JP6031549B2 - Copper alloy plate for heat dissipation parts - Google Patents

Copper alloy plate for heat dissipation parts Download PDF

Info

Publication number
JP6031549B2
JP6031549B2 JP2015066677A JP2015066677A JP6031549B2 JP 6031549 B2 JP6031549 B2 JP 6031549B2 JP 2015066677 A JP2015066677 A JP 2015066677A JP 2015066677 A JP2015066677 A JP 2015066677A JP 6031549 B2 JP6031549 B2 JP 6031549B2
Authority
JP
Japan
Prior art keywords
copper alloy
heat
mass
heat dissipation
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015066677A
Other languages
Japanese (ja)
Other versions
JP2016186107A (en
Inventor
大輔 橋本
大輔 橋本
昌泰 西村
昌泰 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015066677A priority Critical patent/JP6031549B2/en
Priority to PCT/JP2016/058177 priority patent/WO2016158390A1/en
Priority to KR1020177030339A priority patent/KR102075892B1/en
Priority to CN201680018115.0A priority patent/CN107429328B/en
Priority to TW105109029A priority patent/TW201641700A/en
Publication of JP2016186107A publication Critical patent/JP2016186107A/en
Application granted granted Critical
Publication of JP6031549B2 publication Critical patent/JP6031549B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

本発明は、コンピューターのCPU、LEDランプ等から発生する熱を処理する放熱板、ヒートシンク、ヒートパイプ等に用いる放熱部品用銅合金板に関する。特に、放熱部品の製造プロセスの一部として、ろう付け、拡散接合、脱気等、高温に加熱するプロセスが含まれる場合に用いられる放熱部品用銅合金板に関する。   The present invention relates to a heat sink, heat sink, heat pipe, and other copper alloy plate for heat dissipating parts that process heat generated from a CPU, LED lamp, etc. of a computer. In particular, the present invention relates to a copper alloy plate for a heat dissipation component that is used when a process of heating to a high temperature such as brazing, diffusion bonding, deaeration, or the like is included as part of the manufacturing process of the heat dissipation component.

デスク型PC、ノート型PC等に搭載されるCPUの動作速度の高速化や高密度化が急速に進展し、これらのCPUからの発熱量が一段と増大している。CPUの温度が一定以上の温度に上昇すると、誤作動、熱暴走などの原因となるため、CPU等の半導体装置からの効果的な放熱は切実な問題となっている。
半導体装置の熱を吸収し、大気中に放散させる放熱部品してヒートシンクが使われている。ヒートシンクには高熱伝導性が求められることから、素材として熱伝導率の大きい銅、アルミニウムなどが用いられる。しかし、対流熱抵抗が、ヒートシンクの性能を制限しており、発熱量が増大する高機能電子部品の放熱要求を満たすことが難しくなってきている。
The speed of operation and the increase in density of CPUs mounted on desk-type PCs, notebook PCs, and the like are rapidly progressing, and the amount of heat generated from these CPUs is further increasing. When the temperature of the CPU rises above a certain level, it causes malfunctions, thermal runaway, etc., so effective heat dissipation from a semiconductor device such as a CPU is a serious problem.
Heat sinks are used as heat dissipating parts that absorb the heat of semiconductor devices and dissipate them into the atmosphere. Since the heat sink is required to have high thermal conductivity, copper, aluminum, or the like having a high thermal conductivity is used as a material. However, the convective heat resistance limits the performance of the heat sink, and it has become difficult to satisfy the heat dissipation requirement of high-functional electronic components that increase the amount of heat generation.

このため、より高い放熱性を有する放熱部品として、高い熱伝導性及び熱輸送能力を備える管状ヒートパイプや平面状ヒートパイプ(ベーパーチャンバ)が提案されている。ヒートパイプは、内部に封入した冷媒の蒸発(CPUからの吸熱)と凝縮(吸収した熱の放出)が循環的に行われることにより、ヒートシンクに比べて高い放熱特性を発揮する。また、ヒートパイプをヒートシンクやファンといった放熱部品と組合せることにより、半導体装置の発熱問題を解決することが提案されている。   For this reason, tubular heat pipes and flat heat pipes (vapor chambers) having high thermal conductivity and heat transport capability have been proposed as heat dissipation components having higher heat dissipation properties. The heat pipe exhibits higher heat dissipation characteristics than the heat sink by cyclically performing evaporation (heat absorption from the CPU) and condensation (release of absorbed heat) of the refrigerant sealed inside. It has also been proposed to solve the heat generation problem of semiconductor devices by combining heat pipes with heat radiating components such as heat sinks and fans.

放熱板、ヒートシンク、ヒートパイプ等に用いられる放熱部品の素材として、導電率及び耐食性に優れる純銅製(無酸素銅:C1020)の板又は管が多用されている。成形加工性を確保するため、素材として軟質の焼鈍材(O材)や1/4H調質材が用いられるが、後述する放熱部品の製造工程において、変形や疵が発生しやすい、打抜き加工時にバリが出やすい、打抜き金型が磨耗しやすい等の問題がある。一方、特許文献1,2には、放熱部品の素材としてFe−P系の銅合金板が記載されている。   As a material for a heat radiating component used for a heat radiating plate, a heat sink, a heat pipe or the like, a plate or tube made of pure copper (oxygen-free copper: C1020) having excellent conductivity and corrosion resistance is frequently used. In order to ensure moldability, soft annealed materials (O materials) and 1 / 4H tempered materials are used as raw materials, but deformation and wrinkles are likely to occur during the manufacturing process of heat-dissipating parts, which will be described later. There are problems such as burrs being easily generated and punching dies being easily worn. On the other hand, Patent Documents 1 and 2 describe an Fe-P-based copper alloy plate as a material for a heat dissipation component.

放熱板やヒートシンクは、純銅板をプレス成形、打抜き加工、切削、穴開け加工、エッチングなどにより所定形状に加工後、必要に応じてNiめっき、Snめっきを行ってからはんだ、ろう、接着剤等でCPU等の半導体装置と接合する。
管状ヒートパイプ(特許文献3参照)は、銅粉末を管内に焼結してウィックを形成し、加熱脱ガス処理後、一端をろう付け封止し、真空又は減圧下で管内に冷媒を入れてからもう一方の端部をろう付け封止して製造する。
For heatsinks and heat sinks, pure copper plates are processed into a predetermined shape by press molding, punching, cutting, drilling, etching, etc., and then subjected to Ni plating and Sn plating as necessary before solder, brazing, adhesive, etc. To join with a semiconductor device such as a CPU.
A tubular heat pipe (see Patent Document 3) is formed by sintering copper powder in a tube to form a wick, heat-degassing treatment, brazing and sealing one end, and putting a refrigerant in the tube under vacuum or reduced pressure. And the other end is brazed and sealed.

平面状ヒートパイプ(特許文献4,5参照)は、管状ヒートパイプの放熱性能を更に向上させたものである。平面状ヒートパイプとして、冷媒の凝縮と蒸発を効率的に行うために、管状ヒートパイプと同様に、内面に粗面化加工、溝加工等を行ったものが提案されている。プレス成形、打抜き加工、切削、エッチングなどの加工を行った上下2枚の純銅板を、ろう付け、拡散接合、溶接等の方法により接合し、内部に冷媒を入れた後、ろう付け等の方法により封止する。接合工程で脱ガス処理が行われることがある。   The planar heat pipe (see Patent Documents 4 and 5) is a further improvement of the heat dissipation performance of the tubular heat pipe. In order to efficiently condense and evaporate the refrigerant, a flat heat pipe has been proposed in which the inner surface is roughened, grooved, and the like, similar to the tubular heat pipe. A method of brazing, etc. after joining two upper and lower pure copper plates that have undergone processing such as press molding, punching, cutting, etching, etc. by brazing, diffusion bonding, welding, etc. Seal with. A degassing process may be performed in a joining process.

また、平面状ヒートパイプとして、外面部材と、外面部材の内部に収容される内部部材とより構成されたものが提案されている。内部部材は、冷媒の凝縮、蒸発、輸送を促進するために、外面部材の内部に一又は複数配置されるもので、種々の形状のフィン、突起、穴、スリット等が加工されている。この形式の平面状ヒートパイプにおいても、内部部材を外面部材の内部に配置した後、ろう付け、拡散接合等の方法により外面部材と内部部材を接合一体化し、冷媒を入れた後、ろう付け等の方法により封止する。
Moreover, what was comprised from the outer surface member and the internal member accommodated in the inside of an outer surface member as a planar heat pipe is proposed. One or a plurality of internal members are arranged inside the outer surface member in order to promote condensation, evaporation, and transport of the refrigerant, and various shapes of fins, protrusions, holes, slits, and the like are processed. Also in this type of flat heat pipe, after placing the internal member inside the external surface member, the external surface member and the internal member are joined and integrated by a method such as brazing or diffusion bonding, and after putting the refrigerant, brazing, etc. It seals by the method of.
.

特開2003−277853号公報JP 2003-277853 A 特開2014−189816号公報JP 2014-189816 A 特開2008−232563号公報JP 2008-232563 A 特開2007−315745号公報JP 2007-315745 A 特開2014−134347号公報JP 2014-134347 A

これらの放熱部品の製造工程において、放熱板、ヒートシンクは、はんだ付け、ろう付けの工程で200〜700℃程度に加熱される。管状ヒートパイプ、平面状ヒートパイプは、焼結、脱ガス、りん銅ロウ(BCuP−2等)を用いたろう付け、拡散接合、溶接などの工程で800〜1000℃程度に加熱される。
例えば、ヒートパイプの素材として純銅板を用いた場合、650℃以上の温度で加熱をしたときの軟化が激しい。このため、ヒートシンク、半導体装置への取付け、又はPC筐体への組込み等の際に、製造したヒートパイプが変形しやすく、ヒートパイプ内部の構造が変化してしまい、所期の放熱性能を発揮できなくなってしまう問題がある。また、このような変形を避けるには純銅板の厚さを厚くすればよいが、そうするとヒートパイプの質量、及び厚さが増大する。厚さが増大した場合、PC筐体内部の隙間が小さくなり、対流伝熱性能が低下する問題がある。
In the manufacturing process of these heat radiating components, the heat radiating plate and the heat sink are heated to about 200 to 700 ° C. in the soldering and brazing processes. Tubular heat pipes and planar heat pipes are heated to about 800 to 1000 ° C. in processes such as sintering, degassing, brazing using phosphorous copper brazing (BCuP-2, etc.), diffusion bonding, and welding.
For example, when a pure copper plate is used as the material for the heat pipe, the softening is severe when heated at a temperature of 650 ° C. or higher. For this reason, the heat pipe manufactured is easily deformed when mounted on a heat sink, a semiconductor device, or incorporated in a PC housing, and the structure inside the heat pipe changes, thereby exhibiting the desired heat dissipation performance. There is a problem that makes it impossible. Moreover, in order to avoid such a deformation | transformation, what is necessary is just to thicken the thickness of a pure copper plate, but if it does so, the mass and thickness of a heat pipe will increase. When the thickness increases, there is a problem that the gap inside the PC casing is reduced and the convective heat transfer performance is lowered.

また、特許文献1,2に記載された銅合金板(Fe−P系)も、650℃以上の温度で加熱をすると軟化し、さらに純銅に比べて導電率が大きく低下する。このため、焼結、脱ガス、ろう付け、拡散接合、溶接等の工程を経て例えば平面状ヒートパイプを製造した場合、同ヒートパイプの搬送及びハンドリング、基盤への組込み工程等で容易に変形する。また、導電率が低下することで、ヒートパイプとしての所期の性能が出なくなる。   Also, the copper alloy plates (Fe-P series) described in Patent Documents 1 and 2 are softened when heated at a temperature of 650 ° C. or higher, and the conductivity is greatly reduced as compared with pure copper. For this reason, for example, when a flat heat pipe is manufactured through processes such as sintering, degassing, brazing, diffusion bonding, welding, etc., it is easily deformed by the process of transporting and handling the heat pipe, incorporating it into the substrate, etc. . Moreover, the expected performance as a heat pipe cannot be obtained due to the decrease in conductivity.

本発明は、純銅又は銅合金板から放熱部品を製造するプロセスの一部に650℃以上の温度に加熱するプロセスが含まれる場合の上記問題点に鑑みてなされたもので、650℃以上の温度に加熱するプロセスを経て製造された放熱部品に、十分な強度と放熱性能を持たせることができる銅合金板を提供することを目的とする。   The present invention has been made in view of the above problems when a process of heating to a temperature of 650 ° C. or higher is included in a part of the process of manufacturing a heat dissipation component from pure copper or a copper alloy plate. An object of the present invention is to provide a copper alloy plate capable of giving sufficient heat resistance and heat dissipation performance to a heat dissipation component manufactured through a heating process.

本発明に係る放熱部品用銅合金板は、放熱部品を製造するプロセスの一部として、650℃以上に加熱するプロセスと時効処理が含まれる場合に用いられ、NiとCoの1種又は2種を1.0〜4.0質量%と、Siを0.2〜1.2質量%含有し、NiとCoの合計含有量(質量%)を[Ni+Co]とし、Siの含有量(質量%)を[Si]としたとき、含有量比[Ni+Co]/[Si]が3.5〜5であり、残部がCu及び不可避不純物からなり、0.2%耐力が300MPa以上で、優れた曲げ加工性を有し、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の0.2%耐力が300MPa以上、導電率が25%IACS以上である。 The copper alloy plate for heat radiating component according to the present invention is used when a process of heating to 650 ° C. or more and an aging treatment are included as part of the process of manufacturing the heat radiating component, and one or two of Ni and Co. 1.0-4.0 mass%, Si 0.2-1.2 mass%, the total content (mass%) of Ni and Co is [Ni + Co], and the Si content (mass% ) Is [Si], the content ratio [Ni + Co] / [Si] is 3.5 to 5, the balance is made of Cu and inevitable impurities, 0.2% proof stress is 300 MPa or more, and excellent bending It has processability, has a 0.2% proof stress of 300 MPa or more, and a conductivity of 25% IACS or more after aging at 850 ° C. for 30 minutes, followed by water cooling and then heating at 500 ° C. for 2 hours .

本発明に係る放熱部品用銅合金板は、必要に応じて、合金元素としてさらに、Sn:1.0質量%以下、Mg:0.2質量%以下、Znを1.5質量%以下の1種又は2種以上を含有することができる。また、本発明に係る放熱部品用銅合金板は、必要に応じて、合金元素としてさらにAl、Cr、Ti、Zr、Fe、P、Agのうち1種又は2種以上を合計で0.5質量%以下含有することができる。   The copper alloy plate for heat-dissipating parts according to the present invention may further include Sn: 1.0% by mass or less, Mg: 0.2% by mass or less, and Zn: 1.5% by mass or less as an alloy element as necessary. It can contain seeds or two or more. Moreover, the copper alloy plate for heat radiating components according to the present invention may further include one or more of Al, Cr, Ti, Zr, Fe, P, and Ag as alloying elements, if necessary. It can contain below mass%.

本発明に係る銅合金板は、放熱部品を製造するプロセスの一部として、650℃以上に加熱するプロセスと時効処理が含まれる場合に使用される。つまり、本発明に係る銅合金板を用いて製造した放熱部品は、650℃以上に高温加熱後時効処理され、強度が向上している。
本発明に係る銅合金板は、850℃に30分加熱し、次いで時効処理を行ったとき、0.2%耐力が300MPa以上、導電率が25%IACS以上である。本発明に係る銅合金板は、時効処理後の強度が高いため、この銅合金板を用いて製造したヒートパイプ等の放熱部品を、ヒートシンク、半導体装置へ取り付け、又はPC筐体等に組み込む際に、該放熱部品が変形しにくい。また、本発明に係る銅合金板は、導電率が純銅板より低いが、時効処理後の強度が高いため薄肉化でき、放熱性能の点で導電率の低下分を補うことができる。
The copper alloy plate according to the present invention is used when a process of heating to 650 ° C. or more and an aging treatment are included as part of the process of manufacturing a heat dissipation component. That is, the heat radiating component manufactured using the copper alloy plate according to the present invention is subjected to aging treatment after high-temperature heating to 650 ° C. or higher, and the strength is improved.
When the copper alloy sheet according to the present invention is heated to 850 ° C. for 30 minutes and then subjected to an aging treatment, the 0.2% proof stress is 300 MPa or more and the conductivity is 25% IACS or more. Since the copper alloy plate according to the present invention has high strength after aging treatment, a heat dissipation component such as a heat pipe manufactured using the copper alloy plate is attached to a heat sink, a semiconductor device, or incorporated into a PC housing or the like. In addition, the heat radiating component is not easily deformed. In addition, the copper alloy plate according to the present invention has a conductivity lower than that of a pure copper plate, but since the strength after the aging treatment is high, the copper alloy plate can be thinned and can compensate for a decrease in conductivity in terms of heat dissipation performance.

以下、本発明に係る放熱部品用銅合金板について、より詳細に説明する。
本発明に係る銅合金板は、プレス成形、打抜き加工、切削、エッチングなどにより所定形状に加工され、高温加熱(脱ガス、接合(ろう付け、拡散接合、溶接)、焼結等のための加熱)を経て、放熱部品に仕上げられる。放熱部品の種類や製造方法により前記高温加熱の加熱条件が異なるが、本発明では、前記高温加熱を650℃〜1050℃程度で行う場合を想定している。本発明に係る銅合金板は後述する組成の(Ni,Co)−Si系銅合金からなり、前記温度範囲内に加熱すると、母材に析出していた(Ni,Co)−Si化合物の少なくとも一部が固溶し、結晶粒が成長し、軟化及び導電率の低下が生じる。
Hereinafter, the copper alloy plate for heat dissipation component according to the present invention will be described in more detail.
The copper alloy plate according to the present invention is processed into a predetermined shape by press molding, punching, cutting, etching, etc., and heated for high temperature heating (degassing, joining (brazing, diffusion bonding, welding), sintering, etc.) ) To finish heat dissipation parts. Although the heating conditions for the high-temperature heating differ depending on the type of heat-radiating component and the manufacturing method, the present invention assumes a case where the high-temperature heating is performed at about 650 ° C to 1050 ° C. The copper alloy plate according to the present invention is made of a (Ni, Co) -Si based copper alloy having a composition to be described later. When heated within the temperature range, at least the (Ni, Co) -Si compound precipitated in the base material. A part is dissolved, crystal grains grow, and softening and decrease in conductivity occur.

本発明に係る銅合金板は、850℃で30分加熱後水冷し、次いで時効処理した後の強度(0.2%耐力)が300MPa以上、導電率が25%IACS以上である。850℃で30分の加熱は、放熱部品の製造における前記高温加熱のプロセスを想定した加熱条件である。本発明に係る銅合金板をこの条件で高温加熱すると、加熱前に析出していた(Ni,Co)−Si化合物が固溶し、結晶粒が成長し、軟化、及び導電率の低下が生じる。次いで前記銅合金板を時効処理すると、微細な(Ni,Co)−Si化合物が析出する。これにより、前記高温加熱により低下した強度及び導電率が顕著に改善する。   The copper alloy sheet according to the present invention has a strength (0.2% yield strength) of 300 MPa or more and an electrical conductivity of 25% IACS or more after being heated at 850 ° C. for 30 minutes and then water-cooled and then subjected to an aging treatment. Heating at 850 ° C. for 30 minutes is a heating condition that assumes the above-described high-temperature heating process in the manufacture of a heat dissipation component. When the copper alloy plate according to the present invention is heated at high temperature under these conditions, the (Ni, Co) -Si compound precipitated before heating is solid-dissolved, crystal grains grow, softening, and conductivity decrease occurs. . Next, when the copper alloy sheet is subjected to an aging treatment, a fine (Ni, Co) -Si compound is precipitated. Thereby, the intensity | strength and electrical conductivity which were reduced by the said high temperature heating improve notably.

前記時効処理は、(a)高温加熱後の冷却工程中に析出温度範囲に一定時間保持する、(b)高温加熱後室温まで冷却し、その後析出温度範囲に再加熱して一定時間保持する、(c)前記(a)の工程後、析出温度範囲に再加熱して一定時間保持する、等の方法で実施することができる。
具体的な時効処理条件として、300〜600℃の温度範囲で5分〜10時間保持する条件が挙げられる。強度の向上を優先するときは微細な(Ni,Co)−Si化合物が生成する温度−時間条件を、導電率の向上を優先するときは固溶するNi、Co、Siが減少する過時効気味の温度−時間条件を、適宜選定すればよい。
The aging treatment is (a) held for a certain time in the precipitation temperature range during the cooling step after high-temperature heating, (b) cooled to room temperature after high-temperature heating, and then reheated to the precipitation temperature range and held for a certain time. (C) After the step (a), it can be carried out by a method such as reheating to the precipitation temperature range and holding for a certain period of time.
Specific aging treatment conditions include a condition of holding for 5 minutes to 10 hours in a temperature range of 300 to 600 ° C. When priority is given to improving the strength, the temperature-time condition in which a fine (Ni, Co) -Si compound is generated, and when priority is given to improving the electrical conductivity, Ni, Co, and Si, which are dissolved, decrease over time. The temperature-time condition may be selected as appropriate.

時効処理後の銅合金板は、高温加熱後の純銅板に比べて導電率は低いが、強度は純銅板に比べて顕著に高くなる。この効果を得るため、本発明に係る銅合金板を用いて製造したヒートパイプ等の放熱部品は、高温加熱後時効処理される。時効処理条件は、前記のとおりである。時効処理後の放熱部品(銅合金板)は強度が高く、ヒートシンク、半導体装置へ取り付け、又はPC筐体等に組み込む際に、該放熱部品の変形を防止できる。また、本発明に係る銅合金板(時効処理後)は、純銅板に比べて強度が高いため、薄肉化(0.1〜1.0mm厚)することができ、そのことにより放熱部品の放熱性能を高め、純銅板と比べた場合の導電率の低下分を補うことができる。
なお、本発明に係る銅合金板は、高温加熱の温度が850℃未満(650℃以上)又は850℃超(1050℃以下)であっても、時効処理後に、300MPa以上の0.2%耐力、及び25%IACS以上の導電率を達成できる。
The copper alloy plate after the aging treatment has a lower electrical conductivity than the pure copper plate after high-temperature heating, but the strength is significantly higher than that of the pure copper plate. In order to acquire this effect, heat dissipation parts, such as a heat pipe manufactured using the copper alloy board concerning the present invention, are subjected to aging treatment after high temperature heating. The aging treatment conditions are as described above. The heat-dissipating component (copper alloy plate) after the aging treatment has high strength and can prevent deformation of the heat-dissipating component when it is attached to a heat sink, a semiconductor device, or incorporated in a PC housing or the like. Moreover, since the copper alloy plate (after aging treatment) according to the present invention has higher strength than that of a pure copper plate, it can be thinned (0.1 to 1.0 mm thick). The performance can be enhanced and the decrease in conductivity when compared with a pure copper plate can be compensated.
The copper alloy plate according to the present invention has a 0.2% proof stress of 300 MPa or more after aging treatment even when the temperature of the high-temperature heating is less than 850 ° C. (650 ° C. or more) or more than 850 ° C. (1050 ° C. or less). And conductivity of 25% IACS or higher can be achieved.

本発明に係る銅合金板は、650℃以上の温度に高温加熱される前に、プレス成形、打抜き加工、切削、エッチングなどにより、放熱部品に加工される。銅合金板は、前記加工に際しての搬送及びハンドリングにおいて容易に変形しない強度を有し、前記加工が支障なく実行できる機械的特性を有することが好ましい。より具体的には、本発明に係る銅合金板は、0.2%耐力が300MPa以上、及び優れた曲げ加工性(後述する実施例参照)を有することが好ましい。以上の特性を満たしていれば、銅合金板の調質は問題にならない。例えば溶体化処理材、時効処理上がり、時効処理上り材を冷間圧延したものなど、いずれも使用可能である。   The copper alloy plate according to the present invention is processed into a heat radiation component by press molding, punching, cutting, etching, or the like before being heated to a high temperature of 650 ° C. or higher. It is preferable that the copper alloy plate has a strength that does not easily deform during conveyance and handling during the processing, and has mechanical characteristics that allow the processing to be performed without hindrance. More specifically, the copper alloy plate according to the present invention preferably has a 0.2% proof stress of 300 MPa or more and excellent bending workability (see Examples described later). If the above characteristics are satisfied, the tempering of the copper alloy sheet is not a problem. For example, any of a solution-treated material, an aging-treated material, and a cold-rolled aging-treated material can be used.

先に述べたとおり、本発明に係る銅合金板を加工して製造した放熱部品は、650℃以上の温度に高温加熱すると軟化する。高温加熱後の放熱部品は、さらに時効処理を施す際の搬送及びハンドリングにおいて容易に変形しない強度を有することが好ましい。そのためには、850℃で30分加熱後水冷した段階で、50MPa以上の0.2%耐力を有することが好ましい。   As described above, the heat dissipation component manufactured by processing the copper alloy plate according to the present invention softens when heated to a temperature of 650 ° C. or higher. It is preferable that the heat dissipating component after high-temperature heating has a strength that does not easily deform during conveyance and handling when performing an aging treatment. For that purpose, it is preferable to have a 0.2% yield strength of 50 MPa or more at the stage of heating at 850 ° C. for 30 minutes and then water cooling.

本発明に係る銅合金板を用いて製造された放熱部品は、時効処理を受けた後、必要に応じて、耐食性及びはんだ付け性の向上を主目的として、少なくとも外表面の一部にSn被覆層が形成される。Sn被覆層には、電気めっき、無電解めっき、あるいはこれらのめっき後、Snの融点以下又は融点以上に加熱して形成されたものが含まれる。Sn被覆層には、Sn金属とSn合金が含まれ、Sn合金としては、Sn以外に合金元素としてBi,Ag,Cu,Ni,In,Znのうち1種以上を合計で5質量%以下含むものが挙げられる。   The heat-radiating component manufactured using the copper alloy plate according to the present invention is subjected to aging treatment, and if necessary, at least a part of the outer surface is coated with Sn for the purpose of improving corrosion resistance and solderability. A layer is formed. The Sn coating layer includes electroplating, electroless plating, or those formed by heating to a melting point of Sn or lower or higher than the melting point of Sn. The Sn coating layer includes Sn metal and an Sn alloy, and the Sn alloy includes one or more of Bi, Ag, Cu, Ni, In, and Zn as alloy elements in addition to Sn in a total amount of 5% by mass or less. Things.

Sn被覆層の下に、Ni,Co,Fe等の下地めっきを形成することができる。これらの下地めっきは、母材からのCuや合金元素の拡散を防止するバリアとしての機能、及び放熱部品の表面硬さを大きくすることによる傷つき防止の機能を有する。前記下地めっきの上にCuをめっきし、さらにSnをめっき後、Snの融点以下又は融点以上に加熱する熱処理を行ってCu−Sn合金層を形成し、下地めっき、Cu−Sn合金層及びSn被覆層の3層構成とすることもできる。Cu−Sn合金層は、母材からのCuや合金元素の拡散を防止するバリアとしての機能、及び放熱部品の表面硬さを大きくすることによる傷つき防止の機能を有する。   Under the Sn coating layer, a base plating of Ni, Co, Fe or the like can be formed. These base platings have a function as a barrier for preventing the diffusion of Cu and alloy elements from the base material and a function for preventing damage by increasing the surface hardness of the heat dissipation component. After Cu is plated on the base plating, and further Sn is plated, a heat treatment is performed by heating to a temperature lower than or equal to the melting point of Sn to form a Cu—Sn alloy layer, and the base plating, Cu—Sn alloy layer and Sn are formed. A three-layer structure of the coating layer can also be used. The Cu—Sn alloy layer has a function as a barrier for preventing diffusion of Cu and alloy elements from the base material, and a function for preventing scratches by increasing the surface hardness of the heat dissipation component.

また、本発明に係る銅合金板を用いて製造された放熱部品は、時効処理を受けた後、必要に応じて、少なくとも外表面の一部にNi被覆層が形成される。Ni被覆層は、母材からのCuや合金元素の拡散を防止するバリア、放熱部品の表面硬さを大きくすることによる傷つき防止、及び耐食性を向上させる機能を有する。   Moreover, after heat-radiating components manufactured using the copper alloy plate which concerns on this invention receive an aging treatment, Ni coating layer is formed in at least one part of an outer surface as needed. The Ni coating layer has a barrier that prevents the diffusion of Cu and alloy elements from the base material, a damage prevention by increasing the surface hardness of the heat dissipation component, and a function of improving corrosion resistance.

次に本発明に係る銅合金板の組成について説明する。
Ni及びSiは、NiSi析出物を生成し、銅合金の強度を向上させる。しかし、Ni含有量が1.0質量%未満又はSi含有量が0.2質量%未満では、その効果が少ない。一方、Ni含有量が4.0質量%を超え又はSi含有量が1.2質量%を超えると、鋳造時にNi又はSiが晶出又は析出し、熱間加工性が低下する。従って、Ni含有量は1.0〜4.0質量%、Si含有量は0.2〜1.2質量%とする。Ni含有量の下限値は、好ましくは1.1質量%、上限値は好ましくは3.9質量%である。
Next, the composition of the copper alloy sheet according to the present invention will be described.
Ni and Si generate Ni 2 Si precipitates and improve the strength of the copper alloy. However, when the Ni content is less than 1.0 mass% or the Si content is less than 0.2 mass%, the effect is small. On the other hand, when Ni content exceeds 4.0 mass% or Si content exceeds 1.2 mass%, Ni or Si crystallizes or precipitates at the time of casting, and hot workability falls. Therefore, the Ni content is 1.0 to 4.0 mass%, and the Si content is 0.2 to 1.2 mass%. The lower limit of the Ni content is preferably 1.1% by mass, and the upper limit is preferably 3.9% by mass.

Ni含有量(質量%)を[Ni]とし、Si含有量(質量%)を[Si]としたとき、その含有量比[Ni]/[Si]が3.5未満又は5を超える場合、過剰となったNi又はSiが固溶して、導電率が低下する。従って、前記含有量比[Ni]/[Si]は3.5〜5とする。
なお、Niの一部又は全部をCoに代えることができる。この場合、NiとCoの合計含有量[Ni+Co]を1.0〜4.0質量%の範囲内とし、含有量比[Ni+Co]/[Si]を3.5〜5とする。
When the Ni content (% by mass) is [Ni] and the Si content (% by mass) is [Si], when the content ratio [Ni] / [Si] is less than 3.5 or more than 5, Excessive Ni or Si is dissolved and the electrical conductivity is lowered. Therefore, the content ratio [Ni] / [Si] is set to 3.5 to 5.
Note that part or all of Ni can be replaced with Co. In this case, the total content [Ni + Co] of Ni and Co is in the range of 1.0 to 4.0% by mass, and the content ratio [Ni + Co] / [Si] is 3.5 to 5.

Snは銅合金母相に固溶して銅合金の強度を向上させる作用を有するため、必要に応じて添加される。また、Snの添加は耐応力緩和特性の向上にも有効である。放熱部品の使用環境が80℃又はそれ以上となると、クリ−プ変形が生じてCPU等の熱源との接触面が小さくなり、放熱性が低下するが、耐応力緩和特性を向上させることで、この現象を抑制できる。強度及び耐応力緩和特性の向上の効果を得るため、Sn含有量は0.005質量%以上とし、好ましくは0.01質量%以上、より好ましくは0.02質量%以上とする。一方、Sn含有量が1.0質量%を超えると、銅合金板の曲げ加工性を低下させ、かつ時効処理後の導電率を低下させる。従って、Sn含有量は1.0質量%以下とし、好ましくは0.6質量%以下、より好ましくは0.3質量%以下とする。   Sn has a function of improving the strength of the copper alloy by dissolving in the copper alloy matrix, and is added as necessary. Further, the addition of Sn is also effective in improving the stress relaxation resistance. When the usage environment of the heat dissipating component is 80 ° C. or higher, creep deformation occurs and the contact surface with a heat source such as a CPU is reduced, resulting in a decrease in heat dissipation, but by improving the stress relaxation resistance, This phenomenon can be suppressed. In order to obtain the effect of improving strength and stress relaxation resistance, the Sn content is set to 0.005% by mass or more, preferably 0.01% by mass or more, more preferably 0.02% by mass or more. On the other hand, when Sn content exceeds 1.0 mass%, the bending workability of a copper alloy plate will be reduced and the electrical conductivity after an aging treatment will be reduced. Therefore, the Sn content is 1.0% by mass or less, preferably 0.6% by mass or less, more preferably 0.3% by mass or less.

Mgは、Snと同様に、銅合金母相に固溶して銅合金の強度及び耐応力緩和特性を向上させる作用を有するため、必要に応じて添加される。強度及び耐応力緩和特性の向上の効果を得るため、Mg含有量は0.005質量%以上とする。一方、Mg含有量が0.2質量%を超えると、銅合金板の曲げ加工性を低下させ、かつ時効処理後の導電率を低下させる。従って、Mg含有量は0.2質量%以下とし、好ましくは0.15質量%以下、より好ましくは0.05質量%以下とする。   Similar to Sn, Mg has a function of being dissolved in the copper alloy matrix and improving the strength and stress relaxation resistance of the copper alloy, and therefore is added as necessary. In order to obtain the effect of improving strength and stress relaxation resistance, the Mg content is set to 0.005 mass% or more. On the other hand, if the Mg content exceeds 0.2% by mass, the bending workability of the copper alloy plate is lowered and the electrical conductivity after the aging treatment is lowered. Therefore, the Mg content is 0.2% by mass or less, preferably 0.15% by mass or less, more preferably 0.05% by mass or less.

Znは、銅合金板のはんだの耐熱剥離性及びSnめっきの耐熱剥離性を改善する作用を有するため、必要に応じて添加される。放熱部品を半導体装置へ組み込むとき、はんだ付けが必要な場合があり、また、放熱部品を製造後、耐食性改善のためSnめっきを行う場合がある。このような放熱部品の製造に、Znを含有する銅合金板が好適に用いられる。しかし、Znの含有量が2.0質量%を越えると、はんだ濡れ性が低下するため、Znの含有量は2.0質量%以下とする。Znの含有量の上限値は0.7質量%以下が好ましく、0.5質量%以下がより好ましい。一方、Zn含有量が0.01質量%未満では、耐熱剥離性の改善には不十分であり、Znの含有量は0.01質量%以上であることが好ましい。Zn含有量の下限値は0.05質量%がより好ましく、0.1質量%がさらに好ましい。
なお、本発明の銅合金板がZnを含む場合、500℃以上の温度で加熱すると、加熱雰囲気によってはZnが気化し、銅合金板の表面性状を低下させたり、加熱炉を汚染することがある。Znの気化を防止するとの観点からは、Znの含有量は好ましくは0.5質量%以下とし、より好ましくは0.3質量%以下、さらに好ましくは0.2質量%以下とする。
Zn has the effect of improving the heat-resistant peelability of the solder of the copper alloy plate and the heat-resistant peelability of Sn plating, and therefore is added as necessary. When incorporating a heat dissipation component into a semiconductor device, soldering may be required, and after manufacturing the heat dissipation component, Sn plating may be performed to improve corrosion resistance. A copper alloy plate containing Zn is suitably used for manufacturing such a heat dissipation component. However, if the Zn content exceeds 2.0 mass%, the solder wettability decreases, so the Zn content is set to 2.0 mass% or less. The upper limit of the Zn content is preferably 0.7% by mass or less, and more preferably 0.5% by mass or less. On the other hand, if the Zn content is less than 0.01% by mass, it is insufficient for improving the heat-resistant peelability, and the Zn content is preferably 0.01% by mass or more. The lower limit of the Zn content is more preferably 0.05% by mass and even more preferably 0.1% by mass.
In addition, when the copper alloy plate of the present invention contains Zn, when heated at a temperature of 500 ° C. or more, depending on the heating atmosphere, Zn is vaporized, which may deteriorate the surface properties of the copper alloy plate or contaminate the heating furnace. is there. From the viewpoint of preventing vaporization of Zn, the Zn content is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and further preferably 0.2% by mass or less.

Al、Mn、Cr、Ti、Zr、Fe、P、Agは、銅合金の強度及び耐熱性を向上させる作用を有するため、これらの1種又は2種以上が必要に応じて添加される。しかし、これらの元素の1種又は2種以上の合計含有量が0.5質量%を超えると導電率が低下する。これらの元素の1種又は2種以上の合計含有量の下限値は、好ましくは0.01質量%、より好ましくは0.02%、さらに好ましくは0.03%である。   Since Al, Mn, Cr, Ti, Zr, Fe, P, and Ag have an effect of improving the strength and heat resistance of the copper alloy, one or more of these are added as necessary. However, when the total content of one or more of these elements exceeds 0.5% by mass, the electrical conductivity decreases. The lower limit of the total content of one or more of these elements is preferably 0.01% by mass, more preferably 0.02%, and even more preferably 0.03%.

不可避不純物であるH、O、S、Pb、Bi、Sb、Se、Asは、銅合金板が650℃以上の温度に長時間加熱されると粒界に集まり、加熱中及び加熱後の粒界割れ並びに粒界脆化等を引起す可能性があるため、これらの元素の含有量は低減することが好ましい。Hは、加熱中に粒界、介在物と母材との界面に集まり、膨れを発生させることから、好ましくは1.5ppm(質量ppm、以下同じ)未満とし、より好ましくは1ppm未満とする。Oは、好ましくは20ppm未満、より好ましくは15ppm未満とする。S、Pb、Bi、Sb、Se、Asは、好ましくは合計で30ppm未満、より好ましくは20ppm未満とする。特にBi、Sb、Se、Asについては、好ましくはこれらの元素の合計含有量を10ppm未満、より好ましくは5ppm未満とする。   The inevitable impurities H, O, S, Pb, Bi, Sb, Se, As gather at the grain boundary when the copper alloy plate is heated to a temperature of 650 ° C. or higher for a long time, and the grain boundary during and after heating Since there is a possibility of causing cracks and grain boundary embrittlement, the content of these elements is preferably reduced. H is preferably less than 1.5 ppm (mass ppm, the same applies hereinafter), more preferably less than 1 ppm, because it collects at the grain boundaries and the interface between inclusions and the base material during heating and generates swelling. O is preferably less than 20 ppm, more preferably less than 15 ppm. S, Pb, Bi, Sb, Se, As are preferably less than 30 ppm in total, and more preferably less than 20 ppm. In particular, for Bi, Sb, Se and As, the total content of these elements is preferably less than 10 ppm, more preferably less than 5 ppm.

本発明に係る銅合金板は、標準的な製造方法として、鋳塊を均熱処理し、熱間圧延した後、冷間圧延、溶体化を伴う再結晶処理、冷間圧延、析出処理の工程で製造される。前記組成の銅合金を用い、以下の条件で製造した銅合金板は、0.2%耐力が300MPa以上で、優れた曲げ加工性を有する。また、850℃で30分加熱し、次いで時効処理した後、300MPa以上の0.2%耐力、25%IACS以上の導電率を有する。   As a standard manufacturing method, the copper alloy sheet according to the present invention is subjected to soaking treatment of the ingot and hot rolling, followed by cold rolling, recrystallization treatment with solution treatment, cold rolling, and precipitation treatment. Manufactured. A copper alloy sheet manufactured using the copper alloy having the above composition under the following conditions has a 0.2% proof stress of 300 MPa or more and excellent bending workability. Further, after heating at 850 ° C. for 30 minutes and then aging treatment, it has a 0.2% proof stress of 300 MPa or more and a conductivity of 25% IACS or more.

溶解、鋳造は、連続鋳造、半連続鋳造などの通常の方法によって行うことができる。なお、銅溶解原料として、S、Pb、Bi、Se、As含有量の少ないものを使用することが好ましい。また、銅合金溶湯に被覆する木炭の赤熱化(水分除去)、地金、スクラップ原料、樋、鋳型の乾燥、及び溶湯の脱酸等に注意し、O、Hを低減することが好ましい。   Melting and casting can be performed by ordinary methods such as continuous casting and semi-continuous casting. In addition, it is preferable to use what has little S, Pb, Bi, Se, As content as a copper melt | dissolution raw material. In addition, it is preferable to reduce O and H by paying attention to the red heat (moisture removal) of charcoal to be coated on the molten copper alloy, bare metal, scrap raw materials, firewood, mold drying, deoxidation of the molten metal, and the like.

均質化処理は、鋳塊内部の温度が800℃到達後、30分以上保持することが好ましい。均質化処理の保持時間は1時間以上がより好ましく、2時間以上がさらに好ましい。
均質化処理後、熱間圧延を800℃以上の温度で開始する。熱間圧延材に粗大な(Ni,Co)−Si析出物が形成されないように、熱間圧延は600℃以上の温度で終了し、その温度から水冷等の方法により急冷することが好ましい。熱間圧延後の急冷開始温度が600℃より低いと、粗大な(Ni,Co)−Si析出物が形成され、組織が不均一になりやすく、銅合金板(製品板)の強度が低下する。
The homogenization treatment is preferably held for 30 minutes or more after the temperature inside the ingot reaches 800 ° C. The holding time of the homogenization treatment is more preferably 1 hour or more, and further preferably 2 hours or more.
After the homogenization treatment, hot rolling is started at a temperature of 800 ° C. or higher. In order to prevent coarse (Ni, Co) -Si precipitates from being formed on the hot-rolled material, the hot-rolling is preferably completed at a temperature of 600 ° C. or higher, and then rapidly cooled by a method such as water cooling. When the rapid cooling start temperature after hot rolling is lower than 600 ° C., coarse (Ni, Co) -Si precipitates are formed, the structure tends to be uneven, and the strength of the copper alloy plate (product plate) decreases. .

熱間圧延後の冷間圧延により、銅合金板に一定の歪みを加えることで、続く再結晶処理後に、所望の再結晶組織(微細な再結晶組織)を有する銅合金板が得られる。この冷間圧延の加工率は、5〜35%とすることが好ましい。
溶体化を伴う再結晶処理は、650〜950℃、好ましくは670〜900℃で3分以下の保持の条件で行う。銅合金中のNi、Co、Siの含有量が少ない場合は,上記温度範囲内のより低温領域で、Ni、Co、Siの含有量が多い場合は、上記温度範囲内のより高温領域で行うことが好ましい。この再結晶処理により、Ni、Co、Siを銅合金母材に固溶させると共に、曲げ加工性が良好となる再結晶組織(結晶粒径が1〜20μm)を形成することができる。この再結晶処理の温度が600℃より低いと、Ni、Co、Siの固溶量が少なくなり、強度が低下する。一方、再結晶処理の温度が950℃を超え又は処理時間が3分を超えると、再結晶粒が粗大化する。
By applying a certain strain to the copper alloy sheet by cold rolling after hot rolling, a copper alloy sheet having a desired recrystallized structure (fine recrystallized structure) is obtained after the subsequent recrystallization process. The processing rate of this cold rolling is preferably 5 to 35%.
The recrystallization treatment with solution treatment is performed at 650 to 950 ° C., preferably at 670 to 900 ° C. for 3 minutes or less. When the content of Ni, Co, and Si in the copper alloy is small, it is performed in a lower temperature range within the above temperature range, and when the content of Ni, Co, and Si is large, it is performed in a higher temperature region within the above temperature range. It is preferable. By this recrystallization treatment, Ni, Co, and Si can be dissolved in the copper alloy base material, and a recrystallized structure (crystal grain size of 1 to 20 μm) can be formed with good bending workability. If the temperature of this recrystallization process is lower than 600 ° C., the amount of Ni, Co, and Si dissolved will decrease and the strength will decrease. On the other hand, when the temperature of the recrystallization treatment exceeds 950 ° C. or the treatment time exceeds 3 minutes, the recrystallized grains become coarse.

溶体化を伴う再結晶処理後は、(a)冷間圧延及び時効処理する、(b)冷間圧延及び時効処理後、さらに製品厚さまで冷間圧延する、又は(c)前記(b)の後に低温焼鈍(延性の回復)を行う。
析出処理は、加熱温度300〜600℃程度で0.5〜10時間保持する条件で行う。この加熱温度が300℃未満では析出量が少なく、600℃を超えると析出物が粗大化しやすい。加熱温度の下限は、好ましくは350℃とし、上限は好ましくは580℃、より好ましくは560℃する。析出処理の保持時間は、加熱温度により適宜選択し、0.5〜10時間の範囲内で行う。この保持時間が0.5時間以下では析出が不十分となり、10時間を越えても析出量が飽和し、生産性が低下する。保持時間の下限は、好ましくは1時間、より好ましくは2時間とする。
After recrystallization treatment with solution, (a) cold rolling and aging treatment, (b) after cold rolling and aging treatment, and further cold rolling to product thickness, or (c) of (b) above Later, low temperature annealing (recovery of ductility) is performed.
The precipitation treatment is performed under the condition of holding at a heating temperature of about 300 to 600 ° C. for 0.5 to 10 hours. When the heating temperature is less than 300 ° C., the amount of precipitation is small, and when it exceeds 600 ° C., the precipitate tends to be coarsened. The lower limit of the heating temperature is preferably set to 350 ° C., the upper limit is preferably 580 ° C., more preferably from 560 ° C.. The holding time of the precipitation treatment is appropriately selected depending on the heating temperature, and is performed within a range of 0.5 to 10 hours. When the holding time is 0.5 hours or less, the precipitation is insufficient, and even if the holding time exceeds 10 hours, the amount of precipitation is saturated and the productivity is lowered. The lower limit of the holding time is preferably 1 hour, more preferably 2 hours.

表1に示す組成の銅合金を鋳造し、それぞれ厚さ45mmの鋳塊を作成した。この銅合金において、不可避不純物であるHは1ppm未満、Oは20ppm未満、より好ましくは15ppm未満、S、Pb、Bi、Sb、Se、Asは合計で20ppm未満であった。
各鋳塊に対し965℃で3時間の均熱処理を行い、続いて熱間圧延を行って板厚15mmの熱間圧延材とし、600℃以上の温度から焼き入れ(水冷)した。焼き入れ後の熱間圧延材の両面を1mmずつ研磨した後、目標板厚0.43mmまで冷間粗圧延し、650〜850℃で10〜60秒保持する再結晶処理(溶体化を伴う)を行った。次いで450℃で2時間の析出焼鈍後、30%の仕上げ冷間圧延を施し、板厚0.3mmの銅合金板を製造した。
Copper alloys having the compositions shown in Table 1 were cast to form ingots each having a thickness of 45 mm. In this copper alloy, H, which is an inevitable impurity, was less than 1 ppm, O was less than 20 ppm, more preferably less than 15 ppm, and S, Pb, Bi, Sb, Se, As were less than 20 ppm in total.
Each ingot was subjected to a soaking treatment at 965 ° C. for 3 hours, followed by hot rolling to obtain a hot-rolled material having a plate thickness of 15 mm, and quenching (water cooling) from a temperature of 600 ° C. or higher. After polishing both sides of the hot-rolled material after quenching by 1 mm each, cold rough rolling to a target plate thickness of 0.43 mm and holding at 650 to 850 ° C. for 10 to 60 seconds (with solution treatment) Went. Next, after precipitation annealing at 450 ° C. for 2 hours, 30% finish cold rolling was performed to produce a copper alloy plate having a thickness of 0.3 mm.

Figure 0006031549
Figure 0006031549

得られた銅合金板を供試材として、下記要領で、導電率、機械的特性、曲げ加工性、はんだ濡れ性の各測定試験を行った。
また、得られた銅合金板を850℃で30分間加熱後水冷したもの、さらに500℃で2時間加熱(析出処理)したものを、それぞれ供試材として、導電率及び機械的特性の各測定試験を行った。
各試験結果を表2に示す。
Using the obtained copper alloy plate as a test material, each measurement test of electrical conductivity, mechanical characteristics, bending workability, and solder wettability was performed in the following manner.
The obtained copper alloy sheet was heated at 850 ° C. for 30 minutes and then cooled with water, and further heated at 500 ° C. for 2 hours (precipitation treatment). A test was conducted.
Table 2 shows the test results.

Figure 0006031549
Figure 0006031549

(導電率の測定)
導電率の測定は,JIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し,ダブルブリッジを用いた四端子法で行った。
(機械的特性)
供試材から、長手方向が圧延平行方向となるようにJIS5号引張り試験片を切り出し、JIS−Z2241に準拠して引張り試験を実施して、耐力と伸びを測定した。耐力は永久伸び0.2%に相当する引張強さである。
(Measurement of conductivity)
The conductivity was measured by a four-terminal method using a double bridge in accordance with a nonferrous metal material conductivity measurement method defined in JIS-H0505.
(Mechanical properties)
A JIS No. 5 tensile test piece was cut out from the test material so that the longitudinal direction was parallel to the rolling direction, and a tensile test was performed in accordance with JIS-Z2241, thereby measuring the yield strength and elongation. The yield strength is a tensile strength corresponding to a permanent elongation of 0.2%.

(曲げ加工性)
曲げ加工性の測定は、伸銅協会標準JBMA−T307に規定されるW曲げ試験方法に従い実施した。各供試材から幅10mm、長さ30mmの試験片を切り出し、R/t=0.5となる冶具を用いて、G.W.(Good Way(曲げ軸が圧延方向に垂直))及びB.W.(Bad Way(曲げ軸が圧延方向に平行))の曲げを行った。次いで、曲げ部における割れの有無を100倍の光学顕微鏡により目視観察し、G.W.又はB.W.の双方で割れの発生がないものを○(合格)、G.W.又はB.W.のいずれか一方又は双方で割れが発生したものを×(不合格)、と評価した。
(Bending workability)
The measurement of bending workability was carried out according to the W bending test method defined in JBMA-T307 standard for copper elongation. A test piece having a width of 10 mm and a length of 30 mm was cut out from each specimen, and G. W. (Good Way (bending axis is perpendicular to rolling direction)) and B.I. W. (Bad Way (bending axis is parallel to the rolling direction)) was performed. Next, the presence or absence of cracks in the bent portion was visually observed with a 100 × optical microscope. W. Or B. W. No cracks on both sides (circle) (pass), G. W. Or B. W. Those in which cracking occurred in either one or both were evaluated as x (failed).

(はんだ濡れ性)
各供試材から短冊状試験片を採取し、非活性フラックスを1秒間浸漬塗布した後、メニスコグラフ法にてはんだ濡れ時間を測定した。はんだは260±5℃に保持したSn−3質量%Ag−0.5質量%Cuを用い、浸漬速度を25mm/sec、浸漬深さを5mm、浸漬時間を5secの試験条件で実施した。はんだ濡れ時間が2秒以下のものをはんだ濡れ性が優れると評価した。なお、比較例7以外は、はんだ濡れ時間が2秒以下であった。
(Solder wettability)
A strip-shaped test piece was collected from each test material, and the inactive flux was dip coated for 1 second, and then the solder wetting time was measured by the menisograph method. The solder was Sn-3 mass% Ag-0.5 mass% Cu maintained at 260 ± 5 ° C., and the test was performed under the test conditions of an immersion speed of 25 mm / sec, an immersion depth of 5 mm, and an immersion time of 5 sec. A solder wetting time of 2 seconds or less was evaluated as having excellent solder wettability. Except for Comparative Example 7, the solder wetting time was 2 seconds or less.

表2に示す実施例1〜18の銅合金板は、合金組成が本発明の規定を満たし、850℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が300MPa以上で、かつ導電率が25%IACS以上である。また、850℃で加熱する前の銅合金板の特性は、強度(0.2%耐力)が300MPa以上であり、曲げ加工性やはんだ濡れ性も優れている。850℃で加熱後も、50MPa以上の強度(0.2%耐力)を有する。   The copper alloy plates of Examples 1 to 18 shown in Table 2 have an alloy composition that satisfies the provisions of the present invention, and are heated at 850 ° C. for 30 minutes and then subjected to aging treatment (0.2% proof stress) of 300 MPa or more. And the conductivity is 25% IACS or more. The copper alloy sheet before heating at 850 ° C. has a strength (0.2% proof stress) of 300 MPa or more, and is excellent in bending workability and solder wettability. Even after heating at 850 ° C., it has a strength of 50 MPa or more (0.2% yield strength).

これに対し、比較例1〜7の銅合金板は、以下に示すように、何らかの特性が劣る。
比較例1は、Fe含有量が少ないため、時効処理後の強度が低い。
比較例2は、Fe含有量が過剰なため、熱間圧延時に割れが生じて、熱間圧延後の工程に進むことができなかった。
比較例3は、NiとSiの含有量比[Ni]/[Si]が高すぎ、過剰となったNiが固溶して、時効処理後の導電率が低下した。
比較例4は、NiとSiの含有量比[Ni]/[Si]が低すぎ、過剰となったSiが固溶して、時効処理後の導電率が低下した。
比較例5、6は、それぞれSn又はMg含有量が過剰で、銅合金板の曲げ加工性が劣り、時効処理後の導電率が低下した。
比較例7は、Zn含有量が過剰で、先に述べたようにはんだ濡れ性が劣っていた。
On the other hand, the copper alloy plates of Comparative Examples 1 to 7 are inferior in some characteristics as shown below.
Since the comparative example 1 has little Fe content, the intensity | strength after an aging treatment is low.
In Comparative Example 2, since the Fe content was excessive, cracking occurred during hot rolling, and it was not possible to proceed to the process after hot rolling.
In Comparative Example 3, the content ratio [Ni] / [Si] of Ni and Si was too high, and excessive Ni was dissolved, resulting in a decrease in conductivity after aging treatment.
In Comparative Example 4, the content ratio [Ni] / [Si] of Ni and Si was too low, and excessive Si was dissolved, and the conductivity after the aging treatment was lowered.
In Comparative Examples 5 and 6, the Sn or Mg content was excessive, the bending workability of the copper alloy plate was inferior, and the electrical conductivity after the aging treatment was lowered.
In Comparative Example 7, the Zn content was excessive and the solder wettability was poor as described above.

表1に示す銅合金板のうち代表的なもの(実施例2,6と比較例1,7)について、1000℃で30分間加熱後水冷し、さらに500℃で2時間加熱(時効処理)し、当該銅合金板を供試材として、導電率及び機械的特性の各測定試験を、実施例1に記載した方法で行った。その結果を表3に示す。   Of the copper alloy plates shown in Table 1, typical ones (Examples 2 and 6 and Comparative Examples 1 and 7) were heated at 1000 ° C. for 30 minutes, then water-cooled, and further heated at 500 ° C. for 2 hours (aging treatment). Using the copper alloy plate as a test material, each measurement test for electrical conductivity and mechanical properties was performed by the method described in Example 1. The results are shown in Table 3.

Figure 0006031549
Figure 0006031549

表3に示すように、実施例2,6は、1000℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が300MPa以上で、かつ導電率が25%IACS以上である。
一方、比較例1は、1000℃で30分間加熱し、次いで時効処理した後の強度が劣る。
なお、実施例2,6及び比較例1,7の全てにおいて、1000℃で30分間加熱し、次いで時効処理した後の強度と導電率の値は、850℃で30分間加熱し、次いで時効処理した後の強度と導電率の値と大きい違いがなかった。
As shown in Table 3, in Examples 2 and 6, the strength (0.2% yield strength) after heating at 1000 ° C. for 30 minutes and then aging treatment was 300 MPa or more, and the conductivity was 25% IACS or more. is there.
On the other hand, Comparative Example 1 is inferior in strength after heating at 1000 ° C. for 30 minutes and then aging treatment.
In all of Examples 2 and 6 and Comparative Examples 1 and 7, the strength and conductivity values after heating at 1000 ° C. for 30 minutes and then aging treatment were heated at 850 ° C. for 30 minutes, and then aging treatment. There was no significant difference between the strength and conductivity values after the test.

Claims (7)

NiとCoの1種又は2種を1.0〜4.0質量%、Siを0.2〜1.2質量%含有し、NiとCoの合計含有量[Ni+Co]とSiの含有量[Si]の比[Ni+Co]/[Si]が3.5〜5であり、残部がCu及び不可避不純物からなり、0.2%耐力が300MPa以上で、優れた曲げ加工性を有し、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の0.2%耐力が300MPa以上、導電率が25%IACS以上であり、放熱部品を製造するプロセスの一部に650℃以上に加熱するプロセスと時効処理が含まれることを特徴とする放熱部品用銅合金板。 One or two kinds of Ni and Co are contained in an amount of 1.0 to 4.0% by mass, Si is contained in an amount of 0.2 to 1.2 % by mass , and the total content of Ni and Co [Ni + Co] and the content of Si [ Si] ratio [Ni + Co] / [Si] is 3.5-5, the balance is made of Cu and inevitable impurities, 0.2% proof stress is 300 MPa or more, and has excellent bending workability, 850 ° C. Part of the process for manufacturing heat-radiating parts with 0.2% proof stress of 300 MPa or more and conductivity of 25% IACS or more after aging for 30 minutes after heating at 500 ° C for 2 hours. The copper alloy plate for heat-radiating components characterized by including a process of heating to 650 ° C. or more and an aging treatment. さらに、SnとMgの1種又は2種を、Sn:0.005〜1.0質量%、Mg:0.005〜0.2質量%の範囲で含有することを特徴とする請求項1に記載された放熱部品用銅合金板。 Furthermore, 1 type or 2 types of Sn and Mg are contained in the range of Sn: 0.005-1.0 mass% and Mg: 0.005-0.2 mass%. The described copper alloy plate for heat dissipation parts. さらに、Znを2.0質量%以下含有することを特徴とする請求項1又は2に記載された放熱部品用銅合金板。 Furthermore, Zn is contained 2.0 mass% or less, The copper alloy plate for heat radiating components described in Claim 1 or 2 characterized by the above-mentioned. さらに、Al、Mn、Cr、Ti、Zr、Fe、P、Agのうち1種又は2種以上を合計で0.5質量%以下含有することを特徴とする請求項1〜3のいずれかに記載された放熱部品用銅合金板Furthermore, 0.5 mass% or less in total containing 1 type, or 2 or more types among Al, Mn, Cr, Ti, Zr, Fe, P, and Ag is contained in any one of Claims 1-3 characterized by the above-mentioned. The described copper alloy plate for heat dissipation parts. 請求項1〜4のいずれかに記載された放熱部品用銅合金板を所定形状に加工した後、650℃以上に加熱するプロセスを施し、続いて時効処理を行い、300MPa以上の0.2%耐力及び25%IACS以上の導電率を有する放熱部品を得ることを特徴とする放熱部品の製造方法。After processing the copper alloy plate for heat radiating components according to any one of claims 1 to 4 into a predetermined shape, a process of heating to 650 ° C or higher is performed, followed by an aging treatment, and 0.2% of 300 MPa or higher A method of manufacturing a heat dissipation component, characterized by obtaining a heat dissipation component having a yield strength and a conductivity of 25% IACS or higher. 時効処理後、放熱部品の外表面の少なくとも一部にSn被覆層を形成することを特徴とする請求項5に記載された放熱部品の製造方法。6. The method of manufacturing a heat dissipation component according to claim 5, wherein an Sn coating layer is formed on at least a part of the outer surface of the heat dissipation component after the aging treatment. 時効処理後、放熱部品の外表面の少なくとも一部にNi被覆層を形成することを特徴とする請求項5に記載された放熱部品の製造方法。6. The method of manufacturing a heat dissipation component according to claim 5, wherein after the aging treatment, a Ni coating layer is formed on at least a part of the outer surface of the heat dissipation component.
JP2015066677A 2015-03-27 2015-03-27 Copper alloy plate for heat dissipation parts Expired - Fee Related JP6031549B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015066677A JP6031549B2 (en) 2015-03-27 2015-03-27 Copper alloy plate for heat dissipation parts
PCT/JP2016/058177 WO2016158390A1 (en) 2015-03-27 2016-03-15 Copper alloy sheet for heat dissipation component, and heat dissipation component
KR1020177030339A KR102075892B1 (en) 2015-03-27 2016-03-15 Copper alloy plate and heat dissipation part for heat dissipation parts
CN201680018115.0A CN107429328B (en) 2015-03-27 2016-03-15 Heat dissipation element copper alloy plate and heat dissipation element
TW105109029A TW201641700A (en) 2015-03-27 2016-03-23 A copper alloy sheet for a heat radiating component and a heat radiating component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015066677A JP6031549B2 (en) 2015-03-27 2015-03-27 Copper alloy plate for heat dissipation parts

Publications (2)

Publication Number Publication Date
JP2016186107A JP2016186107A (en) 2016-10-27
JP6031549B2 true JP6031549B2 (en) 2016-11-24

Family

ID=57005629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015066677A Expired - Fee Related JP6031549B2 (en) 2015-03-27 2015-03-27 Copper alloy plate for heat dissipation parts

Country Status (5)

Country Link
JP (1) JP6031549B2 (en)
KR (1) KR102075892B1 (en)
CN (1) CN107429328B (en)
TW (1) TW201641700A (en)
WO (1) WO2016158390A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089003A (en) * 2015-11-03 2017-05-25 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
KR102226988B1 (en) * 2016-10-05 2021-03-11 가부시키가이샤 고베 세이코쇼 Copper alloy plate for heat dissipation parts, heat dissipation parts, and manufacturing method of heat dissipation parts
CN115449662A (en) * 2017-08-10 2022-12-09 田中贵金属工业株式会社 High-strength and high-conductivity copper alloy sheet material and method for producing same
JP7215735B2 (en) * 2019-10-03 2023-01-31 三芳合金工業株式会社 Age-hardenable copper alloy
WO2022092139A1 (en) * 2020-10-29 2022-05-05 古河電気工業株式会社 Copper alloy plate material, method for producing copper alloy plate material, and contact component
KR20230094188A (en) * 2020-10-29 2023-06-27 후루카와 덴키 고교 가부시키가이샤 Copper alloy plate, method of manufacturing copper alloy plate and contact parts
CN113981264B (en) * 2021-12-28 2022-03-29 宁波兴业盛泰集团有限公司 Copper alloy material and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291325A (en) * 1996-04-26 1997-11-11 Nikko Kinzoku Kk Material for metallic substrate for semiconductor packaging
JP2003277853A (en) 2002-03-26 2003-10-02 Dowa Mining Co Ltd Copper alloy for heat spreader
JP4112602B2 (en) 2005-09-01 2008-07-02 株式会社渕上ミクロ heat pipe
JP4878317B2 (en) 2007-03-22 2012-02-15 株式会社コベルコ マテリアル銅管 Copper tube made of copper or copper alloy
JP5557761B2 (en) * 2011-01-26 2014-07-23 株式会社神戸製鋼所 Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance
JP5534610B2 (en) * 2011-03-31 2014-07-02 Jx日鉱日石金属株式会社 Cu-Co-Si alloy strip
JP5773929B2 (en) * 2012-03-28 2015-09-02 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent bending workability and stress relaxation resistance
JP6176433B2 (en) 2013-01-10 2017-08-09 株式会社Welcon Vapor chamber
JP5467163B1 (en) 2013-03-26 2014-04-09 Jx日鉱日石金属株式会社 Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate
JP6223057B2 (en) * 2013-08-13 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient

Also Published As

Publication number Publication date
JP2016186107A (en) 2016-10-27
CN107429328B (en) 2019-11-08
WO2016158390A1 (en) 2016-10-06
KR102075892B1 (en) 2020-02-11
TW201641700A (en) 2016-12-01
CN107429328A (en) 2017-12-01
KR20170130514A (en) 2017-11-28

Similar Documents

Publication Publication Date Title
JP6031549B2 (en) Copper alloy plate for heat dissipation parts
JP6151813B1 (en) Vapor chamber manufacturing method
JP6031576B2 (en) Copper alloy plate for heat dissipation parts
JP6031548B2 (en) Copper alloy plate for heat dissipation parts
JP6446011B2 (en) Copper alloy plate for heat dissipation parts and heat dissipation parts
JP6850233B2 (en) Copper alloy plate for heat dissipation parts
JP6446010B2 (en) Copper alloy plate for heat dissipation parts
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
JP6732840B2 (en) Copper alloy plate for vapor chamber
JP2018162518A (en) Copper alloy sheet for vapor chamber and vapor chamber
WO2017110759A1 (en) Copper alloy plate for heat-dissipation component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6031549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees