016687A (en) * 2004-06-03 2006-01-19 Hitachi Cable Ltd Method for producing high strength and high conductivity copper alloy
JP2006083465A (en) * 2004-08-17 2006-03-30 Kobe Steel Ltd Copper alloy sheet for electric and electronic parts having bendability
JP2007031794A (en) * 2005-07-28 2007-02-08 Kobe Steel Ltd High-strength copper alloy
JP2009084592A (en) * 2007-09-27 2009-04-23 Nikko Kinzoku Kk Titanium copper for precision press working, and its manufacturing method
WO2010103646A1 (en) * 2009-03-12 2010-09-16 三井金属鉱業株式会社 Copper alloy containing phosphorus and iron and electrical member using the copper alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206891A (en) * 2004-01-23 2005-08-04 Kobe Steel Ltd Copper alloy with high strength and high electroconductivity
JP2006016687A (en) * 2004-06-03 2006-01-19 Hitachi Cable Ltd Method for producing high strength and high conductivity copper alloy
JP2006083465A (en) * 2004-08-17 2006-03-30 Kobe Steel Ltd Copper alloy sheet for electric and electronic parts having bendability
JP2007031794A (en) * 2005-07-28 2007-02-08 Kobe Steel Ltd High-strength copper alloy
JP2009084592A (en) * 2007-09-27 2009-04-23 Nikko Kinzoku Kk Titanium copper for precision press working, and its manufacturing method
WO2010103646A1 (en) * 2009-03-12 2010-09-16 三井金属鉱業株式会社 Copper alloy containing phosphorus and iron and electrical member using the copper alloy

Also Published As

Publication number Publication date
JP2014189816A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP5632063B1 (en) Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same
JP5380621B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5467163B1 (en) Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate
JP6270417B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP5470483B1 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP2017155340A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP5822895B2 (en) Copper alloy plate and heat dissipating electronic component including the same
JP5470499B1 (en) Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same
KR101822374B1 (en) Copper alloy strip, electronic component for heavy-current and electronic component for heat release containing the same
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
JP2017002407A (en) Copper alloy sheet excellent in conductivity and stress relaxation characteristic
JP5427968B1 (en) Copper alloy plate and heat dissipating electronic component including the same
WO2014041865A1 (en) Copper alloy plate having excellent electroconductive properties and stress relaxation properties
JP5620025B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2014205864A (en) Copper alloy sheet excellent in conductivity and stress relaxation property
JP2014055347A (en) Copper alloy sheet excellent in conductivity and stress relief properties
JP2014208868A (en) Copper alloy and high-current connector terminal material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5467163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees