JP6176433B2 - Vapor chamber - Google Patents

Vapor chamber Download PDF

Info

Publication number
JP6176433B2
JP6176433B2 JP2013002692A JP2013002692A JP6176433B2 JP 6176433 B2 JP6176433 B2 JP 6176433B2 JP 2013002692 A JP2013002692 A JP 2013002692A JP 2013002692 A JP2013002692 A JP 2013002692A JP 6176433 B2 JP6176433 B2 JP 6176433B2
Authority
JP
Japan
Prior art keywords
plate
phase space
liquid phase
surface layer
vapor chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013002692A
Other languages
Japanese (ja)
Other versions
JP2014134347A (en
Inventor
信行 橋本
信行 橋本
厚二 松本
厚二 松本
鈴木 裕
裕 鈴木
勝義 田村
勝義 田村
佐藤 茂樹
佐藤  茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Welcon
Original Assignee
Welcon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Welcon filed Critical Welcon
Priority to JP2013002692A priority Critical patent/JP6176433B2/en
Publication of JP2014134347A publication Critical patent/JP2014134347A/en
Application granted granted Critical
Publication of JP6176433B2 publication Critical patent/JP6176433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、ベーパチャンバと称される平板状のヒートパイプに関するもので、特に、液相空間を有した一対の表面層部材の間に気相空間を確保し、この気相空間と表面層部材の液相空間との間に冷媒を循環させることによって熱輸送を行うベーパチャンバに関するものである。   The present invention relates to a flat heat pipe called a vapor chamber, and in particular, a gas phase space is secured between a pair of surface layer members having a liquid phase space, and the gas phase space and the surface layer member are provided. The present invention relates to a vapor chamber that performs heat transport by circulating a refrigerant between the liquid phase space.

この種のベーパチャンバとしては、例えば、特許文献1に記載されたものがある。このベーパチャンバは、複数の平板状部材を積層することによって冷媒の循環通路を形成するようにしたものである。具体的には、中間板と称される平板状部材に気相空間および連絡通路を設けるとともに、一対の平板状部材の内表面にそれぞれ格子状の凹部を形成することによって液相空間および連通孔を形成し、それぞれの内表面を中間板に向けた状態でこれらを積層している。これにより、平板状部材の液相空間が連通孔によって気相空間に連通するとともに、平板状部材の液相空間の間が連絡通路によって互いに連通される。   An example of this type of vapor chamber is described in Patent Document 1. This vapor chamber is formed by laminating a plurality of flat plate-like members to form a refrigerant circulation passage. Specifically, a liquid phase space and a communication hole are provided by providing a gas phase space and a communication passage in a flat plate member called an intermediate plate, and forming a lattice-shaped recess on the inner surfaces of the pair of flat plate members. Are laminated with their inner surfaces facing the intermediate plate. Accordingly, the liquid phase space of the flat plate member communicates with the gas phase space through the communication hole, and the liquid phase space of the flat plate member communicates with each other through the communication passage.

上記のように構成されたベーパチャンバでは、一方の平板状部材に温度の高い被冷却体を接触させると、この平板状部材の液相空間で気相となった冷媒が連通孔を通じて気相空間に移動し、気相空間の空間方向に沿って拡散する。拡散した気相冷媒が相対的に温度の低い平板状部材に接触すると、熱を奪われて液化し、平板状部材の液相空間に至る。一方の平板状部材の液相空間に到達した冷媒は、毛細管力によって面方向に広がり、再び被冷却体に接触して蒸発する。一方、もう一方の平板状部材の液相空間に到達した冷媒は、毛細管力によって面方向に広がり、さらに連絡通路を通過して被冷却体が接触した平板状部材の液相空間に戻ることになる。これらの動作を繰り返すことにより、被冷却体の熱が周辺の低温部に運ばれることになり、被冷却体を冷却することができるようになる。   In the vapor chamber configured as described above, when a high-temperature object to be cooled is brought into contact with one flat plate member, the refrigerant that has become a gas phase in the liquid phase space of the flat plate member passes through the communication hole and the vapor phase space. And diffuses along the spatial direction of the gas phase space. When the diffused gas-phase refrigerant comes into contact with the flat plate member having a relatively low temperature, the heat is taken away and liquefies to reach the liquid phase space of the flat plate member. The refrigerant that has reached the liquid phase space of one flat plate member spreads in the surface direction by the capillary force, and again contacts the object to be cooled and evaporates. On the other hand, the refrigerant that has reached the liquid phase space of the other flat plate member spreads in the plane direction by the capillary force, and further passes through the communication path and returns to the liquid phase space of the flat plate member that is in contact with the object to be cooled. Become. By repeating these operations, the heat of the object to be cooled is carried to the surrounding low temperature portion, and the object to be cooled can be cooled.

また、特許文献2には、熱輸送ユニットの上下面のそれぞれに冷媒還流空間が形成され、上下面のそれぞれに形成された冷媒還流空間に挟まれて蒸気拡散空間が形成された構成からなるベーパチャンバが記載されている。   Patent Document 2 discloses a vapor having a structure in which a refrigerant reflux space is formed on each of the upper and lower surfaces of the heat transport unit, and a vapor diffusion space is formed between the refrigerant reflux spaces formed on the upper and lower surfaces. A chamber is described.

特許第4112602号公報Japanese Patent No. 4112602 特開2011−145044JP2011-145044

ここで、特許文献1に記載されたベーパチャンバでは、複数の平板状部材を積層することで冷媒の循環通路を構成することができるため、その製造作業を容易に行うことができる。しかしながら、中間板には気相空間や連絡通路を構成するために多数の開口を設けなければならず、強度が著しく低下することになり、例えばベーパチャンバに外力が加えられた場合に容易に面外方向に変形する恐れがある。ベーパチャンバが面外方向に変形した場合には、気相空間や連絡通路の機能が損なわれる場合があり、熱輸送効率の低下を招来することとなる。特に、連絡通路については、冷媒の毛細管力を利用するために微細に形成されている場合が多く、ベーパチャンバが変形した場合の影響を受け易い。   Here, in the vapor chamber described in Patent Document 1, a refrigerant circulation passage can be configured by stacking a plurality of flat plate-like members, so that the manufacturing operation can be easily performed. However, the intermediate plate must be provided with a large number of openings to form a gas phase space and a communication passage, and the strength is remarkably reduced. For example, when an external force is applied to the vapor chamber, the surface is easily There is a risk of deformation in the outward direction. When the vapor chamber is deformed in the out-of-plane direction, the functions of the gas phase space and the communication passage may be impaired, leading to a decrease in heat transport efficiency. In particular, the communication passage is often formed finely in order to use the capillary force of the refrigerant, and is easily affected when the vapor chamber is deformed.

また、液相空間で気相となった冷媒は気相空間の形状により流れる方向が決まってしまうため、最適な性能を維持するためには、被冷却体の接触する位置により個別の設計が必要になる。例えば、被冷却体が中央にある場合は、液相空間を中央部から放射状に広げるように形成する必要があるが、被冷却体を端部に移動した場合には、気相冷媒は被冷却体に最も近い気相空間を通って中央部まで移動するだけで、それ以外の気相空間は被冷却体により発生した気相冷媒の輸送に寄与することができない状態となる。その結果、ベーパチャンバの熱輸送量が低下し、空間全体を熱輸送に有効に使用することができなくなる。   In addition, the flow direction of the refrigerant in the liquid phase space is determined by the shape of the gas phase space. Therefore, in order to maintain optimum performance, an individual design is required depending on the position of the object to be cooled. become. For example, when the object to be cooled is at the center, it is necessary to form the liquid phase space so as to expand radially from the center. However, when the object to be cooled is moved to the end, the gas-phase refrigerant is not cooled. By simply moving to the center through the gas phase space closest to the body, the other gas phase spaces cannot contribute to the transport of the gas phase refrigerant generated by the object to be cooled. As a result, the heat transport amount of the vapor chamber decreases, and the entire space cannot be used effectively for heat transport.

一方、特許文献2に記載された構成は、冷媒還流空間と蒸気拡散空間との間にそれぞれ細孔を有した干渉防止板を配設し、細孔を介して蒸気拡散空間で凝縮した冷媒を冷媒還流空間に移動させるようにしているだけである。従って、2つの表面層部材の液相空間において直接的に冷媒の授受が行われないため、発熱体が接触する表面層部材において冷媒が枯渇し、冷却機能が停止する可能性がある。   On the other hand, in the configuration described in Patent Document 2, an interference prevention plate having pores is disposed between the refrigerant reflux space and the vapor diffusion space, and the refrigerant condensed in the vapor diffusion space through the pores is disposed. It is only moved to the refrigerant recirculation space. Therefore, since the refrigerant is not directly exchanged in the liquid phase space between the two surface layer members, the refrigerant is depleted in the surface layer member in contact with the heating element, and the cooling function may be stopped.

本発明は、上記実情に鑑みて、被冷却体を任意の位置に取り付けても、気相冷媒の拡散、移動が妨げられることがなく、性能差が生じない汎用性の高いベーパチャンバを提供することを目的とする。
また、発熱体が接触する表面層部材において冷媒が枯渇する事態を未然に防ぐことができるベーパチャンバを提供することを目的とする。
さらに、強度が低下する事態を抑えた上で、製造作業を容易化することのできるベーパチャンバを提供することを目的とする。
In view of the above circumstances, the present invention provides a highly versatile vapor chamber that does not hinder the diffusion and movement of the gas-phase refrigerant and does not cause a difference in performance even if the object to be cooled is attached at an arbitrary position. For the purpose.
It is another object of the present invention to provide a vapor chamber that can prevent a situation where a refrigerant is exhausted in a surface layer member in contact with a heating element.
Furthermore, it is an object of the present invention to provide a vapor chamber capable of facilitating the manufacturing operation while suppressing a situation where the strength is lowered.

上記目的を達成するため、本発明に係るベーパチャンバは、互いの間に確保した気相空間に冷媒を封入した状態で相互に対向配置された一対の表面層部材を備え、それぞれの表面層部材には、液相冷媒を面方向に沿って流通させる液相空間を形成するとともに、一対の表面層部材の間の気相空間には、それぞれの表面層部材の液相空間を互いに連絡する連絡通路を設け、一方の表面層部材に設けた液相空間の気相冷媒を、前記気相空間を経て拡散させるとともに、他方の表面層部材に設けた液相空間の液相冷媒を前記連絡通路から一方の表面層部材の液相空間に移動させるようにしたベーパチャンバにおいて、前記一対の表面層部材の間に複数の柱状部材を介在させ、各柱状部材の内部に前記連絡通路を複数設けるとともに、各表面層部材には前記液相空間と前記気相空間との間を連通する連通孔を形成し、各連絡通路は、前記連通孔に連通する位置に配置されることを特徴とする。   In order to achieve the above object, a vapor chamber according to the present invention includes a pair of surface layer members arranged to face each other in a state where a refrigerant is sealed in a gas phase space secured between them, and each surface layer member The liquid phase space for flowing the liquid phase refrigerant along the plane direction is formed, and the gas phase space between the pair of surface layer members communicates with the liquid phase spaces of the respective surface layer members. A passage is provided for diffusing the gas phase refrigerant in the liquid phase space provided in one surface layer member through the gas phase space, and the liquid phase refrigerant in the liquid phase space provided in the other surface layer member is communicated with the communication passage. And a plurality of columnar members interposed between the pair of surface layer members, and a plurality of communication passages are provided inside each columnar member. To each surface layer member Forming a communication hole communicating between said liquid phase space and the vapor space, the communication passage is characterized by being located in a position that communicates with the communication hole.

この場合、前記一対の表面層部材の積層方向で、各連絡通路が前記連通孔に重なる位置に配置されることが好ましい。   In this case, it is preferable that each communication passage is disposed at a position overlapping the communication hole in the stacking direction of the pair of surface layer members.

また、それぞれの表面層部材は、平板状を成す外層板と、平板状を成し、貫通孔が開口形成された内層板とを備え、前記外層板の一方の面又は前記内層板の一方の面には、複数の凸部が形成され、前記外層板の一方の面に前記内層板の一方の面を対向させてこれら外層板と内層板とを積層することにより、前記外層板及び前記内層板のいずれか一方に形成された凸部の頂部を、前記外層板及び前記内層板のいずれか他方に着地させてその周囲に前記液相空間を形成するとともに、前記貫通孔を前記連通孔として機能させる構成としてもよい。この場合、前記複数の凸部は、前記内層板に形成されるとともに、該内層板では、各凸部に隣接して前記貫通孔が開口形成されているとよい。   Each surface layer member includes an outer layer plate having a flat plate shape, and an inner layer plate having a flat plate shape and having a through-hole formed therein, and one surface of the outer layer plate or one of the inner layer plates. A plurality of convex portions are formed on the surface, and the outer layer plate and the inner layer are laminated by laminating the outer layer plate and the inner layer plate with one surface of the inner layer plate facing one surface of the outer layer plate. The top of the convex portion formed on one of the plates is landed on the other of the outer layer plate and the inner layer plate to form the liquid phase space around it, and the through hole is used as the communication hole It may be configured to function. In this case, the plurality of convex portions may be formed in the inner layer plate, and the through hole may be formed adjacent to each convex portion in the inner layer plate.

さらに、隣接する柱状部材の周面間には互いの間を連結する連結部を設け、前記連結部は、前記柱状部材に対して軸方向に沿った寸法を小さく形成したものとしてもよい。   Furthermore, it is good also as what formed the connection part which connects between each other between the surrounding surfaces of an adjacent columnar member, and the said connection part formed the dimension along the axial direction small with respect to the said columnar member.

さらにまた、前記柱状部材に形成する連絡通路は、複数の細径孔または多角形を結合した横断面形状を有する構成としてもよい。   Furthermore, the communication passage formed in the columnar member may have a cross-sectional shape in which a plurality of small-diameter holes or polygons are combined.

本発明によれば、各表面層部材に液相空間と気相空間との間を連通する連通孔を形成したことにより、気相空間がベーパチャンバ全体に渡って貫通、解放されているため、気相冷媒の拡散、移動が妨げられることがなく、被冷却体の取り付け位置による性能差が生じることを防止できる。また、各柱状部材の各連絡通路を、それぞれ表面層部材の連通孔に連通する位置に配置させているため、各液相空間間での液相冷媒の移動を効率的にかつ円滑にすることができ、発熱体が接触する表面層部材において冷媒が枯渇する事態を未然に防ぐことができる。さらに、液相空間を有した一対の表面層部材の間に柱状部材を介在させることで、表面層部材の間に気相空間を確実に確保することができるとともに、表面層部材の液相空間を連絡させる連絡通路を構成することができるようになり、気相冷媒と液相冷媒の流れを分離する冷媒のループ回路ができ熱輸送量の低減を防ぐことができる。しかも、柱状部材が気相空間全体に渡り配置されているため強度的に有利となり、曲げ加工等を行っても性能の低下を抑えることができるうえ、柱状部材に複数の連絡通路を設けているので、連絡通路と液相空間とを高い精度で位置決めしなくとも確実に両者を連通させることができ、製造作業の容易化を図ることが可能となる。   According to the present invention, since the surface layer member is formed with a communication hole that communicates between the liquid phase space and the gas phase space, the gas phase space penetrates and is released over the entire vapor chamber. The diffusion and movement of the gas-phase refrigerant is not hindered, and it is possible to prevent a difference in performance depending on the attachment position of the cooled object. In addition, since each communication passage of each columnar member is arranged at a position communicating with the communication hole of the surface layer member, the liquid phase refrigerant can be efficiently and smoothly moved between the liquid phase spaces. It is possible to prevent the refrigerant from being exhausted in the surface layer member in contact with the heating element. Furthermore, by interposing a columnar member between a pair of surface layer members having a liquid phase space, a gas phase space can be reliably ensured between the surface layer members, and the liquid phase space of the surface layer member can be secured. Thus, a communication path for connecting the gas phase refrigerant and the liquid phase refrigerant can be formed, and a refrigerant loop circuit for separating the flow of the gas phase refrigerant and the liquid phase refrigerant can be formed, and a reduction in the amount of heat transport can be prevented. In addition, since the columnar member is arranged over the entire gas phase space, it is advantageous in terms of strength, and it is possible to suppress a decrease in performance even when bending is performed, and a plurality of communication passages are provided in the columnar member. Therefore, the communication passage and the liquid phase space can be reliably communicated without positioning with high accuracy, and the manufacturing operation can be facilitated.

図1は、本発明の一実施の形態であるベーパチャンバの分解斜視図である。FIG. 1 is an exploded perspective view of a vapor chamber according to an embodiment of the present invention. 図2は、図1に示したベーパチャンバの要部を示す断面斜視図である。FIG. 2 is a cross-sectional perspective view showing a main part of the vapor chamber shown in FIG. 図3は、図1に示したベーパチャンバの縦断面図である。FIG. 3 is a longitudinal sectional view of the vapor chamber shown in FIG. 図4は、図1に示した内層板の凸部およびその周辺部を示す拡大図である。FIG. 4 is an enlarged view showing a convex portion and its peripheral portion of the inner layer plate shown in FIG. 図5は、図1に示したベーパチャンバの柱状部材と一方の内層板および外層板とを拡大して示す平面図である。FIG. 5 is an enlarged plan view showing the columnar member of the vapor chamber shown in FIG. 1 and one inner layer plate and one outer layer plate. 図6は、図1に示したベーパチャンバに適用する柱状部材に設けられた連絡通路の拡大図である。6 is an enlarged view of a communication passage provided in a columnar member applied to the vapor chamber shown in FIG. 図7は、図1に示したベーパチャンバにおいて冷媒の循環経路を示す図である。FIG. 7 is a diagram showing a refrigerant circulation path in the vapor chamber shown in FIG. 1. 図8は、柱状部材の変形例を示したもので、(a)は第1変形例の端面拡大図、(b)は第2変形例の端面拡大図である。8A and 8B show a modification of the columnar member. FIG. 8A is an enlarged end view of the first modification, and FIG. 8B is an enlarged end view of the second modification. 図9は、変形例に係る連絡通路の拡大図である。FIG. 9 is an enlarged view of a communication passage according to a modification.

以下、添付図面を参照しながら本発明に係るベーパチャンバの好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of a vapor chamber according to the present invention will be described in detail with reference to the accompanying drawings.

図1〜図3は、本発明の一実施の形態であるベーパチャンバ1を示したものである。ここで例示するベーパチャンバ1は、それぞれ外層板110と内層板120とから成る一対の表面層部材10と、これら表面層部材10の間に介在させた複数の柱状部材20とを備えて構成してある。   1 to 3 show a vapor chamber 1 according to an embodiment of the present invention. The vapor chamber 1 illustrated here includes a pair of surface layer members 10 each composed of an outer layer plate 110 and an inner layer plate 120, and a plurality of columnar members 20 interposed between the surface layer members 10. It is.

一対の表面層部材10は、それぞれ外層板110と内層板120とを積層して構成したものである。   The pair of surface layer members 10 are configured by laminating an outer layer plate 110 and an inner layer plate 120, respectively.

外層板110は、平板状を成す金属製の薄板状部材であり、少なくとも内層板120側の面(内面)が平坦に形成されるが、本実施の形態では、両面を平坦面で形成した外層板110を用いている。つまり、外層板110は、両面に凹凸のない平板である。本実施の形態では、外層板110として銅製で板厚が0.2mmの金属板(金属平板)を適用している。   The outer layer plate 110 is a flat plate-shaped metal thin plate member, and at least a surface (inner surface) on the inner layer plate 120 side is formed flat. In the present embodiment, the outer layer plate is formed as a flat surface on both sides. A plate 110 is used. That is, the outer layer plate 110 is a flat plate having no irregularities on both sides. In the present embodiment, a metal plate (metal flat plate) made of copper and having a thickness of 0.2 mm is applied as the outer layer plate 110.

内層板120は、外層板110と同様、金属製の平板状を成す薄板状部材である。内層板120は、柱状部材20側の面(内面)が平坦に形成される一方、外層板110側の面(外面)には複数の凸部122が設けてある(図4も参照)。各凸部122は、平面視矩形の四角柱状であり、内層板120の一面の前後左右方向に渡って等間隔に形成されて網目状を成している。内層板120において、互いに隣接する所定の4個の凸部122で囲まれた部分には、当該内層板120を板厚方向に貫通する貫通孔である連通孔124が形成されている。等間隔で配置された4個の凸部122で囲まれることにより、連通孔124は平面視十字形状に形成される。本実施の形態では、内層板120として銅製で板厚が0.2mmの金属板を適用し、その一面に、例えば高さ0.1mmの凸部122を突出させている。凸部122は、円柱状等としてもよい。   Similar to the outer layer plate 110, the inner layer plate 120 is a thin plate-like member that is a metal flat plate. The inner layer plate 120 has a flat surface (inner surface) on the columnar member 20 side, and a plurality of convex portions 122 are provided on the outer layer plate 110 side (outer surface) (see also FIG. 4). Each convex part 122 is a quadrangular prism shape having a rectangular shape in plan view, and is formed at equal intervals in the front-rear and left-right directions on one surface of the inner layer plate 120 to form a mesh shape. In the inner layer plate 120, a communication hole 124, which is a through-hole penetrating the inner layer plate 120 in the plate thickness direction, is formed in a portion surrounded by predetermined four convex portions 122 adjacent to each other. By being surrounded by four convex portions 122 arranged at equal intervals, the communication hole 124 is formed in a cross shape in plan view. In the present embodiment, a copper metal plate having a thickness of 0.2 mm is applied as the inner layer plate 120, and a convex portion 122 having a height of, for example, 0.1 mm is projected on one surface thereof. The convex part 122 is good also as a column shape.

これらの外層板110および内層板120は、内層板120の凸部122が形成された側の面(外面)を外層板110の平坦な面(内面)に対向させ、凸部122の頂部(頂面)を外層板110の平坦な面に着地させて接合させることにより、表面層部材10を構成する。さらに、内層板120の凸部122側の裏側の平坦な面(内面)を互いに向き合わせ、かつ相互間に気相空間Aを確保した状態で一対の表面層部材10が対向配置され、ベーパチャンバ1の外形が構成される。一方、互いに積層された内層板120の凸部122側の面と外層板110の一面との間には、凸部122を柱とし、その高さ分の空間(液相空間B)が確保される。気相空間Aと液相空間Bは、内層板120で互いに仕切られるとともに、連通孔124によって互いに連通している。表面層部材10の外層板110、内層板120及び気相空間Aは、図3に示すように、各層の外周縁部がそのまま接合されることでフレームFとして封止されており、これにより気相空間Aおよび液相空間Bが外部から封止され、その内部に水等の冷媒を封入することができる。   These outer layer plate 110 and inner layer plate 120 are such that the surface (outer surface) of the inner layer plate 120 on which the convex portion 122 is formed is opposed to the flat surface (inner surface) of the outer layer plate 110, and the top portion (top) of the convex portion 122. The surface layer member 10 is configured by landing and bonding the surface) to the flat surface of the outer layer plate 110. Further, a pair of surface layer members 10 are arranged opposite to each other in a state where the flat surfaces (inner surfaces) on the back side of the convex portion 122 side of the inner layer plate 120 face each other and the gas phase space A is secured between them. 1 outline is constructed. On the other hand, a space (liquid phase space B) corresponding to the height of the convex portion 122 is provided between the surface on the convex portion 122 side of the laminated inner layer plate 120 and the one surface of the outer layer plate 110. The The gas phase space A and the liquid phase space B are separated from each other by the inner layer plate 120 and communicate with each other through the communication hole 124. As shown in FIG. 3, the outer layer plate 110, the inner layer plate 120, and the gas phase space A of the surface layer member 10 are sealed as a frame F by joining the outer peripheral edge portions of the respective layers as they are. The phase space A and the liquid phase space B are sealed from the outside, and a coolant such as water can be sealed therein.

柱状部材20は、図1〜図5に示すように、金属製の円柱状を成すもので、複数の連絡通路21を有する。連絡通路21は、それぞれ柱状部材20の軸心に沿って延在し、柱状部材20の両端面に開口する貫通孔であり、本実施の形態では、等間隔で格子状に4個設けてある。図6に拡大して示すように、個々の連絡通路21は、5つの細径円孔(細径孔)21aを結合した異形の横断面形状に形成してある。この異形の横断面形状を有した連絡通路21は、同じ横断面積の連絡通路を単純に円形で構成したものと比較した場合、空間の幅を小さく設定することができ、より大きな毛細管力を得ることが可能となる。なお、本実施の形態では、連絡通路21として5つの細径円孔21aを結合した形状を例示したが、連絡通路は円形状以外のものであっても勿論よく、例えば、小さな三角形孔21a′を3つ結合した形状の横断面形状を有する連絡通路23等としてもよく(図9参照)、三角形孔以外の多角形孔を結合したものとしても勿論よい。   As shown in FIGS. 1 to 5, the columnar member 20 has a metal columnar shape and includes a plurality of communication passages 21. Each of the communication passages 21 is a through-hole that extends along the axis of the columnar member 20 and opens at both end surfaces of the columnar member 20. In the present embodiment, four communication paths 21 are provided in a lattice shape at equal intervals. . As shown in FIG. 6 in an enlarged manner, each communication passage 21 is formed in an irregular cross-sectional shape in which five small-diameter circular holes (small-diameter holes) 21a are coupled. The communication passage 21 having this irregular cross-sectional shape can set the space width smaller and obtain a larger capillary force when compared with a communication passage having the same cross-sectional area that is simply formed in a circular shape. It becomes possible. In the present embodiment, a shape in which the five small-diameter circular holes 21a are coupled as the communication passage 21 is illustrated. However, the communication passage may of course have a shape other than the circular shape, for example, a small triangular hole 21a ′. It is good also as the connection channel | path 23 etc. which have the cross-sectional shape of the shape which couple | bonded three (refer FIG. 9), and of course it is good also as what combined polygon holes other than a triangular hole.

柱状部材20の相互間には、連結部22が設けてある。連結部22は、隣接する柱状部材20の周面間を連結するものであり、柱状部材20の一方の端面(図1では上端面)と面一または略面一となる位置で一体に成形してある。連結部22は、柱状部材20に対して軸方向に沿った寸法が小さく形成してあり、気相空間Aを分断することはない。また、連結部22は、柱状部材20から一方向に沿って延在し、隣接する連通孔124の間を通る位置に設けられており、連通孔124を塞ぐこともない。1つの柱状部材20から左右に突出している連結部22の一方を他方の端面(図1の下他面)と面一となる位置に設け、各柱状部材20の各連結部22の平面位置が互い違いになるように構成してもよい。本実施の形態では、外径が3mmの柱状部材20を適用し、前後左右方向に等間隔で配置してある。柱状部材20の軸方向に沿った寸法は0.4mmであり、連結部22の同方向寸法は0.1mmである。   A connecting portion 22 is provided between the columnar members 20. The connecting portion 22 connects the peripheral surfaces of the adjacent columnar members 20, and is integrally formed at a position that is flush or substantially flush with one end surface (upper end surface in FIG. 1) of the columnar member 20. It is. The connecting portion 22 is formed to have a small dimension along the axial direction with respect to the columnar member 20, and does not divide the gas phase space A. Further, the connecting portion 22 extends from the columnar member 20 along one direction, and is provided at a position passing between adjacent communication holes 124, and does not block the communication holes 124. One of the connecting portions 22 projecting left and right from one columnar member 20 is provided at a position flush with the other end surface (the lower other surface in FIG. 1), and the planar position of each connecting portion 22 of each columnar member 20 is You may comprise so that it may become alternate. In the present embodiment, columnar members 20 having an outer diameter of 3 mm are applied and arranged at equal intervals in the front-rear and left-right directions. The dimension along the axial direction of the columnar member 20 is 0.4 mm, and the dimension in the same direction of the connecting portion 22 is 0.1 mm.

図5に示すように、ベーパチャンバ1では、各柱状部材20は、各連絡通路21がそれぞれ表面層部材10の連通孔124に一致する位置、具体的には両者の軸心同士が同軸上に配置されている。これにより、一対の表面層部材10の液相空間B同士が、連通孔124および連絡通路21を介して一直線上に連通され、各液相空間Bの液体を流通させることができる。連絡通路21は、連通孔124に対して必ずしも同心で一致させる必要はなく、互いに多少ずれていても少なくとも一部同士が連通していれば1本の流路として構築できる。すなわち、一対の表面層部材10の積層方向(上下方向)で、連絡通路21と連通孔124との少なくとも一部が重なるように柱状部材20が配置されればよい。本実施の形態では、連絡通路21と連通孔124を同心で一致させるため、各連絡通路21のピッチは、各連通孔124のピッチと同一ピッチに設定してある。   As shown in FIG. 5, in the vapor chamber 1, each columnar member 20 has a position where each communication passage 21 coincides with the communication hole 124 of the surface layer member 10, specifically, the axial centers of both are coaxial. Has been placed. Thereby, the liquid phase spaces B of the pair of surface layer members 10 are communicated in a straight line via the communication holes 124 and the communication passages 21, and the liquid in each liquid phase space B can be circulated. The communication passage 21 does not necessarily need to be concentrically aligned with the communication hole 124, and can be constructed as a single flow path as long as at least a part of the communication passages 21 are in communication with each other even if they are slightly shifted from each other. That is, the columnar member 20 may be arranged so that at least a part of the communication passage 21 and the communication hole 124 overlap in the stacking direction (vertical direction) of the pair of surface layer members 10. In the present embodiment, the pitch of the communication passages 21 is set to be the same as the pitch of the communication holes 124 in order to make the communication passages 21 and the communication holes 124 concentric with each other.

一対の表面層部材10および柱状部材20を適用してベーパチャンバ1を構成する場合には、予め外層板110と内層板120とによって表面層部材10を成形した後、互いの間に柱状部材20を配設してもよいし、外層板110、内層板120、柱状部材20、内層板120、外層板110を順次積層し、この状態から例えば拡散接合を用いて互いの間を一時に接合させてもよい。この際、柱状部材20に複数の連絡通路21を設けているので、連絡通路21と連通孔124(液相空間B)とを高い精度で位置決めしなくとも確実に両者を連通させることができ、製造作業の容易化を図ることが可能となる。尚、図示しない位置決め手段、例えば位置決めピン等を用いて連絡通路21と連通孔124とを位置決めするようにしても勿論よい。   When the vapor chamber 1 is configured by applying the pair of surface layer members 10 and the columnar members 20, the surface layer member 10 is previously formed by the outer layer plate 110 and the inner layer plate 120, and then the columnar member 20 is interposed between them. Alternatively, the outer layer plate 110, the inner layer plate 120, the columnar member 20, the inner layer plate 120, and the outer layer plate 110 may be sequentially stacked, and from this state, for example, diffusion bonding may be used to temporarily bond each other. May be. At this time, since the plurality of communication passages 21 are provided in the columnar member 20, the communication passage 21 and the communication hole 124 (liquid phase space B) can be reliably communicated without positioning with high accuracy. It becomes possible to facilitate manufacturing work. Of course, the communication passage 21 and the communication hole 124 may be positioned using a positioning means (not shown) such as a positioning pin.

上記のように構成されたベーパチャンバ1では、表面層部材10に温度差がない場合、表面層部材10の凸部122を介して積層された外層板110と内層板120との間の液相空間Bに液相状態の冷媒が、各凸部122によって形成される毛細管力によって全面に広がった状態で存在し、さらに一対の液相空間B間を連通する柱状部材20の連絡通路21にも液相状態の冷媒が存在している。柱状部材20によって表面層部材10の間に確保された気相空間Aには、気相状態の冷媒が全体に広がった状態で存在する。   In the vapor chamber 1 configured as described above, when there is no temperature difference in the surface layer member 10, the liquid phase between the outer layer plate 110 and the inner layer plate 120 stacked via the convex portion 122 of the surface layer member 10. The liquid phase state refrigerant exists in the space B in a state of being spread over the entire surface by the capillary force formed by the convex portions 122, and also in the communication passage 21 of the columnar member 20 that communicates between the pair of liquid phase spaces B. Liquid phase refrigerant is present. In the gas phase space A secured between the surface layer members 10 by the columnar members 20, the gas phase refrigerant exists in a state of spreading over the whole.

この状態から、例えば、図7に示すように、下方の表面層部材10の外表面に発熱体Hを接触させると、この近傍の液相空間Bに存在する冷媒が蒸発し、連通孔124を経て順次面方向に沿って気相空間Aの内部に拡散する(図7中の矢印X)。このとき、本実施の形態に係るベーパチャンバ1によれば、気相空間Aに設けた柱状部材20の間を連結する連結部22として、柱状部材20に対して軸方向に沿った寸法を小さく形成したものを適用し、さらに連結部22が連通孔124を塞がない位置に設けられているため、気相冷媒の拡散が妨げられたり、気相冷媒の拡散方向が一方向に偏いたりするような事態を招来することがない。したがって、被冷却体を任意の位置に取り付けても、熱輸送性能に差異が生じることなく、良好に熱を輸送することができる。   From this state, for example, as shown in FIG. 7, when the heating element H is brought into contact with the outer surface of the lower surface layer member 10, the refrigerant present in the liquid phase space B near this evaporates, and the communication hole 124 is opened. Then, it diffuses in the gas phase space A along the surface direction sequentially (arrow X in FIG. 7). At this time, according to the vapor chamber 1 according to the present embodiment, the connecting portion 22 that connects the columnar members 20 provided in the gas phase space A is reduced in size along the axial direction with respect to the columnar members 20. Since the formed portion is applied and the connecting portion 22 is provided at a position that does not block the communication hole 124, diffusion of the gas-phase refrigerant is hindered, or the diffusion direction of the gas-phase refrigerant is biased in one direction. Such a situation is not invited. Therefore, even if a to-be-cooled body is attached to arbitrary positions, heat can be favorably transported without causing a difference in heat transport performance.

発熱体Hから離隔する位置に到達した気相冷媒は、温度の低い表面層部材10に接触すると熱を奪われて凝縮し、液相となって表面層部材10の液相空間Bに戻る(図7中の矢印Y)。液相空間Bに戻った液相冷媒は、毛細管力によって全面に広がるため、再び発熱体Hの発熱範囲に還流し(図7中の矢印Z)、そこで蒸発する。尚、発熱体Hに接触していない上方の表面層部材10の液相空間Bに戻った液相冷媒は、毛細管力によって全面に広がる際に連絡通路21の毛細管力により、下方に向けて浸透し、連絡通路21を通じて発熱体Hに接触した下方の表面層部材10の液相空間Bに還流する(図7中の矢印V)。この際、柱状部材20の連絡通路21としては、異形の横断面形状を有したものを適用しているため、より大きな毛細管力により、表面層部材10の液相空間Bで液相冷媒を効率よく移動させることが可能となる。以降、上述の動作を繰り返すことにより、発熱体Hの熱が冷媒によって低温部に運ばれることになり、発熱体Hを効率よく冷却することができるようになる。   When the gas-phase refrigerant that has reached the position separated from the heating element H comes into contact with the surface layer member 10 having a low temperature, the vapor phase refrigerant is deprived of heat and condensed to return to the liquid phase space B of the surface layer member 10 ( Arrow Y in FIG. Since the liquid-phase refrigerant that has returned to the liquid-phase space B spreads over the entire surface due to the capillary force, it returns to the heat-generating range of the heating element H (arrow Z in FIG. 7) and evaporates there. The liquid refrigerant returned to the liquid phase space B of the upper surface layer member 10 that is not in contact with the heating element H penetrates downward due to the capillary force of the communication passage 21 when spreading over the entire surface by the capillary force. Then, it returns to the liquid phase space B of the lower surface layer member 10 in contact with the heating element H through the communication passage 21 (arrow V in FIG. 7). At this time, since the communication passage 21 of the columnar member 20 has an irregular cross-sectional shape, the liquid phase refrigerant is efficiently used in the liquid phase space B of the surface layer member 10 by a larger capillary force. It can be moved well. Thereafter, by repeating the above operation, the heat of the heating element H is carried to the low temperature part by the refrigerant, and the heating element H can be efficiently cooled.

以上のように、本実施の形態に係るベーパチャンバ1によれば、互いの間に確保した気相空間Aに冷媒を封入した状態で相互に対向配置された一対の表面層部材10を備え、それぞれの表面層部材10には、液相冷媒を面方向に沿って流通させる液相空間Bを形成するとともに、一対の表面層部材10の間の気相空間Aには、それぞれの表面層部材10の液相空間Bを互いに連絡する連絡通路21を設け、一方の表面層部材10に設けた液相空間Bの気相冷媒を、気相空間Aを経て拡散させるとともに、他方の表面層部材10に設けた液相空間Bの液相冷媒を連絡通路21から一方の表面層部材10の液相空間Bに移動させるようにした構成において、一対の表面層部材10の間に複数の柱状部材20を介在させ、各柱状部材20の内部に連絡通路21を複数設けるとともに、各表面層部材10には液相空間Bと気相空間Aとの間を連通する連通孔124を形成し、各連絡通路21は、それぞれ連通孔124に連通する位置に配置される。   As described above, according to the vapor chamber 1 according to the present embodiment, the vapor chamber 1 includes a pair of surface layer members 10 disposed so as to face each other in a state in which the refrigerant is sealed in the gas phase space A secured between them. Each surface layer member 10 is formed with a liquid phase space B through which the liquid phase refrigerant flows along the surface direction, and each gas phase space A between the pair of surface layer members 10 includes each surface layer member. The communication passage 21 that connects the ten liquid phase spaces B to each other is provided, the vapor phase refrigerant in the liquid phase space B provided in one surface layer member 10 is diffused through the gas phase space A, and the other surface layer member In the configuration in which the liquid phase refrigerant in the liquid phase space B provided in 10 is moved from the communication passage 21 to the liquid phase space B of one surface layer member 10, a plurality of columnar members are interposed between the pair of surface layer members 10. 20 is interposed and connected to the inside of each columnar member 20. A plurality of passages 21 are provided, and each surface layer member 10 is formed with a communication hole 124 that communicates between the liquid phase space B and the gas phase space A, and each communication passage 21 is a position that communicates with the communication hole 124. Placed in.

このように、ベーパチャンバ1では、各表面層部材10に液相空間Bと気相空間Aとの間を連通する連通孔124を形成し、気相空間Aがベーパチャンバ1全体に渡って貫通、解放されているため、気相冷媒の拡散、移動が妨げられることがなく、被冷却体の取り付け位置による性能差が生じることを防止できる。また、各柱状部材20の各連絡通路21を、それぞれ表面層部材10の連通孔124に連通する位置に配置させているため、各液相空間B間での液相冷媒の移動を効率的にかつ円滑にすることができ、発熱体Hが接触する表面層部材10において冷媒が枯渇する事態を未然に防ぐことができる。さらに、液相空間Bを有した一対の表面層部材10の間に柱状部材20を介在させることで、表面層部材10の間に気相空間Aを確実に確保することができるとともに、表面層部材10の液相空間Bを連絡させる連絡通路21を構成することができるようになり、気相冷媒と液相冷媒の流れを分離する冷媒のループ回路ができ熱輸送量の低減を防ぐことができる。しかも、柱状部材20が気相空間A全体に渡り配置されているため強度的に有利となり、曲げ加工等を行っても性能の低下を抑えることができるうえ、柱状部材20に複数の連絡通路21を設けているので、連絡通路21と液相空間Bとを高い精度で位置決めしなくとも確実に両者を連通させることができ、製造作業の容易化を図ることが可能となる。   As described above, in the vapor chamber 1, each surface layer member 10 is formed with a communication hole 124 that communicates between the liquid phase space B and the gas phase space A, and the gas phase space A penetrates the entire vapor chamber 1. Therefore, the diffusion and movement of the gas-phase refrigerant is not hindered, and it is possible to prevent a difference in performance depending on the mounting position of the cooled object. In addition, since each communication passage 21 of each columnar member 20 is disposed at a position communicating with the communication hole 124 of the surface layer member 10, the movement of the liquid phase refrigerant between the liquid phase spaces B is efficiently performed. In addition, it is possible to prevent the refrigerant from being exhausted in the surface layer member 10 in contact with the heating element H. Furthermore, by interposing the columnar member 20 between the pair of surface layer members 10 having the liquid phase space B, the gas phase space A can be reliably ensured between the surface layer members 10 and the surface layer. The communication passage 21 that connects the liquid phase space B of the member 10 can be formed, and a refrigerant loop circuit that separates the flow of the gas phase refrigerant and the liquid phase refrigerant can be formed, thereby preventing a reduction in heat transport amount. it can. In addition, since the columnar member 20 is arranged over the entire gas phase space A, it is advantageous in terms of strength, and it is possible to suppress a decrease in performance even if bending is performed, and a plurality of communication passages 21 are connected to the columnar member 20. Therefore, the communication passage 21 and the liquid phase space B can be reliably communicated with each other without positioning with high accuracy, and the manufacturing operation can be facilitated.

また、本実施の形態のベーパチャンバ1によれば、平板状を成す外層板110と、平板状を成し、一方の面に複数の凸部122が形成されるとともに、各凸部122に隣接して貫通孔である連通孔124が開口した内層板120とを備え、外層板110の一方の面に内層板120の一方の面を対向させてこれら外層板110と内層板120とを積層することにより、凸部122の頂部を外層板110の平坦な面に着地させてその周囲に液相空間Bを形成している。これにより、表面層部材10を構成する一方の板である外層板110を両面平坦な平板状部材で形成しても、液相冷媒の高い輸送力等を備えた液相空間Bを構成できるため、簡素な構成で高い熱輸送力を確保することができ、コストも低減できる。   Further, according to the vapor chamber 1 of the present embodiment, a flat plate-like outer layer plate 110 and a flat plate shape are formed, and a plurality of convex portions 122 are formed on one surface and adjacent to each convex portion 122. The inner layer plate 120 having the through holes 124 that are through-holes is opened, and the outer layer plate 110 and the inner layer plate 120 are laminated with one surface of the inner layer plate 120 facing one surface of the outer layer plate 110. As a result, the top portion of the convex portion 122 is landed on the flat surface of the outer layer plate 110 to form the liquid phase space B around the top surface. Thereby, even if the outer layer plate 110 which is one plate constituting the surface layer member 10 is formed by a flat plate member having both sides flat, the liquid phase space B having a high transport capacity of the liquid phase refrigerant can be configured. With a simple configuration, high heat transport capacity can be ensured, and costs can be reduced.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiments, and can be freely changed without departing from the gist of the present invention.

例えば、外層板110の一方の面(内面)は必ずしも平坦に形成する必要はなく、図3中に破線で示すような断面V字状や断面U字状等の溝部112を外層板110の内面の前後左右方向に延在するように、具体的には柱状部材20がない部分に形成し、この溝部112によって冷媒液の流れを調整・促進する構成とすることもできる。   For example, one surface (inner surface) of the outer layer plate 110 is not necessarily formed flat, and a groove portion 112 having a V-shaped section or a U-shaped section as indicated by a broken line in FIG. Specifically, it may be formed in a portion where the columnar member 20 is not provided so as to extend in the front-rear and left-right directions, and the groove portion 112 may be configured to adjust / promote the flow of the refrigerant liquid.

また、上述した実施の形態では、凸部122を内層板120に設けた構成を例示したが、例えば、外層板110の内層板120に対向配置される一方の面(内面)に凸部122と同様な形状等からなる凸部(図示せず)を設け、内層板120には連通孔124と同様な形状の連通孔(図示せず)を外層板110の前記凸部に隣接する位置に貫通形成した構成とし、外層板110の前記凸部を内層板120の平坦な面に着地させてその周囲に液相空間Bを形成する構成としてもよい。換言すれば、平板状を成し、一方の面に複数の凸部(例えば、凸部122と同形状のもの)が形成された外層板110と、平板状を成し、外層板110の前記凸部に隣接した位置に貫通孔である連通孔124が開口した内層板120とを備え、外層板110の一方の面に内層板120の一方の面を対向させてこれら外層板110と内層板120とを積層することにより、前記凸部の頂部を内層板120の平坦な面に着地させてその周囲に液相空間Bを形成させた構成としてもよい。なお、この構成の場合、上記の溝部112は内層板120側に形成するとよい。   Moreover, although the structure which provided the convex part 122 in the inner layer board 120 was illustrated in embodiment mentioned above, for example, the convex part 122 and one surface (inner surface) arrange | positioned facing the inner layer board 120 of the outer layer board 110 are provided. Convex portions (not shown) having the same shape or the like are provided, and the inner layer plate 120 is penetrated through a communication hole (not shown) having the same shape as the communication hole 124 at a position adjacent to the convex portion of the outer layer plate 110. It is good also as a structure which makes the formed structure and makes the said convex part of the outer-layer board 110 land on the flat surface of the inner-layer board 120, and forms the liquid phase space B in the circumference | surroundings. In other words, the outer layer plate 110 has a flat plate shape and a plurality of convex portions (for example, the same shape as the convex portion 122) formed on one surface, and the outer layer plate 110 has a flat plate shape. An inner layer plate 120 having a through hole 124 that is a through-hole is provided at a position adjacent to the convex portion, and one surface of the inner layer plate 120 is opposed to one surface of the outer layer plate 110, and the outer layer plate 110 and the inner layer plate By stacking 120, the top of the convex portion may be landed on the flat surface of the inner layer plate 120, and the liquid phase space B may be formed around it. In the case of this configuration, the groove 112 is preferably formed on the inner layer plate 120 side.

上述した実施の形態では、連絡通路21として柱状部材20の内部にのみ開口するものを例示したが、例えば、図8の(a)の第1変形例に示すように、柱状部材20′の内部にのみ開口する連絡通路21と、柱状部材20′の外周面に開口する連絡通路21′とを含むように構成しても構わない。この第1変形例を適用したベーパチャンバ1によれば、気相空間Aの容積を減少させることなく、連絡通路21,21′の横断面積、つまり液相冷媒の通過領域を大きく確保することができるようになり、冷却効率の向上を図ることが可能となる。   In the embodiment described above, the communication passage 21 has been illustrated as opening only inside the columnar member 20, but for example, as shown in the first modified example of FIG. The communication passage 21 may be configured to include only the communication passage 21 that opens to the outer periphery of the columnar member 20 ′. According to the vapor chamber 1 to which the first modification is applied, the cross-sectional area of the communication passages 21, 21 ′, that is, the passage region of the liquid-phase refrigerant can be ensured without reducing the volume of the gas phase space A. As a result, the cooling efficiency can be improved.

上述した実施の形態では、柱状部材20として横断面が円形状のものを例示したが、必ずしも円形である必要はなく、横断面が多角形状、例えば、図8の(b)に示すように、六角形状の柱状部材20″を適用してもよい。この場合においても、第1変形例と同様に、柱状部材20″が内部にのみ開口する連絡通路21と、外周面に開口する連絡通路21″とを含むように構成すれば、冷却効率の向上を図ることが可能となる。   In the above-described embodiment, the columnar member 20 has a circular cross section, but it is not necessarily circular, and the cross section is polygonal, for example, as shown in FIG. A hexagonal columnar member 20 ″ may be applied. In this case as well, as in the first modified example, the communication passage 21 in which the columnar member 20 ″ opens only inside, and the communication passage 21 opens in the outer peripheral surface. ”, The cooling efficiency can be improved.

1 ベーパチャンバ
10 表面層部材
20,20′,20″ 柱状部材
21,21′,21″ 連絡通路
22 連結部
110 外層板
120 内層板
122 凸部
124 連通孔
A 気相空間
B 液相空間
DESCRIPTION OF SYMBOLS 1 Vapor chamber 10 Surface layer member 20,20 ', 20 "Columnar member 21,21', 21" Communication path 22 Connection part 110 Outer layer board 120 Inner layer board 122 Convex part 124 Communication hole A Gas phase space B Liquid phase space

Claims (6)

互いの間に確保した気相空間に冷媒を封入した状態で相互に対向配置された一対の表面層部材を備え、
それぞれの表面層部材には、液相冷媒を面方向に沿って流通させる液相空間を形成するとともに、一対の表面層部材の間の気相空間には、それぞれの表面層部材の液相空間を互いに連絡する連絡通路を設け、
一方の表面層部材に設けた液相空間の気相冷媒を、前記気相空間を経て拡散させるとともに、他方の表面層部材に設けた液相空間の液相冷媒を前記連絡通路から一方の表面層部材の液相空間に移動させるようにしたベーパチャンバにおいて、
前記一対の表面層部材の間に、該一対の表面層部材の両方に接するように延在した複数の柱状部材を介在させ、各柱状部材の内部に、柱状部材の軸心に沿って延在しかつ柱状部材の前記一対の表面層部材側の両端面に開口する貫通孔である前記連絡通路を複数設けるとともに、各表面層部材には前記液相空間と前記気相空間との間を連通する連通孔を形成し、
各連絡通路は、前記連通孔に連通する位置に配置され
それぞれの表面層部材は、
平板状を成す外層板と、
前記外層板と前記柱状部材との間に位置し、平板状を成し、板厚方向に貫通する貫通孔が開口形成された内層板と、
を備え、
前記内層板に形成された前記貫通孔を前記連通孔として機能させることを特徴とするベーパチャンバ。
A pair of surface layer members disposed opposite each other in a state in which a refrigerant is sealed in a gas phase space secured between each other;
In each surface layer member, a liquid phase space through which the liquid refrigerant flows in the plane direction is formed, and in the gas phase space between the pair of surface layer members, the liquid phase space of each surface layer member is formed. A communication passage to communicate with each other,
The vapor phase refrigerant in the liquid phase space provided in one surface layer member is diffused through the gas phase space, and the liquid phase refrigerant in the liquid phase space provided in the other surface layer member is transferred from the communication passage to the one surface. In the vapor chamber adapted to move to the liquid phase space of the layer member,
A plurality of columnar members extending so as to contact both of the pair of surface layer members are interposed between the pair of surface layer members, and extend along the axis of the columnar member inside each columnar member. In addition, a plurality of communication passages that are through-holes opened on both end faces of the columnar member on the pair of surface layer members are provided, and each surface layer member communicates between the liquid phase space and the gas phase space. A communication hole is formed,
Each communication passage is disposed at a position communicating with the communication hole ,
Each surface layer member
A flat outer plate,
An inner layer plate that is located between the outer layer plate and the columnar member, has a flat plate shape, and has a through-hole that is opened in the plate thickness direction; and
With
Vapor chamber, characterized in Rukoto to function the through hole formed in the inner plate as the communication hole.
請求項1記載のベーパチャンバにおいて、
前記一対の表面層部材の積層方向で、各連絡通路が前記連通孔に重なる位置に配置されることを特徴とするベーパチャンバ。
The vapor chamber of claim 1.
A vapor chamber, wherein each communication passage is disposed at a position overlapping the communication hole in the stacking direction of the pair of surface layer members.
請求項1または2記載のベーパチャンバにおいて、
記外層板の一方の面又は前記内層板の一方の面には、複数の凸部が形成され、
前記外層板の一方の面に前記内層板の一方の面を対向させてこれら外層板と内層板とを積層することにより、前記外層板及び前記内層板のいずれか一方に形成された凸部の頂部を、前記外層板及び前記内層板のいずれか他方に着地させてその周囲に前記液相空間を形成することを特徴とするベーパチャンバ。
The vapor chamber according to claim 1 or 2,
On one surface or one surface of the inner layer plate before Kigaiso plate, a plurality of convex portions are formed,
A convex portion formed on one of the outer layer plate and the inner layer plate by laminating the outer layer plate and the inner layer plate with one surface of the inner layer plate facing one surface of the outer layer plate. the top, the outer plate and vapor chamber, wherein the benzalkonium to form the liquid phase space around by landing to the other of the inner plate.
請求項3記載のベーパチャンバにおいて、
前記複数の凸部は、前記内層板に形成されるとともに、該内層板では、各凸部に隣接して前記貫通孔が開口形成されていることを特徴とするベーパチャンバ。
The vapor chamber of claim 3.
The plurality of convex portions are formed in the inner layer plate, and the inner layer plate has the through hole formed adjacent to each convex portion.
請求項1〜4のいずれか1項に記載のベーパチャンバにおいて、
隣接する柱状部材の周面間には互いの間を連結する連結部を設け、
前記連結部は、前記柱状部材に対して軸方向に沿った寸法を小さく形成したものであることを特徴とするベーパチャンバ。
The vapor chamber according to any one of claims 1 to 4,
Between the peripheral surfaces of the adjacent columnar members, a connecting portion that connects each other is provided,
The vapor chamber is characterized in that the connecting portion is formed with a smaller dimension along the axial direction than the columnar member.
請求項1〜5のいずれか1項に記載のーパチャンバにおいて、
前記柱状部材に形成する連絡通路は、複数の細径孔または多角形を結合した横断面形状を有することを特徴とするベーパチャンバ。
In base Pachanba according to any one of claims 1 to 5,
The vapor passage characterized in that the communication passage formed in the columnar member has a cross-sectional shape in which a plurality of small diameter holes or polygons are combined.
JP2013002692A 2013-01-10 2013-01-10 Vapor chamber Active JP6176433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002692A JP6176433B2 (en) 2013-01-10 2013-01-10 Vapor chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002692A JP6176433B2 (en) 2013-01-10 2013-01-10 Vapor chamber

Publications (2)

Publication Number Publication Date
JP2014134347A JP2014134347A (en) 2014-07-24
JP6176433B2 true JP6176433B2 (en) 2017-08-09

Family

ID=51412761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002692A Active JP6176433B2 (en) 2013-01-10 2013-01-10 Vapor chamber

Country Status (1)

Country Link
JP (1) JP6176433B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031576B2 (en) 2015-03-23 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
JP6031548B2 (en) 2015-03-27 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
JP6031549B2 (en) 2015-03-27 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
JP6446007B2 (en) 2015-12-25 2018-12-26 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
JP6166414B1 (en) 2016-03-30 2017-07-19 株式会社神戸製鋼所 Copper or copper alloy strip for vapor chamber
KR102226988B1 (en) 2016-10-05 2021-03-11 가부시키가이샤 고베 세이코쇼 Copper alloy plate for heat dissipation parts, heat dissipation parts, and manufacturing method of heat dissipation parts
JP7163725B2 (en) * 2018-01-12 2022-11-01 大日本印刷株式会社 Vapor chamber, electronic device, sheet for vapor chamber, and method for manufacturing vapor chamber sheet and vapor chamber
CN114543569A (en) * 2020-11-24 2022-05-27 亚浩电子五金塑胶(惠州)有限公司 Three-dimensional heat transfer device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290852A (en) * 1976-01-26 1977-07-30 Hitachi Heating Appliance Co Ltd Tabular, hollow generating plate
JPH10185468A (en) * 1996-12-20 1998-07-14 Akutoronikusu Kk Plate heat pipe for inter-plane thermal diffusion coupling with maximal area ration
US20090040726A1 (en) * 2007-08-09 2009-02-12 Paul Hoffman Vapor chamber structure and method for manufacturing the same
JP2009076650A (en) * 2007-09-20 2009-04-09 Sony Corp Phase change type heat spreader, passage structure, electronic device, and method of manufacturing phase transformation type heat spreader
JP5413735B2 (en) * 2010-01-18 2014-02-12 日本モレックス株式会社 Heat transport unit, electronic equipment
JP2011247543A (en) * 2010-05-28 2011-12-08 Kiko Kagi Kofun Yugenkoshi Plate-like heat pipe structure and method for producing the same

Also Published As

Publication number Publication date
JP2014134347A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP6176433B2 (en) Vapor chamber
JP5180385B1 (en) Vapor chamber
JP4557055B2 (en) Heat transport device and electronic equipment
JP4967988B2 (en) Semiconductor cooling device
JP2009076650A (en) Phase change type heat spreader, passage structure, electronic device, and method of manufacturing phase transformation type heat spreader
US20130058042A1 (en) Laminated heat sinks
US20180142960A1 (en) Loop heat pipe
JP7347579B2 (en) vapor chamber
JP7243135B2 (en) Vapor chambers, electronics, and sheets for vapor chambers
JP7155585B2 (en) Vapor chamber and electronics
JP7284944B2 (en) Vapor chamber and electronics
WO2019230911A1 (en) Vapor chamber and electronic device
JP4721412B2 (en) Cooler and manufacturing method thereof
JP6856827B1 (en) Wick sheet for vapor chamber, vapor chamber and electronics
JP2010062248A (en) Positioning tool unit and soldering method
TWI409425B (en) Heat pipe
JP7338770B2 (en) Vapor chamber, electronic device, sheet for vapor chamber, and method for manufacturing vapor chamber sheet and vapor chamber
JP2006132805A (en) Plate type heat exchanger
JP6938960B2 (en) Micro flow path heat exchanger
WO2021070544A1 (en) Vapor chamber wick sheet, vapor chamber, and electronic equipment
JP2003060145A (en) Cooling plate
JP2017079305A (en) Radiator
TWM578370U (en) Vapor chamber and heat dissipation device having the same
JP7200607B2 (en) Vapor chambers, electronics, and sheets for vapor chambers
JP2005233454A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170627

R150 Certificate of patent or registration of utility model

Ref document number: 6176433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250