JP6732840B2 - Copper alloy plate for vapor chamber - Google Patents

Copper alloy plate for vapor chamber Download PDF

Info

Publication number
JP6732840B2
JP6732840B2 JP2018098407A JP2018098407A JP6732840B2 JP 6732840 B2 JP6732840 B2 JP 6732840B2 JP 2018098407 A JP2018098407 A JP 2018098407A JP 2018098407 A JP2018098407 A JP 2018098407A JP 6732840 B2 JP6732840 B2 JP 6732840B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
alloy plate
vapor chamber
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018098407A
Other languages
Japanese (ja)
Other versions
JP2018168470A5 (en
JP2018168470A (en
Inventor
大輔 橋本
大輔 橋本
昌泰 西村
昌泰 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2018168470A publication Critical patent/JP2018168470A/en
Publication of JP2018168470A5 publication Critical patent/JP2018168470A5/ja
Application granted granted Critical
Publication of JP6732840B2 publication Critical patent/JP6732840B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、コンピューターのCPU、LEDランプ等から発生する熱を処理するベーパーチャンバー用銅合金板に関する。 The present invention relates to a copper alloy plate for a vapor chamber that processes heat generated by a CPU of a computer, an LED lamp, and the like.

デスク型PC、ノート型PC等に搭載されるCPUの動作速度の高速化や高密度化が急速に進展し、これらのCPUからの発熱量が一段と増大している。CPUの温度が一定以上の温度に上昇すると、誤作動、熱暴走などの原因となるため、CPU等の半導体装置からの効果的な放熱は切実な問題となっている。
半導体装置の熱を吸収し、大気中に放散させる放熱部品してヒートシンクが使われている。ヒートシンクには高熱伝導性が求められることから、素材として熱伝導率の大きい銅、アルミニウムなどが用いられる。しかし、対流熱抵抗が、ヒートシンクの性能を制限しており、発熱量が増大する高機能電子部品の放熱要求を満たすことが難しくなってきている。
The CPUs mounted on desk-type PCs, notebook PCs, etc. are rapidly increasing in operating speed and density, and the amount of heat generated from these CPUs is further increasing. If the temperature of the CPU rises above a certain level, it may cause malfunction, thermal runaway, etc., so effective heat dissipation from a semiconductor device such as the CPU is a serious problem.
A heat sink is used as a heat dissipation component that absorbs the heat of a semiconductor device and dissipates it into the atmosphere. Since the heat sink is required to have high thermal conductivity, copper, aluminum or the like having a high thermal conductivity is used as a material. However, the convective thermal resistance limits the performance of the heat sink, and it is becoming difficult to meet the heat dissipation requirement of the high-performance electronic component whose heat generation amount increases.

このため、より高い放熱性を有する放熱部品として、高い熱伝導性及び熱輸送能力を備える管状ヒートパイプや平面状ヒートパイプ(ベーパーチャンバー)が提案されている。ヒートパイプは、内部に封入した冷媒の蒸発(CPUからの吸熱)と凝縮(吸収した熱の放出)が循環的に行われることにより、ヒートシンクに比べて高い放熱特性を発揮する。また、ヒートパイプをヒートシンクやファンといった放熱部品と組合せることにより、半導体装置の発熱問題を解決することが提案されている。 Therefore, a tubular heat pipe or a flat heat pipe (vapor chamber) having high heat conductivity and heat transport capability has been proposed as a heat dissipation component having higher heat dissipation. The heat pipe exhibits higher heat dissipation characteristics than a heat sink by cyclically evaporating the refrigerant enclosed therein (heat absorption from the CPU) and condensing (releasing the absorbed heat). Further, it has been proposed to solve the heat generation problem of a semiconductor device by combining a heat pipe with a heat dissipation component such as a heat sink or a fan.

放熱板、ヒートシンク、ヒートパイプ等に用いられる放熱部品の素材として、導電率及び耐食性に優れる純銅製(無酸素銅:C1020)の板又は管が多用されている。成形加工性を確保するため、素材として軟質の焼鈍材(O材)や1/4H調質材が用いられるが、後述する放熱部品の製造工程において、変形や疵が発生しやすい、打抜き加工時にバリが出やすい、打抜き金型が磨耗しやすい等の問題がある。一方、特許文献1,2には、放熱部品の素材としてFe−P系の銅合金板が記載されている。 A plate or tube made of pure copper (oxygen-free copper: C1020) excellent in conductivity and corrosion resistance is often used as a material for a heat dissipation component used for a heat dissipation plate, a heat sink, a heat pipe, or the like. A soft annealed material (O material) or a 1/4H tempered material is used as a material to secure molding workability, but during the punching process, deformation or flaws are likely to occur in the heat dissipation component manufacturing process described later. There are problems such as easy occurrence of burrs and easy wear of the punching die. On the other hand, Patent Documents 1 and 2 describe a Fe—P-based copper alloy plate as a material for a heat dissipation component.

放熱板やヒートシンクは、純銅板をプレス成形、打抜き加工、切削、穴開け加工、エッチングなどにより所定形状に加工後、必要に応じてNiめっき、Snめっきを行ってからはんだ、ろう、接着剤等でCPU等の半導体装置と接合する。
管状ヒートパイプ(特許文献3参照)は、銅粉末を管内に焼結してウィックを形成し、加熱脱ガス処理後、一端をろう付け封止し、真空又は減圧下で管内に冷媒を入れてからもう一方の端部をろう付け封止して製造する。
For heat sinks and heat sinks, pure copper plates are pressed into a predetermined shape by stamping, punching, cutting, drilling, etching, etc., and then Ni plating, Sn plating are performed as necessary, and then solder, solder, adhesive, etc. Then, it is joined to a semiconductor device such as a CPU.
The tubular heat pipe (see Patent Document 3) sinters copper powder into a tube to form a wick, and after heating and degassing, one end is brazed and sealed, and a refrigerant is put into the tube under vacuum or reduced pressure. Manufactured by brazing and sealing the other end.

ベーパーチャンバー(特許文献4,5参照)は、管状ヒートパイプの放熱性能を更に向上させたものである。ベーパーチャンバーとして、冷媒の凝縮と蒸発を効率的に行うために、管状ヒートパイプと同様に、内面に粗面化加工、溝加工等を行ったものが提案されている。プレス成形、打抜き加工、切削、エッチングなどの加工を行った上下2枚の純銅板を、ろう付け、拡散接合、溶接等の方法により接合し、内部に冷媒を入れた後、ろう付け等の方法により封止する。接合工程で脱ガス処理が行われることがある。 The vapor chamber (see Patent Documents 4 and 5) further improves the heat dissipation performance of the tubular heat pipe. As the vapor chamber, in order to perform the evaporation and condensation of the refrigerant efficiently, similar to the tubular heat pipe, roughened machining on the inner surface, has been proposed which performs grooving or the like. Two upper and lower pure copper plates that have been subjected to processing such as press molding, punching, cutting, etching, etc. are joined by brazing, diffusion joining, welding, etc., and after introducing a refrigerant inside, methods such as brazing To seal. Degassing may be performed in the joining process.

また、ベーパーチャンバーとして、外面部材と、外面部材の内部に収容される内部部材とより構成されたものが提案されている。内部部材は、冷媒の凝縮、蒸発、輸送を促進するために、外面部材の内部に一又は複数配置されるもので、種々の形状のフィン、突起、穴、スリット等が加工されている。この形式のベーパーチャンバーにおいても、内部部材を外面部材の内部に配置した後、ろう付け、拡散接合等の方法により外面部材と内部部材を接合一体化し、冷媒を入れた後、ろう付け等の方法により封止する。 In addition, as the vapor chamber, a chamber including an outer surface member and an inner member housed inside the outer surface member has been proposed. One or a plurality of inner members are arranged inside the outer member in order to accelerate condensation, evaporation, and transportation of the refrigerant, and various shapes of fins, protrusions, holes, slits, etc. are processed. Even in this type of vapor chamber, after the inner member is placed inside the outer member, the outer member and the inner member are joined and integrated by a method such as brazing or diffusion joining, and after the refrigerant is introduced, a method such as brazing is performed. To seal.

特開2003−277853号公報JP-A-2003-277853 特開2014−189816号公報JP, 2014-189816, A 特開2008−232563号公報JP, 2008-232563, A 特開2007−315745号公報JP, 2007-315745, A 特開2014−134347号公報JP, 2014-134347, A

これらの放熱部品の製造工程において、放熱板、ヒートシンクは、はんだ付け、ろう付けの工程で200〜700℃程度に加熱される。管状ヒートパイプ、ベーパーチャンバーは、焼結、脱ガス、りん銅ロウ(BCuP−2等)を用いたろう付け、拡散接合、溶接などの工程で800〜1000℃程度に加熱される。
例えば、ベーパーチャンバーの素材として純銅板を用いた場合、650℃以上の温度で加熱をしたときの軟化が激しい。また、急激な結晶粒の粗大化が生じる。このため、ヒートシンク、半導体装置への取付け、又はPC筐体への組込み等の際に、製造したベーパーチャンバーが変形しやすく、ベーパーチャンバー内部の構造が変化してしまい、また表面の凹凸が大きくなり、所期の放熱性能を発揮できなくなってしまう問題がある。また、このような変形を避けるには純銅板の厚さを厚くすればよいが、そうするとベーパーチャンバーの質量、及び厚さが増大する。厚さが増大した場合、PC筐体内部の隙間が小さくなり、対流伝熱性能が低下する問題がある。
In the manufacturing process of these heat dissipation components, the heat dissipation plate and the heat sink are heated to about 200 to 700° C. in the steps of soldering and brazing. The tubular heat pipe and the vapor chamber are heated to about 800 to 1000° C. in steps such as sintering, degassing, brazing using phosphor copper brazing (BCuP-2 etc.), diffusion bonding, welding and the like.
For example, when a pure copper plate is used as the material of the vapor chamber, it is significantly softened when heated at a temperature of 650° C. or higher. Further, abrupt coarsening of crystal grains occurs. For this reason, the manufactured vapor chamber is easily deformed at the time of attachment to a heat sink, a semiconductor device, or incorporation into a PC housing, the structure inside the vapor chamber changes, and surface irregularities become large. However, there is a problem that the desired heat dissipation performance cannot be exhibited. Further, in order to avoid such deformation, the pure copper plate may be thickened, but if this is done, the mass and the thickness of the vapor chamber are increased. When the thickness is increased, there is a problem that the gap inside the PC housing becomes small and the convective heat transfer performance is deteriorated.

また、特許文献1,2に記載された銅合金板(Fe−P系)も、650℃以上の温度で加熱をすると軟化し、さらに純銅に比べて導電率が大きく低下する。このため、焼結、脱ガス、ろう付け、拡散接合、溶接等の工程を経て例えばベーパーチャンバーを製造した場合、同ベーパーチャンバーの搬送及びハンドリング、基盤への組込み工程等で容易に変形する。また、導電率が低下することで、ベーパーチャンバーとしての所期の性能が出なくなる。 Also, the copper alloy plates (Fe-P series) described in Patent Documents 1 and 2 are softened when heated at a temperature of 650° C. or higher, and the conductivity is greatly reduced as compared with pure copper. Therefore, for example, when a vapor chamber is manufactured through steps such as sintering, degassing, brazing, diffusion bonding, and welding, the vapor chamber is easily deformed in the steps of transporting and handling the vapor chamber and assembling it into a substrate. In addition, since the conductivity decreases, the desired performance as a vapor chamber cannot be obtained.

本発明は、純銅又は銅合金板からベーパーチャンバーを製造する場合の上記問題点に鑑みてなされたもので、上記プロセスを経て製造されたベーパーチャンバーに、十分な強度と放熱性能を持たせることができる銅合金板を提供することを目的とする。 The present invention has been made in view of the above problems when a vapor chamber is manufactured from pure copper or a copper alloy plate, and it is possible to provide a vapor chamber manufactured through the above process with sufficient strength and heat dissipation performance. An object is to provide a copper alloy plate that can be manufactured.

析出硬化型銅合金は、溶体化処理後、時効処理を行うことで、強度及び導電率が向上する。しかし、析出硬化型銅合金は、溶体化処理後、冷間で塑性加工を加えて析出サイトとなる塑性歪みを合金中に導入した後、時効処理を行うのでなければ、時効処理による強度及び導電率の向上効果が低い場合がある。
ろう付け、拡散接合、溶接等の加熱工程を経て製作されたベーパチャンバ−の場合、前記加熱工程後に塑性加工が加えられることはない。従って、前記ベーパチャンバ−を析出強化型銅合金の板材から製作した場合に、溶体化処理に相当する上記加熱工程後、時効処理を施しても、強度及び導電率が十分向上しない場合がある。
一方、本発明者らは、析出硬化型銅合金のうちCu−(Ni,Fe)−P系合金において、Ni、Fe、Pの組成範囲及び[Ni+Fe]/P比を限定することにより、上記加熱工程後、塑性加工を加えることなく時効処理した場合でも、ベーパチャンバ−の強度及び導電率が大きく向上することを見出し、本発明に到達した。
The precipitation hardening copper alloy is improved in strength and conductivity by performing an aging treatment after the solution treatment. However, precipitation-hardening copper alloys, after solution treatment, after cold-working to introduce plastic strain to the precipitation site into the alloy by plastic working, and unless aging treatment is performed, strength and conductivity by aging treatment The effect of improving the rate may be low.
In the case of a vapor chamber manufactured through a heating process such as brazing, diffusion bonding, and welding, plastic working is not applied after the heating process. Therefore, when the vapor chamber is manufactured from a plate material of precipitation-strengthened copper alloy, the strength and the electrical conductivity may not be sufficiently improved even if the aging treatment is performed after the heating process corresponding to the solution treatment.
On the other hand, the present inventors have defined the above by limiting the composition range of Ni, Fe and P and the [Ni+Fe]/P ratio in the Cu-(Ni,Fe)-P alloy among the precipitation hardening copper alloys. The present inventors have found that the strength and conductivity of the vapor chamber are significantly improved even when the aging treatment is performed without applying plastic working after the heating step, and the present invention has been completed.

本発明に係るベーパチャンバ−用銅合金板は、Ni:0.2〜0.95質量%及びFe:0.05〜0.8質量%と、P:0.03〜0.2質量%、残部がCu及び不可避不純物からなり、Ni及びFeの合計含有量を[Ni+Fe]とし、Pの含有量を[P]としたとき、[Ni+Fe]が0.25〜1.0質量%、かつ[Ni+Fe]/[P]が2〜10であり、0.2%耐力が100MPa以上で優れた曲げ加工性を有し、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の0.2%耐力が120MPa以上、導電率が40%IACS以上である。 The copper alloy plate for a vapor chamber according to the present invention has Ni: 0.2 to 0.95 mass% and Fe: 0.05 to 0.8 mass%, P: 0.03 to 0.2 mass%, When the balance consists of Cu and unavoidable impurities, the total content of Ni and Fe is [Ni+Fe], and the content of P is [P], [Ni+Fe] is 0.25 to 1.0% by mass, and [ Ni+Fe]/[P] is 2 to 10, 0.2% proof stress is 100 MPa or more, and has excellent bending workability. Aging is performed by heating at 850° C. for 30 minutes, water cooling, and then heating at 500° C. for 2 hours. The 0.2% proof stress after the treatment is 120 MPa or more, and the conductivity is 40% IACS or more.

本発明に係るベーパチャンバ−用銅合金板は、必要に応じて、合金元素としてさらに、Coを0.05質量%未満の範囲で含有することができる。また、本発明に係るベーパチャンバ−用銅合金板は、必要に応じて、合金元素としてさらに、SnとMgの1種又は2種をSn:0.005〜1.0質量%、Mg:0.005〜0.2質量%の範囲で含有し、又は/及びZnを1.0質量%以下の範囲で含有することができる。また、本発明に係るベーパチャンバ−用銅合金板は、必要に応じて、合金元素としてさらに、Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005〜0.5質量%含有することができる。 The copper alloy plate for a vapor chamber according to the present invention may further contain Co as an alloying element in a range of less than 0.05 mass% if necessary. Further, the copper alloy plate for a vapor chamber according to the present invention may further contain one or two of Sn and Mg as an alloying element, Sn: 0.005 to 1.0 mass% and Mg: 0. 0.005 to 0.2% by mass, or/and Zn can be contained in a range of 1.0% by mass or less. Further, the copper alloy plate for a vapor chamber according to the present invention may further contain one or two or more of Si, Al, Mn, Cr, Ti, Zr, and Ag as an alloying element, if necessary. 0.005 to 0.5 mass% can be contained.

ベーパーチャンバーを製造するプロセスの一部として、ろう付け、拡散接合、溶接等の650℃以上に高温加熱するプロセスが含まれる。本発明に係る銅合金板を用いて製造されたベーパーチャンバーは、前記高温加熱プロセスの後、時効処理を行うことにより、強度が向上する。
本発明に係る銅合金板は、0.2%耐力が100MPa以上であり、優れた曲げ加工性を有する。そして、本発明に係る銅合金板は、850℃に30分加熱し、次いで500℃で2時間加熱する時効処理を行ったとき、0.2%耐力が120MPa以上、導電率が40%IACS以上である。本発明に係る銅合金板は、時効処理後の強度が高いため、この銅合金板を用いて製造したベーパーチャンバーを、ヒートシンク、半導体装置へ取り付け、又はPC筐体等に組み込む際に、該ベーパーチャンバーが変形しにくい。また、本発明に係る銅合金板は、導電率が純銅板より低いが、時効処理後の強度が高いため薄肉化でき、放熱性能の点で導電率の低下分を補うことができる。
As a part of the process of manufacturing the vapor chamber, a process of heating at a high temperature of 650° C. or higher such as brazing, diffusion bonding, and welding is included. The strength of the vapor chamber manufactured by using the copper alloy sheet according to the present invention is improved by performing the aging treatment after the high temperature heating process.
The copper alloy sheet according to the present invention has a 0.2% proof stress of 100 MPa or more and has excellent bendability. And when the copper alloy plate which concerns on this invention heats at 850 degreeC for 30 minutes, and when then performs an aging treatment which heats at 500 degreeC for 2 hours, 0.2% proof stress is 120 MPa or more, and electrical conductivity is 40% IACS or more. Is. Since the copper alloy plate according to the present invention has high strength after aging treatment, when the vapor chamber manufactured using this copper alloy plate is attached to a heat sink, a semiconductor device, or incorporated in a PC housing or the like, the vapor chamber The chamber is hard to deform. Further, the copper alloy plate according to the present invention has a lower electric conductivity than a pure copper plate, but since the strength after aging treatment is high, the copper alloy plate can be thinned and the decrease in the electric conductivity can be compensated in terms of heat dissipation performance.

以下、本発明に係るベーパーチャンバー用銅合金板について、より詳細に説明する。
本発明に係る銅合金板は、プレス成形、打抜き加工、切削、エッチングなどにより所定形状に加工され、高温加熱(脱ガス、接合(ろう付け、拡散接合、溶接(TIG、MIG、レーザー等)、焼結等のための加熱)を経て、ベーパーチャンバーに仕上げられる。ベーパーチャンバーの種類や製造方法により前記高温加熱の加熱条件が異なるが、本発明では、前記高温加熱を650℃〜1050℃程度で行う場合を想定している。本発明に係る銅合金板は後述する組成の(Ni,Fe)−P系銅合金からなり、前記温度範囲内に加熱すると、母材に析出していた(Ni,Fe)−P化合物の少なくとも一部が固溶し、結晶粒が成長し、軟化及び導電率の低下が生じる。
Hereinafter, the copper alloy plate for a vapor chamber according to the present invention will be described in more detail.
The copper alloy sheet according to the present invention is processed into a predetermined shape by press forming, punching, cutting, etching, etc., and is heated at high temperature (degassing, joining (brazing, diffusion joining, welding (TIG, MIG, laser, etc.)), The heating process for the high temperature heating differs depending on the type of vapor chamber and the manufacturing method, but in the present invention, the high temperature heating is performed at about 650°C to 1050°C. The copper alloy plate according to the present invention is composed of a (Ni, Fe)-P-based copper alloy having a composition described later, and when heated within the above temperature range, it was precipitated on the base material (Ni. , Fe)-P compound forms a solid solution, crystal grains grow, and softening and decrease in conductivity occur.

本発明に係る銅合金板は、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の強度(0.2%耐力)が120MPa以上、導電率が40%IACS以上である。850℃で30分の加熱は、ベーパーチャンバーの製造における前記高温加熱のプロセスを想定した加熱条件である。本発明に係る銅合金板をこの条件で高温加熱すると、加熱前に析出していた(Ni,Fe)−P化合物が固溶し、結晶粒が成長し、軟化、及び導電率の低下が生じる。次いで前記銅合金板を時効処理すると、微細な(Ni,Fe)−P化合物が析出する。これにより、前記高温加熱により低下した強度及び導電率が顕著に改善する。 The copper alloy sheet according to the present invention has a strength (0.2% proof stress) of 120 MPa or more and an electrical conductivity of 40% after aging treatment of heating at 850° C. for 30 minutes, cooling with water, and then heating at 500° C. for 2 hours. It is IACS or more. The heating at 850° C. for 30 minutes is a heating condition assuming the high temperature heating process in the production of the vapor chamber. When the copper alloy plate according to the present invention is heated at a high temperature under these conditions, the (Ni,Fe)-P compound that had been precipitated before heating is solid-dissolved, crystal grains grow, and softening and a decrease in conductivity occur. .. Then, when the copper alloy plate is aged, fine (Ni, Fe)-P compounds are precipitated. As a result, the strength and the conductivity reduced by the high temperature heating are remarkably improved.

前記時効処理は、(a)高温加熱後の冷却工程中に析出温度範囲に一定時間保持する、(b)高温加熱後室温まで冷却し、その後析出温度範囲に再加熱して一定時間保持する、(c)前記(a)の工程後、析出温度範囲に再加熱して一定時間保持する、等の方法で実施することができる。
具体的な時効処理条件として、300〜600℃の温度範囲で5分〜10時間保持する条件が挙げられる。強度の向上を優先するときは微細な(Ni,Fe)−P化合物が生成する温度−時間条件を、導電率の向上を優先するときは固溶するNi、Fe、Pが減少する過時効気味の温度−時間条件を、適宜選定すればよい。
In the aging treatment, (a) holding in a precipitation temperature range for a certain time during a cooling step after high temperature heating, (b) cooling to room temperature after high temperature heating, and then reheating in the precipitation temperature range and holding for a certain time, (C) After the step (a), it can be carried out by a method such as reheating to a deposition temperature range and holding for a certain period of time.
Specific aging treatment conditions include a condition of holding the temperature range of 300 to 600° C. for 5 minutes to 10 hours. When priority is given to the improvement of strength, temperature-time conditions in which a fine (Ni,Fe)-P compound is generated are given, and when priority is given to the improvement of conductivity, the solid solution Ni, Fe, and P decrease, and there is an overaging tendency. The temperature-time conditions may be appropriately selected.

時効処理後の銅合金板は、高温加熱後の純銅板に比べて導電率は低いが、強度は純銅板に比べて顕著に高くなる。この効果を得るため、本発明に係る銅合金板を用いて製造したベーパーチャンバーは、高温加熱後時効処理される。時効処理条件は、前記のとおりである。時効処理後のベーパーチャンバー(銅合金板)は強度が高く、ヒートシンク、半導体装置へ取り付け、又はPC筐体等に組み込む際に、該ベーパーチャンバーの変形を防止できる。また、本発明に係る銅合金板(時効処理後)は、純銅板に比べて強度が高いため、薄肉化(0.1〜1.0mm厚)することができ、そのことによりベーパーチャンバーの放熱性能を高め、純銅板と比べた場合の導電率の低下分を補うことができる。
なお、本発明に係る銅合金板は、高温加熱の温度が850℃未満(650℃以上)又は850℃超(1050℃以下)であっても、時効処理後に、120MPa以上の0.2%耐力、及び40%IACS以上の導電率を達成できる。
The copper alloy plate after the aging treatment has a lower conductivity than the pure copper plate after being heated at a high temperature, but the strength is significantly higher than that of the pure copper plate. In order to obtain this effect, the vapor chamber manufactured using the copper alloy sheet according to the present invention is aged after heating at a high temperature. The aging treatment conditions are as described above. The vapor chamber (copper alloy plate) after the aging treatment has high strength and can prevent the vapor chamber from being deformed when it is attached to a heat sink, a semiconductor device, or incorporated in a PC housing or the like. Further, the copper alloy plate according to the present invention (after aging treatment) has a higher strength than the pure copper plate, and thus can be thinned (thickness of 0.1 to 1.0 mm), which results in heat dissipation of the vapor chamber. It is possible to improve the performance and compensate for the decrease in conductivity when compared with the pure copper plate.
In addition, even if the temperature of high temperature heating is less than 850° C. (650° C. or more) or more than 850° C. (1050° C. or less), the copper alloy sheet according to the present invention has a 0.2% proof stress of 120 MPa or more after aging treatment. , And a conductivity of 40% IACS or more can be achieved.

本発明に係る銅合金板は、650℃以上の温度に高温加熱される前に、プレス成形、打抜き加工、切削、エッチングなどにより、ベーパーチャンバーに加工される。銅合金板は、前記加工に際しての搬送及びハンドリングにおいて容易に変形しない強度を有し、前記加工が支障なく実行できる機械的特性を有することが好ましい。より具体的には、本発明に係る銅合金板は、0.2%耐力が100MPa以上、及び優れた曲げ加工性を有することが好ましい。以上の特性を満たしていれば、銅合金板の調質は問題にならない。例えば溶体化処理材、時効処理上がり、時効処理上り材を冷間圧延したものなど、いずれも使用可能である。 The copper alloy plate according to the present invention is processed into a vapor chamber by press molding, punching, cutting, etching, etc. before being heated to a temperature of 650° C. or higher. It is preferable that the copper alloy plate has such strength that it is not easily deformed during transportation and handling during the processing, and that it has mechanical characteristics so that the processing can be carried out without trouble. More specifically, the copper alloy plate according to the present invention preferably has a 0.2% proof stress of 100 MPa or more and excellent bending workability. If the above properties are satisfied, the tempering of the copper alloy plate does not matter. For example, a solution heat treated material, an aged material, or an aged material that has been cold rolled can be used.

曲げ加工においては、曲げ部で割れが発生しないことが求められる。さらに、曲げ線及びその近傍において、肌荒れが発生しないことが好ましい。同一材質の銅合金板であっても、曲げによる割れや肌荒れの発生しやすさは、曲げ半径Rと板厚tの比率R/tに依存する。銅合金板を用いてベーパーチャンバーを製造する場合、銅合金板の曲げ加工性として、通常、圧延平行方向、直角方向共にR/t≦2の曲げを行った場合に割れが発生しないことが求められる。銅合金板の曲げ加工性として、R/t≦1.5の曲げで割れが発生しないことが好ましく、R/t≦1.0の曲げで割れが発生しないことがより好ましい。銅合金板の曲げ加工性は、一般に板幅10mmの試験片で試験される(後述する実施例の曲げ加工性試験を参照)。銅合金板材を曲げ加工する場合、曲げ幅が大きいほど割れが発生しやすくなることから、ベーパーチャンバーとして特に曲げ幅が大きい場合には、R/t=1.0の曲げで割れが発生しないことが好ましく、さらにR/t=0.5の曲げで割れが発生しないことが好ましい。また、曲げ線及びその近傍で肌荒れを発生させないためには、銅合金板の表面において板幅方向に測定した平均結晶粒径(切断法)が20μm以下であることが好ましく、15μm以下であることがより好ましい。 In the bending process, it is required that cracks do not occur at the bent portion. Furthermore, it is preferable that rough skin does not occur at the bending line and its vicinity. Even with copper alloy plates made of the same material, the susceptibility to cracking and roughening due to bending depends on the ratio R/t of the bending radius R to the plate thickness t. When a vapor chamber is manufactured using a copper alloy plate, it is required that the bending workability of the copper alloy plate is such that cracks do not normally occur when bending is performed in a direction parallel to the rolling direction and a direction at right angles R/t≦2. To be As for the bending workability of the copper alloy plate, it is preferable that no cracks occur when bending R/t≦1.5, and it is more preferable that no cracking occurs when bending R/t≦1.0. The bending workability of the copper alloy plate is generally tested on a test piece having a plate width of 10 mm (see the bending workability test of Examples described later). When bending a copper alloy sheet, cracks are more likely to occur as the bending width is larger. Therefore, when the bending width is particularly large as a vapor chamber, cracks do not occur at bending of R/t=1.0. Is preferable, and it is preferable that cracks do not occur in bending at R/t=0.5. Further, in order to prevent roughening of the surface of the bending line and its vicinity, the average crystal grain size (cutting method) measured in the plate width direction on the surface of the copper alloy plate is preferably 20 μm or less, and 15 μm or less. Is more preferable.

先に述べたとおり、本発明に係る銅合金板を加工して製造したベーパーチャンバーは、650℃以上の温度に高温加熱すると軟化する。高温加熱後のベーパーチャンバーは、さらに時効処理を施す際の搬送及びハンドリングにおいて容易に変形しない強度を有することが好ましい。そのためには、850℃で30分加熱後水冷した段階で、50MPa以上の0.2%耐力を有することが好ましい。 As described above, the vapor chamber manufactured by processing the copper alloy sheet according to the present invention softens when heated to a temperature of 650° C. or higher. It is preferable that the vapor chamber after being heated at a high temperature has such strength that it is not easily deformed during transportation and handling when the aging treatment is further performed. For that purpose, it is preferable to have a 0.2% proof stress of 50 MPa or more at the stage of heating at 850° C. for 30 minutes and then water cooling.

本発明に係る銅合金板を用いて製造されたベーパーチャンバーは、時効処理を受けた後、必要に応じて、耐食性及びはんだ付け性の向上を主目的として、少なくとも外表面の一部にSn被覆層が形成される。Sn被覆層には、電気めっき、無電解めっき、あるいはこれらのめっき後、Snの融点以下又は融点以上に加熱して形成されたものが含まれる。Sn被覆層には、Sn金属とSn合金が含まれ、Sn合金としては、Sn以外に合金元素としてBi,Ag,Cu,Ni,In,Znのうち1種以上を合計で5質量%以下含むものが挙げられる。 The vapor chamber manufactured using the copper alloy plate according to the present invention is, after being subjected to an aging treatment, at least a part of the outer surface thereof is coated with Sn mainly for the purpose of improving corrosion resistance and solderability. A layer is formed. The Sn coating layer includes electroplating, electroless plating, or those formed by plating these and then heating to below or above the melting point of Sn. The Sn coating layer contains Sn metal and Sn alloy, and the Sn alloy contains, in addition to Sn, one or more of Bi, Ag, Cu, Ni, In, and Zn as alloy elements in a total amount of 5% by mass or less. There are things.

Sn被覆層の下に、Ni,Co,Fe等の下地めっきを形成することができる。これらの下地めっきは、母材からのCuや合金元素の拡散を防止するバリアとしての機能、及びベーパーチャンバーの表面硬さを大きくすることによる傷つき防止の機能を有する。前記下地めっきの上にCuをめっきし、さらにSnをめっき後、Snの融点以下又は融点以上に加熱する熱処理を行ってCu−Sn合金層を形成し、下地めっき、Cu−Sn合金層及びSn被覆層の3層構成とすることもできる。Cu−Sn合金層は、母材からのCuや合金元素の拡散を防止するバリアとしての機能、及びベーパーチャンバーの表面硬さを大きくすることによる傷つき防止の機能を有する。 Undercoating of Ni, Co, Fe or the like can be formed under the Sn coating layer. These base platings have a function as a barrier for preventing the diffusion of Cu and alloy elements from the base material, and a function for preventing scratches by increasing the surface hardness of the vapor chamber. Cu is plated on the undercoat, Sn is further plated, and then heat treatment is performed by heating to below or above the melting point of Sn to form a Cu—Sn alloy layer, and undercoat, Cu—Sn alloy layer and Sn. It is also possible to have a three-layer structure of a coating layer. The Cu-Sn alloy layer has a function as a barrier for preventing diffusion of Cu and alloy elements from the base material and a function for preventing scratches by increasing the surface hardness of the vapor chamber.

また、本発明に係る銅合金板を用いて製造されたベーパーチャンバーは、時効処理を受けた後、必要に応じて、少なくとも外表面の一部にNi被覆層が形成される。Ni被覆層は、母材からのCuや合金元素の拡散を防止するバリア、ベーパーチャンバーの表面硬さを大きくすることによる傷つき防止、及び耐食性を向上させる機能を有する。 In addition, the vapor chamber manufactured using the copper alloy sheet according to the present invention is subjected to an aging treatment, and then, if necessary, a Ni coating layer is formed on at least a part of the outer surface thereof. The Ni coating layer has a function of preventing the diffusion of Cu and alloy elements from the base material, a function of preventing scratches by increasing the surface hardness of the vapor chamber, and a function of improving corrosion resistance.

次に本発明に係る銅合金板の組成について説明する。
本発明に係る銅合金は、Ni:0.2〜0.95質量%及びFe:0.05〜0.8質量%と、P:0.03〜0.2質量%を含有する。Ni、Feの合計含有量[Ni+Fe]は0.25〜1.0質量%の範囲内とされる。
Ni、Feは、Pとの間にP化合物を生成し、銅合金板の強度や耐応力緩和特性を向上させる。なお、このP化合物は、Ni−P化合物、Fe−P化合物、及びNiの一部がFeで置換されたNi−Fe−P化合物の1種又は2種以上からなる。本発明ではこのP化物を(Ni,Fe)−P化合物と表記している。P化合物は固溶温度が高く、銅合金板が650℃以上の高温(例えば850℃)に加熱されても一部は比較的安定に存在し、結晶粒径の粗大化が防止される。一方、銅合金板の加熱温度が高いほど、水冷後の凍結空孔濃度が高くなり、析出物の核生成サイトが増えるため、続いて行われる時効処理により球状の析出物の数密度を増やすことができ、これは時効処理後の強度の向上に寄与する。
Next, the composition of the copper alloy plate according to the present invention will be described.
The copper alloy according to the present invention contains Ni: 0.2 to 0.95 mass%, Fe: 0.05 to 0.8 mass%, and P: 0.03 to 0.2 mass%. The total content of Ni and Fe [Ni+Fe] is within the range of 0.25 to 1.0 mass %.
Ni and Fe form a P compound with P, and improve the strength and stress relaxation resistance of the copper alloy plate. In addition, this P compound consists of 1 type(s) or 2 or more types of the Ni-P compound, the Fe-P compound, and the Ni-Fe-P compound in which a part of Ni was substituted by Fe. In the present invention, this P compound is referred to as a (Ni,Fe)-P compound. The P compound has a high solid solution temperature, and even if the copper alloy plate is heated to a high temperature of 650° C. or higher (for example, 850° C.), a part thereof remains relatively stable and coarsening of the crystal grain size is prevented. On the other hand, the higher the heating temperature of the copper alloy plate, the higher the freezing hole concentration after water cooling, and the nucleation sites of precipitates increase, so the number density of spherical precipitates can be increased by the subsequent aging treatment. , Which contributes to the improvement of strength after aging treatment.

Ni、Feの合計含有量[Ni+Fe]が0.25質量%未満、又はP含有量が0.03質量%未満では、P化合物の析出量が少なく、銅合金板の強度や耐応力緩和特性を向上させる効果が少ない。一方、[Ni+Fe]が1.0質量%を超え又はP含有量[P]が0.2質量%を超えると、粗大な酸化物、晶出物、析出物などが生成して熱間加工性が低下し、かつ銅合金板の強度、耐応力緩和特性、曲げ加工性が低下する。また、Ni、Fe、Pの固溶量が増え、銅合金板の導電率が低下する。従って、[Ni+Fe]は0.25〜1.0質量%、P含有量は0.03〜0.2質量%とする。
また、Ni、Feの個々の含有量が、それぞれ0.2質量%未満、0.05質量%未満の場合、銅合金板の強度や耐応力緩和特性を向上させる効果が少ない。従って、Ni、Feの含有量の下限値は、それぞれ0.2質量%、0.05質量%とする。
Ni及びFeの合計含有量[Ni+Fe]とP含有量[P]の含有量比[Ni+Fe]/[P]が、2未満又は10を超える場合、過剰となったNi、Fe又はPが固溶して、導電率が低下する。従って、含有量比[Ni+Fe]/[P]は2〜10とする。[Ni+Fe]/[P]の下限値は好ましくは2.2、上限値は好ましくは9.5である。
When the total content of Ni and Fe [Ni+Fe] is less than 0.25% by mass or the P content is less than 0.03% by mass, the precipitation amount of P compound is small and the strength and stress relaxation resistance of the copper alloy plate are reduced. There is little improvement effect. On the other hand, when [Ni+Fe] exceeds 1.0 mass% or when the P content [P] exceeds 0.2 mass%, coarse oxides, crystallized substances, precipitates, etc. are formed to cause hot workability. And the strength, stress relaxation resistance, and bending workability of the copper alloy plate deteriorate. Moreover, the solid solution amount of Ni, Fe, and P increases, and the conductivity of the copper alloy plate decreases. Therefore, [Ni+Fe] is 0.25 to 1.0 mass% and P content is 0.03 to 0.2 mass %.
When the respective contents of Ni and Fe are less than 0.2% by mass and less than 0.05% by mass, respectively, the effect of improving the strength and stress relaxation resistance of the copper alloy plate is small. Therefore, the lower limits of the contents of Ni and Fe are 0.2% by mass and 0.05% by mass, respectively.
When the content ratio [Ni+Fe]/[P] of the total content [Ni+Fe] and P content [P] of Ni and Fe is less than 2 or more than 10, excess Ni, Fe or P forms a solid solution. As a result, the conductivity decreases. Therefore, the content ratio [Ni+Fe]/[P] is set to 2 to 10. The lower limit of [Ni+Fe]/[P] is preferably 2.2, and the upper limit thereof is preferably 9.5.

CoはCuマトリックス中にCo単独で析出して銅合金の耐熱性を向上させるため、必要に応じて添加される。また、Coは(Ni,Fe)−P化合物のNi又はFeの一部を置換し、銅合金板の強度や耐応力緩和特性を向上させる。しかし、Coは高価であるので、Co含有量は0.05質量%未満とする。 Co precipitates alone in the Cu matrix and improves the heat resistance of the copper alloy, so Co is added as necessary. Further, Co replaces a part of Ni or Fe of the (Ni,Fe)-P compound and improves the strength and stress relaxation resistance of the copper alloy plate. However, since Co is expensive, the Co content is less than 0.05% by mass.

Snは銅合金母相に固溶して銅合金の強度を向上させる作用を有するため、必要に応じて添加される。また、Snの添加は耐応力緩和特性の向上にも有効である。ベーパーチャンバーの使用環境が80℃又はそれ以上となると、クリ−プ変形が生じてCPU等の熱源との接触面が小さくなり、放熱性が低下するが、耐応力緩和特性を向上させることで、この現象を抑制できる。強度及び耐応力緩和特性の向上の効果を得るため、Sn含有量は0.005質量%以上とし、好ましくは0.01質量%以上、より好ましくは0.02質量%以上とする。一方、Sn含有量が1.0質量%を超えると、銅合金板の曲げ加工性を低下させ、かつ時効処理後の導電率を低下させる。従って、Sn含有量は1.0質量%以下とし、好ましくは0.6質量%以下、より好ましくは0.3質量%以下とする。 Sn has a function of improving the strength of the copper alloy by forming a solid solution in the copper alloy matrix phase, and is therefore added as necessary. Further, addition of Sn is also effective in improving the stress relaxation resistance. When the environment in which the vapor chamber is used is 80° C. or higher, creep deformation occurs and the contact surface with the heat source such as the CPU becomes small and the heat dissipation decreases, but by improving the stress relaxation resistance, This phenomenon can be suppressed. In order to obtain the effect of improving strength and stress relaxation resistance, the Sn content is set to 0.005 mass% or more, preferably 0.01 mass% or more, and more preferably 0.02 mass% or more. On the other hand, when the Sn content exceeds 1.0 mass %, the bending workability of the copper alloy plate is deteriorated and the electrical conductivity after the aging treatment is decreased. Therefore, the Sn content is set to 1.0% by mass or less, preferably 0.6% by mass or less, and more preferably 0.3% by mass or less.

Mgは、Snと同様に、銅合金母相に固溶して銅合金の強度及び耐応力緩和特性を向上させる作用を有するため、必要に応じて添加される。強度及び耐応力緩和特性の向上の効果を得るため、Mg含有量は0.005質量%以上とする。一方、Mg含有量が0.2質量%を超えると、銅合金板の曲げ加工性を低下させ、かつ時効処理後の導電率を低下させる。従って、Mg含有量は0.2質量%以下とし、好ましくは0.15質量%以下、より好ましくは0.05質量%以下とする。 Similar to Sn, Mg has a function of improving the strength and stress relaxation resistance of the copper alloy by forming a solid solution in the copper alloy parent phase, and is therefore added as necessary. In order to obtain the effect of improving strength and stress relaxation resistance, the Mg content is set to 0.005 mass% or more. On the other hand, when the Mg content exceeds 0.2 mass %, the bending workability of the copper alloy plate is deteriorated and the electrical conductivity after the aging treatment is decreased. Therefore, the Mg content is 0.2 mass% or less, preferably 0.15 mass% or less, and more preferably 0.05 mass% or less.

Znは、銅合金板のはんだの耐熱剥離性及びSnめっきの耐熱剥離性を改善する作用を有するため、必要に応じて添加される。ベーパーチャンバーを半導体装置へ組み込むとき、はんだ付けが必要な場合があり、また、ベーパーチャンバーを製造後、耐食性改善のためSnめっきを行う場合がある。このようなベーパーチャンバーの製造に、Znを含有する銅合金板が好適に用いられる。しかし、Znの含有量が1.0質量%を越えると、はんだ濡れ性が低下するため、Znの含有量は1.0質量%以下とする。Znの含有量は好ましくは0.7質量%以下、より好ましくは0.5質量%以下とする。一方、Zn含有量が0.01質量%未満では、耐熱剥離性の改善には不十分であり、Znの含有量は0.01質量%以上であることが好ましい。Zn含有量は0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。
なお、本発明の銅合金板がZnを含む場合、500℃以上の温度で加熱すると、加熱雰囲気によってはZnが気化し、銅合金板の表面性状を低下させたり、加熱炉を汚染することがある。Znの気化を防止するとの観点からは、Znの含有量は好ましくは0.5質量%以下とし、より好ましくは0.3質量%以下、さらに好ましくは0.2質量%以下とする。
Zn has the effect of improving the heat-resistant peeling property of the solder of the copper alloy plate and the heat-resistant peeling property of the Sn plating, and is therefore added as necessary. When a vapor chamber is incorporated into a semiconductor device, soldering may be necessary, and after the vapor chamber is manufactured, Sn plating may be performed to improve corrosion resistance. A copper alloy plate containing Zn is preferably used for manufacturing such a vapor chamber. However, if the Zn content exceeds 1.0 mass %, the solder wettability deteriorates, so the Zn content is set to 1.0 mass% or less. The Zn content is preferably 0.7% by mass or less, more preferably 0.5% by mass or less. On the other hand, if the Zn content is less than 0.01% by mass, it is insufficient to improve the heat-resistant peelability, and the Zn content is preferably 0.01% by mass or more. The Zn content is more preferably 0.05% by mass or more, further preferably 0.1% by mass or more.
When the copper alloy sheet of the present invention contains Zn and is heated at a temperature of 500° C. or higher, Zn may be vaporized depending on the heating atmosphere to deteriorate the surface properties of the copper alloy sheet or contaminate the heating furnace. is there. From the viewpoint of preventing vaporization of Zn, the Zn content is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and further preferably 0.2% by mass or less.

Si、Al、Mn、Cr、Ti、Zr、Agは、銅合金の強度及び耐熱性を向上させる作用を有するため、これらの1種又は2種以上が必要に応じて添加される。これらの元素が添加される場合、含有量が多いと銅合金の導電率が低下するため、これらの元素の1種又は2種以上の合計含有量は0.5質量%以下に制限される。一方、上記作用を得るため、これらの元素の合計含有量の下限値は0.005質量以上とする。下限値は、より好ましくは0.01質量%、さらに好ましくは0.02質量%である。
このうちSi、Al、Mnは、少量含有させても銅合金の導電率を低下させることから、それぞれ上限値を、Si:0.2質量%、Al:0.2質量%、Mn:0.1質量%とすることが好ましい。一方、上記作用を得るため、Si、Al、Mnは、それぞれ下限値を、Si:0.01質量%、Al:0.01質量%、Mn:0.01質量とすることが好ましい。Cr、Ti、Zrは、数μm〜数10μm程度の酸化物系、硫化物系などの介在物を形成しやすく、冷間圧延により前記介在物と母材の間に隙間ができ、前記介在物が表面に存在したとき銅合金の耐食性を低下させる。従って、Cr、Ti、Zrの上限値は、Cr:0.2質量%、Ti:0.1質量%、Zr:0.05質量%とすることが好ましい。一方、上記作用を得るため、Cr、Ti、Zrは、それぞれ下限値を、Cr:0.005質量%、Ti:0.01質量%、Zr:0.005質量%とすることが好ましい。Agの上限値は0.5質量%とし、上記作用を得るため、下限値を0.01質量%とすることが好ましい。
Since Si, Al, Mn, Cr, Ti, Zr, and Ag have an action of improving the strength and heat resistance of the copper alloy, one or more of these are added as necessary. When these elements are added, the conductivity of the copper alloy decreases if the content is high, so the total content of one or more of these elements is limited to 0.5% by mass or less. On the other hand, in order to obtain the above action, the lower limit of the total content of these elements is set to 0.005 mass or more. The lower limit value is more preferably 0.01% by mass, and further preferably 0.02% by mass.
Of these, Si, Al, and Mn reduce the conductivity of the copper alloy even if contained in a small amount, so the upper limit values are Si: 0.2% by mass, Al: 0.2% by mass, and Mn: 0. It is preferably 1% by mass. On the other hand, in order to obtain the above action, it is preferable that the lower limit values of Si, Al, and Mn are Si: 0.01% by mass, Al: 0.01% by mass, and Mn: 0.01% by mass, respectively. Cr, Ti, and Zr easily form oxide-based or sulfide-based inclusions having a size of several μm to several tens of μm, and a gap is formed between the inclusions and the base material by cold rolling. When present on the surface, it reduces the corrosion resistance of the copper alloy. Therefore, the upper limit values of Cr, Ti, and Zr are preferably Cr: 0.2% by mass, Ti: 0.1% by mass, and Zr: 0.05% by mass. On the other hand, in order to obtain the above-mentioned action, it is preferable that Cr, Ti, and Zr have a lower limit value of Cr: 0.005 mass%, Ti: 0.01 mass%, and Zr: 0.005 mass%, respectively. The upper limit of Ag is 0.5% by mass, and the lower limit is preferably 0.01% by mass in order to obtain the above effects.

不可避不純物であるH、O、S、Pb、Bi、Sb、Se、Asは、銅合金板が650℃以上の温度に長時間加熱されると粒界に集まり、加熱中及び加熱後の粒界割れ並びに粒界脆化等を引起す可能性があるため、これらの元素の含有量は低減することが好ましい。Hは、加熱中に粒界や介在物と母材との界面に集まり、膨れを発生させることから、好ましくは1.5ppm(質量ppm、以下同じ)未満とし、より好ましくは1ppm未満とする。Oは、好ましくは20ppm未満、より好ましくは15ppm未満とする。S、Pb、Bi、Sb、Se、Asは、好ましくは合計で30ppm未満、より好ましくは20ppm未満とする。特にBi、Sb、Se、Asについては、好ましくはこれらの元素の合計含有量を10ppm未満、より好ましくは5ppm未満とする。 The unavoidable impurities H, O, S, Pb, Bi, Sb, Se and As gather at the grain boundaries when the copper alloy plate is heated to a temperature of 650° C. or higher for a long time, and the grain boundaries during and after heating. It is preferable to reduce the contents of these elements because they may cause cracking and embrittlement at the grain boundaries. Since H collects at the grain boundaries and the interface between inclusions and the base material during heating and causes swelling, it is preferably less than 1.5 ppm (mass ppm, the same hereinafter), and more preferably less than 1 ppm. O is preferably less than 20 ppm, more preferably less than 15 ppm. The total content of S, Pb, Bi, Sb, Se and As is preferably less than 30 ppm, more preferably less than 20 ppm. Especially for Bi, Sb, Se and As, the total content of these elements is preferably less than 10 ppm, more preferably less than 5 ppm.

本発明に係る銅合金板は、前記組成を有する鋳塊を均熱処理後、(1)熱間圧延−冷間圧延−焼鈍、(2)熱間圧延−冷間圧延−焼鈍−冷間圧延、(3)熱間圧延−冷間圧延−焼鈍−冷間圧延−低温焼鈍、等の工程で製造できる。上記(1)〜(3)において、冷間圧延−焼鈍の工程を複数回行ってもよい。
前記焼鈍には、軟化焼鈍、再結晶焼鈍又は析出焼鈍(時効処理)が含まれる。軟化焼鈍又は再結晶焼鈍の場合は、加熱温度を600〜950℃の範囲から、加熱時間を5秒〜1時間の範囲から選定するとよい。軟化焼鈍又は再結晶焼鈍が溶体化処理を兼ねる場合は、650〜950℃で5秒〜3分加熱する連続焼鈍を行うとよい。析出焼鈍の場合、前述したとおり、300〜600℃程度の温度範囲に0.5〜10時間保持する条件で行うとよい。軟化焼鈍又は再結晶焼鈍が溶体化処理を兼ねる場合、後工程で析出焼鈍を行うことができる。
最終冷間圧延は、目標とする0.2%耐力と曲げ加工性に合わせて、加工率5〜80%の範囲から選定するとよい。
低温焼鈍は、銅合金板の延性の回復のため、銅合金板を再結晶させることなく軟化させるもので、連続焼鈍による場合は300〜650℃の雰囲気に1秒〜5分程度保持されるように定めるとよい。また、バッチ式焼鈍の場合は、銅合金板の実体温度が250℃〜400℃に5分〜1時間程度保持されるように定めるとよい。
以上の製造方法により、0.2%耐力が100MPa以上で、優れた曲げ加工性を有する銅合金板を製造することができる。また、この銅合金板は、850℃で30分加熱し、次いで500℃で2時間加熱する時効処理をしたとき、120MPa以上の0.2%耐力、40%IACS以上の導電率を有する。
The copper alloy sheet according to the present invention, after soaking the ingot having the above composition, (1) hot rolling-cold rolling-annealing, (2) hot rolling-cold rolling-annealing-cold rolling, (3) It can be manufactured by steps such as hot rolling-cold rolling-annealing-cold rolling-low temperature annealing. In the above (1) to (3), the process of cold rolling-annealing may be performed multiple times.
The annealing includes softening annealing, recrystallization annealing or precipitation annealing (aging treatment). In the case of softening annealing or recrystallization annealing, it is advisable to select the heating temperature in the range of 600 to 950° C. and the heating time in the range of 5 seconds to 1 hour. When the softening annealing or the recrystallization annealing also serves as the solution treatment, it is preferable to perform continuous annealing by heating at 650 to 950° C. for 5 seconds to 3 minutes. In the case of precipitation annealing, as described above, it is advisable to perform the annealing in a temperature range of about 300 to 600° C. for 0.5 to 10 hours. When the softening annealing or the recrystallization annealing also serves as the solution treatment, precipitation annealing can be performed in a subsequent step.
For the final cold rolling, it is advisable to select from the range of the working rate of 5 to 80% in accordance with the target 0.2% proof stress and bending workability.
The low-temperature annealing softens the copper alloy plate without recrystallizing it in order to recover the ductility of the copper alloy plate, and in the case of continuous annealing, it is kept in an atmosphere of 300 to 650° C. for about 1 second to 5 minutes. It is good to set in. Further, in the case of batch type annealing, it is preferable to determine that the actual temperature of the copper alloy plate is maintained at 250°C to 400°C for about 5 minutes to 1 hour.
By the above manufacturing method, it is possible to manufacture a copper alloy plate having a 0.2% proof stress of 100 MPa or more and excellent bending workability. Further, this copper alloy plate has a 0.2% proof stress of 120 MPa or more and a conductivity of 40% IACS or more when subjected to an aging treatment of heating at 850° C. for 30 minutes and then at 500° C. for 2 hours.

本発明に係る銅合金板は、好ましくは、鋳塊を均熱処理し、熱間圧延した後、冷間圧延、溶体化を伴う再結晶処理、冷間圧延、時効処理の工程で製造される。溶体化を伴う再結晶処理後、冷間圧延を行うことなく時効処理を行い、続いて冷間圧延を行ってもよい。この製造方法の下で、前記組成の銅合金を用い、以下の条件で製造した銅合金板は、0.2%耐力が300MPa以上で、優れた曲げ加工性を有する。
溶解、鋳造は、連続鋳造、半連続鋳造などの通常の方法によって行うことができる。なお、銅溶解原料として、S、Pb、Bi、Se、As含有量の少ないものを使用することが好ましい。また、銅合金溶湯に被覆する木炭の赤熱化(水分除去)、地金、スクラップ原料、樋、鋳型の乾燥、及び溶湯の脱酸等に注意し、O、Hを低減することが好ましい。
The copper alloy sheet according to the present invention is preferably manufactured by the steps of soaking, hot rolling, cold rolling, recrystallization treatment with solution treatment, cold rolling, and aging treatment. After the recrystallization treatment accompanied by solution treatment, aging treatment may be performed without cold rolling, and then cold rolling may be performed. Under this production method, the copper alloy sheet produced using the copper alloy having the above composition under the following conditions has a 0.2% proof stress of 300 MPa or more and has excellent bendability.
Melting and casting can be performed by usual methods such as continuous casting and semi-continuous casting. In addition, it is preferable to use a material having a small content of S, Pb, Bi, Se, and As as a copper melting raw material. Further, it is preferable to reduce O and H by paying attention to red heat (removal of water) of charcoal coated on the molten copper alloy, ingot, scrap raw material, gutter, drying of mold, deoxidation of molten metal, and the like.

均質化処理は、鋳塊内部の温度が800℃以上の温度に到達後、30分以上保持することが好ましい。均質化処理の保持時間は1時間以上がより好ましく、2時間以上がさらに好ましい。
均質化処理後、熱間圧延を800℃以上の温度で開始する。熱間圧延材に粗大な(Ni,Fe)−P析出物が形成されないように、熱間圧延は600℃以上の温度で終了し、その温度から水冷等の方法により急冷することが好ましい。熱間圧延後の急冷開始温度が600℃より低いと、粗大な(Ni,Fe)−P析出物が形成され、組織が不均一になりやすく、銅合金板(製品板)の強度が低下する。熱間圧延の終了温度は650℃以上の温度であることが好ましく、700℃以上の温度であることがさらに好ましい。なお、熱間圧延後急冷した熱間圧延材の組織は再結晶組織となる。後述の溶体化を伴う再結晶処理は熱間圧延後の急冷を行うことで兼ねることができる。
The homogenization treatment is preferably held for 30 minutes or more after the temperature inside the ingot reaches a temperature of 800°C or higher. The holding time of the homogenization treatment is more preferably 1 hour or more, further preferably 2 hours or more.
After the homogenization treatment, hot rolling is started at a temperature of 800°C or higher. It is preferable that the hot rolling is finished at a temperature of 600° C. or higher and is rapidly cooled from that temperature by a method such as water cooling so that coarse (Ni, Fe)-P precipitates are not formed in the hot rolled material. When the quenching start temperature after hot rolling is lower than 600°C, coarse (Ni,Fe)-P precipitates are formed, the structure is likely to be non-uniform, and the strength of the copper alloy plate (product plate) decreases. .. The end temperature of hot rolling is preferably 650°C or higher, more preferably 700°C or higher. The structure of the hot-rolled material that has been quenched after hot-rolling becomes a recrystallized structure. The recrystallization treatment accompanied by solution treatment which will be described later can also be performed by performing rapid cooling after hot rolling.

熱間圧延後の冷間圧延により、銅合金板に一定の歪みを加えることで、続く再結晶処理後に、所望の再結晶組織(微細な再結晶組織)を有する銅合金板が得られる。
溶体化を伴う再結晶処理は、650〜950℃、好ましくは670〜900℃で3分以下の保持の条件で行う。銅合金中のNi、Fe、Pの含有量が少ない場合は,上記温度範囲内のより低温領域で、Ni、Fe,Pの含有量が多い場合は、上記温度範囲内のより高温領域で行うことが好ましい。この再結晶処理により、Ni、Fe、Pを銅合金母材に固溶させると共に、曲げ加工性が良好となる再結晶組織(結晶粒径が1〜20μm)を形成することができる。この再結晶処理の温度が650℃より低いと、Ni、Fe、Pの固溶量が少なくなり、強度が低下する。一方、再結晶処理の温度が950℃を超え又は処理時間が3分を超えると、再結晶粒が粗大化する。
By applying a certain strain to the copper alloy sheet by cold rolling after the hot rolling, a copper alloy sheet having a desired recrystallization structure (fine recrystallization structure) can be obtained after the subsequent recrystallization treatment.
The recrystallization treatment accompanied by solution treatment is performed at 650 to 950° C., preferably 670 to 900° C. under the condition of holding for 3 minutes or less. When the content of Ni, Fe, P in the copper alloy is low, the temperature is in the lower temperature range within the above temperature range, and when the content of Ni, Fe, P is high, it is in the higher temperature range within the above temperature range. It is preferable. By this recrystallization treatment, Ni, Fe, and P can be solid-dissolved in the copper alloy base material, and a recrystallized structure (crystal grain size of 1 to 20 μm) that improves bending workability can be formed. When the temperature of this recrystallization treatment is lower than 650° C., the solid solution amount of Ni, Fe, and P decreases, and the strength decreases. On the other hand, if the recrystallization temperature exceeds 950° C. or the processing time exceeds 3 minutes, the recrystallized grains become coarse.

溶体化を伴う再結晶処理後は、(a)冷間圧延−時効処理、(b)冷間圧延−時効処理−冷間圧延、(c)冷間圧延−時効処理−冷間圧延−低温焼鈍、(d)時効処理−冷間圧延、(e)時効処理−冷間圧延−低温焼鈍、のいずれかの工程が選択できる。
時効処理(析出焼鈍)は、加熱温度300〜600℃程度で0.5〜10時間保持する条件で行う。この加熱温度が300℃未満では析出量が少なく、600℃を超えると析出物が粗大化しやすい。加熱温度の下限は、好ましくは350℃とし、上限は好ましくは580℃、より好ましくは560℃とする。時効処理の保持時間は、加熱温度により適宜選択し、0.5〜10時間の範囲内で行う。この保持時間が0.5時間以下では析出が不十分となり、10時間を越えても析出量が飽和し、生産性が低下する。保持時間の下限は、好ましくは1時間、より好ましくは2時間とする。
After the recrystallization treatment with solution treatment, (a) cold rolling-aging treatment, (b) cold rolling-aging treatment-cold rolling, (c) cold rolling-aging treatment-cold rolling-low temperature annealing. , (D) aging treatment-cold rolling, and (e) aging treatment-cold rolling-low temperature annealing can be selected.
The aging treatment (precipitation annealing) is performed under the condition that the heating temperature is maintained at about 300 to 600° C. for 0.5 to 10 hours. If the heating temperature is lower than 300° C., the amount of precipitation is small, and if it exceeds 600° C., the precipitate tends to become coarse. The lower limit of the heating temperature is preferably 350°C, and the upper limit is preferably 580°C, more preferably 560°C. The holding time of the aging treatment is appropriately selected depending on the heating temperature and is carried out within the range of 0.5 to 10 hours. If this holding time is 0.5 hours or less, precipitation will be insufficient, and if it exceeds 10 hours, the amount of precipitation will be saturated and productivity will fall. The lower limit of the holding time is preferably 1 hour, more preferably 2 hours.

表1,2に示す組成の銅合金を鋳造し、それぞれ厚さ45mm、長さ85mm、幅200mmの鋳塊を作製した。この銅合金において、不可避不純物であるHは1ppm未満、Oは15ppm未満、S、Pb、Bi、Sb、Se、Asは合計で20ppm未満であった。
各鋳塊に対し965℃で3時間の均熱処理を行い、続いて熱間圧延を行って板厚15mmの熱間圧延材とし、650℃以上の温度から焼き入れ(水冷)した。焼き入れ後の熱間圧延材の両面を1mmずつ研磨(面削)した後、目標板厚0.6mmまで冷間粗圧延し、650〜950℃で10〜60秒保持する再結晶処理(溶体化を伴う)を行った。次いで500℃で2時間の時効処理(析出焼鈍)後、50%の仕上げ冷間圧延を施し、板厚0.3mmの銅合金板を製造した。
なお、表1,2に示す実施例4,7,10と比較例1,5について、冷間粗圧延後の銅合金板(厚さ0.6mm)の一部(長さ2000mm)を、後述する[実施例3]、[実施例4]に用いた。
Copper alloys having the compositions shown in Tables 1 and 2 were cast into ingots each having a thickness of 45 mm, a length of 85 mm and a width of 200 mm. In this copper alloy, H which is an unavoidable impurity was less than 1 ppm, O was less than 15 ppm, and S, Pb, Bi, Sb, Se and As were less than 20 ppm in total.
Each ingot was subjected to soaking treatment at 965° C. for 3 hours, followed by hot rolling to obtain a hot-rolled material having a plate thickness of 15 mm, which was quenched (water-cooled) from a temperature of 650° C. or higher. After both sides of the hot-rolled material after quenching are polished (face cut) by 1 mm, cold rough rolling is performed to a target plate thickness of 0.6 mm, and recrystallization treatment is performed at 650 to 950° C. for 10 to 60 seconds (solution). Was performed). Then, after aging treatment (precipitation annealing) at 500° C. for 2 hours, 50% finish cold rolling was performed to manufacture a copper alloy plate having a plate thickness of 0.3 mm.
For Examples 4, 7 and 10 and Comparative Examples 1 and 5 shown in Tables 1 and 2, a part (length 2000 mm) of the copper alloy plate (thickness 0.6 mm) after cold rough rolling will be described later. It was used for [Example 3] and [Example 4].

Figure 0006732840
Figure 0006732840

Figure 0006732840
Figure 0006732840

得られた銅合金板を供試材として、下記要領で、導電率、機械的特性、曲げ加工性、はんだ濡れ性の各測定試験を行った。その結果を表3,4に示す。
また、得られた銅合金板を850℃で30分間加熱後水冷したもの、さらに500℃で2時間加熱する時効処理(析出処理)を行ったものを、それぞれ供試材として、導電率及び機械的特性の各測定試験を行った。その結果を表3,4に示す。
Using the obtained copper alloy plate as a test material, each measurement test of electrical conductivity, mechanical properties, bending workability, and solder wettability was conducted in the following manner. The results are shown in Tables 3 and 4.
Further, the obtained copper alloy sheet was heated at 850° C. for 30 minutes and then water-cooled, and further subjected to an aging treatment (precipitation treatment) of heating at 500° C. for 2 hours. Each measurement test of physical characteristics was performed. The results are shown in Tables 3 and 4.

(導電率の測定)
導電率の測定は,JIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し,ダブルブリッジを用いた四端子法で行った。
(機械的特性)
供試材から、長手方向が圧延平行方向となるようにJIS5号引張り試験片を切り出し、JIS−Z2241に準拠して引張り試験を実施して、耐力と伸びを測定した。耐力は永久伸び0.2%に相当する引張強さである。
(Measurement of conductivity)
The conductivity was measured according to the non-ferrous metal material conductivity measuring method defined in JIS-H0505, and the four-terminal method using a double bridge was used.
(Mechanical properties)
A JIS No. 5 tensile test piece was cut out from the test material so that the longitudinal direction was parallel to the rolling direction, and a tensile test was carried out in accordance with JIS-Z2241 to measure the yield strength and elongation. The yield strength is the tensile strength corresponding to a permanent elongation of 0.2%.

(曲げ加工性)
曲げ加工性の測定は、伸銅協会標準JBMA−T307に規定されるW曲げ試験方法に従い実施した。各供試材から幅10mm、長さ30mmの試験片を切り出し、R/t=0.5となる冶具を用いて、G.W.(Good Way(曲げ軸が圧延方向に垂直))及びB.W.(Bad Way(曲げ軸が圧延方向に平行))の曲げを行った。次いで、曲げ部における割れの有無を100倍の光学顕微鏡により目視観察し、G.W.及びB.W.の双方で割れの発生がないものを○(合格)、G.W.又はB.W.のいずれか一方又は双方で割れが発生したものを×(不合格)、と評価した。
(Bending workability)
The bending workability was measured according to the W bending test method defined in JBMA-T307 of the Copper and Brass Association. A test piece having a width of 10 mm and a length of 30 mm was cut out from each of the test materials, and a G.I. W. (Good Way (the bending axis is perpendicular to the rolling direction)) and B.I. W. (Bad Way (bending axis is parallel to the rolling direction)) was bent. Then, the presence or absence of cracks in the bent portion was visually observed with a 100× optical microscope, and G. W. And B. W. No cracks were found on both sides of the test (good), G. W. Or B. W. Those in which cracking occurred in either one or both of them were evaluated as x (fail).

(はんだ濡れ性)
各供試材から短冊状試験片を採取し、非活性フラックスを1秒間浸漬塗布した後、メニスコグラフ法にてはんだ濡れ時間を測定した。はんだは260±5℃に保持したSn−3質量%Ag−0.5質量%Cuを用い、浸漬速度を25mm/sec、浸漬深さを5mm、浸漬時間を5secの試験条件で実施した。はんだ濡れ時間が2秒以下のものをはんだ濡れ性が優れると評価した。なお、比較例6以外は、はんだ濡れ時間が2秒以下であった。
(Solder wettability)
A strip-shaped test piece was sampled from each test material, an inert flux was applied by dipping for 1 second, and then a solder wetting time was measured by a meniscograph method. The solder was Sn-3 mass% Ag-0.5 mass% Cu held at 260±5° C., and the test was carried out under the test conditions of a dipping speed of 25 mm/sec, a dipping depth of 5 mm, and a dipping time of 5 sec. Those having a solder wetting time of 2 seconds or less were evaluated as having excellent solder wettability. In addition, except for Comparative Example 6, the solder wetting time was 2 seconds or less.

Figure 0006732840
Figure 0006732840

Figure 0006732840
Figure 0006732840

表1,3に示す実施例1〜24の銅合金板は、合金組成が本発明の規定を満たし、850℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が120MPa以上で、かつ導電率が40%IACS以上である。また、850℃で加熱する前の銅合金板の特性は、強度(0.2%耐力)が300MPa以上であり、曲げ加工性やはんだ濡れ性も優れている。 The copper alloy plates of Examples 1 to 24 shown in Tables 1 and 3 have alloy compositions satisfying the regulations of the present invention, and have strength (0.2% proof stress) after heating at 850° C. for 30 minutes and then aging treatment. It is 120 MPa or more and the electrical conductivity is 40% IACS or more. The copper alloy plate before heating at 850° C. has a strength (0.2% proof stress) of 300 MPa or more, and is excellent in bending workability and solder wettability.

これに対し、表2,4に示す比較例1〜10の銅合金板は、以下に示すように、何らかの特性が劣る。
比較例1は、Niを含まず、かつNi及びFeの合計含有量[Ni+Fe]が少ないため、時効処理後の強度が低い。
比較例2は、P含有量が過剰なため、熱間圧延時に割れが生じて、熱間圧延後の工程に進むことができなかった。
比較例3は、Ni含有量が少なく、かつNi及びFeの合計含有量[Ni+Fe]が少なく、P含有量も少ないため、時効処理後の強度が低い。
比較例4、5は、それぞれSn又はMg含有量が過剰で、時効処理後の導電率が低い。
比較例6は、Zn含有量が過剰で、先に述べたようにはんだ濡れ性が劣っていた。
比較例7は、主要元素以外の元素(Al、Mn等)の合計が過剰で0.5質量%を超えたため、時効処理後の導電率が低い。
比較例8は、Feを含まず、かつNi及びFeの合計含有量[Ni+Fe]が少ないため、時効処理後の強度が低い。
比較例9は、Ni及びFeの合計含有量[Ni+Fe]及びP含有量が過剰で、熱間圧延時に割れが生じて、熱間圧延後の工程に進むことができなかった。
比較例10は、Ni含有量が少なく、時効処理後の耐力が低い。
On the other hand, the copper alloy plates of Comparative Examples 1 to 10 shown in Tables 2 and 4 are inferior in some characteristics as shown below.
Since Comparative Example 1 does not contain Ni and the total content of Ni and Fe [Ni+Fe] is small, the strength after aging treatment is low.
In Comparative Example 2, since the P content was excessive, cracking occurred during hot rolling, and it was not possible to proceed to the step after hot rolling.
In Comparative Example 3, since the Ni content is low, the total content of Ni and Fe [Ni+Fe] is low, and the P content is low, the strength after aging treatment is low.
In Comparative Examples 4 and 5, the Sn or Mg content was excessive, and the electrical conductivity after the aging treatment was low.
In Comparative Example 6, the Zn content was excessive, and the solder wettability was poor as described above.
In Comparative Example 7, the total amount of elements other than the main elements (Al, Mn, etc.) exceeded 0.5% by mass, and therefore the electrical conductivity after the aging treatment was low.
Since Comparative Example 8 does not contain Fe and the total content of Ni and Fe [Ni+Fe] is small, the strength after aging treatment is low.
In Comparative Example 9, the total content of Ni and Fe [Ni+Fe] and the content of P were excessive, cracking occurred during hot rolling, and it was not possible to proceed to the step after hot rolling.
Comparative Example 10 has a low Ni content and a low yield strength after the aging treatment.

[実施例1]で製造した銅合金板(板厚0.3mm)のうち代表的なもの(表1,2に示す実施例4,7,10と比較例1,5)について、1000℃で30分間加熱後水冷し、さらに500℃で2時間加熱(時効処理)し、当該銅合金板を供試材として、導電率及び機械的特性の各測定試験を、[実施例1]に記載した方法で行った。その結果を表5に示す。 Representative examples (Examples 4, 7, and 10 and Comparative Examples 1 and 5 shown in Tables 1 and 2) among the copper alloy plates (plate thickness 0.3 mm) manufactured in [Example 1] were tested at 1000°C. After heating for 30 minutes, cooling with water, and further heating at 500° C. for 2 hours (aging treatment), using the copper alloy plate as a test material, each measurement test of electrical conductivity and mechanical properties is described in [Example 1]. Made by way. The results are shown in Table 5.

Figure 0006732840
Figure 0006732840

表5に示すように、実施例4,7,10は、1000℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が120MPa以上で、かつ導電率が40%IACS以上である。表5に示す数値(時効処理後の耐力と導電率)を、850℃で30分間加熱し、次いで時効処理した後の測定結果(表3参照)と比較すると、数値に大きい違いはない。
一方、比較例1,5は、1000℃で30分間加熱し、次いで時効処理した後の強度又は導電率が基準(0.2%耐力が120MPa以上、導電率が40%IACS以上)に達していない。
As shown in Table 5, in Examples 4, 7, and 10, the strength (0.2% proof stress) after heating at 1000° C. for 30 minutes and then aging treatment was 120 MPa or more, and the conductivity was 40% IACS. That is all. Comparing the numerical values (proof stress and conductivity after aging treatment) shown in Table 5 with the measurement results after heating at 850° C. for 30 minutes and then aging treatment (see Table 3), there is no great difference in the numerical values.
On the other hand, in Comparative Examples 1 and 5, the strength or conductivity after heating at 1000° C. for 30 minutes and then aging treatment reached the standard (0.2% proof stress 120 MPa or more, conductivity 40% IACS or more). Absent.

表1,2に示す実施例4,7,10と比較例1,5について、[実施例1]で製造した冷間粗圧延後の銅合金板(厚さ0.6mm)を用い、これにさらに50%の冷間圧延を施し、板厚0.3mmの銅合金板を製造した。次いで、この銅合金板に650〜825℃で10〜60秒保持する再結晶処理(溶体化を伴う)を行った。 For Examples 4, 7, and 10 and Comparative Examples 1 and 5 shown in Tables 1 and 2, the copper alloy plate (thickness 0.6 mm) after cold rough rolling manufactured in [Example 1] was used. Further, 50% cold rolling was performed to manufacture a copper alloy plate having a plate thickness of 0.3 mm. Then, this copper alloy plate was subjected to a recrystallization treatment (with solution treatment) in which the copper alloy plate was held at 650 to 825°C for 10 to 60 seconds.

得られた銅合金板を供試材として、前記[実施例1]に記載した方法で、導電率、機械的特性、曲げ加工性の各測定試験を行った。また、得られた銅合金板を850℃で30分間加熱後水冷したもの、さらに500℃で2時間加熱する時効処理(析出処理)を行ったものを、それぞれ供試材として、同様に導電率及び機械的特性の各測定試験を行った。その結果を表6に示す。表6において、実施例4A,7A,10Aの組成は、表1の実施例4,7,10の組成と同じであり、比較例1A,5Aの組成は、表2の比較例1,5の組成と同じである。 Using the obtained copper alloy plate as a test material, each measurement test of electrical conductivity, mechanical characteristics, and bending workability was performed by the method described in [Example 1]. Also, the obtained copper alloy plate was heated at 850° C. for 30 minutes and then water-cooled, and further subjected to an aging treatment (precipitation treatment) of heating at 500° C. for 2 hours. And each measurement test of mechanical property was performed. The results are shown in Table 6. In Table 6, the compositions of Examples 4A, 7A and 10A are the same as the compositions of Examples 4, 7 and 10 in Table 1, and the compositions of Comparative Examples 1A and 5A are those of Comparative Examples 1 and 5 in Table 2. It has the same composition.

Figure 0006732840
Figure 0006732840

表6に示す実施例4A,7A,10Aの銅合金板は、合金組成が本発明の規定を満たし、850℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が120MPa以上で、かつ導電率が40%IACS以上である。また、850℃で加熱する前の銅合金板の特性は、強度(0.2%耐力)が100MPa以上であり、曲げ加工性も優れている。
これに対し、比較例1Aの銅合金板は時効処理後の強度が低く、比較例5Aの銅合金は時効処理後の導電率が低い。
The copper alloy sheets of Examples 4A, 7A, and 10A shown in Table 6 have an alloy composition satisfying the requirements of the present invention, have a strength (0.2% proof stress) after being heated at 850° C. for 30 minutes and then aged. It is 120 MPa or more and the electrical conductivity is 40% IACS or more. In addition, the properties of the copper alloy plate before heating at 850° C. are strength (0.2% proof stress) of 100 MPa or more and excellent bending workability.
On the other hand, the copper alloy plate of Comparative Example 1A has low strength after aging treatment, and the copper alloy plate of Comparative Example 5A has low electrical conductivity after aging treatment.

表1,2に示す実施例4,7,10と比較例1,5について、[実施例1]で製造した冷間粗圧延後の銅合金板(厚さ0.6mm)を用い、これにさらに冷間圧延を施し、板厚0.32mmとした。次いで、650〜825℃で10〜60秒保持する再結晶処理(溶体化を伴う)を行った後、仕上げ冷間圧延を施し、板厚0.3mmの銅合金板を製造した。 Regarding Examples 4, 7 and 10 and Comparative Examples 1 and 5 shown in Tables 1 and 2, the copper alloy plate (thickness 0.6 mm) after cold rough rolling manufactured in [Example 1] was used. Further, cold rolling was performed to a plate thickness of 0.32 mm. Then, after performing recrystallization treatment (with solution treatment) of holding at 650 to 825°C for 10 to 60 seconds, finish cold rolling was performed to manufacture a copper alloy plate having a plate thickness of 0.3 mm.

得られた銅合金板を供試材として、前記実施例1に記載した方法で、導電率、機械的特性、曲げ加工性の各測定試験を行った。また、得られた銅合金板を850℃で30分間加熱後水冷したもの、さらに500℃で2時間加熱する時効処理(析出処理)を行ったものを、それぞれ供試材として、同様に導電率及び機械的特性の各測定試験を行った。その結果を表7に示す。表7において、実施例4B,7B,10Bの組成は、表1の実施例4,7,10の組成と同じであり、比較例1B,5Bの組成は、表2の比較例1,5の組成と同じである。 Using the obtained copper alloy plate as a test material, each measurement test of electrical conductivity, mechanical properties, and bending workability was performed by the method described in Example 1 above. Also, the obtained copper alloy plate was heated at 850° C. for 30 minutes and then water-cooled, and further subjected to an aging treatment (precipitation treatment) of heating at 500° C. for 2 hours. And each measurement test of mechanical property was performed. The results are shown in Table 7. In Table 7, the compositions of Examples 4B, 7B and 10B are the same as the compositions of Examples 4, 7 and 10 in Table 1, and the compositions of Comparative Examples 1B and 5B are those of Comparative Examples 1 and 5 in Table 2. It has the same composition.

Figure 0006732840
Figure 0006732840

表7に示す実施例4B,7B,10Bの銅合金板は、合金組成が本発明の規定を満たし、850℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が120MPa以上で、かつ導電率が40%IACS以上である。また、850℃で加熱する前の銅合金板の特性は、強度(0.2%耐力)が100MPa以上であり、曲げ加工性も優れている。
これに対し、比較例1Bの銅合金板は時効処理後の強度が低く、比較例5Bの銅合金は時効処理後の導電率が低い。
The copper alloy sheets of Examples 4B, 7B, and 10B shown in Table 7 have an alloy composition satisfying the requirements of the present invention, have a strength (0.2% yield strength) after heating at 850° C. for 30 minutes and then aging treatment. It is 120 MPa or more and the electrical conductivity is 40% IACS or more. In addition, the properties of the copper alloy plate before heating at 850° C. are strength (0.2% proof stress) of 100 MPa or more and excellent bending workability.
On the other hand, the copper alloy plate of Comparative Example 1B has low strength after aging treatment, and the copper alloy plate of Comparative Example 5B has low electrical conductivity after aging treatment.

Claims (5)

Ni:0.2〜0.95質量%及びFe:0.05〜0.8質量%と、P:0.03〜0.2質量%を含有し、残部がCu及び不可避不純物からなり、NiとFeの合計含有量を[Ni+Fe]とし、Pの含有量を[P]としたとき、[Ni+Fe]が0.25〜1.0質量%、[Ni+Fe]/[P]が2〜10であり、0.2%耐力が100MPa以上で優れた曲げ加工性を有し、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の0.2%耐力が120MPa以上、導電率が40%IACS以上であることを特徴とするベーパーチャンバー用銅合金板。 Ni: 0.2 to 0.95% by mass, Fe: 0.05 to 0.8% by mass, P: 0.03 to 0.2% by mass, the balance consisting of Cu and inevitable impurities, Ni When the total content of Fe and Fe is [Ni+Fe] and the content of P is [P], [Ni+Fe] is 0.25 to 1.0 mass% and [Ni+Fe]/[P] is 2 to 10 It has excellent bending workability with a 0.2% proof stress of 100 MPa or more, and has a 0.2% proof stress after aging treatment of heating at 850° C. for 30 minutes, cooling with water, and then heating at 500° C. for 2 hours. A copper alloy plate for a vapor chamber, which has a conductivity of 120 MPa or more and an electrical conductivity of 40% IACS or more. さらに、Coを0.05質量%未満の範囲で含有することを特徴とする請求項1に記載されたベーパーチャンバー用銅合金板Furthermore, Co is contained in the range of less than 0.05 mass%, the copper alloy plate for a vapor chamber according to claim 1. さらに、SnとMgの1種又は2種を、Sn:0.005〜1.0質量%、Mg:0.005〜0.2質量%の範囲で含有することを特徴とする請求項1又は2に記載されたベーパーチャンバー用銅合金板。 Furthermore, 1 or 2 types of Sn and Mg are contained in the range of 0.005 to 1.0 mass% of Sn and 0.005 to 0.2 mass% of Mg. 2. A copper alloy plate for a vapor chamber described in 2. さらに、Znを1.0質量%以下含有することを特徴とする請求項1〜3のいずれかに記載されたベーパーチャンバー用銅合金板。 Furthermore, 1.0 mass% or less of Zn is contained, The copper alloy plate for vapor chambers in any one of Claims 1-3 characterized by the above-mentioned. さらに、Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005〜0.5質量%含有することを特徴とする請求項1〜4のいずれかに記載されたベーパーチャンバー用銅合金板。 Further, one or more of Si, Al, Mn, Cr, Ti, Zr, and Ag are contained in a total amount of 0.005 to 0.5 mass%, and any one of claims 1 to 4 is characterized. Copper alloy plate for vapor chamber described in 1.
JP2018098407A 2015-12-25 2018-05-23 Copper alloy plate for vapor chamber Expired - Fee Related JP6732840B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254645 2015-12-25
JP2015254645 2015-12-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016175464A Division JP6446007B2 (en) 2015-12-25 2016-09-08 Copper alloy plate for heat dissipation parts

Publications (3)

Publication Number Publication Date
JP2018168470A JP2018168470A (en) 2018-11-01
JP2018168470A5 JP2018168470A5 (en) 2019-07-11
JP6732840B2 true JP6732840B2 (en) 2020-07-29

Family

ID=59271698

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016175464A Expired - Fee Related JP6446007B2 (en) 2015-12-25 2016-09-08 Copper alloy plate for heat dissipation parts
JP2018098407A Expired - Fee Related JP6732840B2 (en) 2015-12-25 2018-05-23 Copper alloy plate for vapor chamber

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016175464A Expired - Fee Related JP6446007B2 (en) 2015-12-25 2016-09-08 Copper alloy plate for heat dissipation parts

Country Status (4)

Country Link
JP (2) JP6446007B2 (en)
KR (1) KR20180081609A (en)
CN (1) CN108368566B (en)
TW (2) TW201736611A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018180920A1 (en) * 2017-03-30 2019-12-12 Jx金属株式会社 Rolled copper foil
JP6907282B2 (en) 2019-09-25 2021-07-21 Jx金属株式会社 Titanium-copper alloy plate for vapor chamber and vapor chamber
JP6878541B2 (en) 2019-09-25 2021-05-26 Jx金属株式会社 Titanium-copper alloy plate for vapor chamber and vapor chamber

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602638A (en) * 1983-06-21 1985-01-08 Mitsui Mining & Smelting Co Ltd Softening resistant copper alloy having high conductivity
JPH06177289A (en) * 1992-12-10 1994-06-24 Showa Alum Corp Plate fin-type heat sink
JPH093571A (en) * 1995-06-14 1997-01-07 Mitsubishi Shindoh Co Ltd Heat sink
JP2001050682A (en) * 1999-08-05 2001-02-23 Showa Alum Corp Panel-type heat exchanger, and manufacture thereof
JP3465108B2 (en) * 2000-05-25 2003-11-10 株式会社神戸製鋼所 Copper alloy for electric and electronic parts
JP2003277853A (en) 2002-03-26 2003-10-02 Dowa Mining Co Ltd Copper alloy for heat spreader
JP4112602B2 (en) 2005-09-01 2008-07-02 株式会社渕上ミクロ heat pipe
JP4950584B2 (en) * 2006-07-28 2012-06-13 株式会社神戸製鋼所 Copper alloy with high strength and heat resistance
JP4878317B2 (en) 2007-03-22 2012-02-15 株式会社コベルコ マテリアル銅管 Copper tube made of copper or copper alloy
JP2013231224A (en) * 2012-05-01 2013-11-14 Sh Copper Products Co Ltd Copper alloy material for electric and electronic components having excellent bending processability
JP6176433B2 (en) 2013-01-10 2017-08-09 株式会社Welcon Vapor chamber
JP5467163B1 (en) 2013-03-26 2014-04-09 Jx日鉱日石金属株式会社 Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate
JP5960672B2 (en) * 2013-11-25 2016-08-02 株式会社神戸製鋼所 High strength copper alloy tube
WO2016152648A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Copper alloy sheet for heat dissipating component and heat dissipating component
JP6081513B2 (en) * 2015-03-30 2017-02-15 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts

Also Published As

Publication number Publication date
JP6446007B2 (en) 2018-12-26
CN108368566B (en) 2021-03-09
KR20180081609A (en) 2018-07-16
JP2017119909A (en) 2017-07-06
CN108368566A (en) 2018-08-03
TW201907134A (en) 2019-02-16
JP2018168470A (en) 2018-11-01
TW201736611A (en) 2017-10-16
TWI697652B (en) 2020-07-01

Similar Documents

Publication Publication Date Title
KR102075892B1 (en) Copper alloy plate and heat dissipation part for heat dissipation parts
KR101979532B1 (en) Copper alloy plate and heat dissipation parts for heat dissipation parts
JP6151813B1 (en) Vapor chamber manufacturing method
KR101979531B1 (en) Copper alloy plate and heat dissipation parts for heat dissipation parts
JP6850233B2 (en) Copper alloy plate for heat dissipation parts
JP6446011B2 (en) Copper alloy plate for heat dissipation parts and heat dissipation parts
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
JP6732840B2 (en) Copper alloy plate for vapor chamber
JP6446010B2 (en) Copper alloy plate for heat dissipation parts
JP2018162518A (en) Copper alloy sheet for vapor chamber and vapor chamber
WO2017110759A1 (en) Copper alloy plate for heat-dissipation component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6732840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees