JP3408021B2 - Copper alloy for electronic and electric parts and method for producing the same - Google Patents

Copper alloy for electronic and electric parts and method for producing the same

Info

Publication number
JP3408021B2
JP3408021B2 JP16597895A JP16597895A JP3408021B2 JP 3408021 B2 JP3408021 B2 JP 3408021B2 JP 16597895 A JP16597895 A JP 16597895A JP 16597895 A JP16597895 A JP 16597895A JP 3408021 B2 JP3408021 B2 JP 3408021B2
Authority
JP
Japan
Prior art keywords
copper alloy
electronic
less
compound
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16597895A
Other languages
Japanese (ja)
Other versions
JPH0920943A (en
Inventor
英道 藤原
章宏 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP16597895A priority Critical patent/JP3408021B2/en
Publication of JPH0920943A publication Critical patent/JPH0920943A/en
Application granted granted Critical
Publication of JP3408021B2 publication Critical patent/JP3408021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、曲げ加工性に優れ、高
強度、高導電性の電子電気部品用銅合金およびその製造
方法に関するものであり、特に小型、高密度化されたリ
ードフレーム、端子およびコネクター等に適した銅合金
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy having excellent bending workability, high strength and high conductivity for electronic and electrical parts and a method for producing the same, and particularly to a lead frame having a small size and a high density. The present invention relates to a copper alloy suitable for terminals, connectors, etc. and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電子電気部品に用いられる端子やコネク
ターは、電子電気機器等の小型化、軽量化にともない、
高強度、高導電性のものが望まれている。これらの要求
を満足すべく、Cu−Ni−Si系合金が使用されるよ
うになった。また、リード強度の向上が図られたため、
集積度の高い回路のリードフレーム材に銅合金を使用す
ることができるようになった。
2. Description of the Related Art Terminals and connectors used in electronic and electrical parts are becoming smaller and lighter as electronic and electrical equipments are becoming smaller.
High strength and high conductivity are desired. In order to satisfy these requirements, Cu-Ni-Si alloys have come to be used. Also, because the lead strength was improved,
Copper alloys can now be used in lead frame materials for highly integrated circuits.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のCu−
Ni−Si系合金は時効処理の段階で最高強度を示すよ
うな条件で熱処理を行うと、端子、コネクターあるいは
リードフレーム等に成形時或いは成形後に曲げ加工を行
うと、粒界割れや金属組織的なシャーバンドの発生によ
り、曲げ割れが生じてしまうため、過時効となる時効条
件で熱処理する必要があった。そのため、小型端子用、
コネクター用、高集積化に対応したリードフレーム用の
材料として、性能は十分ではなかった。
However, the conventional Cu-
Ni-Si alloys, when heat-treated under conditions that show the highest strength during the aging treatment, will undergo grain boundary cracking and / or metallographic cracking when terminals, connectors, lead frames, etc. are bent during or after molding. Since bending cracks occur due to the occurrence of such shear bands, it was necessary to perform heat treatment under aging conditions that would cause overaging. Therefore, for small terminals,
The performance was not sufficient as a material for connectors and lead frames for high integration.

【0004】[0004]

【問題を解決するための手段】本発明は、これに鑑み種
々検討の結果、曲げ加工性に優れ、かつ、高強度、高導
電性の電子電気部品用銅合金およびその製造方法を開発
したものである。
As a result of various studies in view of the above, the present invention has developed a copper alloy for electronic and electrical parts which has excellent bending workability, high strength and high conductivity, and a method for producing the same. Is.

【0005】即ち、本発明の請求項1は、Co:0.1
〜3.0wt%、Si:0.3〜1.0wt%、Zn:
0.3〜1.0wt%、Mn:0.005〜0.1wt
%、P:0.005〜0.1wt%を含有し、残部が銅
および不可避的不純物からなる銅合金において、母相中
にCoとSiの化合物およびCoとPの化合物が存在
し、かつ母相の平均結晶粒度が20μm以下で、圧延方
向に対する板厚方向のアスペクト比が1〜3であること
を特徴とする電子電気部品用銅合金である。
That is, claim 1 of the present invention provides Co: 0.1
~ 3.0 wt%, Si: 0.3-1.0 wt%, Zn:
0.3-1.0 wt%, Mn: 0.005-0.1 wt
%, P: 0.005 to 0.1 wt%, the balance being copper and unavoidable impurities, in a copper alloy, a compound of Co and Si and a compound of Co and P are present in the mother phase, and The copper alloy for electronic and electrical parts is characterized in that the average grain size of the phase is 20 μm or less and the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3.

【0006】また、本発明の請求項2は、Co:0.1
〜3.0wt%、Si:0.3〜1.0wt%、Zn:
0.3〜1.0wt%、Mn:0.005〜0.1wt
%、Zr:0.05〜0.3wt%を含有し、残部が銅
および不可避的不純物からなる銅合金において、母相中
にCoとSiの化合物およびCuとZrの化合物が存在
し、かつ母相の平均結晶粒度が20μm以下で、圧延方
向に対する板厚方向のアスペクト比が1〜3であること
を特徴とする電子電気部品用銅合金である。
According to claim 2 of the present invention, Co: 0.1
~ 3.0 wt %, Si: 0.3-1.0 wt%, Zn:
0.3-1.0 wt%, Mn: 0.005-0.1 wt
%, Zr: 0.05 to 0.3 wt%, the balance in the parent phase in a copper alloy consisting of copper and unavoidable impurities
The present compounds of C o and Si compounds and Cu and Zr, and an average grain size of the matrix phase is at 20μm or less, an aspect ratio in the thickness direction with respect to the rolling direction, characterized in that 1 to 3 electron It is a copper alloy for electrical parts.

【0007】また、本発明の請求項3は、Co:0.1
〜3.0wt%、Ni:1.5〜3.0wt%、かつC
o+Ni≦4.5であり、Si:0.3〜1.0wt
%、Zn:0.3〜1.0wt%、Mn:0.005〜
0.1wt%、P:0.005〜0.1wt%を含有
し、残部が銅および不可避的不純物からなる銅合金にお
いて、母相中にNiとCoとSiの化合物およびCoと
P、NiとPの化合物が存在し、かつ母相の平均結晶粒
度が20μm以下で、圧延方向に対する板厚方向のアス
ペクト比が1〜3であることを特徴とする電子電気部品
用銅合金である。
According to claim 3 of the present invention, Co: 0.1
~ 3.0 wt%, Ni: 1.5-3.0 wt%, and C
o + Ni ≦ 4.5, Si: 0.3 to 1.0 wt
%, Zn: 0.3-1.0 wt%, Mn: 0.005-
0.1 wt%, P: 0.005 to 0.1 containing wt%, the copper alloy and the balance copper and inevitable impurities, and compounds of Ni, Co and Si in the matrix phase and Co
A copper alloy for electronic and electrical parts, characterized in that P, a compound of Ni and P are present, the average grain size of the mother phase is 20 μm or less, and the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3. is there.

【0008】また、本発明の請求項4は、Co:0.1
〜3.0wt%、Ni:1.5〜3.0wt%、かつC
o+Ni≦4.5であり、Si:0.3〜1.0wt
%、Zn:0.3〜1.0wt%、Mn:0.005〜
0.1wt%、Zr:0.05〜0.3wt%を含有
し、残部が銅および不可避的不純物からなる銅合金にお
いて、母相中にNiとCoとSiの化合物およびCuと
Zrの化合物が存在し、かつ母相の平均結晶粒度が20
μm以下で、圧延方向に対する板厚方向のアスペクト比
が1〜3であることを特徴とする電子電気部品用銅合金
である。
The fourth aspect of the present invention is : Co: 0.1
~ 3.0 wt%, Ni: 1.5-3.0 wt%, and C
o + Ni ≦ 4.5, Si: 0.3 to 1.0 wt
%, Zn: 0.3-1.0 wt%, Mn: 0.005-
In a copper alloy containing 0.1 wt% and Zr: 0.05 to 0.3 wt% and the balance copper and unavoidable impurities, in the parent phase, a compound of Ni, Co and Si and a compound of Cu and Zr are contained. Is present and the average grain size of the matrix is 20
A copper alloy for electronic and electrical parts, characterized in that the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3 μm.

【0009】また、本発明の請求項5は、熱間圧延後、
85%以上の冷間圧延を施し、450〜480℃で5〜
30分間焼鈍後、30%以下の冷間圧延を施し、更に4
50〜500℃で30〜120分間時効処理を行うこと
を特徴とする請求項1〜4記載の電子電気部品用銅合金
の製造方法である。
According to claim 5 of the present invention, after hot rolling,
Cold rolling of 85% or more is performed at 450 to 480 ° C. for 5 to 5.
After annealing for 30 minutes, 30% or less cold rolling is performed, and further 4
The aging treatment is performed at 50 to 500 ° C. for 30 to 120 minutes, and the method for producing a copper alloy for electronic and electric parts according to claim 1.

【0010】[0010]

【作用】次に本発明合金における成分元素の添加理由
と、その組成範囲の限定理由について説明する。Co、
Si、PおよびZrの添加は、加熱処理によりCo−S
i化合物およびCo−PまたはCu−Zr化合物を析出
させるためである。Co−Si化合物は、結晶粒の成長
を抑える効果があり、Co−PまたはCu−Zr化合物
は、結晶粒の成長を抑える効果に加えて強度を向上させ
る効果があるためである。いずれの元素もその組成範囲
未満では上記効果を示さず、またその組成範囲を超える
添加では鋳造時に晶出相を生成して鋳造割れの原因とな
るため好ましくない。
Next, the reason for adding the constituent elements in the alloy of the present invention and the reason for limiting the composition range will be explained. Co,
The addition of Si, P and Zr is carried out by heat treatment of Co-S.
This is for precipitating the i compound and the Co-P or Cu-Zr compound. This is because the Co-Si compound has an effect of suppressing the growth of crystal grains, and the Co-P or Cu-Zr compound has an effect of improving the strength in addition to the effect of suppressing the growth of the crystal grains. Any of the elements does not exhibit the above effect if the content is less than the composition range, and addition of more than the composition range is not preferable because it causes a crystallization phase during casting and causes casting cracks.

【0011】Znの添加は、半田付け後の環境劣化を防
止するためである。しかしてZn含有量を0.3〜1.
0wt%としたのは、0.3wt%未満ではその効果が
十分に得られず、1.0wt%を超えると導電率が低下
するからである。Mnの添加は、不純物として存在する
硫黄をトラップし、脆化割れの発生を防止するためであ
る。しかして、Mn含有量を0.005〜0.1wt%
としたのは、0.005wt%未満ではその効果が得ら
れず、0.1wt%を超えると導電率が低下するからで
ある。
The addition of Zn is to prevent environmental deterioration after soldering. Therefore, the Zn content is 0.3 to 1.
The reason why the content is 0 wt% is that the effect is not sufficiently obtained when the content is less than 0.3 wt%, and the conductivity decreases when the content exceeds 1.0 wt%. The addition of Mn is to trap sulfur existing as impurities and prevent the occurrence of embrittlement cracking. Therefore, the Mn content is 0.005-0.1 wt%
The reason is that the effect is not obtained when the content is less than 0.005 wt% and the conductivity decreases when the content exceeds 0.1 wt%.

【0012】NiはCoとともにNi−Co−Si化合
物を形成し、また、Ni−PまたはNi−Si化合物を
形成し、さらに強度を向上させることができるが、1.
5wt%未満では金属間化合物の生成が少なくて、強度
の向上が少なく、3.0wt%を超えると加工性が劣化
するとともに、導電率が低下する。なお、Co+Ni≦
4.5とした理由は、Co+Niが4.5を越えると熱
間圧延性に劣るためである。
Ni forms a Ni-Co-Si compound together with Co, and also a Ni-P or Ni-Si compound, which can further improve the strength.
If it is less than 5 wt%, the formation of intermetallic compounds is small and the improvement in strength is small, and if it exceeds 3.0 wt%, the workability is deteriorated and the conductivity is lowered. Note that Co + Ni ≦
The reason why it is set to 4.5 is that if Co + Ni exceeds 4.5, the hot rolling property is poor.

【0013】なお、本発明の銅合金の酸素含有量は、5
〜100ppm程度であることが望ましい。この理由
は、過剰の酸素分が製造加工を困難にするばかりか、強
度、成形加工性、メッキ性、半田付け性等の特性を劣化
するためである。また、さらに望ましい酸素含有量は5
〜10ppmである。
The oxygen content of the copper alloy of the present invention is 5
It is desirable that the concentration is about 100 ppm. The reason for this is that the excessive oxygen content not only makes the manufacturing process difficult, but also deteriorates the properties such as strength, moldability, plating property, and solderability. Further, the more desirable oxygen content is 5
10 to 10 ppm.

【0014】結晶粒度を20μm以下に限定した理由
は、結晶粒度が20μmよりも大きいと、曲げ加工の際
に、変形中に導入される転位が粒界にパイルアップして
セルを形成し、割れの起点になりやすいからである。ま
た、析出物の大きさは、100nm以下が望ましく、5
〜50nmがより望ましいがこれに限定されない。
The reason why the grain size is limited to 20 μm or less is that when the grain size is larger than 20 μm, dislocations introduced during deformation pile up to the grain boundaries during bending, forming cells and cracking. This is because it is easy to start from. The size of the precipitate is preferably 100 nm or less, and 5
˜50 nm is more desirable, but not limited to this.

【0015】本発明で規定しているアスペクト比とは、
(圧延方向の結晶粒の長さ)/(板厚方向の結晶粒の長
さ)から求められる数値であり、この数値が大きければ
大きい程、結晶粒が圧延方向に長く伸びていることにな
る。本発明においてこのアスペクト比を1〜3に限定し
た理由は、アスペクト比が3を越えると変形中にそれぞ
れの結晶方位の回転が起こり難くなるため、転位のセル
が粒界の一部に集中して存在するようになり、粒界破壊
が生じ、また、結晶粒内でのシャーバンドの形成が起こ
り易くなり、粒内破壊が生じ、曲げ加工性が劣化するた
めである。
The aspect ratio specified in the present invention is
It is a numerical value obtained from (length of crystal grain in rolling direction) / (length of crystal grain in plate thickness direction). The larger this value is, the longer the crystal grain extends in the rolling direction. . In the present invention, the reason why the aspect ratio is limited to 1 to 3 is that when the aspect ratio exceeds 3, rotation of each crystal orientation is less likely to occur during deformation, so dislocation cells are concentrated in a part of grain boundaries. This is because grain boundaries are broken and shear bands are easily formed in the crystal grains, and intergranular fracture is caused and bending workability is deteriorated.

【0016】本願の製造方法において、熱間圧延後、8
5%以上の加工率で冷間圧延した後、450〜480℃
で5〜30分間焼鈍する理由は、熱間圧延後の冷間加工
および焼鈍によって、再結晶とCo−PもしくはNi−
P化合物の析出を同時に進行させるためである。しかし
て加工率を85%以上に限定した理由は、85%未満の
加工率では、再結晶核の発生頻度が低くくなり結晶粒が
微細にならないためである。また焼鈍条件を450〜4
80℃で5〜30分間の範囲内に限定した理由は、焼鈍
温度が480℃を超えると急速に再結晶が進み、Co−
PもしくはNi−P化合物の析出が同時に進行せず、結
晶粒が粗大になってしまうためである。焼鈍時間が30
分を超えると、やはり結晶粒が粗大化するためである。
また、焼鈍温度が450℃未満あるいは焼鈍時間が5分
未満であると、再結晶が十分に起きなく、結晶粒が微細
化しないためである。
In the manufacturing method of the present application, after hot rolling, 8
After cold rolling at a working rate of 5% or more, 450-480 ° C
The reason for annealing for 5 to 30 minutes is to perform recrystallization and Co-P or Ni- by cold working and annealing after hot rolling.
This is because the precipitation of the P compound proceeds at the same time. However, the reason why the working rate is limited to 85% or more is that at a working rate of less than 85%, the frequency of occurrence of recrystallization nuclei becomes low and the crystal grains do not become fine. Moreover, the annealing condition is set to 450 to 4
The reason for limiting the temperature to 80 ° C. for 5 to 30 minutes is that when the annealing temperature exceeds 480 ° C., recrystallization proceeds rapidly and Co−
This is because the precipitation of P or Ni-P compound does not proceed at the same time and the crystal grains become coarse. Annealing time 30
This is because when the amount exceeds the limit, the crystal grains become coarser.
Further, if the annealing temperature is less than 450 ° C. or the annealing time is less than 5 minutes, recrystallization does not occur sufficiently and the crystal grains do not become fine.

【0017】焼鈍後の冷間圧延率を30%以下とした理
由は、圧延率が30%を超えると、結晶粒が圧延方向に
伸びてアスペクト比が高くなるか、または時効処理の際
に再結晶が起こり微結晶状態を得ることができず、曲げ
加工性が悪くなからである。
The reason why the cold rolling rate after annealing is set to 30% or less is that when the rolling rate exceeds 30%, the crystal grains extend in the rolling direction to increase the aspect ratio, or when the aging treatment is repeated. can not crystals possible fine crystalline state, the bending workability is because that a worse.

【0018】さらに450〜500℃で30〜120分
間時効処理を行う理由は、強度を向上させるCo−Si
化合物および/またはNi−Co−Si化合物を十分に
析出させるためであり、500℃を超え、あるいは12
0分を超えると析出相が粗大化するため十分な強度が得
られず、また450℃未満、あるいは30分未満である
と析出相の生成量が不十分であり、電子電気部品として
要求される強度および導電率が得られないからである。
The reason why the aging treatment is further carried out at 450 to 500 ° C. for 30 to 120 minutes is that Co--Si which improves the strength.
This is for sufficiently precipitating the compound and / or the Ni-Co-Si compound, and the temperature exceeds 500 ° C, or 12
If it exceeds 0 minutes, the precipitated phase becomes coarse, so that sufficient strength cannot be obtained, and if it is less than 450 ° C. or less than 30 minutes, the amount of the generated precipitation phase is insufficient, which is required as an electronic / electrical component. This is because strength and conductivity cannot be obtained.

【0019】[0019]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0020】(実施例1) 表1に示すような組成の鋳塊No.a〜を誘導溶解炉を
用いて溶解し、厚さ20mm、幅150mm、長さ30
0mmの試料を鋳造した。しかる後上記試料を980℃
に加熱して3h保持した後、厚さ10mm、又は3mm
に熱間圧延した。熱間圧延後、両面面削もしくは酸洗バ
ブ研磨を行い、それぞれ、厚さ8mm、又は2mmとし
た。次に、それぞれの試料に対して表2に示す本発明方
法Aの製造条件により、冷間圧延、焼鈍処理、冷間圧
延、時効処理の各処理を施した。
Example 1 Ingots No. a to k having the composition shown in Table 1 were melted by using an induction melting furnace to have a thickness of 20 mm, a width of 150 mm and a length of 30.
A 0 mm sample was cast. Thereafter, the above sample was heated to 980 ° C.
After heating and holding for 3h, the thickness is 10mm or 3mm
Hot rolled. After hot rolling, double-sided surface grinding or pickling bubbling was performed to obtain a thickness of 8 mm or 2 mm, respectively. Next, each sample was subjected to cold rolling, annealing treatment, cold rolling, and aging treatment under the manufacturing conditions of the method A of the present invention shown in Table 2.

【0021】この様にして得られた試料について、引張
試験、導電率測定、V字曲げ試験、透過型電子顕微鏡に
よる結晶粒度測定および形状調査をおこなった。なお、
平均結晶粒径は、圧延方向の結晶粒の長さと板厚方向の
結晶粒の長さの平均値である。その結果を表3に示す。
なお、Co、Ni、Si、Zn、Mn、P、Zrの内い
ずれかが本願の範囲内よりも多い比較合金を用い
た試料(比較例11)はいずれも鋳造過程あるいは
熱間圧延過程で割れを生じたため、それ以降の処理は行
わなかった。
The samples thus obtained were subjected to a tensile test, a conductivity measurement, a V-shaped bending test, a crystal grain size measurement by a transmission electron microscope, and a shape investigation. In addition,
The average crystal grain size is the average value of the length of crystal grains in the rolling direction and the length of crystal grains in the plate thickness direction. The results are shown in Table 3.
Samples (Comparative Examples 8 to 11 ) using Comparative Alloys h to k in which any one of Co, Ni, Si, Zn, Mn, P, and Zr is more than the range of the present application (Comparative Examples 8 to 11 ) are all in the casting process or heat treatment. No further treatment was performed because cracking occurred during the hot rolling process.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】表3から明らかなように、本発明の組成範
囲内の合金(鋳塊No.a〜)を用い、本発明の製造方
法によって製造された本発明例No. 1〜は、いずれも
結晶粒度が20μm以下で、アスペクト比が3以下で、
請求項1〜4の限定条件を満足している。しかして、上
記合金は曲げ性の指標であるr/t(Vブロックの曲げ
半径/板厚)が0.4以下と良好な値を示し、しかも8
00N/mm2 以上の引張強さ、および45%IACS 以上の高
い導電率が得られる。それに対し製造方法は本発明の範
囲内であるが、合金組成が請求範囲から外れた比較例
は、引張強さ、0.2%耐力が低下し、結晶粒の粗大化
が起こって(請求項1〜4の発明の範囲外となり)、曲
げ性に劣っている。
As is apparent from Table 3, the invention examples No. 1 to 4 produced by the production method of the present invention using the alloys (ingot No. a to d ) within the composition range of the present invention, All have a grain size of 20 μm or less and an aspect ratio of 3 or less,
The limiting conditions of claims 1 to 4 are satisfied. However, the above alloy shows a good value of r / t (bending radius of V block / plate thickness), which is an index of bendability, of 0.4 or less, and 8
A tensile strength of 00 N / mm 2 or more and a high conductivity of 45% IACS or more can be obtained. Although the manufacturing method to which are within the scope of the present invention, Comparative Example 5 in which the alloy composition is out of the claimed range
Nos. 7 to 7 have poor tensile strength and 0.2% proof stress, and coarsening of crystal grains (outside the scope of the invention of claims 1 to 4), resulting in poor bendability.

【0026】(実施例2) 表1に示す鋳塊のうち鋳塊No.aを用いて、実施例1と
同様の条件で溶解、鋳造、加熱処理、熱間圧延、両面面
削、酸洗バブ研磨を行い、表2に示す各条件(A〜M)
の各処理を施した。
Example 2 Of the ingots shown in Table 1, ingot No.a was melted, cast, heat-treated, hot-rolled, face-faced and pickled under the same conditions as in Example 1. Bubbling was performed, and each condition shown in Table 2 (AM)
Each treatment was performed.

【0027】処理を施した試料について、引張試験、導
電率測定、V字曲げ試験、透過型電子顕微鏡による結晶
粒度測定および形状調査をおこなった。その結果を表4
に示す。
The treated sample was subjected to a tensile test, a conductivity measurement, a V-shaped bending test, a crystal grain size measurement by a transmission electron microscope, and a shape investigation. The results are shown in Table 4.
Shown in.

【0028】[0028]

【表4】 [Table 4]

【0029】表4から明らかなように、本発明方法によ
るもの(本発明例1214)は結晶粒度が20μm以
下で、アスペクト比が3以下で、請求項1〜4の限定条
件を満足している。しかして上記本発明例は、曲げ性の
指標であるr/t(Vブロックの曲げ半径/板厚)が
0.4以下と良好な値を示し、しかも800N/mm2 以上
の引張強さ、および45%IACS 以上の高い導電率が得ら
れる。それに対し製造条件が請求範囲から外れたもの
(比較例1524)は、結晶粒、アスペクト比が本発
明の範囲外であり、曲げ性が劣っており、引張強さ、耐
力、導電率も本発明例よりも劣っている。
As is apparent from Table 4, the particles produced by the method of the present invention (Examples 12 to 14 of the present invention) have a grain size of 20 μm or less and an aspect ratio of 3 or less, and satisfy the limiting conditions of claims 1 to 4. ing. However, in the above-mentioned present invention example, r / t (bending radius of V block / plate thickness), which is an index of bendability, shows a good value of 0.4 or less, and further, tensile strength of 800 N / mm 2 or more, And high conductivity of 45% IACS or more is obtained. On the other hand, when the manufacturing conditions were out of the claimed range (Comparative Examples 15 to 24 ), the crystal grains and the aspect ratio were out of the scope of the present invention, the bendability was poor, and the tensile strength, the yield strength, and the conductivity were also low. It is inferior to the inventive examples.

【0030】[0030]

【発明の効果】以上詳述したように本発明によれば、強
度、導電率の両者に優れ、しかも電子電気部品用材料と
して非常に重要な特性である曲げ加工性に優れた銅合金
を得ることができ、高集積化または小型化が図られてい
る電子電気部品用材料に十分に対応できる電子電気部品
用銅合金を提供できる。
As described in detail above, according to the present invention, a copper alloy excellent in both strength and conductivity and excellent in bendability, which is a very important property as a material for electronic and electrical parts, is obtained. It is possible to provide a copper alloy for electronic / electrical components, which can sufficiently correspond to a material for electronic / electrical components that is highly integrated or miniaturized.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 630 C22F 1/00 630F 661 661A 686 686B 691 691A 694 694A (56)参考文献 特開 平3−162553(JP,A) 特開 平5−255779(JP,A) 特開 平2−170954(JP,A) 特公 昭62−15621(JP,B1) 特公 昭62−15622(JP,B1) 特公 昭60−59979(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22C 9/00 - 9/10 C22F 1/08 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22F 1/00 630 C22F 1/00 630F 661 661A 686 686B 691 691A 694 694A (56) Reference JP-A-3-162553 (JP, A) JP-A-5-255779 (JP, A) JP-A-2-170954 (JP, A) JP-B 62-15621 (JP, B1) JP-B 62-15622 (JP, B1) JP-B 60 -59979 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 9/00-9/10 C22F 1/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Co:0.1〜3.0wt%、Si:
0.3〜1.0wt%、Zn:0.3〜1.0wt%、
Mn:0.005〜0.1wt%、P:0.005〜
0.1wt%を含有し、残部が銅および不可避的不純物
からなる銅合金において、母相中にCoとSiの化合物
およびCoとPの化合物が存在し、かつ母相の平均結晶
粒度が20μm以下で、圧延方向に対する板厚方向のア
スペクト比が1〜3であることを特徴とする電子電気部
品用銅合金。
1. Co: 0.1-3.0 wt%, Si:
0.3-1.0 wt%, Zn: 0.3-1.0 wt%,
Mn: 0.005-0.1 wt%, P: 0.005-
In a copper alloy containing 0.1 wt% and the balance being copper and unavoidable impurities, a compound of Co and Si and a compound of Co and P are present in the matrix, and the average crystal grain size of the matrix is 20 μm or less. A copper alloy for electronic and electrical parts, characterized in that the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3.
【請求項2】 Co:0.1〜3.0wt%、Si:
0.3〜1.0wt%、Zn:0.3〜1.0wt%、
Mn:0.005〜0.1wt%、Zr:0.05〜
0.3wt%を含有し、残部が銅および不可避的不純物
からなる銅合金において、母相中にCoとSiの化合物
およびCuとZrの化合物が存在し、かつ母相の平均結
晶粒度が20μm以下で、圧延方向に対する板厚方向の
アスペクト比が1〜3であることを特徴とする電子電気
部品用銅合金。
2. Co: 0.1-3.0 wt %, Si:
0.3-1.0 wt%, Zn: 0.3-1.0 wt%,
Mn: 0.005-0.1 wt%, Zr: 0.05-
Containing 0.3 wt%, the copper alloy and the balance copper and inevitable impurities, there is a compound of compound and Cu and Zr of C o and Si in the matrix phase, and an average grain size of the matrix phase A copper alloy for electronic and electric parts, which has an aspect ratio of 1 to 3 in the plate thickness direction with respect to the rolling direction and is 20 μm or less.
【請求項3】 Co:0.1〜3.0wt%、Ni:
1.5〜3.0wt%、かつCo+Ni≦4.5であ
り、Si:0.3〜1.0wt%、Zn:0.3〜1.
0wt%、Mn:0.005〜0.1wt%、P:0.
005〜0.1wt%を含有し、残部が銅および不可避
的不純物からなる銅合金において、母相中にNiとCo
とSiの化合物およびCoとP、NiとPの化合物が存
在し、かつ母相の平均結晶粒度が20μm以下で、圧延
方向に対する板厚方向のアスペクト比が1〜3であるこ
とを特徴とする電子電気部品用銅合金。
3. Co: 0.1-3.0 wt%, Ni:
1.5 to 3.0 wt% and Co + Ni ≦ 4.5, Si: 0.3 to 1.0 wt%, Zn: 0.3 to 1.
0 wt%, Mn: 0.005-0.1 wt%, P: 0.
In a copper alloy containing 005 to 0.1 wt% and the balance copper and unavoidable impurities, Ni and Co are contained in the mother phase.
And Si compounds and Co and P compounds and Ni and P compounds are present, the average grain size of the mother phase is 20 μm or less, and the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3. Copper alloy for electronic and electrical parts.
【請求項4】 Co:0.1〜3.0wt%、Ni:
1.5〜3.0wt%、かつCo+Ni≦4.5であ
り、Si:0.3〜1.0wt%、Zn:0.3〜1.
0wt%、Mn:0.005〜0.1wt%、Zr:
0.05〜0.3wt%を含有し、残部が銅および不可
避的不純物からなる銅合金において、母相中にNiと
oとSiの化合物およびCuとZrの化合物が存在し、
かつ母相の平均結晶粒度が20μm以下で、圧延方向に
対する板厚方向のアスペクト比が1〜3であることを特
徴とする電子電気部品用銅合金。
4. Co: 0.1 to 3.0 wt%, Ni:
1.5 to 3.0 wt% and Co + Ni ≦ 4.5
, Si: 0.3 to 1.0 wt%, Zn: 0.3 to 1.
0 wt%, Mn: 0.005-0.1 wt%, Zr:
In a copper alloy containing 0.05 to 0.3 wt% and the balance being copper and unavoidable impurities, Ni and C are contained in the mother phase.
There is a compound of o and Si and a compound of Cu and Zr,
And the average grain size of the matrix is 20 μm or less, and the aspect ratio in the plate thickness direction with respect to the rolling direction is 1 to 3, a copper alloy for electronic and electrical parts.
【請求項5】 熱間圧延後、85%以上の冷間圧延を施
し、450〜480℃で5〜30分間焼鈍後、30%以
下の冷間圧延を施し、更に450〜500℃で30〜1
20分間時効処理を行うことを特徴とする請求項1また
は2記載の電子電気部品用銅合金の製造方法。
5. After hot rolling, cold rolling is performed at 85% or more, annealing is performed at 450 to 480 ° C. for 5 to 30 minutes, cold rolling is performed at 30% or less, and further 30 to 450 ° C. to 500 ° C. 1
The aging treatment for 20 minutes is performed, The manufacturing method of the copper alloy for electronic electrical components of Claim 1 or 2 characterized by the above-mentioned.
JP16597895A 1995-06-30 1995-06-30 Copper alloy for electronic and electric parts and method for producing the same Expired - Fee Related JP3408021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16597895A JP3408021B2 (en) 1995-06-30 1995-06-30 Copper alloy for electronic and electric parts and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16597895A JP3408021B2 (en) 1995-06-30 1995-06-30 Copper alloy for electronic and electric parts and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0920943A JPH0920943A (en) 1997-01-21
JP3408021B2 true JP3408021B2 (en) 2003-05-19

Family

ID=15822616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16597895A Expired - Fee Related JP3408021B2 (en) 1995-06-30 1995-06-30 Copper alloy for electronic and electric parts and method for producing the same

Country Status (1)

Country Link
JP (1) JP3408021B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506269B2 (en) * 1999-01-15 2003-01-14 Industrial Technology Research Institute High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes and method of making the same
US7182823B2 (en) 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP4943095B2 (en) * 2006-08-30 2012-05-30 三菱電機株式会社 Copper alloy and manufacturing method thereof
US8287669B2 (en) * 2007-05-31 2012-10-16 The Furukawa Electric Co., Ltd. Copper alloy for electric and electronic equipments
JP4981748B2 (en) * 2007-05-31 2012-07-25 古河電気工業株式会社 Copper alloy for electrical and electronic equipment
JP4303313B2 (en) * 2007-09-28 2009-07-29 日鉱金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2009057697A1 (en) * 2007-11-01 2009-05-07 The Furukawa Electric Co., Ltd. Conductor material for electronic device and electric wire for wiring using the same
CN101952465B (en) * 2008-01-31 2012-09-19 古河电气工业株式会社 Copper alloy material for electric/electronic component and method for manufacturing the copper alloy material
JP4974193B2 (en) * 2008-02-08 2012-07-11 古河電気工業株式会社 Copper alloy sheet for electrical and electronic parts
EP2319947A4 (en) * 2008-07-31 2011-11-23 Furukawa Electric Co Ltd Copper alloy material for electrical and electronic components, and manufacturing method therefor
JPWO2010016428A1 (en) * 2008-08-05 2012-01-19 古河電気工業株式会社 Copper alloy material for electrical and electronic parts
WO2010016429A1 (en) * 2008-08-05 2010-02-11 古河電気工業株式会社 Copper alloy material for electrical/electronic component
JP4708485B2 (en) 2009-03-31 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2011017070A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material for electric and electronic component
CN102549180A (en) 2009-09-28 2012-07-04 Jx日矿日石金属株式会社 Cu-Ni-Si-Co copper alloy for electronic material and process for producing same
JP4830035B2 (en) 2010-04-14 2011-12-07 Jx日鉱日石金属株式会社 Cu-Si-Co alloy for electronic materials and method for producing the same
JP4672804B1 (en) 2010-05-31 2011-04-20 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4834781B1 (en) 2010-08-24 2011-12-14 Jx日鉱日石金属株式会社 Cu-Co-Si alloy for electronic materials
JP2012072470A (en) 2010-09-29 2012-04-12 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JPH0920943A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP5448763B2 (en) Copper alloy material
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JPH0841612A (en) Copper alloy and its preparation
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP3977376B2 (en) Copper alloy
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
CN109338151B (en) Copper alloy for electronic and electrical equipment and application
EP2270242A1 (en) Copper alloy material for electric and electronic apparatuses, and electric and electronic components
JP2001049369A (en) Copper alloy for electronic material and its production
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP3729454B2 (en) Copper alloy and manufacturing method thereof
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
JP4251672B2 (en) Copper alloy for electrical and electronic parts
JP4664584B2 (en) High strength copper alloy plate and method for producing high strength copper alloy plate
JPH0418016B2 (en)
JP3941308B2 (en) Copper alloy with excellent hot workability
JP3407527B2 (en) Copper alloy materials for electronic equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees