JP4981748B2 - Copper alloy for electrical and electronic equipment - Google Patents

Copper alloy for electrical and electronic equipment Download PDF

Info

Publication number
JP4981748B2
JP4981748B2 JP2008136851A JP2008136851A JP4981748B2 JP 4981748 B2 JP4981748 B2 JP 4981748B2 JP 2008136851 A JP2008136851 A JP 2008136851A JP 2008136851 A JP2008136851 A JP 2008136851A JP 4981748 B2 JP4981748 B2 JP 4981748B2
Authority
JP
Japan
Prior art keywords
diffraction intensity
plane
heat treatment
mass
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008136851A
Other languages
Japanese (ja)
Other versions
JP2009007666A (en
Inventor
洋 金子
立彦 江口
邦照 三原
清慈 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2008136851A priority Critical patent/JP4981748B2/en
Priority to US12/130,203 priority patent/US8287669B2/en
Priority to CN 200810110003 priority patent/CN101314825B/en
Priority to EP08010037A priority patent/EP1997920B1/en
Priority to DE200860003950 priority patent/DE602008003950D1/en
Priority to AT08010037T priority patent/ATE491818T1/en
Publication of JP2009007666A publication Critical patent/JP2009007666A/en
Application granted granted Critical
Publication of JP4981748B2 publication Critical patent/JP4981748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は電気・電子機器用のリードフレーム、コネクタ、端子材等、例えば、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適用される電気・電子機器用銅合金に関する。   The present invention relates to a copper alloy for electric / electronic devices applied to lead frames, connectors, terminal materials, etc. for electric / electronic devices, for example, connectors and terminal materials for automobiles, relays, switches, and the like.

従来、一般的に電気・電子機器用材料としては、鉄系材料の他、電気伝導性および熱伝導性に優れるリン青銅、丹銅、黄銅等の銅系材料も広く用いられている。近年、電気・電子機器の小型化、軽量化、高機能化、さらにこれに伴う高密度実装化に対する要求が高まり、これらに適用される銅系材料にも種々の特性が求められている。
例えば、CPUの発熱量増加に伴ってCPUソケットなどに使用される銅合金には抜熱のためにこれまでよりも導電率が求められている。また、車載用のコネクタでも使用環境が厳しくなっており、放熱性を向上する目的で端子材の銅合金に、これまでよりも導電率が求められている。
部品の小型化に伴って材料の薄肉化が進行しており、材料強度の向上が求められている。リレーなどの用途では疲労特性の要求が高まっており、強度の向上が必要である。また、部品の小型化に伴って、曲げ加工される場合の条件が厳しくなっており、高い強度を持ちながら、なおかつ、曲げ加工性に優れていることが要求されている。さらに、部品の小型化に伴って、部品の寸法精度がこれまでよりも要求されており、接圧をとる部分でのバネ材の変位量が少なくなっている。長時間使用した場合の材料のヘタリがこれまでよりも問題になるため、材料には耐応力緩和特性の要求が高まっている。自動車などでは使用環境温度が高いために、更に耐応力緩和特性への要求が高い。
Conventionally, as materials for electrical / electronic devices, copper-based materials such as phosphor bronze, red brass, brass, etc., which are excellent in electrical conductivity and thermal conductivity, have been widely used as materials for electric / electronic devices. In recent years, there has been an increasing demand for miniaturization, weight reduction, high functionality, and high-density mounting associated therewith, and various characteristics are required for copper-based materials applied thereto.
For example, as the heat generation amount of the CPU increases, the copper alloy used for the CPU socket or the like is required to have higher conductivity than before for heat removal. In addition, the use environment is becoming severe even for in-vehicle connectors, and for the purpose of improving heat dissipation, the copper alloy of the terminal material is required to have higher conductivity than before.
With the miniaturization of parts, the thinning of materials is progressing, and improvement in material strength is required. In applications such as relays, the demand for fatigue characteristics is increasing, and it is necessary to improve the strength. In addition, with the miniaturization of parts, the conditions for bending are becoming strict, and it is required to have excellent bending workability while having high strength. Furthermore, with the miniaturization of parts, the dimensional accuracy of parts is required more than before, and the amount of displacement of the spring material at the portion where contact pressure is applied is reduced. Since the settling of the material when used for a long time becomes a problem more than before, there is an increasing demand for stress relaxation resistance for the material. In automobiles and the like, since the use environment temperature is high, there is a high demand for stress relaxation resistance.

これらの要求特性はリン青銅、丹銅、黄銅などの市販量産合金では満足できないところに到達している。これらの合金は、SnやZnをCu中に固溶させて、それに圧延や引き抜き加工などの冷間加工を加えることにより強度を向上させている。この方法では、導電率が優れない上、高い冷間加工率(一般的に50%以上)を加えることにより高強度な材料を得ることができるものの、曲げ加工性が著しく悪くなることが知られている。一般的にこの方法は固溶強化と加工強化の組み合わせである。   These required properties have reached a point where they cannot be satisfied with commercially available mass-produced alloys such as phosphor bronze, red brass and brass. These alloys are improved in strength by dissolving Sn or Zn in Cu and adding cold working such as rolling or drawing to the alloy. In this method, the conductivity is not excellent, and a high strength material can be obtained by adding a high cold work rate (generally 50% or more), but it is known that the bending workability is remarkably deteriorated. ing. In general, this method is a combination of solid solution strengthening and work strengthening.

これに替わる強化法として材料中にナノメートル・オーダーの微細な析出物を形成して強化する析出強化がある。この方法は強度が高くなることに加えて、導電率を同時に向上させるメリットがあるため、多くの合金系で行われている。その中で、Cu中にNiとSiを加え、Ni−Si化合物を微細析出させて強化させたコルソン合金と呼ばれる合金は、多くの析出型合金の中ではその強化する能力が非常に高く、いくつかの市販合金(例えば、CDA(Copper Development Association)登録合金であるCDA70250)でも用いられている。   As an alternative strengthening method, there is precipitation strengthening in which fine precipitates in the order of nanometers are formed and strengthened in the material. This method has the merit of improving the conductivity at the same time in addition to increasing the strength, and is therefore performed in many alloy systems. Among them, an alloy called Corson alloy, in which Ni and Si are added to Cu and Ni—Si compound is finely precipitated and strengthened, has a very high ability to strengthen among many precipitation-type alloys. Such commercial alloys (for example, CDA 70250, which is a CDA (Copper Development Association) registered alloy) are also used.

一般に析出強化型合金の製造工程には、次の2つの重要な熱処理を取り入れられる。まず、溶体化処理と呼ばれる高温(通常は700℃以上)にてNiとSiをCu母相に固溶させる目的の熱処理と、溶体化処理温度より低い温度で熱処理する、いわゆる時効析出処理であり、高温で固溶したNiとSiを析出物として析出させる目的である。これは、高い温度と低い温度でNiとSiがCuに固溶する原子の量の差を使って強化する方法であり、析出型合金の製造方法においては周知の技術である。   In general, the following two important heat treatments can be incorporated into the manufacturing process of precipitation strengthened alloys. First, there is a so-called aging precipitation treatment in which Ni and Si are dissolved in a Cu matrix at a high temperature (usually 700 ° C. or more) called a solution treatment and a heat treatment at a temperature lower than the solution treatment temperature. The purpose is to precipitate Ni and Si dissolved at a high temperature as precipitates. This is a method of strengthening by using the difference in the amount of atoms in which Ni and Si are dissolved in Cu at a high temperature and a low temperature, and is a well-known technique in a method for producing a precipitation type alloy.

コルソン系合金の使用量は増加しているが、先述した高い要求特性に対して、導電率が不足する。一方、コルソン系合金のNiの一部をCoで置き換えたCu−Ni−Co−Si系合金の例がある(例えば特許文献1)。この系は、Ni−Co−Si、Ni−Si、Co−Siなどの化合物の析出硬化合金であり、コルソン系よりも固溶限界が小さい特徴があり、固溶元素が少ないために、高い導電性を実現できる優位性がある。   Although the use amount of the Corson alloy is increasing, the electrical conductivity is insufficient for the high required characteristics described above. On the other hand, there is an example of a Cu—Ni—Co—Si alloy in which a part of Ni in the Corson alloy is replaced with Co (for example, Patent Document 1). This system is a precipitation hardened alloy of compounds such as Ni-Co-Si, Ni-Si, Co-Si, etc., and has a feature that the solid solution limit is smaller than that of the Corson system, and it has a high conductivity because it has fewer solid solution elements. There is an advantage that can be realized.

その優位性の反面、固溶限界が小さいことに起因して、Cu−Ni−Si系よりも溶体化熱処理温度を高くする必要性がある。また、溶体化温度を高められない場合には溶体化時に固溶量が少なくなるために、時効析出熱処理において、析出硬化量が低くなってしまい、比較的高い加工率の加工硬化によって強度を補う必要がある。その結果、溶体化熱処理温度が高い場合は結晶粒の粗大化によって、また、比較的高い加工率の加工硬化を導入する場合は材料内の転位密度の上昇によって、重要な要求特性である曲げ加工性がそれぞれ悪化する問題があり、近年の電子機器や自動車などの分野で高まっている銅材料への要求特性を満足出来ない。   On the other hand, the solution heat treatment temperature needs to be higher than that of the Cu—Ni—Si system due to the small solid solution limit. In addition, when the solution temperature cannot be increased, the amount of solid solution decreases at the time of solution treatment, so the amount of precipitation hardening decreases in the aging precipitation heat treatment, and the strength is compensated by work hardening with a relatively high work rate There is a need. As a result, bending is an important requirement due to the coarsening of crystal grains when the solution heat treatment temperature is high, and the increase of dislocation density in the material when work hardening with a relatively high processing rate is introduced. However, the required characteristics of copper materials, which are increasing in the fields of electronic devices and automobiles in recent years, cannot be satisfied.

Cu−Ni−Si系において、曲げ加工性を制御するために、板表面のX線回折強度によって結晶方位の集積を規定した発明例がある(例えば特許文献2)。但し、この発明は溶体化熱処理条件の調整による結晶粒径の制御と、加工硬化量の低減による手法であり、前述したようにCu−Ni−Co−Si系のような高温での溶体化熱処理が必要な場合において、強度や曲げ加工性の低下を招くために適さない。
特表2005−532477号公報 特許第3739214号公報
In the Cu-Ni-Si system, there is an invention example in which the accumulation of crystal orientations is defined by the X-ray diffraction intensity of the plate surface in order to control bending workability (for example, Patent Document 2). However, the present invention is a technique by controlling the crystal grain size by adjusting the solution heat treatment conditions and reducing the work hardening amount. As described above, the solution heat treatment at a high temperature such as the Cu-Ni-Co-Si system. Is necessary in order to reduce the strength and bending workability.
JP 2005-532477 A Japanese Patent No. 3739214

上記のような問題点に鑑み、本発明の目的は、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、特に自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した電気・電子機器用銅合金を提供することにある。   In view of the above problems, the object of the present invention is to provide excellent bending workability, excellent strength, and lead frames, connectors, terminal materials, etc. for electrical and electronic equipment, particularly connectors for automobiles It is to provide a copper alloy for electrical and electronic equipment suitable for use in electrical equipment, terminal materials, relays, switches, and the like.

本発明者らは、電気・電子部品用途に適した銅合金について研究を行い、Cu−Ni−Co−Si系銅合金において、曲げ加工性、強度、導電性、耐応力緩和特性を大きく向上させるために、材料表面(例えば板状または条状材料の表面であって、好ましくは板状材料の板表面)のX線回折強度によって規定される結晶方位の集積様式と曲げ加工性について相関があることを見出し、鋭意検討の末に本発明をなすに至った。また、それに加えて、本合金系において導電率を損なうことなく、強度や耐応力緩和特性を向上させる働きのある添加元素や、曲げ加工性を良好にする平均結晶粒径を見出し、本発明をなすに至ったものである。   The present inventors have studied copper alloys suitable for electric / electronic component applications, and greatly improve bending workability, strength, conductivity, and stress relaxation resistance in Cu-Ni-Co-Si based copper alloys. Therefore, there is a correlation between the crystal orientation accumulation mode and the bending workability defined by the X-ray diffraction intensity of the material surface (for example, the surface of a plate-like or strip-like material, preferably the plate surface of the plate-like material). As a result, the present invention was made after intensive studies. In addition, in addition to finding an additive element that works to improve strength and stress relaxation resistance and an average crystal grain size that improves bending workability without losing conductivity in the present alloy system, the present invention It has been reached.

すなわち、本発明は、
(1)Niが0.5〜4.0mass%、Coが0.5〜2.0mass%、Siが0.3〜1.5mass%を含有し、残部が銅と不可避不純物からなり、材料表面における{111}面からの回折強度をI{111}、{200}面からの回折強度をI{200}、{220}面からの回折強度をI{220}、{311}面からの回折強度をI{311}、これらの回折強度の中の{200}面からの回折強度の割合をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}が0.3以上であることを特徴とする、電気・電子機器用銅合金、
(2)Niが0.5〜4.0mass%、Coが0.5〜2.0mass%、Siが0.3〜1.5mass%を含有し、更にAg、B、Cr、Fe、Hf、Mg、Mn、P、Sn、Ti、Zn、Zrから選ばれる1種または2種以上を合計で3mass%以下含有し、残部が銅と不可避不純物からなり、材料表面における{111}面からの回折強度をI{111}、{200}面からの回折強度をI{200}、{220}面からの回折強度をI{220}、{311}面からの回折強度をI{311}、これらの回折強度の中の{200}面からの回折強度の割合をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}が0.3以上であることを特徴とする、電気・電子機器用銅合金、
(3)平均結晶粒径が20μm以下であることを特徴とする、(1)または(2)項記載の電気・電子機器用銅合金、および
(4)0.2%耐力が600MPa以上であり、導電率が40%IACS以上であることを特徴とする、(1)〜(3)のいずれか1項に記載の電気・電子機器用銅合金
を提供するものである。
That is, the present invention
(1) Ni is 0.5 to 4.0 mass%, Co is 0.5 to 2.0 mass%, Si is 0.3 to 1.5 mass%, the balance is made of copper and inevitable impurities, and the material surface Diffraction intensity from the {111} plane is I {111}, diffraction intensity from the {200} plane is I {200}, diffraction intensity from the {220} plane is I {220}, diffraction from the {311} plane The intensity is I {311}, and the ratio of the diffraction intensity from the {200} plane among these diffraction intensities is R {200} = I {200} / (I {111} + I {200} + I {220} + I { 311}), R {200} is 0.3 or more, a copper alloy for electrical and electronic equipment,
(2) Ni is 0.5 to 4.0 mass%, Co is 0.5 to 2.0 mass%, Si is 0.3 to 1.5 mass%, and Ag, B, Cr, Fe, Hf, Contains one or more selected from Mg, Mn, P, Sn, Ti, Zn, and Zr in a total of 3 mass% or less, the balance is made of copper and inevitable impurities, and diffraction from the {111} plane on the material surface Intensity is I {111}, diffraction intensity from {200} plane is I {200}, diffraction intensity from {220} plane is I {220}, diffraction intensity from {311} plane is I {311}, these When the ratio of the diffraction intensity from the {200} plane in the diffraction intensity of R {200} = I {200} / (I {111} + I {200} + I {220} + I {311}) R {200} is 0.3 or more, electricity Copper alloy for electronic devices,
(3) The average crystal grain size is 20 μm or less, the copper alloy for electrical and electronic devices according to (1) or (2), and (4) 0.2% proof stress is 600 MPa or more. The electrical conductivity is 40% IACS or more, and the copper alloy for electrical / electronic equipment according to any one of (1) to (3) is provided.

本発明の電気・電子機器用銅合金は強度、曲げ加工性、導電率、耐応力緩和特性に優れる。本発明の銅合金は、上記のような特性により、電気・電子機器用のリードフレーム、コネクタ、端子材等、特に自動車車載用などのコネクタや端子材、リレー、スイッチなどに特に好適に用いることができる。   The copper alloy for electrical / electronic devices of the present invention is excellent in strength, bending workability, conductivity, and stress relaxation resistance. Due to the above characteristics, the copper alloy of the present invention is particularly suitable for use in lead frames, connectors, terminal materials, etc. for electrical and electronic equipment, particularly connectors, terminal materials, relays, switches, etc. for automobiles. Can do.

本発明の銅合金の好ましい実施の態様について、詳細に説明する。なお、以下の説明においては、例として、本発明の銅合金は板や条などの形状を有するものとして説明する。
NiとCoとSiについては、Ni+CoとSiの添加比を制御することによりNi−Si、Co−Si、Ni−Co−Si化合物の析出強化によって銅合金の強度を向上させることが目的として形成させる元素である。Niの含有量は0.5〜4.0mass%であり、好ましくは1.0〜3.0mass%である。Coの含有量は0.5〜2.0mass%であり、好ましくは0.7〜1.7mass%である。Siの含有量は0.3〜1.5mass%であり、好ましくは0.4〜1.2mass%である。これらの元素はこの規定範囲よりも添加量が多いと導電率を低下させ、また、少ないと強度が不足する。
A preferred embodiment of the copper alloy of the present invention will be described in detail. In the following description, as an example, the copper alloy of the present invention will be described as having a shape such as a plate or a strip.
Ni, Co, and Si are formed for the purpose of improving the strength of the copper alloy by precipitation strengthening of Ni—Si, Co—Si, and Ni—Co—Si compounds by controlling the addition ratio of Ni + Co and Si. It is an element. The content of Ni is 0.5 to 4.0 mass%, preferably 1.0 to 3.0 mass%. The Co content is 0.5 to 2.0 mass%, preferably 0.7 to 1.7 mass%. The content of Si is 0.3 to 1.5 mass%, preferably 0.4 to 1.2 mass%. If these elements are added in an amount larger than this specified range, the electrical conductivity is lowered, and if they are less added, the strength is insufficient.

曲げ加工性を改善するために、本発明者らは曲げ加工部に発生するクラックの発生原因について調査し、塑性変形が局所的に発達し、局所的に加工限界に達することが原因であることを確認した。その対策として、板表面におけるX線回折強度の{200}面からの回折強度を高めることで、曲げ加工性を良好にできることを発見した。これは、表面方向に{200}面が向く状態で曲げ加工が行われた場合に、クラックの原因となる局所的な変形帯やせん断帯の発達を抑制する効果があるからである。即ち、曲げ加工の応力方向に対して、より多くの原子の滑り系が活動できる方位関係になることによって変形を分散させる効果があり、局所的な変形の発達を抑制することによって、クラックの発生を抑制できるものと考えられる。   In order to improve the bending workability, the present inventors investigated the cause of the occurrence of cracks in the bent part, and the cause is that plastic deformation has locally developed and locally reached the working limit. It was confirmed. As a countermeasure, the inventors discovered that bending workability can be improved by increasing the diffraction intensity from the {200} plane of the X-ray diffraction intensity on the plate surface. This is because there is an effect of suppressing the development of local deformation bands and shear bands that cause cracks when bending is performed with the {200} plane facing the surface direction. That is, it has the effect of dispersing deformation by becoming an orientation relationship in which more slipping systems of atoms can be active with respect to the stress direction of bending, and cracks are generated by suppressing the development of local deformation It is thought that it can be suppressed.

板表面における{111}面からの回折強度をI{111}、{200}面からの回折強度をI{200}、{220}面からの回折強度をI{220}、{311}面からの回折強度をI{311}、これらの回折強度の中の{200}面からの回折強度の割合をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}は0.3以上であり、好ましくは0.4以上である。R{200}が上記の値となることで、曲げ加工性を良好にできる。本発明において前記R{200}の上限値に特に制限はないが、通常0.98以下である。
本発明において、R{200}を規定する材料表面(例えば、板表面)とは一連の製造工程の全てを完了した最終の状態の板等の表面をいう。
The diffraction intensity from the {111} plane on the plate surface is I {111}, the diffraction intensity from the {200} plane is I {200}, the diffraction intensity from the {220} plane is from I {220}, {311} plane. Is the diffraction intensity of I {311}, and the ratio of the diffraction intensity from the {200} plane in these diffraction intensities is R {200} = I {200} / (I {111} + I {200} + I {220} + I {311}), R {200} is 0.3 or more, preferably 0.4 or more. When R {200} becomes the above value, bending workability can be improved. In the present invention, the upper limit value of R {200} is not particularly limited, but is usually 0.98 or less.
In the present invention, the material surface (for example, plate surface) that defines R {200} refers to the surface of a plate or the like in the final state after completing a series of manufacturing steps.

本発明に係る銅合金のR{200}を上下させる方法については、例えば以下のような製造条件が挙げられるが、これに限定されるものではない。最終再結晶熱処理の前に、加工組織が完全に再結晶しない程度の中間焼鈍と、それに加えて中間圧延を導入することでI{200}が高くなり、R{200}が高まる。また、熱間圧延後に冷間加工と再結晶熱処理を1回または複数回繰り返した後に、冷間加工し、最終再結晶熱処理を施すことで、I{111}やI{220}の回折強度が高くなり、もしくは、熱間圧延後に90%以上の高い加工率の冷間加工を行った後に最終再結晶熱処理を行うことでI{311}が高くなり、R{200}は低くなる。   Examples of the method for raising and lowering the R {200} of the copper alloy according to the present invention include the following production conditions, but are not limited thereto. Before the final recrystallization heat treatment, I {200} is increased and R {200} is increased by introducing intermediate annealing to such an extent that the processed structure is not completely recrystallized and in addition to intermediate rolling. In addition, after the cold rolling and the recrystallization heat treatment are repeated one or more times after the hot rolling, the cold reworking and the final recrystallization heat treatment are performed, so that the diffraction intensity of I {111} or I {220} is increased. I {311} is increased and R {200} is decreased by performing the final recrystallization heat treatment after performing cold working at a high processing rate of 90% or more after hot rolling.

ここで、本発明で規定する特徴的なR{200}を達成する工程の一例を示すが、これに限定されるものではない。全工程を終えた最終状態におけるR{200}は、製造工程の中でも最後の中間溶体化熱処理中に起きる材料の再結晶において発達する結晶方位によって大きく支配されるので、その最後の中間溶体化熱処理の前の工程を適正に調整することが好ましい。ここで、最後の中間溶体化熱処理とは、全工程中のある工程と別のある工程の中間に複数回施される溶体化熱処理の内で、工程の順序として最後に施される溶体化熱処理をいう。そのような最後の中間溶体化熱処理の前の工程としては、50%以上の加工率の冷間圧延と、続いて、部分的に再結晶させるもしくは平均結晶粒径が5μm以下の再結晶組織が得られる様な熱処理、続いて、50%以下の加工率の冷間圧延の後に、最後の中間溶体化熱処理を行うことが、好ましい。部分的に再結晶させるもしくは平均結晶粒径が5μm以下の再結晶組織が得られる様な熱処理としては、例えば、350〜750℃における5分〜10時間の保持や、あるいは、より高温の600〜850℃における5秒〜5分間の保持などが挙げられるが、これに限定されるものではない。この様な熱処理によって、良好な再結晶組織が得られる。次に、最後の中間溶体化熱処理の後の好ましい工程の例を示す。例えば、最後の中間溶体化熱処理の後には、中間冷間圧延、時効析出熱処理、仕上げ冷間圧延、調質焼鈍を施すことによって、強度や導電率、その他の諸特性を用途に応じて調整することができる。ここで、時効析出熱処理の後の仕上げ冷間圧延における冷間加工率(圧下率)を30%以下とすることが好ましい。   Here, although an example of the process of achieving characteristic R {200} prescribed | regulated by this invention is shown, it is not limited to this. R {200} in the final state after the completion of all processes is largely governed by the crystal orientation developed in the recrystallization of the material that occurs during the final intermediate solution heat treatment in the manufacturing process. It is preferable to properly adjust the previous step. Here, the last intermediate solution heat treatment is a solution heat treatment performed last in the order of the steps in the solution heat treatment performed a plurality of times in the middle of one step and another step in all steps. Say. As a step before such a final intermediate solution heat treatment, cold rolling at a processing rate of 50% or more, followed by partial recrystallization or a recrystallized structure having an average crystal grain size of 5 μm or less. After the heat treatment as obtained, followed by cold rolling at a working rate of 50% or less, it is preferable to perform the final intermediate solution heat treatment. Examples of the heat treatment to be partially recrystallized or to obtain a recrystallized structure having an average crystal grain size of 5 μm or less include, for example, holding at 350 to 750 ° C. for 5 minutes to 10 hours, or higher temperatures of 600 to Examples thereof include holding at 850 ° C. for 5 seconds to 5 minutes, but are not limited thereto. A good recrystallized structure can be obtained by such heat treatment. Next, an example of a preferable process after the last intermediate solution heat treatment is shown. For example, after the final intermediate solution heat treatment, intermediate cold rolling, aging precipitation heat treatment, finish cold rolling, and temper annealing are performed to adjust strength, conductivity, and other characteristics according to the application. be able to. Here, it is preferable that the cold work rate (reduction rate) in the finish cold rolling after the aging precipitation heat treatment is 30% or less.

次に本合金へのAg、B、Cr、Fe、Hf、Mg、Mn、P、Sn、Ti、Zn、Zrの副添加元素の効果について示す。これらの元素はその含有量の総量が多すぎると導電率を低下させる弊害を生じる場合がある。添加効果を充分に活用し、かつ導電率を低下させないためには、総量で通常3mass%以下とするが、好ましくは0.01mass%〜2.5mass%であり、さらに好ましくは、0.03mass%〜2mass%である。   Next, the effects of the additive elements of Ag, B, Cr, Fe, Hf, Mg, Mn, P, Sn, Ti, Zn, and Zr on this alloy will be described. If the total amount of these elements is too large, there may be a negative effect of reducing the electrical conductivity. In order to fully utilize the additive effect and not lower the electrical conductivity, the total amount is usually 3 mass% or less, preferably 0.01 mass% to 2.5 mass%, and more preferably 0.03 mass%. ~ 2 mass%.

Mg、Sn、Znは、Cu−Ni−Co−Si系合金に添加することで耐応力緩和特性を向上させる。それぞれを添加した場合よりも併せて添加した場合に相乗効果によって更に耐応力緩和特性が向上する。また、半田脆化が著しく改善する効果がある。これらの元素は、好ましくはMg、Sn、Znの含有量の合計で0.05mass%を越え2mass%以下とすることが好ましい。この合計量が少なすぎると効果が現れない場合があり、多すぎると導電率を低下させる場合がある。   Mg, Sn, and Zn improve the stress relaxation resistance by adding to the Cu—Ni—Co—Si alloy. The stress relaxation resistance is further improved by the synergistic effect when added together than when they are added. In addition, the solder embrittlement is remarkably improved. These elements preferably have a total content of Mg, Sn, and Zn of more than 0.05 mass% and 2 mass% or less. If this total amount is too small, the effect may not appear, and if it is too large, the conductivity may be lowered.

Mnは添加すると熱間加工性を向上させる。また強度を向上させる。これは、熱間加工における溶質原子の粒界への偏析を抑制し、このときに固溶する溶質原子量を高める効果があるため、より時効処理における析出硬化量を高めることによると考えられる。   When Mn is added, hot workability is improved. It also improves strength. This is considered to be due to the effect of suppressing the segregation of solute atoms to the grain boundary during hot working and increasing the amount of solute atoms that are dissolved at this time, and thus increasing the precipitation hardening amount in the aging treatment.

Cr、Fe、Ti、Zr、HfはNiやCoやSiとの化合物や単体で微細に析出し、析出硬化に寄与する。また、化合物として50〜500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にする。   Cr, Fe, Ti, Zr, and Hf are finely precipitated as a compound or simple substance with Ni, Co, or Si, and contribute to precipitation hardening. Moreover, it precipitates with the magnitude | size of 50-500 nm as a compound, and there exists an effect which makes a crystal grain size fine by suppressing grain growth, and makes bending workability favorable.

また、平均結晶粒径は通常20μm以下に、さらに好ましくは、10μm以下に制御することによって、優れた曲げ加工性を実現する。本発明において前記平均結晶粒径の下限値に特に制限はないが、通常3μm以上である。なお、結晶粒径は、JIS H 0501(切断法)に基づき測定した。   Further, by controlling the average crystal grain size to usually 20 μm or less, more preferably 10 μm or less, excellent bending workability is realized. In the present invention, the lower limit value of the average crystal grain size is not particularly limited, but is usually 3 μm or more. The crystal grain size was measured based on JIS H 0501 (cutting method).

本発明の銅合金は、Ni、Co、Siの主成分の配合量、およびX線回折強度の{200}回折強度を上記規定の範囲内とすることによって、さらに該当する場合には、その他の副添加元素の配合量、および平均結晶粒径を上記好ましい範囲内とすることによって、優れた曲げ加工性と強度、導電率を両立させることができる。本発明の銅合金のJIS Z2241による引張強度(0.2%耐力)は好ましくは600MPa以上、さらに好ましくは650MPa以上、導電率は好ましくは40%IACS以上、さらに好ましくは45%IACS以上である。ここで、0.2%耐力の上限値に特に制限はないが、通常1000MPa以下である。導電率の上限値に特に制限はないが、通常70%IACS以下である。また、日本電子材料工業会標準規格 EMAS−3003に従い150℃×1000時間の条件で測定した応力緩和率は40%以下であることが好ましく、25%以下であることがさらに好ましい。前記応力緩和率の下限値に特に制限はないが、通常3%以上である。   When the copper alloy of the present invention falls within the above prescribed range by adding the main component of Ni, Co, and Si and the {200} diffraction intensity of the X-ray diffraction intensity, By making the compounding amount of the auxiliary additive element and the average crystal grain size within the above preferred ranges, it is possible to achieve both excellent bending workability, strength and electrical conductivity. The tensile strength (0.2% proof stress) according to JIS Z2241 of the copper alloy of the present invention is preferably 600 MPa or more, more preferably 650 MPa or more, and the conductivity is preferably 40% IACS or more, more preferably 45% IACS or more. Here, although there is no restriction | limiting in particular in the upper limit of 0.2% yield strength, Usually, it is 1000 Mpa or less. Although there is no restriction | limiting in particular in the upper limit of electrical conductivity, Usually, it is 70% IACS or less. In addition, the stress relaxation rate measured under the condition of 150 ° C. × 1000 hours in accordance with the Japan Electronic Materials Industry Association Standard EMAS-3003 is preferably 40% or less, and more preferably 25% or less. Although there is no restriction | limiting in particular in the lower limit of the said stress relaxation rate, Usually, it is 3% or more.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
表中に示す成分になるように元素を配合し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1020℃で3分から10時間の保持後、熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削を行った。
この後の工程は、次に記載する工程A−1〜B−4の処理を施すことによって銅合金を製造した。
製造工程には、1回または2回以上の溶体化熱処理を含み、ここでは、その中の最後の溶体化熱処理の前後で工程を分類し、中間溶体化までの工程をA工程とし、A−1〜A−6の工程、中間溶体化より後の工程をB工程とし、B−1〜B−4の工程、そして、これらの組合せによって本発明例および比較例の銅合金を得、それらを供試材とした。
Example 1
The elements are blended so as to be the components shown in the table, and the remainder consisting of an alloy consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace, and this is cast at a cooling rate of 0.1 to 100 ° C./second to make an ingot Got. This was held at 900 to 1020 ° C. for 3 minutes to 10 hours, then hot worked, then water quenched, and chamfered to remove oxide scale.
In the subsequent process, a copper alloy was manufactured by performing the processes of processes A-1 to B-4 described below.
The production process includes one or more solution heat treatments. Here, the processes are classified before and after the last solution heat treatment, and the process up to the intermediate solution treatment is defined as A process. The steps 1 to A-6 and the steps after the intermediate solution treatment are designated as step B, the steps B-1 to B-4, and combinations thereof, to obtain the copper alloys of the present invention example and the comparative example. A test material was used.

以下に工程A−1〜A−6、B−1〜B−4の内容を示す。
工程A−1:断面減少率が20%以上の冷間加工を施し、800〜1000℃で5秒〜30分の溶体化熱処理を施す。
工程A−2:350〜750℃で5分〜10時間の熱処理を施し、断面減少率が20%以上の冷間加工を施し、800〜1000℃で5秒〜30分の溶体化熱処理を施す。
工程A−3:断面減少率が20%以上の冷間加工を施し、350〜750℃で5分〜10時間の熱処理を施し、断面減少率が5〜50%の冷間加工を施し、800〜1000℃で5秒〜30分の溶体化熱処理を施す。
工程A−4:断面減少率が20%以上の冷間加工を施し、800〜1000℃で5秒〜30分の溶体化熱処理を施し、350〜750℃で5分〜10時間の熱処理を施し、断面減少率が5〜50%の冷間加工を施し、800〜1000℃で5秒〜30分の溶体化熱処理を施す。
工程A−5:断面減少率が5%以上の冷間加工を施し、850℃より高く1000℃以下で5秒〜5分の溶体化熱処理を施し、断面減少率が5%以上の冷間加工を施し、800〜1000℃で5秒〜5分の溶体化熱処理を施す。
工程A−6:断面減少率が5%以上の冷間加工を施し、600〜850℃で5秒〜5分の熱処理を施し、断面減少率が5%以上の冷間加工を施し、800〜1000℃で5秒〜5分の溶体化熱処理を施す。
なお、溶体化熱処理において、保持する温度までの昇温速度は5〜500℃/secで、保持後の冷却速度は1〜300℃/secの条件で行った。
The contents of steps A-1 to A-6 and B-1 to B-4 are shown below.
Step A-1: Cold working with a cross-sectional reduction rate of 20% or more is performed, and solution heat treatment is performed at 800 to 1000 ° C. for 5 seconds to 30 minutes.
Step A-2: A heat treatment is performed at 350 to 750 ° C. for 5 minutes to 10 hours, a cold working with a cross-sectional reduction rate of 20% or more is performed, and a solution heat treatment is performed at 800 to 1000 ° C. for 5 seconds to 30 minutes. .
Step A-3: A cold working with a cross-sectional reduction rate of 20% or more is performed, a heat treatment is performed at 350 to 750 ° C. for 5 minutes to 10 hours, a cold working with a cross-sectional reduction rate of 5 to 50% is performed, and 800 A solution heat treatment is performed at ˜1000 ° C. for 5 seconds to 30 minutes.
Step A-4: Cold working with a cross-sectional reduction rate of 20% or more is performed, solution heat treatment is performed at 800 to 1000 ° C. for 5 seconds to 30 minutes, and heat treatment is performed at 350 to 750 ° C. for 5 minutes to 10 hours. Then, cold working with a cross-sectional reduction rate of 5 to 50% is performed, and solution heat treatment is performed at 800 to 1000 ° C. for 5 seconds to 30 minutes.
Step A-5: Cold work with a cross-section reduction rate of 5% or more, solution heat treatment at higher than 850 ° C. and 1000 ° C. or less for 5 seconds to 5 minutes, and cold work with a cross-section reduction rate of 5% or more And a solution heat treatment at 800 to 1000 ° C. for 5 seconds to 5 minutes.
Step A-6: Cold work with a cross-section reduction rate of 5% or more is performed, heat treatment is performed at 600 to 850 ° C. for 5 seconds to 5 minutes, cold work with a cross-section reduction rate of 5% or more is performed, and 800 to A solution heat treatment is performed at 1000 ° C. for 5 seconds to 5 minutes.
In the solution heat treatment, the heating rate up to the holding temperature was 5 to 500 ° C./sec, and the cooling rate after holding was 1 to 300 ° C./sec.

工程B−1:400〜700℃で5分〜10時間の熱処理を施す。
工程B−2:400〜700℃で5分〜10時間の熱処理を施し、断面減少率が30%以下の冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を施す。
工程B−3:断面減少率が50%以下の冷間加工を施し、400〜700℃で5分〜10時間の熱処理を施し、断面減少率が30%以下の冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を施す。
工程B−4:400〜700℃で5分〜10時間の熱処理を施し、断面減少率が50%以下の冷間加工を施し、400〜700℃で5分〜10時間の熱処理を施し、断面減少率が30%以下の冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を施す。
Step B-1: Heat treatment is performed at 400 to 700 ° C. for 5 minutes to 10 hours.
Process B-2: A heat treatment is performed at 400 to 700 ° C. for 5 minutes to 10 hours, a cold working with a cross-section reduction rate of 30% or less is performed, and a temper annealing is performed at 200 to 550 ° C. for 5 seconds to 10 hours. .
Step B-3: cold working with a cross-section reduction rate of 50% or less, heat treatment at 400 to 700 ° C. for 5 minutes to 10 hours, and cold working with a cross-section reduction rate of 30% or less, 200 to Temper annealing is performed at 550 ° C. for 5 seconds to 10 hours.
Step B-4: A heat treatment is performed at 400 to 700 ° C. for 5 minutes to 10 hours, a cold working with a cross-section reduction rate of 50% or less is performed, a heat treatment is performed at 400 to 700 ° C. for 5 minutes to 10 hours, Cold reduction with a reduction rate of 30% or less is performed, and temper annealing is performed at 200 to 550 ° C. for 5 seconds to 10 hours.

各供試材について下記の特性調査を行った。結果を以下の表中に合わせて示す。
a.X線回折強度
反射法で試料に対して1つの回転軸の回りの回折強度を測定した。ターゲットには銅を使用し、KαのX線を使用した。管電流20mA、管電圧40kV、の条件で測定し、回折各と回折強度のプロファイルにおいて、回折強度のバックグラウンドを除去後、各ピークのKα1とKα2を合わせた積分回折強度を求め、上記の式よりR{200}の値を求めた。
b.曲げ加工性
曲げの軸が圧延方向に直角と平行になるようにW曲げしたものをそれぞれGW、BWとし、曲げ部における割れの有無を50倍の光学顕微鏡で観察し、クラックの有無を調査した。曲げ部の内側半径は0.2mmで実施した。n=5の視野においてクラックが観察されなかったものを○で、クラックが観察されたものを×で示した。
c.引張強度(以下の表中では「YS」とする)
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値(0.2%耐力)を示した。
d.導電率(以下の表中では「EC」とする)
20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
e.応力緩和率(以下の表中では「SR」とする)
日本電子材料工業会標準規格 EMAS−3003に準じて150℃×1000時間の条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。
図1は耐応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態である。図1(a)に示すように、試験台4に片持ちで保持した試験片1に、耐力の80%の初期応力を付与した時の試験片1の位置は、基準からδの距離である。これを150℃の恒温槽に1000時間保持(前記試験片1の状態での熱処理)し、負荷を除いた後の試験片2の位置は、図1(b)に示すように基準からHの距離である。3は応力を負荷しなかった場合の試験片であり、その位置は基準からHの距離である。この関係から、応力緩和率(%)は(H−H)/δ×100と算出した。式中、δは、基準から試験片1までの距離であり、H1は、基準から試験片3までの距離であり、Htは、基準から試験片2までの距離である。
f.平均結晶粒径(以下の表中では「GS」とする)
JISH0501(切断法)に基づき、測定した。
The following characteristics were investigated for each sample material. The results are also shown in the following table.
a. X-Ray Diffraction Intensity The diffraction intensity around one rotation axis was measured with respect to the sample by the reflection method. Copper was used for the target, and Kα X-rays were used. Measured under the conditions of a tube current of 20 mA and a tube voltage of 40 kV, and after removing the background of the diffraction intensity in the diffraction profile of each diffraction and the diffraction intensity, the integrated diffraction intensity obtained by combining Kα1 and Kα2 of each peak was obtained, From this, the value of R {200} was determined.
b. Bending workability W-bending was performed so that the axis of bending was parallel to the rolling direction at right angles to GW and BW, respectively, and the presence or absence of cracks in the bent portion was observed with a 50 × optical microscope to investigate the presence or absence of cracks. . The inner radius of the bent part was 0.2 mm. In the n = 5 field of view, no crack was observed, and a crack was observed in x.
c. Tensile strength (“YS” in the table below)
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value (0.2% yield strength) was shown.
d. Conductivity (“EC” in the table below)
The specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm.
e. Stress relaxation rate (“SR” in the table below)
The measurement was performed under the conditions of 150 ° C. × 1000 hours in accordance with Japan Electronic Material Industries Association Standard EMAS-3003. An initial stress of 80% of the proof stress was applied by the cantilever method.
FIG. 1 is an explanatory diagram of a stress relaxation resistance test method, in which (a) shows a state before heat treatment and (b) shows a state after heat treatment. As shown in FIG. 1A, the position of the test piece 1 when an initial stress of 80% of the proof stress is applied to the test piece 1 held in a cantilever manner on the test stand 4 is a distance of δ 0 from the reference. is there. This is held in a thermostatic bath at 150 ° C. for 1000 hours (heat treatment in the state of the test piece 1), and the position of the test piece 2 after removing the load is determined from the reference H t as shown in FIG. Is the distance. 3 is a test piece when no stress is applied, and its position is a distance H 1 from the reference. From this relationship, the stress relaxation rate (%) was calculated as (H t −H 1 ) / δ 0 × 100. In the formula, δ 0 is the distance from the reference to the test piece 1, H 1 is the distance from the reference to the test piece 3, and H t is the distance from the reference to the test piece 2.
f. Average grain size (referred to as “GS” in the table below)
It measured based on JISH0501 (cutting method).

Figure 0004981748
Figure 0004981748

Figure 0004981748
Figure 0004981748

表1−1に示すように、本発明例1−1〜本発明例1−19は、曲げ加工性、耐力、導電率、および耐応力緩和特性がいずれも優れたものであった。しかし、表1−2に示すように、本発明の規定を満たさない場合は、上記特性の少なくとも1つが劣るものとなった。すなわち、比較例1−1はCoを含まないために、導電率が劣った。比較例1−2はNi量が低いために、析出量が減少し、強度が劣った。比較例1−3は、Si量が低いために析出量が減少し、強度と導電率が劣った。比較例1−4はNi量が多いために、導電率が劣った。比較例1−5は、Co量が多いために晶出物や粗大な析出物が多くそれらがクラックの基点となり曲げ加工性が劣った。比較例1−6は、Si量が多いために導電率が劣った。比較例1−7、比較例1−8、比較例1−9はR{200}が低く、曲げ加工性が劣った。   As shown in Table 1-1, Invention Example 1-1 to Invention Example 1-19 were all excellent in bending workability, yield strength, electrical conductivity, and stress relaxation resistance. However, as shown in Table 1-2, when the provisions of the present invention were not satisfied, at least one of the above characteristics was inferior. That is, since Comparative Example 1-1 did not contain Co, the conductivity was inferior. Since Comparative Example 1-2 had a low Ni content, the amount of precipitation decreased and the strength was poor. In Comparative Example 1-3, since the Si amount was low, the amount of precipitation decreased, and the strength and conductivity were inferior. Since Comparative Example 1-4 had a large amount of Ni, the conductivity was inferior. In Comparative Example 1-5, since the amount of Co was large, there were many crystallized substances and coarse precipitates, which became the starting point of cracks and had poor bending workability. Since Comparative Example 1-6 had a large amount of Si, the conductivity was inferior. Comparative Example 1-7, Comparative Example 1-8, and Comparative Example 1-9 had low R {200} and were inferior in bending workability.

Figure 0004981748
Figure 0004981748

Figure 0004981748
Figure 0004981748

表2−1に示すように、本発明例2−1〜本発明例2−17は、曲げ加工性、耐力、導電率、および耐応力緩和特性のいずれもが優れたものであった。しかし、表2−2に示すように、本発明の規定を満たさない場合は、上記特性の少なくとも一つが劣るものとなった。すなわち、比較例2−1、2−2は、その他の元素の添加量が多いために、導電率が劣った。また、比較例2−3、比較例2−4、比較例2−5はR{200}が低く、曲げ加工性が劣った。   As shown in Table 2-1, Inventive Example 2-1 to Inventive Example 2-17 were all excellent in bending workability, yield strength, electrical conductivity, and stress relaxation resistance. However, as shown in Table 2-2, when the provisions of the present invention are not satisfied, at least one of the above characteristics is inferior. That is, Comparative Examples 2-1 and 2-2 were inferior in conductivity because of the large amount of other elements added. Moreover, Comparative Example 2-3, Comparative Example 2-4, and Comparative Example 2-5 had low R {200}, and the bending workability was inferior.

実施例における耐応力緩和試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態を示す説明図である。It is explanatory drawing of the stress relaxation test method in an Example, (a) is before heat processing, (b) is explanatory drawing which shows the state after heat processing.

符号の説明Explanation of symbols

1 耐力の80%の初期応力を付与した試験片
2 試験片1の状態で熱処理し、負荷を除いた後の試験片
3 応力を負荷しなかった場合の試験片
4 試験台
δ 基準から試験片1までの距離
基準から試験片3までの距離
基準から試験片2までの距離
1 Test piece to which initial stress of 80% of proof stress was applied 2 Test piece after heat treatment in the state of test piece 1 after removing the load 3 Test piece when no stress was applied 4 Test stand δ Tested from 0 standard distance from the distance H t criterion from the distance H 1 reference to pieces 1 to the test piece 3 to the test piece 2

Claims (4)

Niが0.5〜4.0mass%、Coが0.5〜2.0mass%、Siが0.3〜1.5mass%を含有し、残部が銅と不可避不純物からなり、材料表面における{111}面からの回折強度をI{111}、{200}面からの回折強度をI{200}、{220}面からの回折強度をI{220}、{311}面からの回折強度をI{311}、これらの回折強度の中の{200}面からの回折強度の割合をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}が0.3以上であることを特徴とする、電気・電子機器用銅合金。   Ni is 0.5 to 4.0 mass%, Co is 0.5 to 2.0 mass%, Si is 0.3 to 1.5 mass%, the balance is made of copper and inevitable impurities, and {111 } The diffraction intensity from the I plane is I {111}, the diffraction intensity from the {200} plane is I {200}, the diffraction intensity from the {220} plane is I {220}, and the diffraction intensity from the {311} plane is I. {311}, the ratio of the diffraction intensity from the {200} plane in these diffraction intensities is R {200} = I {200} / (I {111} + I {200} + I {220} + I {311}) In this case, R {200} is 0.3 or more, a copper alloy for electrical and electronic equipment. Niが0.5〜4.0mass%、Coが0.5〜2.0mass%、Siが0.3〜1.5mass%を含有し、更にAg、B、Cr、Fe、Hf、Mg、Mn、P、Sn、Ti、Zn、Zrから選ばれる1種または2種以上を合計で3mass%以下含有し、残部が銅と不可避不純物からなり、材料表面における{111}面からの回折強度をI{111}、{200}面からの回折強度をI{200}、{220}面からの回折強度をI{220}、{311}面からの回折強度をI{311}、これらの回折強度の中の{200}面からの回折強度の割合をR{200}=I{200}/(I{111}+I{200}+I{220}+I{311})とした場合に、R{200}が0.3以上であることを特徴とする、電気・電子機器用銅合金。   Ni contains 0.5 to 4.0 mass%, Co contains 0.5 to 2.0 mass%, Si contains 0.3 to 1.5 mass%, and Ag, B, Cr, Fe, Hf, Mg, Mn , P, Sn, Ti, Zn, Zr, or a total of 3 mass% or less of one or more selected from the group consisting of copper and inevitable impurities, and the diffraction intensity from the {111} plane on the material surface is expressed as I The diffraction intensity from the {111}, {200} plane is I {200}, the diffraction intensity from the {220} plane is I {220}, the diffraction intensity from the {311} plane is I {311}, and these diffraction intensities R {200} where the ratio of the diffraction intensity from the {200} plane is R {200} = I {200} / (I {111} + I {200} + I {220} + I {311}) } Is 0.3 or more, electric / electronic Dexterity copper alloy. 平均結晶粒径が20μm以下であることを特徴とする、請求項1または2記載の電気・電子機器用銅合金。   The copper alloy for electrical and electronic equipment according to claim 1 or 2, wherein an average crystal grain size is 20 µm or less. 0.2%耐力が600MPa以上であり、導電率が40%IACS以上であることを特徴とする、請求項1〜3のいずれか1項に記載の電気・電子機器用銅合金。   The copper alloy for electrical and electronic devices according to any one of claims 1 to 3, wherein the 0.2% proof stress is 600 MPa or more and the electrical conductivity is 40% IACS or more.
JP2008136851A 2007-05-31 2008-05-26 Copper alloy for electrical and electronic equipment Active JP4981748B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008136851A JP4981748B2 (en) 2007-05-31 2008-05-26 Copper alloy for electrical and electronic equipment
US12/130,203 US8287669B2 (en) 2007-05-31 2008-05-30 Copper alloy for electric and electronic equipments
CN 200810110003 CN101314825B (en) 2007-05-31 2008-06-02 Copper alloy for electric and electronic equipments
EP08010037A EP1997920B1 (en) 2007-05-31 2008-06-02 Copper alloy for electric and electronic equipments
DE200860003950 DE602008003950D1 (en) 2007-05-31 2008-06-02 Copper alloy for electrical and electronic devices
AT08010037T ATE491818T1 (en) 2007-05-31 2008-06-02 COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007145964 2007-05-31
JP2007145964 2007-05-31
JP2008136851A JP4981748B2 (en) 2007-05-31 2008-05-26 Copper alloy for electrical and electronic equipment

Publications (2)

Publication Number Publication Date
JP2009007666A JP2009007666A (en) 2009-01-15
JP4981748B2 true JP4981748B2 (en) 2012-07-25

Family

ID=40105970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136851A Active JP4981748B2 (en) 2007-05-31 2008-05-26 Copper alloy for electrical and electronic equipment

Country Status (4)

Country Link
JP (1) JP4981748B2 (en)
CN (1) CN101314825B (en)
AT (1) ATE491818T1 (en)
DE (1) DE602008003950D1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563495B1 (en) * 2009-04-27 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
KR20120054099A (en) * 2009-09-28 2012-05-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si-co copper alloy for electronic material and process for producing same
JP5578827B2 (en) * 2009-10-13 2014-08-27 Dowaメタルテック株式会社 High-strength copper alloy sheet and manufacturing method thereof
WO2011065152A1 (en) * 2009-11-25 2011-06-03 Jx日鉱日石金属株式会社 Titanium-copper for electronic component
EP2508635B1 (en) 2009-12-02 2017-08-23 Furukawa Electric Co., Ltd. Copper alloy sheet and process for producing same
EP2508633A4 (en) 2009-12-02 2014-07-23 Furukawa Electric Co Ltd Copper alloy sheet and process for producing same
WO2011068134A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material having low young's modulus and method for producing same
KR101419145B1 (en) * 2009-12-02 2014-07-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
KR101419149B1 (en) 2009-12-02 2014-07-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet
JP5961335B2 (en) 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
US9845521B2 (en) 2010-12-13 2017-12-19 Kobe Steel, Ltd. Copper alloy
JP5441876B2 (en) * 2010-12-13 2014-03-12 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5522692B2 (en) * 2011-02-16 2014-06-18 株式会社日本製鋼所 High strength copper alloy forging
JP5834528B2 (en) * 2011-06-22 2015-12-24 三菱マテリアル株式会社 Copper alloy for electrical and electronic equipment
TW201321527A (en) * 2011-08-05 2013-06-01 Furukawa Electric Co Ltd Rolled copper foil for secondary battery collector and production method therefor
TWI556488B (en) * 2011-08-05 2016-11-01 Furukawa Electric Co Ltd Calender copper foil for secondary battery collector and its manufacturing method
JP6228725B2 (en) * 2011-11-02 2017-11-08 Jx金属株式会社 Cu-Co-Si alloy and method for producing the same
JP6126791B2 (en) * 2012-04-24 2017-05-10 Jx金属株式会社 Cu-Ni-Si copper alloy
JP6039999B2 (en) 2012-10-31 2016-12-07 Dowaメタルテック株式会社 Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP5565506B1 (en) * 2013-07-03 2014-08-06 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6223057B2 (en) 2013-08-13 2017-11-01 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6050738B2 (en) * 2013-11-25 2016-12-21 Jx金属株式会社 Copper alloy sheet with excellent conductivity, moldability and stress relaxation properties
JP5983589B2 (en) * 2013-12-11 2016-08-31 三菱マテリアル株式会社 Rolled copper alloy for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6366298B2 (en) * 2014-02-28 2018-08-01 Dowaメタルテック株式会社 High-strength copper alloy sheet material and manufacturing method thereof
JP6246173B2 (en) 2015-10-05 2017-12-13 Jx金属株式会社 Cu-Co-Ni-Si alloy for electronic parts
FI3438299T3 (en) 2016-03-30 2023-05-23 Mitsubishi Materials Corp Copper alloy plate strip for electronic and electrical equipment, component, terminal, busbar and movable piece for relays
US11203806B2 (en) 2016-03-30 2021-12-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
JP6306632B2 (en) * 2016-03-31 2018-04-04 Jx金属株式会社 Copper alloy for electronic materials
JP2016199808A (en) * 2016-07-12 2016-12-01 Jx金属株式会社 Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
CN106399749B (en) * 2016-10-05 2018-01-05 宁波兴业盛泰集团有限公司 A kind of high strength and high flexibility cupro-nickel Si system alloy material and preparation method thereof
CN106399748B (en) * 2016-10-05 2018-01-23 宁波兴业盛泰集团有限公司 A kind of cupro-nickel Si system alloy material used for lead frame and preparation method thereof
CN106756202A (en) * 2016-11-23 2017-05-31 宁波兴业盛泰集团有限公司 A kind of blaster fuse frame material complicated pluralism Cu alloy material and preparation method thereof
JP6494681B2 (en) * 2017-03-27 2019-04-03 Jx金属株式会社 Copper alloy and electronic parts for electronic materials
JP7145847B2 (en) * 2017-04-26 2022-10-03 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
KR102104252B1 (en) * 2017-06-07 2020-04-24 가부시키가이샤 에스에이치 카퍼프로덕츠 Oxygen free copper plate and ceramics wiring board
JP2019077889A (en) * 2017-10-19 2019-05-23 Jx金属株式会社 Copper alloy for electronic material
EP3778941A4 (en) 2018-03-30 2021-11-24 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP6780187B2 (en) 2018-03-30 2020-11-04 三菱マテリアル株式会社 Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and busbars
CN109022900B (en) * 2018-08-17 2020-05-08 宁波博威合金材料股份有限公司 Copper alloy with excellent comprehensive performance and application thereof
JP7311651B1 (en) 2022-02-01 2023-07-19 Jx金属株式会社 Copper alloys for electronic materials and electronic parts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408021B2 (en) * 1995-06-30 2003-05-19 古河電気工業株式会社 Copper alloy for electronic and electric parts and method for producing the same
JP3739214B2 (en) * 1998-03-26 2006-01-25 株式会社神戸製鋼所 Copper alloy sheet for electronic parts
US7182823B2 (en) * 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet

Also Published As

Publication number Publication date
ATE491818T1 (en) 2011-01-15
DE602008003950D1 (en) 2011-01-27
CN101314825A (en) 2008-12-03
CN101314825B (en) 2013-02-06
JP2009007666A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4981748B2 (en) Copper alloy for electrical and electronic equipment
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
EP1997920B1 (en) Copper alloy for electric and electronic equipments
JP4809602B2 (en) Copper alloy
JP5191725B2 (en) Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
JP4615616B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
JP5448763B2 (en) Copper alloy material
JP5261122B2 (en) Copper alloy sheet and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
JP2009079270A (en) Cu-sn-p-based copper alloy sheet material and its production method, and connector
JP6088741B2 (en) Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
KR101515668B1 (en) Copper alloy sheet material
JP2010270355A (en) Copper alloy sheet material and method for producing the same
WO2010016428A1 (en) Copper alloy material for electrical/electronic component
WO2015182777A1 (en) Copper alloy sheet material, production method therefor, and electrical/electronic component comprising said copper alloy sheet material
WO2009116649A1 (en) Copper alloy material for electric and electronic components
JP5468798B2 (en) Copper alloy sheet
JP2000256814A (en) Manufacture of copper-based alloy bar for terminal
JP2019507252A (en) Copper alloy material for automobile and electric / electronic parts and method for producing the same
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
KR20210149830A (en) Copper alloys having high strength and high conductivity and methods for producing such copper alloys
KR102345805B1 (en) Cu-Ni-Si-BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDING WORKABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING ORTHOGONAL DIRECTION
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP2004353069A (en) Copper alloy for electronic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4981748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350