JP4934759B2 - Copper alloy sheet, connector using the same, and method for producing copper alloy sheet - Google Patents

Copper alloy sheet, connector using the same, and method for producing copper alloy sheet Download PDF

Info

Publication number
JP4934759B2
JP4934759B2 JP2011514943A JP2011514943A JP4934759B2 JP 4934759 B2 JP4934759 B2 JP 4934759B2 JP 2011514943 A JP2011514943 A JP 2011514943A JP 2011514943 A JP2011514943 A JP 2011514943A JP 4934759 B2 JP4934759 B2 JP 4934759B2
Authority
JP
Japan
Prior art keywords
copper alloy
rolling
cold rolling
heat treatment
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011514943A
Other languages
Japanese (ja)
Other versions
JPWO2011068124A1 (en
Inventor
浩二 佐藤
洋 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011514943A priority Critical patent/JP4934759B2/en
Application granted granted Critical
Publication of JP4934759B2 publication Critical patent/JP4934759B2/en
Publication of JPWO2011068124A1 publication Critical patent/JPWO2011068124A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Metal Rolling (AREA)

Description

本発明は優れた銅合金板材に関し、特に、自動車用端子・コネクタなどの接続部品用として適する、強度と曲げ加工性とに優れた銅合金板材に関する。   The present invention relates to an excellent copper alloy sheet, and more particularly to a copper alloy sheet that is suitable for connection parts such as automobile terminals and connectors and has excellent strength and bending workability.

近年、電子機器の小型化及び軽量化の要求が高まり、電気・電子部品の小型化及び軽量化が進んでいる。コネクタ端子は低背・狭ピッチ化が進み、その結果、これらのコネクタ端子に使用される銅合金板材には、より一層高い強度と優れた曲げ加工性が求められるようになっている。高強度かつ優れた曲げ加工性が必要な銅合金板材には、これまでベリリウム銅が広く用いられてきたが、ベリリウム銅は非常に高価で且つ金属ベリリウムには強い毒性がある。そこで、これらの材料に変わる合金としてコルソン合金(Cu−Ni−Si)の使用量が増加している。   In recent years, there has been an increasing demand for miniaturization and weight reduction of electronic devices, and miniaturization and weight reduction of electric / electronic components have been promoted. The connector terminals have been reduced in height and pitch, and as a result, copper alloy plate materials used for these connector terminals are required to have higher strength and superior bending workability. Conventionally, beryllium copper has been widely used for copper alloy sheets that require high strength and excellent bending workability. However, beryllium copper is very expensive and has strong toxicity to metal beryllium. Therefore, the amount of Corson alloy (Cu—Ni—Si) used as an alloy that can be substituted for these materials is increasing.

コルソン合金はケイ化ニッケル化合物(NiSi)の銅に対する固溶限が温度によって変化する合金で、時効析出処理によって硬化する析出硬化型合金であり、耐熱性、導電率、強度が良好である。
しかし、このコルソン合金においても、銅合金板材の強度を向上させると、導電性や曲げ加工性は低下する。即ち、高強度のコルソン合金において、良好な導電率及び曲げ加工性とすることは非常に困難な問題である。
Corson alloy is an alloy in which the solubility limit of nickel silicide compound (Ni 2 Si) in copper changes with temperature. It is a precipitation hardening type alloy that hardens by aging precipitation treatment, and has good heat resistance, electrical conductivity, and strength. .
However, also in this Corson alloy, when the strength of the copper alloy sheet is improved, the conductivity and the bending workability are lowered. That is, in a high-strength Corson alloy, it is a very difficult problem to achieve good conductivity and bending workability.

このような問題に対して、曲げ加工性が優れた高強度銅合金として、コルソン合金中の析出物のサイズを制御することで曲げ加工性を改善する技術がある(例えば、特許文献1参照)。また、コルソン合金の結晶粒径を制御することにより、強度、曲げ加工性を改善する技術が提案されている(例えば、特許文献2参照)。しかしながら、コネクタ材料では、特に板幅方向に平行に切り出した試験片により圧延方向に平行な曲げ線でBW曲げ加工が行われるが、これらの材料は市場の要求する強度、曲げ加工性を満たすまでにはいたっておらず、更なる向上が求められている。   For such a problem, as a high-strength copper alloy having excellent bending workability, there is a technique for improving bending workability by controlling the size of precipitates in the Corson alloy (see, for example, Patent Document 1). . Further, a technique for improving strength and bending workability by controlling the crystal grain size of the Corson alloy has been proposed (see, for example, Patent Document 2). However, with connector materials, BW bending is performed with a bend line parallel to the rolling direction, particularly with test pieces cut out parallel to the plate width direction, but these materials satisfy the strength and bending workability required by the market. However, further improvement is required.

一方、近年、集合組織を制御することで、曲げ加工性を改善する試みが行われている。例えば、Cube方位を制御することで曲げ加工性を良好にする方法がある(特許文献3参照)。また、X線の(200)回折強度を高めることで、曲げ加工性を改善しているものもある(例えば、特許文献4参照)。しかし本発明者らの知見によれば、Cube方位やX線の(200)回折強度を高めることは確かに曲げ加工性の改善には有効だが、これらを高くすると材料が変形する際の加工硬化係数が小さくなり、引張強度が低下するという問題があった。   On the other hand, in recent years, attempts have been made to improve bending workability by controlling the texture. For example, there is a method for improving the bending workability by controlling the Cube orientation (see Patent Document 3). In addition, there is one that improves bending workability by increasing the (200) diffraction intensity of X-rays (see, for example, Patent Document 4). However, according to the knowledge of the present inventors, increasing the Cube orientation and (200) diffraction intensity of X-rays is certainly effective in improving the bending workability, but if these are increased, the work hardening when the material is deformed There was a problem that the coefficient was reduced and the tensile strength was lowered.

特開平6−184680号公報JP-A-6-184680 特開2006−161148号公報JP 2006-161148 A 特開2006−152392号公報JP 2006-152392 A 特開2009−007666号公報JP 2009-007666 A

本発明者らは、コルソン系銅合金の曲げ加工におけるメカニズムを検討した結果、曲げ加工の際板表面で生じるせん断帯が割れの原因であることを確認した。また、このせん断帯はCube方位を集積させることによって低減させることをできることを確認したが、同時に引張強度が低下してしまうという問題点も見出した。この強度が低下する原因としては、Cube方位は、変形時の加工硬化係数が小さいため、比較的低い強度で変形が生じ、十分に強度が向上せず破断に至るためと考えられる。
上記のような問題点に鑑み、本発明の目的は、曲げ加工性に優れ、かつ優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、特に自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した電気・電子機器用銅合金板材を提供することにある。
As a result of examining the mechanism in bending of the Corson copper alloy, the present inventors have confirmed that the shear band generated on the surface of the plate during bending is the cause of cracking. In addition, it was confirmed that this shear band can be reduced by accumulating the Cube orientation, but at the same time, a problem was found that the tensile strength was lowered. The reason for this decrease in strength is considered to be that the Cube orientation has a small work hardening coefficient at the time of deformation, so that deformation occurs at a relatively low strength, and the strength does not sufficiently improve and breaks.
In view of the problems as described above, the object of the present invention is to provide excellent bending workability and excellent strength, such as lead frames, connectors, and terminal materials for electric and electronic devices, particularly for automobiles. An object of the present invention is to provide a copper alloy sheet material for electrical and electronic equipment suitable for connectors, terminal materials, relays, switches and the like.

本発明者らは、Cube方位から15〜30°以内のずれ角度を持つ結晶方位粒の面積率を特定の範囲内に規定することによって、優れた曲げ加工性と高強度を両立できることを見出した。本発明は、この知見に基づき完成されるに至ったものである。
すなわち、本発明は、以下の手段である。
(1)質量%で、NiまたはCoのいずれか一方または両方を0.8〜5%、Siを0.2〜1.5%を含有し、残部Cuおよび不可避的不純物からなる銅合金組成よりなる銅合金板材であって、Cube方位からずれ角度15°未満の結晶粒の面積率を10%未満、かつCube方位から15〜30°のずれ角度をもつ結晶粒の面積率を15%以上に制御した、優れた強度と曲げ加工性とを有する電気電子部品用銅合金板材。
(2)さらに、Crを0.05〜0.5%含有する(1)に記載の電気電子部品用銅合金板材。
(3)さらに、Zn、Sn、Mg、Ag、MnおよびZrのうち1種又は2種以上を合計で0.01〜1.0%含有する(1)又は(2)に記載の電気電子部品用銅合金板材
(4)(1)〜()のいずれか1項に記載の電気電子部品用銅合金板材からなるコネクタ。
(1)〜(3)のいずれか1項に記載の電気電子部品用銅合金板材の製造方法であって、以下の工程を有する電気電子部品用銅合金板材の製造方法。
(1)〜(3)のいずれか1項に記載の組成範囲に成分調整した銅合金溶湯を鋳造する工程]
[鋳塊を面削後、800〜1000℃で加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する工程]
[熱間圧延後、表面を面削し、圧延率70%以上冷間圧延1を行う工程]
[冷間圧延1と溶体化処理の間に、300〜800℃で5秒〜2時間の中間焼鈍に続いて、圧延率が3〜80%の冷間圧延2を加える工程]
[600〜1000℃で5秒〜300秒の溶体化処理を行う工程]
[溶体化処理の後、上ロールと下ロールとの中心線平均粗さRaの差が0.05〜3.0μmとなるロールで異摩擦冷間圧延を、加工率5〜40%の冷間圧延3として行う工程]
[400〜600℃で0.5時間〜8時間の時効熱処理を行う工程]
[加工率0〜20%の仕上げ冷間圧延を行い、低温焼鈍を行う工程]
The inventors of the present invention have found that it is possible to achieve both excellent bending workability and high strength by defining the area ratio of crystal orientation grains having a deviation angle within 15 to 30 ° from the Cube orientation within a specific range. . The present invention has been completed based on this finding.
That is, the present invention is the following means.
(1) From a copper alloy composition containing 0.8 to 5% of Ni or Co and 0.2 to 1.5% of Si and the balance Cu and inevitable impurities in mass%. The area ratio of crystal grains having a deviation angle of less than 15 ° from the Cube orientation is less than 10%, and the area ratio of crystal grains having a deviation angle of 15 to 30 ° from the Cube orientation is 15% or more. A copper alloy sheet material for electric and electronic parts which has excellent strength and bending workability controlled.
(2) The copper alloy sheet for electrical and electronic parts according to (1), further containing 0.05 to 0.5% of Cr.
(3) The electrical and electronic component according to (1) or (2), further comprising 0.01 to 1.0% of one or more of Zn, Sn, Mg, Ag, Mn, and Zr in total. Copper alloy plate material .
(4 ) A connector comprising the copper alloy sheet for electrical and electronic parts according to any one of (1) to ( 3 ).
( 5 ) A method for producing a copper alloy sheet for electric and electronic parts according to any one of (1) to (3) , comprising the following steps.
[Casting a molten copper alloy with components adjusted to the composition range described in any one of (1) to (3) ]
[Step of chamfering the ingot, heating at 800-1000 ° C. or homogenizing heat treatment, hot rolling, and water-cooling the hot-rolled plate]
[After hot rolling, and scalped surface, step rolling rate to perform cold rolling the first 70%
[During cold rolling 1 and solution heat treatment, subsequent to intermediate annealing for 5 seconds to 2 hours at 300 to 800 ° C., the step of rolling rate is added 3-80% cold rolling 2]
[600 to 1000 ° C. for 5 seconds to 300 seconds from the step of solution heat treatment]
[After solution heat treatment, the different friction cold rolling difference center line average roughness Ra of a roll to be 0.05~3.0μm the upper roll and the lower roll, working ratio 5-40% cold Process performed as cold rolling 3]
[Step of aging heat treatment at 400 to 600 ° C. for 0.5 to 8 hours]
[Step of performing cold rolling at a processing rate of 0 to 20% and performing low temperature annealing]

本発明の銅合金板材は、高強度で、かつ良好な曲げ加工性を有し、しかも高導電率を示す。また別の添加元素を加えることにより、銅合金板材の上記の物性を一層向上させることもできる。さらに半田付け時の耐熱剥離性や耐マイグレーション性の向上や熱間圧延時の加工性や応力緩和特性の向上を実現することもできる。   The copper alloy sheet of the present invention has high strength, good bending workability, and high conductivity. Moreover, said physical property of a copper alloy board | plate material can also be improved further by adding another additive element. Furthermore, it is possible to improve the heat release resistance and migration resistance during soldering, and improve the workability and stress relaxation characteristics during hot rolling.

本発明の高強度で、かつ良好な曲げ加工性を有し、しかも高導電率である本発明の電気電子部品用の銅合金板材の好ましい金属組織について詳細に説明する。ここで、「銅合金材料」とは、銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。そのなかで板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含む意味である。ここで、板材において、「材料表層」とは、「板表層」を意味し、「材料の深さ位置」とは、「板厚方向の位置」を意味する。板材の厚さは特に限定されないが、本発明の効果が一層よく顕れ実際的なアプリケーションに適合することを考慮すると、8〜800μmが好ましく、50〜70μmがより好ましい。
なお、本発明の銅合金板材は、その特性を圧延板の所定の方向における原子面の集積率で規定するものであるが、これは銅合金板材としてそのような特性を有していれば良いのであって、銅合金板材の形状は板材や条材に限定されるものではなく、本発明では、管材も板材として解釈して取り扱うことができるものとする。
The preferred metal structure of the copper alloy sheet material for electrical and electronic parts of the present invention having high strength, good bending workability and high conductivity of the present invention will be described in detail. Here, the “copper alloy material” means a material obtained by processing a copper alloy material into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, or the like). Among them, the plate material refers to a material having a specific thickness and stable in shape and having a spread in the surface direction, and in a broad sense, includes a strip material. Here, in the plate material, “material surface layer” means “plate surface layer”, and “material depth position” means “position in the plate thickness direction”. The thickness of the plate material is not particularly limited, but it is preferably 8 to 800 μm, and more preferably 50 to 70 μm, considering that the effects of the present invention are better manifested and suitable for practical applications.
In addition, although the copper alloy plate material of this invention prescribes | regulates the characteristic with the integration rate of the atomic surface in the predetermined direction of a rolled sheet, this should just have such a characteristic as a copper alloy plate material. Therefore, the shape of the copper alloy sheet is not limited to a sheet or a strip, and in the present invention, the pipe can be interpreted and handled as a sheet.

(平均粒径)
本発明の銅合金板材の平均結晶粒径は50μm以下にすることが好ましい。平均結晶粒径が上記上限値以下である場合、Good Way(GW)曲げ加工、Bad Way (BW)曲げ加工の場合ともに曲げ加工において、割れの原因となるせん断帯が生成しにくく好ましい。ここで、Good Way とは圧延平行方向、Bad Way とは圧延垂直方向を意味する。なお、結晶粒径はJIS H 0501(切断法)により求めた。
(Average particle size)
The average crystal grain size of the copper alloy sheet of the present invention is preferably 50 μm or less. When the average crystal grain size is less than or equal to the above upper limit, it is preferable that a shear band that causes cracking is not easily generated in both the good way (GW) bending process and the bad way (BW) bending process. Here, Good Way means the rolling parallel direction, and Bad Way means the rolling vertical direction. The crystal grain size was determined by JIS H 0501 (cutting method).

(EBSD測定による規定)
本発明の銅合金板材の集合組織は、特に、強度と曲げ加工性を両立するために、SEM−EBSD法(後述する)による測定結果で、Cube方位からのずれ角度(方位差)が15°未満の結晶粒の面積率が10%未満で、かつCube方位からのずれ角度が15〜30°の結晶粒の面積率が15%以上、好ましくは20%以上50%未満である集合組織を有するものである。
(Regulation by EBSD measurement)
The texture of the copper alloy sheet material of the present invention is a measurement result by the SEM-EBSD method (described later) in order to achieve both strength and bending workability, and the deviation angle (azimuth difference) from the Cube orientation is 15 °. Having a texture in which the area ratio of crystal grains less than 10% is less than 10% and the area ratio of crystal grains having a deviation angle from the Cube orientation of 15 to 30 ° is 15% or more, preferably 20% or more and less than 50% Is.

銅合金板材の場合、主に、以下に示すような、Cube方位、Goss方位、Brass方位、Copper方位、S方位等と呼ばれる集合組織を形成し、それらに応じた結晶面が存在する。
これらの集合組織の形成は同じ結晶系の場合でも加工、熱処理方法の相違により異なる。圧延による板材などの材料の集合組織の場合は、面と方向で表されており、面は{ABC}で表現され、方向は<DEF>で表現される。本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延法線方向(ND)をZ軸の直角座標系をとり、材料中の各領域がZ軸に垂直な結晶面の指数(hkl)とX軸に平行な結晶方向の指数[uvw]とを用いて(hkl)[uvw]の形で示す。上述の表記に伴い、各方位は下記のように表現される。
Cube方位 {001}<100>
Goss方位 {011}<100>
Rotated-Goss方位 {011}<011>
Brass方位 {011}<211>
Copper方位 {112}<111>
S方位 {123}<634>
P方位 {011}<111>
In the case of a copper alloy sheet, a texture called a Cube orientation, a Goss orientation, a Brass orientation, a Copper orientation, an S orientation, etc. as shown below is formed, and there are crystal planes corresponding to them.
The formation of these textures differs depending on the processing and heat treatment methods even in the same crystal system. In the case of a texture of a material such as a plate material by rolling, the texture is represented by a face and a direction, the face is represented by {ABC}, and the direction is represented by <DEF>. The crystal orientation display method in the present specification takes a rectangular coordinate system in which the rolling direction (RD) of the material is the X axis, the sheet width direction (TD) is the Y axis, and the rolling normal direction (ND) is the Z axis. Each region is expressed in the form of (hkl) [uvw] using the index (hkl) of the crystal plane perpendicular to the Z axis and the index [uvw] of the crystal direction parallel to the X axis. Along with the above notation, each direction is expressed as follows.
Cube orientation {001} <100>
Goss orientation {011} <100>
Rotated-Goss orientation {011} <011>
Brass orientation {011} <211>
Copper orientation {112} <111>
S orientation {123} <634>
P direction {011} <111>

通常の銅合金板材の集合組織は、上述のように、かなり多くの方位因子からなるが、これらの結晶面の構成割合が変化すると板材などの材料の塑性挙動が変化し、曲げなどの加工性が変化する。
従来のコルソン系高強度銅合金板材の集合組織は、通常の方法によって製造した場合、後述する実施例の通り、Cube方位{001}<100>以外の、S方位{123}<634>、やBrass方位{011}<211>が主体となり、Cube方位の割合は減少する。このため、特に、BW曲げ加工において、せん断帯が生成し易く曲げ加工性が悪化する。一方、Cube方位からのずれ角度15°未満の結晶粒の集積を高めて曲げ性を改善した場合、強度が低下するという問題が生じる。
As described above, the texture of ordinary copper alloy sheets consists of a considerable number of orientation factors. However, if the composition ratio of these crystal planes changes, the plastic behavior of the materials such as sheets changes, and the workability such as bending is improved. Changes.
When the texture of a conventional Corson-based high-strength copper alloy sheet is manufactured by a normal method, the S orientation {123} <634>, other than the Cube orientation {001} <100>, as in Examples described later, The Brass orientation {011} <211> is the main component, and the ratio of the Cube orientation decreases. For this reason, in particular, in BW bending, a shear band is easily generated and bending workability is deteriorated. On the other hand, when the bendability is improved by increasing the accumulation of crystal grains having a deviation angle of less than 15 ° from the Cube orientation, there arises a problem that the strength is lowered.

これに対し、本発明の銅合金板材の集合組織は、Cube方位{001}<100>からのずれ角度が15〜30%の結晶粒の面積率が15%以上をもつ、強度および曲げ性に優れる集合組織を有するものとする。ただし、本発明において、Cube方位からのずれ角度15〜30°の結晶粒の面積率が15%以上であれば、他の方位が副方位として存在することを許容できる。   On the other hand, the texture of the copper alloy sheet of the present invention has a strength and bendability in which the area ratio of crystal grains having a deviation angle from the Cube orientation {001} <100> of 15 to 30% is 15% or more. It shall have an excellent texture. However, in the present invention, if the area ratio of the crystal grains having a deviation angle of 15 to 30 ° from the Cube orientation is 15% or more, it is possible to allow other orientations to exist as sub-azimuths.

銅合金板材の集合組織のCube方位{001}<100>からのずれ角度15〜30°の方位粒の集積度測定は、SEMによる電子顕微鏡組織をEBSDを用いて測定したデータを基に、結晶方位分布関数(ODF)を用いて方位解析することによって得られる。ここでは、結晶粒を400個以上含む、1200μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析した。なお、これらの方位分布は材料の厚み方向に変化しているため、厚み方向に何点か任意に方位分布を解析して、その平均をとることによって求めるのが好ましい。   The measurement of the degree of accumulation of orientation grains having a deviation angle of 15 to 30 ° from the Cube orientation {001} <100> of the texture of the copper alloy sheet material is based on the data obtained by measuring the electron microscope texture by SEM using EBSD. It is obtained by performing an azimuth analysis using an azimuth distribution function (ODF). Here, a 1200 μm square sample area containing 400 or more crystal grains was scanned in 0.5 μm steps, and the orientation was analyzed. Since these orientation distributions change in the thickness direction of the material, it is preferable to obtain the orientation distribution by arbitrarily analyzing the orientation distribution at several points in the thickness direction and taking the average.

このSEM−EBSD法は、Scanning Electron Microscopy−Electron Back Scattered Diffraction Pattern法の略称である。即ち、走査型電子顕微鏡(SEM)画面上にあらわれる個々の結晶粒に電子ビームを照射し、その回折電子から個々の結晶方位を同定するものである。   This SEM-EBSD method is an abbreviation for Scanning Electron Microscopy-Electron Back Scattered Diffraction Pattern Method. In other words, each crystal grain appearing on a scanning electron microscope (SEM) screen is irradiated with an electron beam, and the individual crystal orientation is identified from the diffracted electrons.

上記指数で示される理想方位からのずれ角度については、共通の回転軸を中心に回転角を計算し、ずれ角度とした。例えば、S方位(2 3 1)[6 −4 3]に対して、(1 2 1)[1 −1 1]は(20 10 17)方向を回転軸にして、19.4°回転した関係になっており、この角度をずれ角度とする。共通の回転軸は最も小さいずれ角度で表現できるものを採用した。全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、Cube方位から15°未満、15〜30°以内の方位を持つそれぞれの結晶粒の面積を全測定面積で除し、面積率とする。
EBSD測定にあたっては、鮮明な菊池線回折像を得るために、機械研磨の後に、コロイダルシリカの砥粒を使用して、基体表面を鏡面研磨した後に、測定を行った。
Regarding the deviation angle from the ideal orientation indicated by the above index, the rotation angle was calculated around a common rotation axis, and was taken as the deviation angle. For example, with respect to the S orientation (2 3 1) [6 -4 3], (1 2 1) [1 -1 1] is rotated by 19.4 ° with the (20 10 17) direction as the rotation axis. This angle is defined as a deviation angle. A common rotation axis that can be expressed at the smallest angle is adopted. The deviation angle is calculated for all measurement points, and the first decimal place is an effective number. The area of each crystal grain having an orientation of less than 15 ° and within 15-30 ° from the Cube orientation is the total measurement area. To obtain the area ratio.
In the EBSD measurement, in order to obtain a clear Kikuchi line diffraction image, the surface of the substrate was mirror-polished using a colloidal silica abrasive after mechanical polishing, and then the measurement was performed.

ここで、EBSD測定の特徴について、X線回折測定との対比として説明する。まず1点目に挙げられるのは、X線回折の方法で測定可能なのは、ブラッグの回折条件を満足し、かつ充分な回折強度が得られる、ND//(111)、(200)、(220)、(311)、(420)面の5種類のみであり、Cube方位からのずれ角度が15〜30°に相当する、例えばND//(511)面やND//(951)面などの高指数で表現される結晶方位については、測定出来ない。即ち、EBSD測定を採用することにより、始めて、それらの方位に関する情報が得られ、それにより特定される合金組織と作用の関係が明らかになる。2点目は、X線回折はND//{hkl}の±0.5°程度に含まれる結晶方位の分量を測定しているのに対し、EBSD測定によれば菊池パターンを利用するため、特定の結晶面に限定されない、桁違いに広範な合金組織に関する情報が網羅的に得られ、合金材料全体としてX線回折では特定することが難しい状態が明らかになる。以上のとおり、EBSD測定とX線回折測定とで得られる情報はその内容及び性質が異なる。なお、本明細書において特に断らない限り、EBSDの結果は、銅合金板材のND方向に対して行ったものである。   Here, the characteristics of the EBSD measurement will be described as contrast with the X-ray diffraction measurement. The first point is that ND // (111), (200), (220) that can be measured by the X-ray diffraction method satisfies the Bragg diffraction conditions and provides sufficient diffraction intensity. ), (311), and (420) planes, and the deviation angle from the Cube orientation corresponds to 15 to 30 °, such as ND // (511) plane and ND // (951) plane. The crystal orientation expressed by a high index cannot be measured. That is, by adopting the EBSD measurement, information about their orientation is obtained for the first time, and the relationship between the specified alloy structure and the action becomes clear. Second, X-ray diffraction measures the amount of crystal orientation contained within about ± 0.5 ° of ND // {hkl}, whereas the EBSD measurement uses the Kikuchi pattern. Information on an alloy structure that is not limited to a specific crystal plane and an extremely wide range of alloy structures is comprehensively obtained, and it becomes clear that the entire alloy material is difficult to specify by X-ray diffraction. As described above, contents and properties of information obtained by EBSD measurement and X-ray diffraction measurement are different. In addition, unless otherwise indicated in this specification, the result of EBSD was performed with respect to the ND direction of a copper alloy board | plate material.

(合金組成等)
次に、本発明の銅合金板材における化学成分組成の限定理由を説明する(記載の含有量%は全て質量%である)。
(Alloy composition, etc.)
Next, the reason for limitation of the chemical component composition in the copper alloy sheet material of the present invention will be described (all the content% described is mass%).

・Ni,Co,Si
Niの含有量は0.5〜5.0%とする。Niは後述するSiと共に含有されて、時効処理で析出したNi2Si相を形成して、銅合金板材の強度の向上に寄与する元素である。Niの含有量が少なすぎる場合は、前記Ni2Si相が不足し、銅合金板の引張強さを高めることができない。一方、Niの含有量が多すぎると、導電率が低下し、また、熱間圧延加工性が悪化する。したがって、Niの含有量は0.5〜5.0%、好ましくは1.5〜4.0%の範囲とする。
・ Ni, Co, Si
The Ni content is 0.5 to 5.0%. Ni is an element that is contained together with Si to be described later, forms a Ni2Si phase precipitated by aging treatment, and contributes to improving the strength of the copper alloy sheet. When there is too little content of Ni, the said Ni2Si phase will run short and the tensile strength of a copper alloy board cannot be raised. On the other hand, when there is too much content of Ni, electrical conductivity will fall and hot rolling workability will deteriorate. Therefore, the Ni content is in the range of 0.5 to 5.0%, preferably 1.5 to 4.0%.

Coの含有量は0.5〜5.0%とする。CoはSiと共に含有されて、時効処理でNiと同様に析出したCo2Si相を形成して、銅合金板材の強度の向上に寄与する元素である。Coの含有量が少なすぎる場合は、前記Co2Si相が不足し、銅合金板材の引張強さを高めることができない。一方、Coの含有量が多すぎると、導電率が低下する。また、熱間圧延加工性が悪化する。したがって、Coの含有量は0.5〜5.0%、好ましくは0.8〜3.0%の範囲とする。   The Co content is 0.5 to 5.0%. Co is an element that is contained together with Si and contributes to improving the strength of the copper alloy sheet by forming a Co2Si phase precipitated in the same manner as Ni by aging treatment. When the content of Co is too small, the Co2Si phase is insufficient, and the tensile strength of the copper alloy sheet cannot be increased. On the other hand, when there is too much content of Co, electrical conductivity will fall. Moreover, hot rolling workability deteriorates. Therefore, the Co content is in the range of 0.5 to 5.0%, preferably 0.8 to 3.0%.

これらNiとCoは両方の合計で0.5〜5.0%を含有してもよい。NiとCoの両方を含有すると、時効処理の際にNi2SiとCo2Siの両方が析出し、時効強度を高めることができる。NiとCoの含有量の合計が少なすぎる場合は、引張強さを高めることができず、多すぎると導電率や熱間圧延加工性が低下する。したがって、NiとCoの含有量の合計は0.5〜5.0%、好ましくは0.8〜4.0%の範囲である。特に、高い導電率を必要とする場合は、Coの添加量をNiの添加量よりも多くするのが好ましい。   These Ni and Co may contain 0.5 to 5.0% in total. When both Ni and Co are contained, both Ni2Si and Co2Si precipitate during the aging treatment, and the aging strength can be increased. If the total content of Ni and Co is too small, the tensile strength cannot be increased. If it is too large, the electrical conductivity and hot rolling processability are lowered. Accordingly, the total content of Ni and Co is in the range of 0.5 to 5.0%, preferably 0.8 to 4.0%. In particular, when high conductivity is required, it is preferable that the amount of Co added is larger than the amount of Ni added.

Siは前記Ni、Coと共に含有されて、時効処理で析出したNi2SiまたはCo2Si相を形成して、銅合金板材の強度の向上に寄与する。Siの含有量は化学量論比でNi/Si=4.2、Co/Si=4.2とするのが最も導電率と強度のバランスがよい。そのためSiの含有量は、Ni/Si、Co/Si、(Ni+Co)/Siが3.2〜5.2、好ましくは3.5〜4.5の範囲となるようにするのがよい。
この範囲から外れ、Siが各々過剰に含まれた場合、銅合金板材の引張強さを高くすることができるが、過剰な分のSiが銅のマトリックス中に固溶し、銅合金板材の導電率が低下する。また、Siが過剰に含まれた場合、鋳造での鋳造性や、熱間および冷間での圧延加工も低下し、鋳造割れや圧延割れが生じやすくなる。一方、この範囲から外れ、Siの含有量が少な過ぎる場合は、Ni2SiやCo2Siの析出相が不足し板の引張強さを高くすることができない。
Si is contained together with Ni and Co, and forms a Ni2Si or Co2Si phase precipitated by aging treatment, thereby contributing to an improvement in the strength of the copper alloy sheet. The balance between conductivity and strength is best when the Si content is stoichiometrically Ni / Si = 4.2 and Co / Si = 4.2. Therefore, the content of Si should be such that Ni / Si, Co / Si, and (Ni + Co) / Si are in the range of 3.2 to 5.2, preferably 3.5 to 4.5.
If the Si is excessively contained outside this range, the tensile strength of the copper alloy sheet can be increased, but the excessive amount of Si is dissolved in the copper matrix, and the conductivity of the copper alloy sheet is increased. The rate drops. Moreover, when Si is contained excessively, the castability in casting, the hot and cold rolling processes are also reduced, and casting cracks and rolling cracks are likely to occur. On the other hand, if it is out of this range and the Si content is too small, the precipitation phase of Ni2Si or Co2Si is insufficient and the tensile strength of the plate cannot be increased.

・その他の元素
上記組成に加えて、銅合金はCrを0.01〜0.5%含有してもよい。Crは合金中の結晶粒を微細化する効果があり、銅合金板材の強度や曲げ加工性の向上に寄与する。少なすぎるとその効果はなく、多すぎると鋳造時に晶出物を形成し時効強度が低下する。好ましい含有量は0.05〜0.3%である。
-Other elements In addition to the said composition, a copper alloy may contain 0.01 to 0.5% of Cr. Cr has an effect of refining crystal grains in the alloy, and contributes to improvement of the strength and bending workability of the copper alloy sheet. If the amount is too small, the effect is not obtained. If the amount is too large, a crystallized product is formed during casting, and the aging strength is lowered. A preferable content is 0.05 to 0.3%.

本発明の高強度銅合金板材は、上記基本組成の他に添加元素として、質量%で、Sn:0.05〜1.0%、Zn:0.01〜1.0%、Ag:0.01〜1.0%、Mn:0.01〜1.0%、Zr:0.1〜1.0%、Mg:0.01〜1.0%の一種または二種以上を含有してもよい。ここで、二種以上を含有する場合は、合計を0.01〜1.0%とする。これらの元素は、いずれも本発明の銅合金の主たる目的である強度や導電率あるいは曲げ加工性のいずれかをさらに向上させる共通の作用効果がある元素である。以下に、各元素の特徴的な作用効果と含有範囲の意義を記載する。   The high-strength copper alloy sheet material of the present invention includes, in addition to the above basic composition, as additive elements in mass%, Sn: 0.05 to 1.0%, Zn: 0.01 to 1.0%, Ag: 0.00. It may contain one or more of 01 to 1.0%, Mn: 0.01 to 1.0%, Zr: 0.1 to 1.0%, Mg: 0.01 to 1.0%. Good. Here, when it contains 2 or more types, a total shall be 0.01-1.0%. These elements are elements having a common action and effect for further improving any one of strength, conductivity, and bending workability, which are the main purposes of the copper alloy of the present invention. Below, the characteristic effect of each element and the significance of the content range are described.

Snは主に銅合金板材の強度を向上させる元素であり、これらの特性を重視する用途に使用する場合には、選択的に含有させる。Snの含有量が少なすぎるとその強度向上効果が不十分である。一方、Snを含有させると銅合金板の導電率が低下する傾向がある。特に、Snが多すぎると、銅合金板材の導電率を20%IACS以上とすることが難しくなる。したがって、含有させる場合には、Snの含有量を0.01〜1.0%の範囲とするのが好ましい。   Sn is an element mainly improving the strength of the copper alloy sheet, and is selectively contained when used for applications in which these characteristics are important. When there is too little content of Sn, the strength improvement effect will be inadequate. On the other hand, when Sn is contained, the conductivity of the copper alloy plate tends to decrease. In particular, when there is too much Sn, it becomes difficult to make the electrical conductivity of the copper alloy plate material 20% IACS or more. Therefore, when it contains, it is preferable to make content of Sn into 0.01 to 1.0% of range.

Znの添加により、半田付け時の耐熱剥離性や耐マイグレーション性を向上させることができる。Znの含有量が少なすぎるとその効果が不十分となる。一方、Znを含有させると銅合金板の導電率が低下する傾向があり、Znが多すぎると、銅合金板の導電率を20%IACS以上とすることが難しくなる。したがって、Znの含有量を0.01から1.0%の範囲とするのが好ましい。   By adding Zn, it is possible to improve the heat-resistant peelability and migration resistance during soldering. If there is too little content of Zn, the effect will become inadequate. On the other hand, if Zn is contained, the conductivity of the copper alloy plate tends to decrease. If too much Zn is contained, it is difficult to make the conductivity of the copper alloy plate 20% IACS or more. Therefore, the Zn content is preferably in the range of 0.01 to 1.0%.

Agは銅合金板材の強度の上昇に寄与する。Agの含有量が少なすぎるとその効果が不十分である。一方、Agを過剰に含有させても、効果が飽和するため好ましくない。したがって、含有させる場合には、Agの含有量を0.01〜1.0%の範囲とするのが好ましい。   Ag contributes to an increase in the strength of the copper alloy sheet. If the content of Ag is too small, the effect is insufficient. On the other hand, even if Ag is excessively contained, the effect is saturated, which is not preferable. Therefore, when it is made to contain, it is preferable to make content of Ag into the range of 0.01 to 1.0%.

Mnは主に合金の熱間圧延での加工性を向上させる。Mnの含有量が少なすぎるとその効果が不十分である。一方、Mnが多すぎると、銅合金の鋳造時の湯流れ性が悪化して鋳造歩留まりが低下する。したがって、含有させる場合には、Mnの含有量を0.01〜1.0%の範囲とする。   Mn mainly improves the workability of the alloy in hot rolling. If the Mn content is too small, the effect is insufficient. On the other hand, when there is too much Mn, the hot-water flow property at the time of casting of a copper alloy will deteriorate, and a casting yield will fall. Therefore, when it contains, the content of Mn is made 0.01 to 1.0% of range.

Zrは主に結晶粒を微細化させて、銅合金板の強度や曲げ加工性を向上させる。Zrの含有量が少なすぎるとその効果が不十分である。一方、Zrが多すぎると、化合物を形成し、銅合金板の圧延などの加工性が低下する。したがって、含有させる場合には、Zrの含有量を0.01〜1.0%の範囲とする。   Zr mainly refines the crystal grains and improves the strength and bending workability of the copper alloy plate. If the Zr content is too small, the effect is insufficient. On the other hand, when there is too much Zr, a compound will be formed and workability, such as rolling of a copper alloy plate, will fall. Therefore, when it contains, content of Zr shall be 0.01 to 1.0% of range.

Mgは応力緩和特性を向上させる。したがって、応力緩和特性が必要な場合には、0.01〜1.0%の範囲で選択的に含有させる。Mgが少なすぎると、目的とする効果が不十分であり、多すぎる場合は導電率が低下する弊害を招くため好ましくない。   Mg improves stress relaxation characteristics. Therefore, when the stress relaxation property is required, it is selectively contained in the range of 0.01 to 1.0%. If the amount of Mg is too small, the intended effect is insufficient, and if it is too large, the electrical conductivity is lowered, which is undesirable.

(製造方法等)
次に、本発明の銅合金板材の好ましい製造方法(好ましい実施態様)について以下に説明する。
本発明のコルソン合金板材は、鋳造、熱間圧延、冷間圧延1、中間焼鈍、冷間圧延2、溶体化熱処理、冷間圧延3、時効熱処理、仕上げ冷間圧延、低温焼鈍の各工程を経て製造される。本発明の銅合金板材の製造方法自体は、従来のコルソン合金の場合と同一の方法で製造できる。集合組織には、各工程の製造条件を限定する必要があるが、特に本発明の銅合金板材を製造するには、中間焼鈍と冷間圧延3の条件を厳しく管理することが好ましい。
(Manufacturing method etc.)
Next, the preferable manufacturing method (preferable embodiment) of the copper alloy sheet | seat material of this invention is demonstrated below.
The Corson alloy sheet according to the present invention includes steps of casting, hot rolling, cold rolling 1, intermediate annealing, cold rolling 2, solution heat treatment, cold rolling 3, aging heat treatment, finish cold rolling, and low temperature annealing. It is manufactured after. The manufacturing method itself of the copper alloy sheet of the present invention can be manufactured by the same method as that of the conventional Corson alloy. Although it is necessary to limit the manufacturing conditions of each process to a texture, it is preferable to strictly manage the conditions of intermediate annealing and cold rolling 3 in order to manufacture the copper alloy sheet of the present invention.

本実施態様において、鋳造は、上記組成範囲に成分調整した銅合金成溶湯を鋳造する。そして、鋳塊を面削後、800〜1000℃で加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。
熱間圧延後、表面を面削し、冷間圧延1を行う。この冷間圧延1の圧延率が十分に高ければ、その後最終製品まで製造してもBrass方位やS方位などが発達しすぎず、Cube方位からのずれ角度が15〜30°の面積率を十分に高めることができる。そのため、冷間圧延1の圧延率は70%以上であることが好ましい。
In the present embodiment, the casting is performed by casting a molten copper alloy whose components are adjusted to the above composition range. And after chamfering an ingot, it heats at 800-1000 degreeC, or it heat-rolls, Then, it hot-rolls and the board after hot rolling is water-cooled.
After hot rolling, the surface is chamfered and cold rolling 1 is performed. If the rolling rate of this cold rolling 1 is sufficiently high, the Brass direction and S direction will not develop too much even if the final product is manufactured thereafter, and the area ratio with a deviation angle from the Cube direction of 15 to 30 ° is sufficient. Can be increased. Therefore, it is preferable that the rolling rate of the cold rolling 1 is 70% or more.

本発明の銅合金材は、冷間圧延1と溶体化熱処理の間に、300〜800℃で5秒〜2時間の中間焼鈍に続いて、圧延率が3〜80%の冷間圧延2を加えることを特徴とする。中間焼鈍は、溶体化熱処理温度より低い温度で熱処理を行うことにより、材料を完全に再結晶させず、部分的に再結晶させた亜焼鈍組織を得ることができる。冷間圧延2では、比較的低い加工率の圧延によって、微視的に不均一な歪みを材料に導入することができる。この2つの工程の効果によって、溶体化熱処理での再結晶集合組織において、所望の結晶方位を得ることができる。中間焼鈍のより好ましい範囲は400〜700℃で10秒〜1分間、更に好ましい範囲は500〜650℃で15秒〜45秒間である。冷間圧延2の加工率のより好ましい範囲は5〜55%、更に好ましい範囲は7〜45%である。
従来、上記中間焼鈍のような熱処理は、次工程の圧延での荷重を低減するために材料を再結晶させて強度を落とすために行われている。また、圧延は板厚を薄くすることが目的であり、通常の圧延機の能力であれば80%を超える加工率を採用するのが一般的である。本発明における中間焼鈍および冷間加工の目的は、これら一般的な内容とは異なり、再結晶後の結晶方位に優先性を持たせるためである。
The copper alloy material of the present invention is obtained by subjecting cold rolling 2 having a rolling rate of 3 to 80% between cold rolling 1 and solution heat treatment to intermediate annealing at 300 to 800 ° C. for 5 seconds to 2 hours. It is characterized by adding. In the intermediate annealing, by performing the heat treatment at a temperature lower than the solution heat treatment temperature, it is possible to obtain a sub-annealed structure in which the material is not completely recrystallized but partially recrystallized. In cold rolling 2, microscopically non-uniform strain can be introduced into the material by rolling at a relatively low processing rate. By the effect of these two steps, a desired crystal orientation can be obtained in the recrystallization texture in the solution heat treatment. A more preferable range of the intermediate annealing is 400 to 700 ° C. for 10 seconds to 1 minute, and a more preferable range is 500 to 650 ° C. for 15 seconds to 45 seconds. A more preferable range of the processing rate of the cold rolling 2 is 5 to 55%, and a further preferable range is 7 to 45%.
Conventionally, heat treatment such as the intermediate annealing has been performed in order to reduce the strength by recrystallizing the material in order to reduce the load in the next rolling process. The purpose of rolling is to reduce the plate thickness. If the capacity of a normal rolling mill is used, it is common to employ a processing rate exceeding 80%. The purpose of the intermediate annealing and cold working in the present invention is to give priority to the crystal orientation after recrystallization, unlike these general contents.

本実施態様において、溶体化処理は、600〜1000℃で5秒〜300秒で行う。NiやCoの濃度によって必要な温度条件が変わるため、Ni、Co濃度に応じて適切な温度条件を選択する必要がある。溶体化温度が上記下限値以上であると、時効処理工程において強度が十分に維持され、溶体化温度が上記上限値以下であると材料が必要以上に軟化せず形状制御が好適に実現され好ましい。このときCube方位からのずれ角度15〜30°の結晶粒の面積率を15〜50%とするのが好ましい。   In this embodiment, the solution treatment is performed at 600 to 1000 ° C. for 5 to 300 seconds. Since necessary temperature conditions vary depending on the Ni and Co concentrations, it is necessary to select appropriate temperature conditions according to the Ni and Co concentrations. When the solution temperature is equal to or higher than the above lower limit, the strength is sufficiently maintained in the aging treatment step, and when the solution temperature is equal to or lower than the upper limit, the material is not softened more than necessary, and shape control is suitably realized. . At this time, it is preferable that the area ratio of crystal grains having a deviation angle of 15 to 30 ° from the Cube orientation is 15 to 50%.

溶体化処理の後、5〜40%の冷間圧延3を行う。この冷間圧延の際、この加工率の冷間圧延を施すと集合組織が本発明の範囲内となり好ましい。本発明者らの知見によれば、冷間圧延のロールの粗さの異なるロールで異摩擦圧延を施すとCube方位からのずれ角度15°未満の結晶粒がわずかに方位回転し、Cube方位からのずれ角度15〜30°の方位に集積させることができる。これは、異摩擦圧延では、圧延材の上面と下面で塑性拘束が異なり、この塑性拘束の相違によりせん断変形がわずかに導入されるためと考えられる。ここで上ロールと下ロールの中心線平均粗さRaの差が0.05〜3.0μmとなるようにするのが好ましく、2.4〜2.8μmとなるようにするのがより好ましい。ロールの粗さは、研磨紙でロールを粗面化することによって調節すればよい。冷間圧延3は、時効析出量を増加させる効果があり、強度の向上にも寄与する。   After the solution treatment, cold rolling 3 of 5 to 40% is performed. When cold rolling is performed at this processing rate, the texture is preferably within the scope of the present invention. According to the knowledge of the present inventors, when different friction rolling is performed with rolls having different roughness of the roll of cold rolling, the crystal grains with a deviation angle of less than 15 ° from the Cube orientation are slightly rotated, and from the Cube orientation. Can be accumulated in a direction with a deviation angle of 15 to 30 °. This is presumably because, in different friction rolling, plastic restraint differs between the upper and lower surfaces of the rolled material, and shear deformation is slightly introduced due to the difference in plastic restraint. Here, the difference in the center line average roughness Ra between the upper roll and the lower roll is preferably 0.05 to 3.0 [mu] m, and more preferably 2.4 to 2.8 [mu] m. The roughness of the roll may be adjusted by roughening the roll with abrasive paper. The cold rolling 3 has the effect of increasing the amount of aging precipitation and contributes to the improvement of strength.

時効処理は、400〜600℃で0.5時間〜8時間の範囲で行う。NiやCoの濃度によって必要な温度条件が変わるため、Ni、Co濃度に応じて適切な温度条件を選択する必要がある。時効処理の温度が上記下限値以上であるとき、時効析出量が低下せず強度が十分に維持される。また、時効処理の温度が上記上限値以下であるとき析出物が粗大化せず、強度が維持される。
溶体化処理後の仕上げ冷間圧延の加工率を0〜20%以下とするのが好ましい。加工率が高すぎると、Cube方位粒がBrass、SおよびCopper方位などへと方位回転し、集合組織が本発明の範囲外となることがある。
本発明で製造された銅合金板の特性の確認は、銅合金板の組織が規定範囲内であるかどうか、EBSD解析による検証により可能である。
The aging treatment is performed at 400 to 600 ° C. for 0.5 to 8 hours. Since necessary temperature conditions vary depending on the Ni and Co concentrations, it is necessary to select appropriate temperature conditions according to the Ni and Co concentrations. When the temperature of the aging treatment is not less than the above lower limit value, the strength is sufficiently maintained without decreasing the amount of aging precipitation. Moreover, when the temperature of an aging treatment is below the said upper limit, a precipitate will not coarsen and intensity | strength is maintained.
The processing rate of finish cold rolling after solution treatment is preferably 0 to 20% or less. If the processing rate is too high, the Cube orientation grains may be rotated to the Brass, S, and Copper orientations, and the texture may fall outside the scope of the present invention.
The characteristics of the copper alloy plate manufactured according to the present invention can be confirmed by verification by EBSD analysis whether the structure of the copper alloy plate is within a specified range.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

以下に本発明の実施例を説明する。下記表1に示す各組成の銅合金を鋳造して銅合金板を製造し、強度、導電率、曲げ性などの各特性を評価した。   Examples of the present invention will be described below. Copper alloys having various compositions shown in Table 1 below were cast to produce copper alloy plates, and properties such as strength, conductivity and bendability were evaluated.

まず、DC(Direct Chill)法により鋳造して、厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。次にこれら鋳塊を900℃に加熱し、この温度に1時間保持後、厚さ14mmに熱間圧延し、速やかに冷却した。次いで両面を各1mmずつ面削して酸化被膜を除去した後、圧延率90〜98%の冷間圧延1を施した。この後、600〜700℃で1時間の熱処理を行い、5〜20%の冷間圧延率で冷間圧延2を実施した。その後、700〜950℃の種々の条件で溶体化処理を行い、直ちに15℃/秒以上の冷却速度で冷却した。次いで圧延率5〜40%の冷間圧延3を施した。この際、上下ロールの表面粗さRaの差が0.05〜3.0μmのロールを使用した。次に不活性ガス雰囲気中で、400〜600℃で2時間の時効処理を施し、その後圧延率20%以下の仕上げ圧延を行い、最終的な板厚を0.15mmに揃えた。仕上げ圧延後、400℃で30秒の低温焼鈍処理を施した材料で各種特性評価を行った。   First, it cast by DC (Direct Chill) method and obtained the ingot of thickness 30mm, width 100mm, and length 150mm. Next, these ingots were heated to 900 ° C., held at this temperature for 1 hour, hot-rolled to a thickness of 14 mm, and quickly cooled. Next, both sides were chamfered 1 mm each to remove the oxide film, and then cold rolled 1 with a rolling rate of 90 to 98% was performed. Thereafter, heat treatment was performed at 600 to 700 ° C. for 1 hour, and cold rolling 2 was performed at a cold rolling rate of 5 to 20%. Thereafter, solution treatment was performed under various conditions of 700 to 950 ° C. and immediately cooled at a cooling rate of 15 ° C./second or more. Next, cold rolling 3 with a rolling rate of 5 to 40% was performed. At this time, a roll having a difference in surface roughness Ra between the upper and lower rolls of 0.05 to 3.0 μm was used. Next, an aging treatment was performed at 400 to 600 ° C. for 2 hours in an inert gas atmosphere, and then finish rolling with a rolling rate of 20% or less was performed, so that the final plate thickness was adjusted to 0.15 mm. After finish rolling, various properties were evaluated using materials subjected to low-temperature annealing at 400 ° C. for 30 seconds.

このようにして製造した銅合金板に対して、各例とも、時効処理後に銅合金板から切り出した試料を使用し、以下に示す試験及び評価を実施した。   With respect to the copper alloy plate thus produced, in each example, a sample cut out from the copper alloy plate after aging treatment was used, and the following tests and evaluations were performed.

銅合金板試料の組織、Cube方位からのずれ角度15°未満の結晶方位粒の面積率とずれ角度15〜30°以内の結晶方位粒の面積率を前記した手法によって測定した。これらの結果を表に示す。
なお、EBSD測定装置として、TSL社製OIM5.0 HIKARIを用いた。
The structure of the copper alloy plate sample, the area ratio of crystal orientation grains with a deviation angle of less than 15 ° from the Cube orientation, and the area ratio of crystal orientation grains with a deviation angle of 15 to 30 ° or less were measured by the method described above. These results are shown in the table.
As an EBSD measuring apparatus, OSL5.0 HIKARI manufactured by TSL was used.

また、前記銅合金板試料の、(1)各結晶方位粒の面積率、(2)引張強度、(3)導電率、(4)曲げ性を評価した。
(1)結晶方位粒の面積率は、Cube方位からのズレ角度15°未満の面積率とCube方位からのズレ角度15〜30°の面積率を示した。
(2)引張強さはJIS Z 2201記載の5号試験片を用い、JIS Z 2241に準拠して求めた。引張強度は5MPaの整数倍に丸めて示した。
(3)導電率はJIS H 0505に準拠して求めた。
(4)曲げ加工性は曲げ試験片幅wを5mmで行い、曲げR=0〜0.6で90°曲げを行い、割れの生じない最小の曲げ半径(R)と板厚(t)の比をR/tとして定義した。
Moreover, (1) area ratio of each crystal orientation grain, (2) tensile strength, (3) electrical conductivity, and (4) bendability of the copper alloy sheet sample were evaluated.
(1) The area ratio of crystal orientation grains showed an area ratio of a deviation angle of less than 15 ° from the Cube orientation and an area ratio of a deviation angle of 15 to 30 ° from the Cube orientation.
(2) Tensile strength was determined according to JIS Z 2241 using No. 5 test piece described in JIS Z 2201. The tensile strength is shown rounded to an integral multiple of 5 MPa.
(3) The electrical conductivity was determined according to JIS H 0505.
(4) The bending workability is performed with a bending test piece width w of 5 mm, bending 90 ° with a bending R = 0 to 0.6, and having a minimum bending radius (R) and plate thickness (t) with no cracks. The ratio was defined as R / t.

表1の実施例1〜31に本発明の実施例を示す。実施例1〜31は集合組織が本発明の範囲内にあり、強度、曲げ加工性に優れる。   Examples 1 to 31 in Table 1 show examples of the present invention. Examples 1-31 have a texture within the scope of the present invention, and are excellent in strength and bending workability.

表2に本発明に対する比較例を示す。比較例1、2、5は、NiまたはCoの含有量が本発明の規定する範囲より少ないため、引張強度が著しく低い。比較例3、4、6、7は、NiまたはCoの含有量が多すぎるため、熱間圧延時に割れが生じたため製造を中止した。   Table 2 shows a comparative example for the present invention. In Comparative Examples 1, 2, and 5, the tensile strength is remarkably low because the content of Ni or Co is less than the range defined by the present invention. In Comparative Examples 3, 4, 6, and 7, since the content of Ni or Co was too large, the production was stopped because cracks occurred during hot rolling.

表3は、表1の実施例と同一鋳塊を用いて、冷間圧延3の上下圧延ロールの平均粗さRaの差が集合組織に及ぼす影響を調査した例である。表3の実施例10−2、10−3、22−2、22−3、29−2、29−3は集合組織が本発明例の範囲内であり、強度と曲げ加工性に優れる。一方、比較例10−2、22−2、29−2、は、Raの差が小さいため、Cube方位からのずれ角度15°未満の面積率が高く、強度が低下した。また、比較例10−3、22−3、29−3、は、Raの差が大きいため、Cube方位からのずれ角度15°〜30°以内の面積率が低く、曲げ加工性が低下した。
なお、ロールの表面粗さRaはJIS B 0601に準拠して測定した。
Table 3 is an example of investigating the influence of the difference in the average roughness Ra of the upper and lower rolling rolls of the cold rolling 3 on the texture using the same ingot as in the example of Table 1. In Examples 10-2, 10-3, 22-2, 22-3, 29-2, and 29-3 in Table 3, the texture is within the range of the examples of the present invention, and is excellent in strength and bending workability. On the other hand, in Comparative Examples 10-2, 22-2, and 29-2, since the difference in Ra was small, the area ratio with a deviation angle of less than 15 ° from the Cube orientation was high, and the strength decreased. In Comparative Examples 10-3, 22-3, and 29-3, since the difference in Ra was large, the area ratio within a deviation angle of 15 ° to 30 ° from the Cube orientation was low, and bending workability was lowered.
The surface roughness Ra of the roll was measured according to JIS B 0601.

Figure 0004934759
Figure 0004934759

Figure 0004934759
Figure 0004934759

Figure 0004934759
Figure 0004934759

つづいて、従来の製造条件により製造した銅合金板材について、本願発明に係る銅合金板材との相違を明確化するために、その条件で銅合金板材を作製し、上記と同様の特性項目の評価を行った。なお、各板材の厚さは特に断らない限り上記実施例と同じ厚さになるように加工率を調整した。いずれも、本願出願当時の一般的な製造条件を考慮し、溶体化の後の冷間圧延において異摩擦圧延は採用されていない条件とした。   Subsequently, in order to clarify the difference from the copper alloy sheet material according to the present invention, the copper alloy sheet material produced under the conventional production conditions, the copper alloy sheet material is produced under the conditions, and the same characteristic items as described above are evaluated. Went. In addition, the processing rate was adjusted so that the thickness of each board | plate material might become the same thickness as the said Example unless there is particular notice. In any case, in consideration of general manufacturing conditions at the time of filing of the present application, different friction rolling was not adopted in cold rolling after solution heat treatment.

(比較例101)・・・特開2009−007666号公報の条件
上記本発明例1−1と同様の金属元素を配合し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1020℃で3分から10時間の保持後、熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削を行った。この後の工程は、次に記載する工程A−3,B−3の処理を施すことによって銅合金c01を製造した。
製造工程には、1回または2回以上の溶体化熱処理を含み、ここでは、その中の最後の溶体化熱処理の前後で工程を分類し、中間溶体化までの工程でA−3工程とし、中間溶体化より後の工程でB−3工程とした。
(Comparative Example 101) ... Conditions of JP2009-007666 A metal element similar to that of Invention Example 1-1 is blended, and an alloy composed of Cu and inevitable impurities is melted in a high-frequency melting furnace. This was cast at a cooling rate of 0.1 to 100 ° C./second to obtain an ingot. This was held at 900 to 1020 ° C. for 3 minutes to 10 hours, then hot worked, then water quenched, and chamfered to remove oxide scale. In the subsequent steps, the copper alloy c01 was manufactured by performing the processes of steps A-3 and B-3 described below.
The manufacturing process includes one or more solution heat treatments, and here, the process is classified before and after the last solution heat treatment, and the process up to the intermediate solution is A-3 process, It was set as B-3 process in the process after intermediate solution.

工程A−3:断面減少率が20%以上の冷間加工を施し、350〜750℃で5分〜10時間の熱処理を施し、断面減少率が5〜50%の冷間加工を施し、800〜1000℃で5秒〜30分の溶体化熱処理を施す。
工程B−3:断面減少率が50%以下の冷間加工(異摩擦なし)を施し、400〜700℃で5分〜10時間の熱処理を施し、断面減少率が30%以下の冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を施す。
Step A-3: A cold working with a cross-sectional reduction rate of 20% or more is performed, a heat treatment is performed at 350 to 750 ° C. for 5 minutes to 10 hours, a cold working with a cross-sectional reduction rate of 5 to 50% is performed, and 800 A solution heat treatment is performed at ˜1000 ° C. for 5 seconds to 30 minutes.
Step B-3: Cold work (with no cross friction) with a cross-section reduction rate of 50% or less, heat treatment at 400 to 700 ° C. for 5 minutes to 10 hours, and cold work with a cross-section reduction rate of 30% or less And temper annealing at 200 to 550 ° C. for 5 seconds to 10 hours.

得られた試験体c01は、上記実施例とは製造条件について異摩擦圧延の有無の点で異なり、引張強度について要求特性を満たさない結果となった。   The obtained specimen c01 was different from the above example in terms of the production conditions in terms of the presence or absence of different friction rolling, and the result was that the required properties for the tensile strength were not satisfied.

(比較例102)・・・特開2006−283059号公報の条件
上記本発明例1−1の組成の銅合金を、電気炉により大気中にて木炭被覆下で溶解し、鋳造可否を判断した。溶製した鋳塊を熱間圧延し、厚さ15mmに仕上げた。つづいてこの熱間圧延材に対し、冷間圧延及び熱処理(冷間圧延1→溶体化連続焼鈍→冷間圧延2(異摩擦なし)→時効処理→冷間圧延3→短時間焼鈍)を施し、所定の厚さの銅合金薄板(c02)を製造した。
(Comparative Example 102) ... Conditions of Japanese Patent Application Laid-Open No. 2006-283059 The copper alloy having the composition of Example 1-1 of the present invention was melted in the atmosphere under charcoal coating in an electric furnace to determine whether casting was possible. . The molten ingot was hot-rolled to a thickness of 15 mm. Subsequently, this hot-rolled material is subjected to cold rolling and heat treatment (cold rolling 1 → solution annealing, cold rolling 2 (no different friction) → aging treatment → cold rolling 3 → short annealing). A copper alloy thin plate (c02) having a predetermined thickness was produced.

得られた試験体c02は、上記実施例1とは製造条件について中間焼鈍と冷間圧延2の有無及び、異摩擦圧延の有無の点で異なり、曲げ加工性を満たさない結果となった。   The obtained specimen c02 was different from Example 1 in terms of manufacturing conditions in the presence or absence of intermediate annealing and cold rolling 2 and in the presence or absence of differential friction rolling, and did not satisfy bending workability.

(比較例103)・・・特開2006−152392号公報の条件
上記本発明例1−1の組成をもつ合金について、クリプトル炉において大気中で木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、厚さが50mm、幅が75mm、長さが180mmの鋳塊を得た。そして、鋳塊の表面を面削した後、950℃の温度で厚さが15mmになるまで熱間圧延し、750℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、冷間圧延を行い、所定の厚さの板を得た。
(Comparative Example 103) ... Conditions of Japanese Patent Application Laid-Open No. 2006-152392 The alloy having the composition of the present invention example 1-1 was melted under a charcoal coating in the atmosphere in a kryptor furnace and cast into a cast iron book mold. An ingot having a thickness of 50 mm, a width of 75 mm, and a length of 180 mm was obtained. Then, after chamfering the surface of the ingot, it was hot-rolled at a temperature of 950 ° C. until the thickness became 15 mm, and rapidly cooled into water from a temperature of 750 ° C. or higher. Next, after removing the oxide scale, cold rolling was performed to obtain a plate having a predetermined thickness.

続いて、塩浴炉を使用し、温度で20秒間加熱する溶体化処理を行なった後に、水中に急冷した後、後半の仕上げ冷間圧延(異摩擦なし)により、各厚みの冷延板にした。この際、下記に示すように、これら冷間圧延の加工率(%)を種々変えて冷延板(c03)にした。これらの冷延板を、下記に示すように、温度(℃)と時間(hr)とを種々変えて時効処理した。   Subsequently, after performing a solution heat treatment using a salt bath furnace and heating at a temperature for 20 seconds, after quenching in water, the cold-rolled sheet of each thickness is subjected to finish cold rolling (no friction) in the latter half. did. At this time, as shown below, the cold-rolled sheet (c03) was obtained by variously changing the cold rolling processing rate (%). As shown below, these cold-rolled plates were subjected to aging treatment at various temperatures (° C.) and times (hr).

冷間加工率: 95%
溶体化処理温度: 900℃
人工時効硬化処理温度×時間: 450℃×4時間
板厚: 0.6mm
Cold working rate: 95%
Solution treatment temperature: 900 ° C
Artificial age hardening temperature x time: 450 ° C x 4 hours Thickness: 0.6mm

得られた試験体c03は、上記実施例1とは製造条件について中間焼鈍と冷間圧延2の有無及び、異摩擦圧延の有無の点で異なり、曲げ加工性を満たさない結果となった。   The obtained test body c03 was different from Example 1 in terms of manufacturing conditions in the presence or absence of intermediate annealing and cold rolling 2 and in the presence or absence of differential friction rolling, and did not satisfy bending workability.

(比較例104)・・・特開2008−223136号公報の条件
実施例1に示す銅合金を溶製し、縦型連続鋳造機を用いて鋳造した。得られた鋳片(厚さ180mm)から厚さ50mmの試料を切り出し、これを950℃に加熱したのち抽出して、熱間圧延を開始した。その際、950℃〜700℃の温度域での圧延率が60%以上となり、かつ700℃未満の温度域でも圧延が行われるようにパススケジュールを設定した。熱間圧延の最終パス温度は600℃〜400℃の間にある。鋳片からのトータルの熱間圧延率は約90%である。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。
次いで、冷間圧延を行った後、溶体化処理に供した。試料表面に取り付けた熱電対により溶体化処理時の温度変化をモニターし、昇温過程における100℃から700℃までの昇温時間を求めた。溶体化処理後の平均結晶粒径(双晶境界を結晶粒界とみなさない)が10〜60μmとなるように到達温度を合金組成に応じて700〜850℃の範囲内で調整し、700〜850℃の温度域での保持時間を10sec〜10minの範囲で調整した。続いて、上記溶体化処理後の板材に対して、圧延率で中間冷間圧延(異摩擦なし)を施し、次いで時効処理を施した。時効処理温度は材温450℃とし、時効時間は合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。このような合金組成に応じて最適な溶体化処理条件や時効処理時間は予備実験により把握してある。次いで、圧延率で仕上げ冷間圧延を行った。仕上げ冷間圧延を行ったものについては、その後さらに、400℃の炉中に5min装入する低温焼鈍を施した。このようにして供試材c04を得た。なお、必要に応じて途中で面削を行い、供試材の板厚は0.2mmに揃えた。主な製造条件は下記に記載してある。
(Comparative Example 104) ... Conditions of JP-A-2008-223136 The copper alloy shown in Example 1 was melted and cast using a vertical continuous casting machine. A sample with a thickness of 50 mm was cut out from the obtained slab (thickness 180 mm), heated to 950 ° C., extracted, and hot rolling was started. At that time, the pass schedule was set so that the rolling rate in the temperature range of 950 ° C. to 700 ° C. was 60% or more and the rolling was performed even in the temperature range of less than 700 ° C. The final pass temperature of hot rolling is between 600 ° C and 400 ° C. The total hot rolling rate from the slab is about 90%. After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing.
Subsequently, after performing cold rolling, it used for the solution treatment. The temperature change during the solution treatment was monitored by a thermocouple attached to the sample surface, and the temperature raising time from 100 ° C. to 700 ° C. in the temperature raising process was determined. The ultimate temperature is adjusted within the range of 700 to 850 ° C. according to the alloy composition so that the average crystal grain size after solution treatment (the twin boundary is not regarded as a grain boundary) is 10 to 60 μm. The holding time in the temperature range of 850 ° C. was adjusted in the range of 10 sec to 10 min. Subsequently, the plate material after the solution treatment was subjected to intermediate cold rolling (without different friction) at a rolling rate, and then subjected to an aging treatment. The aging treatment temperature was adjusted to a material temperature of 450 ° C., and the aging time was adjusted to a time when the hardness peaked at 450 ° C. according to the alloy composition. The optimum solution treatment conditions and aging treatment time according to such an alloy composition have been grasped by preliminary experiments. Next, finish cold rolling was performed at a rolling rate. About what performed finish cold rolling, the low temperature annealing which puts it in a 400 degreeC furnace for 5 minutes after that was given after that. In this way, a test material c04 was obtained. If necessary, chamfering was performed in the middle, and the thickness of the specimen was adjusted to 0.2 mm. The main production conditions are described below.

[特開2008−223136 実施例1の条件]
700℃未満〜400℃での熱間圧延率: 56%(1パス)
溶体化処理前 冷間圧延率: 92%
中間冷間圧延 冷間圧延率: 20%
仕上げ冷間圧延 冷間圧延率: 30%
100℃から700℃までの昇温時間: 10秒
[Conditions of JP-A-2008-223136 Example 1]
Hot rolling rate at less than 700 ° C to 400 ° C: 56% (1 pass)
Before solution treatment Cold rolling rate: 92%
Intermediate cold rolling Cold rolling rate: 20%
Finish cold rolling Cold rolling rate: 30%
Temperature rising time from 100 ° C to 700 ° C: 10 seconds

得られた試験体c04は、上記実施例1とは製造条件について 中間焼鈍と冷間圧延2の有無及び、異摩擦圧延の有無の点で異なり、曲げ加工性を満たさない結果となった。   The obtained specimen c04 differs from the above-described Example 1 in terms of production conditions in the presence or absence of intermediate annealing and cold rolling 2 and in the presence or absence of differential friction rolling, and did not satisfy bending workability.

Claims (5)

質量%で、NiまたはCoのいずれか一方または両方を0.8〜5%、Siを0.2〜1.5%を含有し、残部Cuおよび不可避的不純物からなる銅合金組成よりなる銅合金板材であって、Cube方位からずれ角度15°未満の結晶粒の面積率を10%未満、かつCube方位から15〜30°のずれ角度をもつ結晶粒の面積率を15%以上に制御した、優れた強度と曲げ加工性とを有する電気電子部品用銅合金板材。  Copper alloy consisting of a copper alloy composition containing 0.8 to 5% of Ni or Co and 0.2 to 1.5% of Si and the balance Cu and unavoidable impurities in mass% The plate material, the area ratio of crystal grains having a deviation angle of less than 15 ° from the Cube orientation was controlled to less than 10%, and the area ratio of crystal grains having a deviation angle of 15 to 30 ° from the Cube orientation was controlled to 15% or more, A copper alloy sheet for electrical and electronic parts having excellent strength and bending workability. さらに、Crを0.05〜0.5%含有する請求項1に記載の電気電子部品用銅合金板材。  Furthermore, the copper alloy sheet | seat for electrical and electronic components of Claim 1 which contains 0.05-0.5% of Cr. さらに、Zn、Sn、Mg、Ag、MnおよびZrのうち1種又は2種以上を合計で0.01〜1.0%含有する請求項1又は2に記載の電気電子部品用銅合金板材 Furthermore, the copper alloy board | plate material for electrical and electronic components of Claim 1 or 2 which contains 0.01-1.0% of 1 type or 2 types or more in total in Zn, Sn, Mg, Ag, Mn, and Zr . 請求項1〜のいずれか1項に記載の電気電子部品用銅合金板材からなるコネクタ。The connector which consists of a copper alloy board | plate material for electrical and electronic components of any one of Claims 1-3 . 請求項1〜3のいずれか1項に記載の電気電子部品用銅合金板材の製造方法であって、以下の工程を有する電気電子部品用銅合金板材の製造方法。
請求項1〜3のいずれか1項に記載の組成範囲に成分調整した銅合金溶湯を鋳造する工程]
[鋳塊を面削後、800〜1000℃で加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する工程]
[熱間圧延後、表面を面削し、圧延率70%以上冷間圧延1を行う工程]
[冷間圧延1と溶体化処理の間に、300〜800℃で5秒〜2時間の中間焼鈍に続いて、圧延率が3〜80%の冷間圧延2を加える工程]
[600〜1000℃で5秒〜300秒の溶体化処理を行う工程]
[溶体化処理の後、上ロールと下ロールとの中心線平均粗さRaの差が0.05〜3.0μmとなるロールで異摩擦冷間圧延を、加工率5〜40%の冷間圧延3として行う工程]
[400〜600℃で0.5時間〜8時間の時効熱処理を行う工程]
[加工率0〜20%の仕上げ冷間圧延を行い、低温焼鈍を行う工程]
It is a manufacturing method of the copper alloy board | plate material for electric and electronic components of any one of Claims 1-3, Comprising: The manufacturing method of the copper alloy board | plate material for electric and electronic components which has the following processes.
[Step of casting a molten copper alloy whose components are adjusted to the composition range according to any one of claims 1 to 3 ]
[Step of chamfering the ingot, heating at 800-1000 ° C. or homogenizing heat treatment, hot rolling, and water-cooling the hot-rolled plate]
[After hot rolling, and scalped surface, step rolling rate to perform cold rolling the first 70%
[During cold rolling 1 and solution heat treatment, subsequent to intermediate annealing for 5 seconds to 2 hours at 300 to 800 ° C., the step of rolling rate is added 3-80% cold rolling 2]
[600 to 1000 ° C. for 5 seconds to 300 seconds from the step of solution heat treatment]
[After solution heat treatment, the different friction cold rolling difference center line average roughness Ra of a roll to be 0.05~3.0μm the upper roll and the lower roll, working ratio 5-40% cold Process performed as cold rolling 3]
[Step of aging heat treatment at 400 to 600 ° C. for 0.5 to 8 hours]
[Step of performing cold rolling at a processing rate of 0 to 20% and performing low temperature annealing]
JP2011514943A 2009-12-02 2010-12-01 Copper alloy sheet, connector using the same, and method for producing copper alloy sheet Active JP4934759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514943A JP4934759B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet, connector using the same, and method for producing copper alloy sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009274893 2009-12-02
JP2009274893 2009-12-02
PCT/JP2010/071494 WO2011068124A1 (en) 2009-12-02 2010-12-01 Copper alloy sheet
JP2011514943A JP4934759B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet, connector using the same, and method for producing copper alloy sheet

Publications (2)

Publication Number Publication Date
JP4934759B2 true JP4934759B2 (en) 2012-05-16
JPWO2011068124A1 JPWO2011068124A1 (en) 2013-04-18

Family

ID=44114970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011514943A Active JP4934759B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet, connector using the same, and method for producing copper alloy sheet

Country Status (5)

Country Link
EP (1) EP2508632B1 (en)
JP (1) JP4934759B2 (en)
KR (1) KR101419149B1 (en)
CN (1) CN102639732B (en)
WO (1) WO2011068124A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039863B1 (en) * 2011-10-21 2012-10-03 Jx日鉱日石金属株式会社 Corson alloy and manufacturing method thereof
JP6226511B2 (en) * 2012-02-14 2017-11-08 Jx金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
JP6111028B2 (en) * 2012-03-26 2017-04-05 Jx金属株式会社 Corson alloy and manufacturing method thereof
JP6196757B2 (en) * 2012-07-12 2017-09-13 Jx金属株式会社 Corson alloy and manufacturing method thereof
CN105518165B (en) * 2013-09-06 2017-08-18 古河电气工业株式会社 Copper alloy wire and its manufacture method
KR102348993B1 (en) * 2013-12-27 2022-01-10 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material, connector, and production method for copper alloy sheet material
WO2015099098A1 (en) * 2013-12-27 2015-07-02 古河電気工業株式会社 Copper alloy sheet material, connector, and production method for copper alloy sheet material
CN105118570A (en) * 2015-08-14 2015-12-02 太仓安托建筑材料有限公司 Copper bar manufacturing process
CN105154714A (en) * 2015-09-02 2015-12-16 太仓顺如成建筑材料有限公司 Alloy copper bar
JP6246173B2 (en) 2015-10-05 2017-12-13 Jx金属株式会社 Cu-Co-Ni-Si alloy for electronic parts
JP6166414B1 (en) * 2016-03-30 2017-07-19 株式会社神戸製鋼所 Copper or copper alloy strip for vapor chamber
JP6385382B2 (en) * 2016-03-31 2018-09-05 Jx金属株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP6302009B2 (en) * 2016-07-12 2018-03-28 古河電気工業株式会社 Rolled copper alloy, method for producing the same, and electric / electronic component
JP2017014624A (en) * 2016-09-05 2017-01-19 Jx金属株式会社 Corson alloy and manufacturing method therefor
DE102017001846A1 (en) * 2017-02-25 2018-08-30 Wieland-Werke Ag Sliding element made of a copper alloy
JP7145847B2 (en) 2017-04-26 2022-10-03 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
CN107326214A (en) * 2017-07-03 2017-11-07 广东省材料与加工研究所 A kind of method that continuous casting rolling efficiently shapes corson alloy band
CN108149062B (en) * 2018-02-10 2019-09-20 中南大学 A kind of strong high conductive copper alloy of superelevation and preparation method thereof
CN111500893A (en) * 2020-06-10 2020-08-07 铜陵高铜科技有限公司 Ultrahigh-strength copper alloy plate strip and manufacturing method thereof
CN111647768A (en) * 2020-06-10 2020-09-11 铜陵高铜科技有限公司 High-strength copper alloy sheet and method for producing same
KR102403910B1 (en) * 2021-11-29 2022-06-02 주식회사 풍산 Method for manufacturing a copper alloy sheet material for automobiles or electric and electronic parts with excellent strength, electrical conductivity and bendability and copper alloy sheet material manufactured therefrom
CN114855026B (en) * 2022-03-25 2023-02-14 宁波博威合金材料股份有限公司 High-performance precipitation strengthening type copper alloy and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
WO2007148712A1 (en) * 2006-06-23 2007-12-27 Ngk Insulators, Ltd. Copper-based rolled alloy and method for producing the same
JP2008088512A (en) * 2006-10-03 2008-04-17 Nikko Kinzoku Kk Method for producing copper alloy for electronic material
WO2008105453A1 (en) * 2007-02-27 2008-09-04 Ngk Insulators, Ltd. Method of rolling metal sheet material and rolled sheet material produced by the rolling method
WO2009044822A1 (en) * 2007-10-03 2009-04-09 The Furukawa Electric Co., Ltd. Copper alloy plate material for electric and electronic components
JP2009242932A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Cu-Ni-Si-Co BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184680A (en) * 1992-12-21 1994-07-05 Kobe Steel Ltd Copper alloy excellent in bendability
JP3977376B2 (en) 2004-02-27 2007-09-19 古河電気工業株式会社 Copper alloy
US20080190523A1 (en) 2007-02-13 2008-08-14 Weilin Gao Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
JP4981748B2 (en) 2007-05-31 2012-07-25 古河電気工業株式会社 Copper alloy for electrical and electronic equipment
KR101114116B1 (en) * 2008-03-31 2012-03-13 후루카와 덴키 고교 가부시키가이샤 Copper Alloy Material for Electric and Electronic Apparatuses, and Electric and Electronic Components

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
WO2007148712A1 (en) * 2006-06-23 2007-12-27 Ngk Insulators, Ltd. Copper-based rolled alloy and method for producing the same
JP2008088512A (en) * 2006-10-03 2008-04-17 Nikko Kinzoku Kk Method for producing copper alloy for electronic material
WO2008105453A1 (en) * 2007-02-27 2008-09-04 Ngk Insulators, Ltd. Method of rolling metal sheet material and rolled sheet material produced by the rolling method
WO2009044822A1 (en) * 2007-10-03 2009-04-09 The Furukawa Electric Co., Ltd. Copper alloy plate material for electric and electronic components
JP2009242932A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Cu-Ni-Si-Co BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
CN102639732B (en) 2017-08-04
CN102639732A (en) 2012-08-15
JPWO2011068124A1 (en) 2013-04-18
EP2508632B1 (en) 2015-05-20
EP2508632A1 (en) 2012-10-10
EP2508632A4 (en) 2013-12-18
KR20120104548A (en) 2012-09-21
WO2011068124A1 (en) 2011-06-09
KR101419149B1 (en) 2014-07-11

Similar Documents

Publication Publication Date Title
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP4809935B2 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP5448763B2 (en) Copper alloy material
JP5158909B2 (en) Copper alloy sheet and manufacturing method thereof
TWI539013B (en) Copper alloy sheet and method of manufacturing the same
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
JP5503791B2 (en) Copper alloy sheet and manufacturing method thereof
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP6385383B2 (en) Copper alloy sheet and method for producing copper alloy sheet
WO2011068121A1 (en) Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP6696769B2 (en) Copper alloy plate and connector
CN102112641B (en) Copper alloy material for electrical/electronic component
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP2008196042A (en) Copper alloy sheet for electrical/electronic component having excellent strength and formability
WO2013018228A1 (en) Copper alloy
TW201309817A (en) Cu-ni-si alloy and method for manufacturing same
JP5261619B2 (en) Copper alloy sheet and manufacturing method thereof
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
TWI391952B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R151 Written notification of patent or utility model registration

Ref document number: 4934759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350