JP5557761B2 - Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance - Google Patents

Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance Download PDF

Info

Publication number
JP5557761B2
JP5557761B2 JP2011013596A JP2011013596A JP5557761B2 JP 5557761 B2 JP5557761 B2 JP 5557761B2 JP 2011013596 A JP2011013596 A JP 2011013596A JP 2011013596 A JP2011013596 A JP 2011013596A JP 5557761 B2 JP5557761 B2 JP 5557761B2
Authority
JP
Japan
Prior art keywords
mass
stress relaxation
copper alloy
bending workability
relaxation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011013596A
Other languages
Japanese (ja)
Other versions
JP2012153938A (en
Inventor
進也 桂
章 畚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011013596A priority Critical patent/JP5557761B2/en
Publication of JP2012153938A publication Critical patent/JP2012153938A/en
Application granted granted Critical
Publication of JP5557761B2 publication Critical patent/JP5557761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は端子・コネクタ、リレーなどの電気電子部品、半導体用材料(リードフレーム、放熱板)、電気回路用材料(自動車用ジャンクションブロック、民生用電気部品用回路)等に用いられる電気電子部品用銅合金板に関する。   The present invention is for electrical and electronic parts used for electrical and electronic parts such as terminals, connectors, and relays, semiconductor materials (lead frames, heat sinks), electrical circuit materials (junction blocks for automobiles, circuits for consumer electrical parts), etc. It relates to a copper alloy plate.

自動車分野において環境規制対応、快適性、安全性の追及から多くの電気電子部品が搭載されるようになり、使用される端子・コネクタやリレー部品等は狭ピッチ化や小型化が行われている。また、情報通信や民生分野においても同様な要求がある。析出硬化によって高強度を得ることが可能であるCu−Ni−Si系合金は、高強度、高耐熱性、高い耐応力緩和特性及び比較的高い導電率を兼備する合金としてこれらの用途に広く用いられている。
一方、電気電子部品の小型化に伴い、電気電子部品用銅合金板は高強度、高導電率はもちろんのこと、密着曲げあるいはノッチング後90°曲げなどに耐える優れた曲げ加工性が要求されることが多くなっている。さらに、電気電子部品の小型化に伴い、従来厳しい曲げ加工は圧延方向に直角の曲げ線で行われる(いわゆるG.W.)のが通例であったのが、圧延方向に平行の曲げ線で行われる(いわゆるB.W.)ケースも多くなっている。
In the automotive field, many electrical and electronic parts have been installed to comply with environmental regulations, comfort and safety, and the terminals, connectors and relay parts used have been narrowed and miniaturized. . There are similar requirements in the field of information communications and consumer products. Cu-Ni-Si alloys, which can obtain high strength by precipitation hardening, are widely used in these applications as alloys having high strength, high heat resistance, high stress relaxation properties and relatively high electrical conductivity. It has been.
On the other hand, with the miniaturization of electrical and electronic parts, copper alloy plates for electrical and electronic parts are required to have excellent bending workability to withstand bending bending or 90 ° bending after notching as well as high strength and high conductivity. A lot is happening. Furthermore, along with the miniaturization of electrical and electronic parts, conventionally, strict bending work is usually performed with a bend line perpendicular to the rolling direction (so-called GW). The number of cases that are performed (so-called BW) is also increasing.

特許文献1〜4にはCu−Ni−Si系銅合金について、曲げ加工性又は応力緩和特性を改善する手段が開示されている。特許文献1,2には、Cu−Ni−Si系銅合金の結晶粒径制御による曲げ加工性の改善方法が開示されている。特許文献3には同じくCu−Ni−Si系銅合金の添加元素制御による耐応力緩和特性の改善方法が開示され,特許文献4には併せて結晶粒径制御による曲げ加工性の改善方法が開示されている。   Patent Documents 1 to 4 disclose means for improving bending workability or stress relaxation characteristics of Cu—Ni—Si based copper alloys. Patent Documents 1 and 2 disclose methods for improving the bending workability by controlling the crystal grain size of a Cu—Ni—Si based copper alloy. Similarly, Patent Document 3 discloses a method for improving stress relaxation resistance by controlling additive elements of a Cu-Ni-Si copper alloy, and Patent Document 4 discloses a method for improving bending workability by controlling crystal grain size. Has been.

特開2008−196042号公報JP 2008-196042 A 特開2008−266783号公報JP 2008-266783 A 特許4287878号公報Japanese Patent No. 4287878 特開平11−335756号公報JP-A-11-335756

特許文献1〜4に示されるように、Cu−Ni−Si系銅合金において、従来の曲げ加工性改善は主として結晶粒状態の制御によって行われ、耐応力緩和特性の改善は主として添加元素の制御によって行われている。しかしながら、結晶粒微細化による曲げ加工性の改善は、他方として耐応力緩和特性の低下に繋がり、また、添加元素による耐応力緩和特性の改善は曲げ加工性の低下に繋がっているのが現状である。
従って、本発明が解決しようとする技術課題は、析出硬化によって高強度を得ることが可能であるCu−Ni−Si系銅合金において、優れた曲げ加工性及び耐応力緩和特性を兼備する電気電子部品用銅合金板を提供することである。
As shown in Patent Documents 1 to 4, in a Cu-Ni-Si based copper alloy, conventional bending workability improvement is mainly performed by controlling the crystal grain state, and improvement of stress relaxation resistance is mainly controlled by additive elements. Has been done by. However, the improvement in bending workability due to grain refinement, on the other hand, leads to a decrease in stress relaxation resistance, and the improvement in stress relaxation resistance due to additive elements leads to a decrease in bending workability. is there.
Therefore, the technical problem to be solved by the present invention is an electrical and electronic device having both excellent bending workability and stress relaxation resistance in a Cu-Ni-Si based copper alloy capable of obtaining high strength by precipitation hardening. It is to provide a copper alloy sheet for parts.

本発明者らはCu−Ni−Si系銅合金板の組織が曲げ加工性、耐応力緩和特性に及ぼす影響について種々の検討を行った結果、微細な結晶粒と粗大な結晶粒を混在させることによって優れた曲げ加工性と耐応力緩和特性を兼備させることができることを見出し、その知見に基づいて本発明に到達した。
本発明に係わる曲げ加工性と耐応力緩和特性に優れる電気電子部品用銅合金板は、Niを1.5〜4.5mass%、Ni/Siの質量比が4.0〜5.0となるSi、及びSnを0.01〜1.3mass%含有し、残部が銅及び不可避不純物からなるCu−Ni−Si系銅合金板であり、圧延方向と板厚方向からなる断面において、圧延方向平行方向の平均結晶粒径が5〜20μm、最大結晶粒径が30μm以上、最小結晶粒径が5μm以下であることを特徴とする。
As a result of various studies on the influence of the structure of the Cu-Ni-Si-based copper alloy sheet on the bending workability and stress relaxation resistance, the present inventors have mixed fine crystal grains and coarse crystal grains. Has been found to be able to have both excellent bending workability and stress relaxation resistance, and has arrived at the present invention based on that knowledge.
The copper alloy sheet for electric and electronic parts excellent in bending workability and stress relaxation resistance according to the present invention has Ni of 1.5 to 4.5 mass% and a mass ratio of Ni / Si of 4.0 to 5.0. A Cu-Ni-Si-based copper alloy sheet containing 0.01 to 1.3 mass% of Si and Sn with the balance being copper and inevitable impurities, and in a cross-section composed of a rolling direction and a plate thickness direction, is parallel to the rolling direction. The average crystal grain size in the direction is 5 to 20 μm, the maximum crystal grain size is 30 μm or more, and the minimum crystal grain size is 5 μm or less.

上記Cu−Ni−Si系合金は、Ni、Si、Snの他、必要に応じて、(1)Mg:0.005〜0.2mass%、Cr:0.001〜0.3mass%、Mn:0.01〜0.5mass%、Zn:0.01〜5.0mass%の1種又は2種以上、(2)B、C、P、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbからなる群から選択された元素の1種又は2種以上を各元素:0.0001〜0.1mass%、2種以上の場合は合計で0.1%mass%以下、(3)Be、Al、Ti、Fe、Co、Zr、Ag、Cd、In、Sb、Te、Auの群から選択された元素の1種又は2種以上を各元素:0.001〜0.9mass%、2種以上の場合は合計で0.9mass%以下、含有することができる。上記(1)〜(3)の1又は2以上を適宜組み合わせることもできる。さらに、必要に応じて、不可避不純物であるSの含有量を0.005mass%以下に制御することができる。   In addition to Ni, Si, and Sn, the Cu-Ni-Si-based alloy includes (1) Mg: 0.005-0.2 mass%, Cr: 0.001-0.3 mass%, Mn: 0.01-0.5 mass%, Zn: one or more of 0.01-5.0 mass%, (2) B, C, P, Ca, V, Ga, Ge, Nb, Mo, Hf, One or two or more elements selected from the group consisting of Ta, Bi, and Pb are each element: 0.0001 to 0.1 mass%, and in the case of two or more elements, the total is 0.1% mass% or less, ( 3) One element or two or more elements selected from the group of Be, Al, Ti, Fe, Co, Zr, Ag, Cd, In, Sb, Te, and Au, each element: 0.001 to 0.9 mass %, In the case of 2 or more types, a total of 0.9 mass% or less can be contained. One or two or more of the above (1) to (3) can be appropriately combined. Furthermore, the content of S, which is an inevitable impurity, can be controlled to 0.005 mass% or less as necessary.

本発明に係るCu−Ni−Si系銅合金板は、優れた曲げ加工性と応力緩和特性を有し、また、電気電子部品用銅合金板として必要とされる強度特性及び導電性を備えている。   The Cu-Ni-Si-based copper alloy plate according to the present invention has excellent bending workability and stress relaxation properties, and has strength characteristics and conductivity required as a copper alloy plate for electric and electronic parts. Yes.

歪み取り焼鈍後の冷間圧延の加工率と、応力緩和率及び最大結晶粒径の関係を示すグラフである。It is a graph which shows the relationship between the work rate of the cold rolling after strain relief annealing, a stress relaxation rate, and a maximum crystal grain size.

以下、本発明に係るCu−Ni−Si系銅合金板の組成及び結晶粒形態,さらに製造方法について具体的に説明する。
[Cu−Ni−Si系銅合金板の組成]
本発明に係るCu−Ni−Si系銅合金板の基本組成は、実質的に特許文献1に開示されている。Sn、Mg、Cr、Mn、Zn等の副成分、さらにB〜Pb、Be〜Au等のその他成分についても同様に開示されている。
Hereinafter, the composition and crystal grain form of the Cu—Ni—Si based copper alloy sheet according to the present invention and the manufacturing method will be specifically described.
[Composition of Cu-Ni-Si-based copper alloy sheet]
The basic composition of the Cu—Ni—Si based copper alloy sheet according to the present invention is substantially disclosed in Patent Document 1. It discloses similarly about subcomponents, such as Sn, Mg, Cr, Mn, Zn, and also other components, such as B-Pb and Be-Au.

・Ni及びSi
Ni、SiはCu−Ni−Si系銅合金板においてNiSiの析出物を生成し、合金の強度を向上させる元素である。Ni添加量は1.5〜4.5mass%、Si添加量はNi/Si質量比が4.0〜5.0となるようにNi添加量に対応した量を添加する。Ni添加量が1.5mass%より少ない場合は強度が不足する。Ni添加量が4.5mass%を超える場合は鋳造時にNi又はSiが晶出又は析出し熱間加工性が低下する。また、Ni/Si質量比が4.0未満及び5.0以上である場合、過剰となったNi又はSiが固溶することによって導電性が低下する。Ni添加量は望ましくは1.7〜3.9mass%である。
・ Ni and Si
Ni and Si are elements that generate Ni 2 Si precipitates in a Cu—Ni—Si based copper alloy plate and improve the strength of the alloy. The addition amount of Ni is 1.5 to 4.5 mass%, and the addition amount of Si is added in an amount corresponding to the addition amount of Ni so that the Ni / Si mass ratio is 4.0 to 5.0. If the amount of Ni added is less than 1.5 mass%, the strength is insufficient. When the amount of Ni added exceeds 4.5 mass%, Ni or Si crystallizes or precipitates during casting, resulting in a decrease in hot workability. Moreover, when the Ni / Si mass ratio is less than 4.0 and 5.0 or more, the conductivity is lowered due to the solid solution of Ni or Si that is excessive. The amount of Ni added is desirably 1.7 to 3.9 mass%.

・Sn
Snは組織中に固溶することによって強度特性及び耐応力緩和特性を向上させる。そのためには0.01mass%以上添加する必要がある。一方、1.3mass%を超えると導電率及び曲げ加工性が低下する。従って、Sn含有量は0.01〜1.3mass%とする。望ましくは0.01〜0.6mass%、さらに望ましくは0.01〜0.3mass%である。
・ Sn
Sn improves the strength characteristics and stress relaxation resistance characteristics by dissolving in the structure. For that purpose, it is necessary to add 0.01 mass% or more. On the other hand, when it exceeds 1.3 mass%, the electrical conductivity and the bending workability are lowered. Therefore, Sn content shall be 0.01-1.3 mass%. Desirably, it is 0.01 to 0.6 mass%, and more desirably 0.01 to 0.3 mass%.

・Mg
Mgは組織中に固溶することによって強度特性を向上させる。そのためには0.005mass%以上の添加が必要である。一方、0.2mass%を超えると曲げ加工性及び導電率が低下する。従ってMgの含有量は0.005〜0.2mass%とする。望ましくは0.005〜0.15mass%、さらに望ましくは0.005〜0.05mass%である。
・ Mg
Mg improves the strength characteristics by forming a solid solution in the structure. For that purpose, addition of 0.005 mass% or more is necessary. On the other hand, when it exceeds 0.2 mass%, bending workability and electrical conductivity will fall. Therefore, the Mg content is set to 0.005 to 0.2 mass%. Preferably it is 0.005-0.15 mass%, More preferably, it is 0.005-0.05 mass%.

・Cr
Crは熱間加工性を向上させる。そのためには0.001mass%以上の添加が必要である。一方、0.3mass%を超えると晶出物を生成して曲げ加工性が低下する。従ってCrの含有量は0.001〜0.3mass%とする。望ましくは0.001〜0.1mass%である。
・Mn
Mnは熱間加工性を向上させる。そのためには0.01mass%以上の添加が必要である。一方、0.5mass%を超えると導電率が低下する。従ってMnの含有量は0.01〜0.5mass%とする。望ましくは0.01〜0.3mass%である。
・ Cr
Cr improves hot workability. For that purpose, addition of 0.001 mass% or more is necessary. On the other hand, if it exceeds 0.3 mass%, a crystallized product is generated and bending workability is lowered. Therefore, the Cr content is set to 0.001 to 0.3 mass%. Desirably, it is 0.001 to 0.1 mass%.
・ Mn
Mn improves hot workability. For that purpose, addition of 0.01 mass% or more is necessary. On the other hand, if it exceeds 0.5 mass%, the electrical conductivity decreases. Accordingly, the Mn content is set to 0.01 to 0.5 mass%. Desirably, it is 0.01-0.3 mass%.

・Zn
ZnはSnめっき剥離性を向上させる。そのためには0.01mass%以上の添加が必要である。一方、5mass%を超えると導電率が低下する。従ってMnの含有量は0.01〜5mass%とする。望ましくは0.01〜2mass%、さらに望ましくは0.01〜1.2mass%である。
・S
Sは他の固溶元素と化合物を形成することで曲げ加工性を低下させ、応力緩和特性も低下させる。そのためS含有量は0.005mass%以下とすることが好ましく、さらに好ましくは0.002mass%以下とする。
・ Zn
Zn improves Sn plating peelability. For that purpose, addition of 0.01 mass% or more is necessary. On the other hand, if it exceeds 5 mass%, the electrical conductivity decreases. Therefore, the Mn content is set to 0.01 to 5 mass%. Desirably, it is 0.01-2 mass%, More desirably, it is 0.01-1.2 mass%.
・ S
S forms a compound with another solid solution element, thereby lowering the bending workability and lowering the stress relaxation characteristics. Therefore, the S content is preferably 0.005 mass% or less, and more preferably 0.002 mass% or less.

・その他添加元素
B、C、P、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbの各元素は、プレス打ち抜き性を向上させる作用を有する。これらの元素は0.0001mass%未満では効果が無く、0.1mass%を超えると熱間加工性が低下する。Be、Al、Ti、Fe、Co、Zr、Ag、Cd、In、Sb、Te、Auの各元素は、プレス打ち抜き性を向上させる作用を有する。また、NiSi析出物との共存により強度特性を向上させる。Ti、Zrについてはさらに熱間加工性を向上させる効果がある。これらの元素は0.001mass%未満では効果が無く、0.9mass%を超えると熱間及び冷間加工性が低下する。従って、上記元素を添加する場合はB、C、P、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbについては各元素0.0001〜0.1mass%(2種以上添加する場合は合計で0.1mass%以下)、Be、Al、Ti、Fe、Co、Zr、Ag、Cd、In、Sb、Te、Auについては各元素0.001〜0.9mass%(2種以上添加する場合は合計で0.9mass%以下)、両方の合計で1mass%以下とする。
Other additive elements Each element of B, C, P, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb has an effect of improving press punchability. If these elements are less than 0.0001 mass%, they are not effective, and if they exceed 0.1 mass%, the hot workability decreases. Each element of Be, Al, Ti, Fe, Co, Zr, Ag, Cd, In, Sb, Te, and Au has an action of improving press punchability. Moreover, strength characteristics are improved by coexistence with Ni 2 Si precipitates. Ti and Zr have the effect of further improving hot workability. These elements are ineffective at less than 0.001 mass%, and hot and cold workability deteriorates when they exceed 0.9 mass%. Therefore, when adding the above elements, B, C, P, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb each element 0.0001 to 0.1 mass% (two or more kinds) In the case of adding 0.1 mass% or less in total, Be, Al, Ti, Fe, Co, Zr, Ag, Cd, In, Sb, Te, and Au, each element is 0.001 to 0.9 mass% (2 In the case of adding seeds or more, the total is 0.9 mass% or less), and the total of both is 1 mass% or less.

[結晶粒の状態]
先に述べたとおり、端子用銅合金に要求される曲げ加工性は一般的に平均結晶粒径が小さいほど良好となる。これは、結晶粒径が大きくなるほど粒界面積が減少し、結晶粒界に固溶元素の偏析及び応力集中が生じやすくなるためである。一方、端子用銅合金に要求される耐応力緩和特性は一般的に結晶粒径が小さいほど低下する。これは結晶粒界が組織に存在する転位の消滅・移動を促進させるためと考えられている。
上記の曲げ加工性及び耐応力緩和特性を兼備させるためには、銅合金の粒界割れを抑制する微細な結晶粒を主とし、耐応力緩和特性を改善する粗大な結晶粒を部分的に存在させることが有効である。具体的には銅合金の圧延方向と板厚方向からなる断面の組織において、平均結晶粒径が5〜20μm、最大結晶粒径が30μm以上、最小結晶粒径が5μm以下とすれば良い。
[Grain state]
As described above, the bending workability required for the terminal copper alloy is generally better as the average crystal grain size is smaller. This is because the grain boundary area decreases as the crystal grain size increases, and segregation of solid solution elements and stress concentration are likely to occur at the grain boundaries. On the other hand, the stress relaxation resistance required for the terminal copper alloy generally decreases as the crystal grain size decreases. This is thought to be because the crystal grain boundary promotes the disappearance and movement of dislocations existing in the structure.
In order to have both the above-mentioned bending workability and stress relaxation resistance, there are mainly fine grains that suppress intergranular cracking in copper alloys, and there are some coarse grains that improve stress relaxation resistance. It is effective to make it. Specifically, in the cross-sectional structure composed of the rolling direction and the plate thickness direction of the copper alloy, the average crystal grain size may be 5 to 20 μm, the maximum crystal grain size is 30 μm or more, and the minimum crystal grain size is 5 μm or less.

最大結晶粒径が小さいときは良好な応力緩和特性を得ることができず。最小結晶粒径が大きい時は曲げ加工性が低下する。最大結晶粒径については望ましくは35μm以上、さらに望ましくは40μm以上とする。後述する製造方法において80μm程度が製造上の上限値となる。最小結晶粒径については望ましくは4μm以下、さらに望ましくは3μm以下とする。後述する製造方法において1μm程度が製造上の下限値となる。
また、粗大結晶粒と微細結晶粒を良好な混合状態とするために平均結晶粒径は5〜20μmとする。平均結晶粒径が高い時は曲げ加工性が低下し、低い時は応力緩和特性が低下する。好ましくは5〜15μm、さらに好ましくは5〜10μmとする。
When the maximum crystal grain size is small, good stress relaxation characteristics cannot be obtained. When the minimum crystal grain size is large, bending workability decreases. The maximum crystal grain size is desirably 35 μm or more, and more desirably 40 μm or more. In the manufacturing method described later, about 80 μm is the upper limit for manufacturing. The minimum crystal grain size is desirably 4 μm or less, and more desirably 3 μm or less. In the manufacturing method described later, about 1 μm is the lower limit for manufacturing.
Further, the average crystal grain size is set to 5 to 20 μm in order to make coarse crystal grains and fine crystal grains in a good mixed state. When the average grain size is high, the bending workability is lowered, and when it is low, the stress relaxation property is lowered. Preferably it is 5-15 micrometers, More preferably, it is 5-10 micrometers.

[製造方法]
本発明組成のCu−Ni−Si系銅合金板において、従来の標準的な製造方法(例えば特許文献4参照)は、溶解・鋳造→均熱処理→熱間圧延→熱間圧延後の急冷→冷間圧延→溶体化を伴う再結晶処理→冷間圧延→析出処理である。また、溶体化を伴う再結晶処理後に析出処理→冷間圧延の順で行う工程も高強度化に有効である。さらに良好なばね性を得るために最後に低温焼鈍を実施する場合もある。
本発明に規定する結晶粒組織を有するCu−Ni−Si系銅合金板を得るために、熱間圧延と溶体化を伴う再結晶処理の間に転位を除去するための歪取り焼鈍を行い、さらに溶体化を伴う再結晶処理前の冷間加工の加工率を所定の値に制御する。つまり、溶解・鋳造→均熱処理→熱間圧延→熱間圧延後の急冷→冷間圧延→歪取り焼鈍→冷間圧延→溶体化を伴う再結晶処理→冷間圧延→析出処理である。
[Production method]
In the Cu—Ni—Si based copper alloy plate of the composition of the present invention, the conventional standard manufacturing method (see, for example, Patent Document 4) is as follows: melting / casting → soaking treatment → hot rolling → rapid cooling after hot rolling → cooling Cold rolling → recrystallization treatment with solution treatment → cold rolling → precipitation treatment. In addition, a process performed in the order of precipitation treatment → cold rolling after recrystallization treatment with solution treatment is also effective for increasing the strength. In some cases, low-temperature annealing is finally performed in order to obtain better spring properties.
In order to obtain a Cu-Ni-Si based copper alloy sheet having a crystal grain structure defined in the present invention, performing strain relief annealing to remove dislocations during recrystallization treatment with hot rolling and solution treatment, Furthermore, the processing rate of the cold working before the recrystallization process accompanied by solution treatment is controlled to a predetermined value. That is, melting / casting → uniform heat treatment → hot rolling → rapid cooling after hot rolling → cold rolling → strain relief annealing → cold rolling → recrystallization with solution treatment → cold rolling → precipitation treatment.

上記製造方法の技術的な特徴部分は、歪取り焼鈍→冷間圧延→溶体化を伴う再結晶処理の一連の工程にある。溶体化を伴う再結晶処理(焼鈍)を行うことにより、本発明に規定する結晶組織が概ね(後の冷間加工によって粒径に若干の変化を生じる)完成されるのであるが、その結晶組織を得るためには、溶体化を伴う再結晶焼鈍前に冷間加工率で5〜35%に相当する歪みを蓄積させておく必要があり、そのために冷間加工の前段階で歪取り焼鈍を行うものである。
続いて各工程についてより詳細に説明する。
The technical characteristic part of the manufacturing method is in a series of steps of recrystallization treatment with strain relief annealing → cold rolling → solution treatment. By performing recrystallization treatment (annealing) accompanied by solution treatment, the crystal structure defined in the present invention is almost completed (the grain size is slightly changed by subsequent cold working). Therefore, it is necessary to accumulate a strain corresponding to 5 to 35% in the cold working rate before recrystallization annealing accompanied by solution treatment. Is what you do.
Subsequently, each step will be described in more detail.

・均熱処理、熱間圧延及び急冷
均熱処理は850℃以上で10分間以上保持する条件とし、続いて熱間圧延を行う。熱間圧延開始から700℃までの冷却速度は熱間圧延中を含めて20℃/分以上とする。700℃までの冷却速度がこれより遅いと、粗大化した析出粒子が生成して強化作用を有する微細な析出粒子の析出を阻害するためである。熱間圧延終了後は水冷などにより速やかに冷却を行い、析出粒子の発生を抑える。
・冷間圧延
熱間圧延後の冷間圧延は、最終板厚及び後の冷間加工率を勘案して適宜実施する。圧延加工率は任意である。
-Soaking, hot rolling and rapid cooling Soaking is carried out at 850 ° C or more for 10 minutes or more, followed by hot rolling. The cooling rate from the start of hot rolling to 700 ° C. is 20 ° C./min or more including during hot rolling. This is because when the cooling rate to 700 ° C. is slower than this, coarse precipitate particles are generated and the precipitation of fine precipitate particles having a strengthening action is inhibited. After the hot rolling is completed, it is quickly cooled by water cooling or the like to suppress the generation of precipitated particles.
-Cold rolling Cold rolling after hot rolling is performed appropriately in consideration of the final sheet thickness and the subsequent cold working rate. The rolling rate is arbitrary.

・歪取り焼鈍
溶体化を伴う再結晶処理後の再結晶組織を適切な状態に制御するため歪取り焼鈍を行う。最適な歪取り焼鈍条件は銅合金中のNi、Si含有量に影響され、Ni、Si含有量が少ない場合はより低温に、Ni、Si含有量が多い場合はより高温となる。目安として歪取り焼鈍後の硬さが焼鈍前の硬さの75%以下となる条件を選択するとよい。具体的には焼鈍温度が500〜750℃、焼鈍時間が20〜20000秒の範囲で行う。焼鈍温度が低い又は焼鈍時間が短い場合、後の溶体化を伴う再結晶処理後に所望の再結晶組織を得ることができない。焼鈍温度が高い又は焼鈍時間が長い場合、消費エネルギーが過剰となり製造コストが高くなる。
・ Strain relief annealing Strain relief annealing is performed in order to control the recrystallized structure after recrystallization with solution to an appropriate state. Optimum strain relief annealing conditions are affected by the Ni and Si contents in the copper alloy, and are lower when the Ni and Si contents are low, and higher when the Ni and Si contents are high. As a guide, it is preferable to select a condition in which the hardness after strain relief annealing is 75% or less of the hardness before annealing. Specifically, the annealing temperature is 500 to 750 ° C., and the annealing time is 20 to 20000 seconds. When the annealing temperature is low or the annealing time is short, a desired recrystallized structure cannot be obtained after a recrystallization process with subsequent solution treatment. When the annealing temperature is high or the annealing time is long, the energy consumption becomes excessive and the production cost increases.

・冷間圧延
溶体化を伴う再結晶処理前に銅合金板に一定の歪みを加えることで、溶体化を伴う再結晶処理後に所望の結晶組織を有する銅合金板が得られる。冷間加工率は5〜35%とする。冷間加工率が低い場合、高い場合ともに所望の再結晶組織を得ることができない。
-Cold rolling By applying a certain strain to the copper alloy plate before the recrystallization treatment with solution treatment, a copper alloy plate having a desired crystal structure is obtained after the recrystallization treatment with solution treatment. The cold working rate is 5 to 35%. When the cold working rate is low, the desired recrystallized structure cannot be obtained in both cases.

・溶体化を伴う再結晶処理
溶体化を伴う再結晶処理の目的は、Ni−Siの時効硬化を行うためにNi及びSiを固溶させるとともに、曲げ加工性が良好となる再結晶組織を形成することである。最適な再結晶処理条件は銅合金中のNi、Si含有量に影響され、Ni、Si含有量が少ない場合はより低温に、Ni、Si含有量が多い場合はより高温となる。具体的には600〜950℃、望ましくは650〜900℃で3分以下の保持という条件から選択する。さらに具体的な熱処理条件については実施例に示す。再結晶処理条件がこれより低温又は短時間であるとNi及びSiの固溶量が少なくなり、強度特性が低下する。焼鈍条件がこれより高温又は長時間であると再結晶粒が粗大かつ均一化し、所望の再結晶組織を得ることができない。
・ Recrystallization treatment with solution treatment The purpose of the recrystallization treatment with solution treatment is to form a recrystallized structure in which Ni and Si are dissolved in order to age-harden Ni-Si and bending workability is improved. It is to be. Optimal recrystallization treatment conditions are affected by the Ni and Si contents in the copper alloy, and the temperature is lower when the Ni and Si contents are low, and higher when the Ni and Si contents are high. Specifically, it is selected from the conditions of holding at 600 to 950 ° C., preferably 650 to 900 ° C. for 3 minutes or less. More specific heat treatment conditions are shown in the examples. If the recrystallization treatment conditions are lower or shorter than this, the solid solution amount of Ni and Si is reduced and the strength characteristics are lowered. When the annealing conditions are higher than this or for a long time, the recrystallized grains are coarse and uniform, and a desired recrystallized structure cannot be obtained.

・冷間圧延
溶体化を伴う再結晶処理後の冷間圧延を50%以下の加工率で行う。この冷間圧延の加工率が50%を超えると、特許文献1にも記載されているとおり、曲げ加工性が低下する。この冷間圧延により析出物の核生成サイトが導入される。
・析出処理
析出処理は350〜500℃で30分〜24時間の条件で行う。保持温度が350℃未満であるとNiSiの析出が不十分となる。保持温度が500℃を超えると銅合金板の強度が低下し、必要な強度特性が得られない。また、保持時間が30分未満ではNiSiの析出が不十分となり、24時間を超えると生産性が阻害される。
・ Cold rolling Cold rolling after recrystallization treatment with solution treatment is performed at a processing rate of 50% or less. When the cold rolling processing rate exceeds 50%, as described in Patent Document 1, bending workability is deteriorated. This cold rolling introduces nucleation sites for precipitates.
Precipitation treatment The precipitation treatment is performed at 350 to 500 ° C. for 30 minutes to 24 hours. When the holding temperature is lower than 350 ° C., the precipitation of Ni 2 Si becomes insufficient. When holding temperature exceeds 500 degreeC, the intensity | strength of a copper alloy plate will fall and a required intensity | strength characteristic will not be acquired. Further, if the holding time is less than 30 minutes, Ni 2 Si is not sufficiently precipitated, and if it exceeds 24 hours, productivity is hindered.

なお、以上述べた製造方法において、熱間圧延と歪み取り焼鈍の間の冷間圧延を軟化を伴う熱処理を挟んで繰り返し行ったり、析出処理後に最終冷間圧延を行ったり、最後に低温焼鈍を実施することもできる。析出処理後に冷間圧延を行う場合、その加工率は析出処理前の冷間圧延の加工率と合わせて50%以下とすることが望ましい。   In the manufacturing method described above, cold rolling between hot rolling and strain relief annealing is repeatedly performed with heat treatment accompanied by softening, final cold rolling is performed after precipitation treatment, and finally low temperature annealing is performed. It can also be implemented. When cold rolling is performed after the precipitation treatment, the processing rate is preferably 50% or less in combination with the cold rolling processing rate before the precipitation treatment.

表1に示す組成のCu−Ni−Si系銅合金を、クリプトル炉で大気中、木炭被覆下で溶解・鋳造を行った。鋳塊を950℃×1時間の条件で均熱処理を行い、続いて熱間圧延を700℃以上で実施して速やかに水冷を行い、厚さ20mmのサンプルを得た。
次に板の両面を1mmずつ面削した後冷間圧延を実施し、表2に示す条件で、歪取り焼鈍、冷間圧延、溶体化を伴う再結晶処理、及び最終冷間圧延を行い、板厚0.2mmの銅合金板を得た。続いて、450℃×2時間の析出処理を行った。
A Cu—Ni—Si based copper alloy having the composition shown in Table 1 was melted and cast in the kryptor furnace in the atmosphere and covered with charcoal. The ingot was subjected to soaking treatment under the condition of 950 ° C. × 1 hour, followed by hot rolling at 700 ° C. or more, followed by rapid water cooling to obtain a sample having a thickness of 20 mm.
Next, both sides of the plate are faced by 1 mm and then cold rolled, and under the conditions shown in Table 2, strain relief annealing, cold rolling, recrystallization treatment with solution treatment, and final cold rolling are performed. A copper alloy plate having a thickness of 0.2 mm was obtained. Subsequently, a precipitation treatment at 450 ° C. × 2 hours was performed.

Figure 0005557761
Figure 0005557761

Figure 0005557761
Figure 0005557761

各Cu−Ni−Si系銅合金板から切り出した試験片を用い、引張試験による0.2%耐力測定、導電率測定、W曲げ試験、結晶組織の観察及び測定、応力緩和特性試験を下記の要領で行った。その結果を表3に示す。
・引張試験
圧延方向を長手方向としたJIS5号試験片を用い、JIS Z2241に準拠した引張試験を行い、0.2%耐力を求めた。本実施例では0.2%耐力が550N/mm以上を合格とした。
Using test pieces cut out from each Cu-Ni-Si-based copper alloy plate, 0.2% proof stress measurement, electrical conductivity measurement, W bending test, crystal structure observation and measurement, and stress relaxation characteristic test by tensile test are as follows. I went there. The results are shown in Table 3.
-Tensile test Using a JIS No. 5 test piece with the rolling direction as the longitudinal direction, a tensile test based on JIS Z2241 was performed to obtain 0.2% yield strength. In this example, 0.2% proof stress was determined to be 550 N / mm 2 or more.

・導電率測定
圧延方向を長手とした幅10mm×長さ300mmの試験片を用い、JIS H0505に示された非鉄金属材料導電率測定法に準拠し、ダブルブリッジ式電気抵抗測定装置により電気抵抗を測定し、平均断面積法により導電率を算出した。本実施例では導電率が35%IACS以上を合格とした。
・W曲げ試験
JCBA T307に示されたW曲げ試験に準拠し、L.D.(圧延方向に対して平行)およびT.D.(圧延方向に対して直角)の各方向を長手とする幅10mm×長さ30mmの試験片を用い、曲げ半径R=0.05mmとしてW曲げ試験を行った。W曲げ試験後、光学顕微鏡を用い50倍の倍率で曲げ外側の表面観察を行い、割れの有無を判定した。割れなしの場合は○(合格)、割れありの場合は×(不合格)とした。
-Conductivity measurement Using a test piece of width 10mm x length 300mm with the rolling direction as the longitudinal direction, in accordance with the nonferrous metal material conductivity measurement method shown in JIS H0505, the electrical resistance was measured by a double bridge type electrical resistance measurement device The conductivity was calculated by the average cross-sectional area method. In this example, the electrical conductivity was 35% IACS or higher.
W bending test In accordance with the W bending test shown in JCBA T307, D. (Parallel to the rolling direction) and T.W. D. Using a test piece having a width of 10 mm and a length of 30 mm with each direction (perpendicular to the rolling direction) as the longitudinal direction, a W-bending test was performed with a bending radius R = 0.05 mm. After the W-bending test, the surface of the outer side of the bending was observed using an optical microscope at a magnification of 50 times to determine the presence or absence of cracks. In the case where there was no crack, it was rated as ○ (pass), and in the case where there was a crack, it was marked as x (fail).

・平均結晶粒径、最大、最小結晶粒径の測定
冷間埋め込み樹脂を用いて圧延方向と板厚方向からなる断面(観察面)を得た後、2400番手の耐水研磨紙、1μmのダイヤモンドスプレーを塗布したバフにて仕上げ研磨を行った。さらにクロム酸および塩化第二鉄で結晶粒界を腐食させることによって観察試料を得た。組織観察は光学顕微鏡を用い400倍の倍率で組織写真を取得した。平均結晶粒径の測定は圧延方向に平行方向での切断法を用い、板厚中央部において切断長さの合計を1000μmに設定して測定を行った。また、同測定で切断間距離の最も長い部位を最大結晶粒径とし、切断間距離の最も短い部位を最小結晶粒径とした。
・ Measurement of average crystal grain size, maximum and minimum crystal grain size After obtaining a cross section (observation surface) consisting of rolling direction and plate thickness direction using cold embedding resin, 2400th water-resistant abrasive paper, 1 μm diamond spray Finish polishing was performed with a buff coated with. Further, an observation sample was obtained by corroding the grain boundary with chromic acid and ferric chloride. For tissue observation, a tissue photograph was obtained at a magnification of 400 times using an optical microscope. The average crystal grain size was measured by using a cutting method in a direction parallel to the rolling direction and setting the total cutting length to 1000 μm at the center of the plate thickness. Further, in the same measurement, the site with the longest distance between cuts was set as the maximum crystal grain size, and the site with the shortest distance between cuts was set as the minimum crystal grain size.

・応力緩和率測定試験
応力緩和測定は日本電子材料工業会標準規格EMAS01011に準拠した片持ち梁方式を用いた。試験片は圧延方向直角方向を長手とした幅10mm×長さ60mmの短冊状のものを用いた。試験片を用いて下記式(1)より負荷応力が0.2%耐力の80%となるようにスパン長さを設定し、試験片をジグに固定した。
d=τ×l/(1.5×α×t)・・・(1)
ただし、d:初期たわみ変位[mm]、τ:負荷応力[N/mm]、l:スパン長さ[mm]、α:たわみ係数[N/mm]、t:板厚[mm]である。
試験片をジグに固定した状態でオーブンにより150℃×1000hrの加熱後、ジグから負荷応力を除荷し、除荷後のたわみ変位[mm]を測定し、下記式(2)より応力緩和率を測定した。
SRR=100×(δ/d)・・・(2)
ただし、SRR:応力緩和率[%]、δ:除荷後のたわみ変位[mm]である。
本実施例では応力緩和率15%以下を合格とした。
-Stress relaxation rate measurement test The stress relaxation measurement was performed using a cantilever beam method conforming to the Japan Electronic Materials Manufacturers Association standard EMAS01011. The test piece used was a strip having a width of 10 mm and a length of 60 mm with the direction perpendicular to the rolling direction as the longitudinal direction. Using the test piece, the span length was set from the following formula (1) so that the load stress was 80% of the 0.2% proof stress, and the test piece was fixed to the jig.
d = τ × l 2 /(1.5×α×t) (1)
Where d: initial deflection displacement [mm], τ: load stress [N / mm 2 ], l: span length [mm], α: deflection coefficient [N / mm 2 ], t: plate thickness [mm] is there.
After heating the specimen at 150 ° C x 1000 hr with the test piece fixed to the jig, the load stress was unloaded from the jig, the deflection displacement [mm] after unloading was measured, and the stress relaxation rate from the following formula (2) Was measured.
SRR = 100 × (δ / d) (2)
However, SRR: Stress relaxation rate [%], δ: Deflection displacement after unloading [mm].
In this example, a stress relaxation rate of 15% or less was accepted.

Figure 0005557761
Figure 0005557761

表1〜3のNo.1〜19は、本発明の技術範囲内において組成及び工程を変化させた実施例である。No.1〜19の銅合金板は、結晶粒組織が本発明の規定をみたし、0.2%耐力、導電率、曲げ加工性、耐応力緩和特性が優れる。
一方、表1〜3のNo.20〜27は組成が本発明の規定を外れる比較例である。
No.20はNi及びSi添加量が過剰な組成であり、熱間圧延時に割れが生じて試験材を作製することができなかった。
No.21はNi/Si比が高い組成であり、導電率が低い。また曲げ加工性も良好ではない。これはNi固溶量の増加によって加工硬化率が増加したためと推測される。
No. of Tables 1-3. Examples 1 to 19 are examples in which the composition and process were changed within the technical scope of the present invention. No. As for the copper alloy plates 1 to 19, the crystal grain structure satisfies the provisions of the present invention, and is excellent in 0.2% proof stress, electrical conductivity, bending workability, and stress relaxation resistance.
On the other hand, no. 20 to 27 are comparative examples in which the composition deviates from the definition of the present invention.
No. No. 20 has a composition in which the amount of Ni and Si added is excessive, and cracks occurred during hot rolling, making it impossible to produce a test material.
No. 21 is a composition having a high Ni / Si ratio and a low electrical conductivity. Also, bending workability is not good. This is presumably because the work hardening rate increased due to an increase in the amount of Ni solid solution.

No.22はNi/Si比が低い組成であり、導電率が低い。また曲げ加工性も良好ではない。これはNo.21と同様にSi固溶量の増加によって加工硬化率が増加したためと推測する。
No.23はSnを添加していない組成であり、耐応力緩和特性が低い。
No.24はSnを過剰に添加した組成であり、導電率及び曲げ加工性が低い。
No.25はMgを過剰に添加した組成であり、導電率及び曲げ加工性が低い。
No.26はZnを過剰に添加した組成であり、導電率が低い。
No.27は成分内にSが多く存在している組成であり、曲げ加工性が低い。
No. 22 is a composition having a low Ni / Si ratio and a low electrical conductivity. Also, bending workability is not good. This is no. It is presumed that the work hardening rate increased due to an increase in the amount of Si solid solution as in the case of No. 21.
No. 23 is a composition to which Sn is not added, and has low stress relaxation resistance.
No. 24 is a composition in which Sn is added excessively, and its electrical conductivity and bending workability are low.
No. 25 is a composition in which Mg is added excessively, and its electrical conductivity and bending workability are low.
No. No. 26 is a composition in which Zn is added excessively and has a low electrical conductivity.
No. 27 is a composition in which a large amount of S is present in the component, and the bending workability is low.

No.28〜37は結晶組織の規定が本発明の規定を外れる比較例である。
No.28,29は歪取り焼鈍を行っていないため、最大結晶粒径又は最小結晶粒径が本発明の規定を満たさない。最大結晶粒径が小さいNo.28は良好な耐応力緩和特性が確保できず、最小結晶粒径が大きいNo.29は曲げ加工性が低い。
No.30〜32は最大結晶粒径が小さく、耐応力緩和特性が低い。
No.33は圧延組織が残留しており、強度特性、曲げ加工性及び耐応力緩和特性が低下している。
No.34は平均結晶粒径及び最小結晶粒径が大きく、曲げ加工性が低い。
No.35〜37は最大結晶粒径が小さく、耐応力緩和特性が低い。
No. 28 to 37 are comparative examples in which the definition of the crystal structure deviates from the definition of the present invention.
No. Since 28 and 29 do not perform strain relief annealing, the maximum crystal grain size or the minimum crystal grain size does not satisfy the provisions of the present invention. No. with small maximum crystal grain size No. 28 cannot secure good stress relaxation resistance and has a large minimum crystal grain size. No. 29 has low bending workability.
No. 30 to 32 have a small maximum crystal grain size and low stress relaxation resistance.
No. In No. 33, the rolled structure remains, and the strength characteristics, bending workability, and stress relaxation resistance are deteriorated.
No. No. 34 has a large average crystal grain size and minimum crystal grain size and low bending workability.
No. 35 to 37 have a small maximum crystal grain size and low stress relaxation resistance.

図1は、No.17〜19(実施例)及びNo.35〜37(比較例)について、横軸に冷間加工率[%]、縦軸に最大結晶粒径[μm]及び応力緩和率[%]をプロットしたものである。No.17〜19及びNo.35〜37は、溶体化を伴う再結晶処理前の冷間圧延の加工率以外は組成、製造工程ともに同じである。
図1に示すように、冷間圧延の加工率を0〜80%の範囲で変化させたとき、最大結晶粒径は、加工率が10,20,30%の実施例No.17〜19で大きく、本発明の規定を満たし、それに伴い応力緩和率が改善されている。なお、応力緩和率は値が小さいほど良好な特性である。
また、No.15,16(実施例)及びNo.31,32(比較例)も、溶体化を伴う再結晶処理前の冷間圧延の加工率以外は組成、製造工程ともに同じであるが、ここでも同様の傾向が表れている。
FIG. 17-19 (Examples) and No. About 35-37 (comparative example), the horizontal axis shows the cold work rate [%], and the vertical axis shows the maximum crystal grain size [μm] and the stress relaxation rate [%]. No. 17-19 and no. 35-37 are the same in both composition and manufacturing process except the processing rate of cold rolling before recrystallization treatment with solution treatment.
As shown in FIG. 1, when the processing rate of cold rolling was changed in the range of 0 to 80%, the maximum crystal grain size was determined as Example No. with processing rates of 10, 20, and 30%. It is large at 17 to 19, satisfying the definition of the present invention, and the stress relaxation rate is improved accordingly. Note that the smaller the value of the stress relaxation rate, the better the characteristics.
No. 15, 16 (Examples) and No. 31 and 32 (comparative example) are the same in composition and manufacturing process except for the cold rolling processing rate before recrystallization treatment with solution treatment, but the same tendency appears here.

Claims (7)

Niを1.5〜4.5mass%、Ni/Siの質量比が4.0〜5.0となるSi、Snを0.01〜1.3mass%含有し、残部が銅及び不可避不純物からなるCu−Ni−Si系銅合金板であり、圧延方向と板厚方向からなる断面において、圧延方向平行方向の平均結晶粒径が5〜20μm、最大結晶粒径が30μm以上、最小結晶粒径が5μm以下であることを特徴とする耐応力緩和特性と曲げ加工性に優れた電気電子部品用銅合金板。 Ni containing 1.5 to 4.5 mass%, Ni / Si mass ratio of 4.0 to 5.0, Si and Sn containing 0.01 to 1.3 mass%, with the balance being copper and inevitable impurities It is a Cu-Ni-Si based copper alloy plate, and in the cross section composed of the rolling direction and the plate thickness direction, the average crystal grain size in the direction parallel to the rolling direction is 5-20 μm, the maximum crystal grain size is 30 μm or more, and the minimum crystal grain size A copper alloy plate for electric and electronic parts having excellent stress relaxation resistance and bending workability, characterized by being 5 μm or less. さらにMgを0.005〜0.2mass%含むことを特徴とする請求項1に記載された耐応力緩和特性と曲げ加工性に優れた電気電子部品用銅合金板。 The copper alloy plate for electrical and electronic parts excellent in stress relaxation resistance and bending workability according to claim 1, further comprising 0.005 to 0.2 mass% of Mg. さらにCrを0.001〜0.3mass%、又は/及びMnを0.01〜0.5mass%含むことを特徴とする請求項1又は2に記載された耐応力緩和特性と曲げ加工性に優れた電気電子部品用銅合金板。 Furthermore, 0.001-0.3 mass% of Cr or / and 0.01-0.5 mass% of Mn are included, It is excellent in the stress relaxation resistance and bending workability described in Claim 1 or 2 characterized by the above-mentioned. Copper alloy sheet for electrical and electronic parts. さらにZnを0.01〜5.0mass%含むことを特徴とする請求項1〜3のいずれかに記載された耐応力緩和特性と曲げ加工性に優れた電気電子部品用銅合金板。 Furthermore, 0.01-5.0 mass% of Zn is contained, The copper alloy plate for electrical and electronic components excellent in the stress relaxation resistance and bending workability as described in any one of Claims 1-3 characterized by the above-mentioned. Sの含有量が0.005mass%以下であることを特徴とする請求項1〜4のいずれかに記載された耐応力緩和特性と曲げ加工性に優れた電気電子部品用銅合金板。 5. The copper alloy plate for electrical and electronic parts excellent in stress relaxation resistance and bending workability according to any one of claims 1 to 4, wherein the S content is 0.005 mass% or less. さらにB、C、P、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbからなる群から選択された1種又は2種以上の元素を、各元素:0.0001〜0.1mass%、2種以上の場合は合計で0.1mass%以下含むことを特徴とする請求項1〜5のいずれかに記載された耐応力緩和特性と曲げ加工性に優れた電気電子部品用銅合金板。 Further, one or more elements selected from the group consisting of B, C, P, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb are used as each element: 0.0001 to The electrical and electronic component excellent in stress relaxation resistance and bending workability according to any one of claims 1 to 5, characterized by containing 0.1 mass% or less in total in the case of 2 mass% or less. Copper alloy plate. さらにBe、Al、Ti、Fe、Co、Zr、Ag、Cd、In、Sb、Te、Auからなる群から選択された1種又は2種以上の元素を、各元素:0.001〜0.9mass%、2種以上の場合は合計で0.9mass%以下含むことを特徴とする請求項1〜6のいずれかに記載された耐応力緩和特性と曲げ加工性に優れた電気電子部品用銅合金板。 Furthermore, one or two or more elements selected from the group consisting of Be, Al, Ti, Fe, Co, Zr, Ag, Cd, In, Sb, Te, and Au are used. 9 mass%, in the case of 2 or more types, a total of 0.9 mass% or less is contained, The copper for electrical and electronic parts excellent in stress relaxation resistance and bending workability according to any one of claims 1 to 6 Alloy plate.
JP2011013596A 2011-01-26 2011-01-26 Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance Expired - Fee Related JP5557761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013596A JP5557761B2 (en) 2011-01-26 2011-01-26 Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013596A JP5557761B2 (en) 2011-01-26 2011-01-26 Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance

Publications (2)

Publication Number Publication Date
JP2012153938A JP2012153938A (en) 2012-08-16
JP5557761B2 true JP5557761B2 (en) 2014-07-23

Family

ID=46835976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013596A Expired - Fee Related JP5557761B2 (en) 2011-01-26 2011-01-26 Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance

Country Status (1)

Country Link
JP (1) JP5557761B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031549B2 (en) * 2015-03-27 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
CN105063413A (en) * 2015-07-29 2015-11-18 温州银泰合金材料有限公司 Copper-based electric contact material and manufacturing technology thereof
CN105112762A (en) * 2015-08-14 2015-12-02 太仓安托建筑材料有限公司 High-toughness copper alloy
CN108886055B (en) * 2016-03-30 2021-06-04 三菱电机株式会社 Semiconductor device, method for manufacturing the same, and power conversion device
KR102210703B1 (en) * 2020-06-18 2021-02-02 주식회사 풍산 Method for manufacturing copper alloy sheet for automobile or electrical and electronic parts with excellent strength and bending workability and copper alloy sheet manufactured therefrom

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251199B1 (en) * 1999-05-04 2001-06-26 Olin Corporation Copper alloy having improved resistance to cracking due to localized stress
JP4175920B2 (en) * 2003-03-07 2008-11-05 日鉱金属株式会社 High strength copper alloy
JP4118832B2 (en) * 2004-04-14 2008-07-16 三菱伸銅株式会社 Copper alloy and manufacturing method thereof
JP4987028B2 (en) * 2009-03-31 2012-07-25 Jx日鉱日石金属株式会社 Copper alloy tin plating material for printed circuit board terminals
JP4563495B1 (en) * 2009-04-27 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012153938A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP4566020B2 (en) Copper alloy sheet for electrical and electronic parts with low anisotropy
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5773929B2 (en) Copper alloy sheet for electrical and electronic parts with excellent bending workability and stress relaxation resistance
JP3953357B2 (en) Copper alloy for electrical and electronic parts
TWI465591B (en) Cu-Ni-Si alloy and its manufacturing method
TW201233818A (en) Copper alloy for electronic and/or electrical device, copper alloy thin plate, and conductive member
JP5619389B2 (en) Copper alloy material
TWI512122B (en) Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, conductive component for electronic/electric device and terminal
JP2001294957A (en) Copper alloy for connector and its producing method
WO2013018228A1 (en) Copper alloy
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
TWI523959B (en) Copper alloy for electronic/electric device, thin plate for electronic/electric device, component for electronic/electric device, and terminal
JP5039862B1 (en) Corson alloy and manufacturing method thereof
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP5689724B2 (en) Copper alloy plate for electrical and electronic parts
JP5557761B2 (en) Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP2007126739A (en) Copper alloy for electronic material
TW201428113A (en) Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method of producing copper alloy for electronic/electric device, conductive component for electronic/electric device, and terminal
KR102129645B1 (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and conductive part and terminal for electrical and electronic equipment
TWI503426B (en) Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, conductive component for electronic/electric device, and terminal
JP5682278B2 (en) Copper alloy for electronic and electrical equipment
JP4431741B2 (en) Method for producing copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees