JP5448763B2 - Copper alloy material - Google Patents
Copper alloy material Download PDFInfo
- Publication number
- JP5448763B2 JP5448763B2 JP2009274997A JP2009274997A JP5448763B2 JP 5448763 B2 JP5448763 B2 JP 5448763B2 JP 2009274997 A JP2009274997 A JP 2009274997A JP 2009274997 A JP2009274997 A JP 2009274997A JP 5448763 B2 JP5448763 B2 JP 5448763B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- orientation
- alloy material
- area ratio
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Conductive Materials (AREA)
Description
本発明は、電気電子部品用途の銅合金材料に関し、特に、自動車用端子・コネクタなどの接続部品用として好適な、強度が高く曲げ加工性に優れた銅合金材料に関する。 The present invention relates to a copper alloy material for electrical and electronic parts, and more particularly to a copper alloy material having high strength and excellent bending workability, which is suitable for connection parts such as automobile terminals and connectors.
近年、電子機器の小型化及び軽量化の要求が高まり、より一層の小型化及び軽量化が進んでいる。例えば、電子機器の部品であるコネクタ端子は低背・狭ピッチ化が進み、その結果、これらのコネクタ端子に使用される銅合金材料には、より一層高い強度と優れた曲げ加工性が求められるようになっている。高強度かつ優れた曲げ加工性が必要な銅合金には、これまでベリリウム銅が広く用いられてきたが、ベリリウム銅は非常に高価で且つ金属ベリリウムには強い毒性がある。そこで、これらの材料に変わる合金としてコルソン系合金(Cu−Ni−Si系合金)の使用量が増加している。 In recent years, demands for downsizing and weight reduction of electronic devices have increased, and further downsizing and weight reduction have been advanced. For example, connector terminals, which are parts of electronic equipment, have been reduced in height and pitch, and as a result, copper alloy materials used for these connector terminals are required to have higher strength and superior bending workability. It is like that. Conventionally, beryllium copper has been widely used for copper alloys that require high strength and excellent bendability, but beryllium copper is very expensive and has strong toxicity to metal beryllium. Therefore, the amount of Corson alloy (Cu-Ni-Si alloy) used as an alloy that can be substituted for these materials is increasing.
コルソン系合金はケイ化ニッケル化合物(Ni2Si)の銅に対する固溶限が温度によって変化する合金で、時効析出処理によって硬化する析出硬化型合金であり、耐熱性、導電性、強度が良好である。 Corson alloys are alloys in which the solubility limit of nickel silicide compounds (Ni 2 Si) in copper changes with temperature, and are precipitation hardened alloys that harden by aging precipitation treatment, and have good heat resistance, electrical conductivity, and strength. is there.
しかし、このコルソン系合金においても、銅合金材料の強度を向上させると、導電性や曲げ加工性は低下する。即ち、高強度のコルソン系合金において、良好な導電性及び曲げ加工性とすることは非常に困難な課題である。 However, even in this Corson alloy, when the strength of the copper alloy material is improved, the conductivity and the bending workability are lowered. That is, in a high-strength Corson alloy, it is a very difficult task to achieve good conductivity and bending workability.
このような課題に対して、曲げ加工性が優れた高強度銅合金として、特許文献1では、コルソン系合金中の析出物のサイズと分布密度を規定することで曲げ加工性を改善している。また、特許文献2では、コルソン系合金の結晶粒径を規定することにより、強度、曲げ加工性を改善している。しかしながら、コネクタ材料では、特に圧延方向に平行の曲げ線で行われるBW曲げ加工が行われるが、これらの材料は市場の要求する強度、曲げ加工性を満たすまでには至らない場合があり、更なる改善が求められている。 For such a problem, as a high-strength copper alloy having excellent bending workability, Patent Document 1 improves bending workability by defining the size and distribution density of precipitates in the Corson alloy. . Moreover, in patent document 2, intensity | strength and a bending workability are improved by prescribing | regulating the crystal grain diameter of a Corson-type alloy. However, BW bending, which is performed with a bend line parallel to the rolling direction, is performed on connector materials, but these materials may not meet the strength and bending workability required by the market. There is a need for improvement.
一方、近年、集合組織を制御することで、曲げ加工性を改善する試みが行われている。特許文献3では、Cube方位を有する結晶粒の面積率を制御することで曲げ加工性を改善している。特許文献4では、X線の(200)回折強度を高めることで、曲げ加工性を改善している。特許文献5では、X線の(420)方位の回折強度、つまり(420)方位を有する結晶粒の面積率を高めることで、曲げ加工性を改善している。しかし、我々の知見によれば、Cube方位を有する結晶粒の面積率や、X線の(200)方位の回折強度や(420)方位の回折強度を高めることは確かに曲げ加工性の改善には有効だが、これらを高くすると材料が変形する際の加工硬化係数が小さく、また結晶粒径が粗大化するため強度が低下する場合があり、さらなる改良が求められている。 On the other hand, in recent years, attempts have been made to improve bending workability by controlling the texture. In Patent Document 3, bending workability is improved by controlling the area ratio of crystal grains having a Cube orientation. In Patent Document 4, bending workability is improved by increasing the (200) diffraction intensity of X-rays. In Patent Document 5, bending workability is improved by increasing the diffraction intensity of the (420) orientation of X-rays, that is, the area ratio of crystal grains having the (420) orientation. However, according to our knowledge, increasing the area ratio of crystal grains having Cube orientation, (200) orientation diffraction intensity, and (420) orientation diffraction intensity of X-rays certainly improves the bending workability. However, if these are increased, the work hardening coefficient when the material is deformed is small, and the crystal grain size becomes coarse, so that the strength may be lowered, and further improvement is demanded.
上記のような問題点に鑑み、本発明の目的は、曲げ加工性に優れ、強度が高く、電気・電子機器用の部品、例えばリードフレーム、コネクタ、端子材等、特に自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金材料を提供することにある。 In view of the above-described problems, the object of the present invention is to provide excellent bending workability, high strength, and parts for electric and electronic equipment, such as lead frames, connectors, terminal materials, etc., particularly connectors for automobiles. It is to provide a copper alloy material suitable for a terminal material, a relay, a switch and the like.
我々は鋭意研究の結果、コルソン系などの析出型銅合金材料(特に板材・条材)の組織を、Cube方位とRDW(RD−Rotated−Cube方位)方位の結晶粒の面積率がそれぞれ特定の値を満たすように同時に高めた集合組織とすることによって、端子やコネクタなどの要求特性である優れた曲げ加工性と高強度を高いレベルで両立できることを見出した。本発明は、この知見に基づき成されたものである。 As a result of earnest research, we have determined the structure of precipitation type copper alloy materials (especially plate materials and strips) such as Corson, and the area ratio of crystal grains of Cube orientation and RDW (RD-Rotated-Cube orientation) orientations. It was found that excellent bending workability and high strength, which are required characteristics of terminals, connectors, etc., can be achieved at a high level by using a texture that is simultaneously increased to satisfy the values. The present invention has been made based on this finding.
すなわち、本発明によれば、以下の手段が提供される。
(1)NiまたはCoのどちらか一方または両方の合計で0.5〜5質量%、Siを0.2〜1.5質量%、それぞれ含有し、残部がCuおよび不可避的不純物からなる銅合金材料であって、Cube方位の結晶粒の面積率が10%以上、かつRDW方位の結晶粒の面積率が10%以上であることを特徴とする高強度で、曲げ加工性に優れた電気電子部品用銅合金材料。
That is, according to the present invention, the following means are provided.
(1) A copper alloy containing either 0.5 or 5 mass% of Ni or Co in total, 0.2 to 1.5 mass% of Si, and the balance of Cu and inevitable impurities A material having a high strength and excellent bending workability, characterized in that the area ratio of Cube-oriented crystal grains is 10% or more and the area ratio of RDW-oriented crystal grains is 10% or more. Copper alloy material for parts.
(2)NiまたはCoのどちらか一方または両方の合計で0.5〜5.0質量%、Siを0.2〜1.5質量%、Crを0.01〜0.5質量%、それぞれ含有し、残部がCuおよび不可避的不純物からなる銅合金材料であって、Cube方位の結晶粒の面積率が10%以上、かつRDW方位の結晶粒の面積率が10%以上であることを特徴とする高強度で、曲げ加工性に優れた電気電子部品用銅合金材料。
(3)NiまたはCoのどちらか一方または両方の合計で0.5〜5.0質量%、Siを0.2〜1.5質量%、Zn、Sn、Mg、Ag、Mn、Zrのうち1種又は2種以上を合計で0.01〜1.0質量%、それぞれ含有し、残部がCuおよび不可避的不純物からなる銅合金材料であって、Cube方位の結晶粒の面積率が10%以上、かつRDW方位の結晶粒の面積率が10%以上であることを特徴とする高強度で、曲げ加工性に優れた電気電子部品用銅合金材料。
(4)NiまたはCoのどちらか一方または両方の合計で0.5〜5.0質量%、Siを0.2〜1.5質量%、Crを0.01〜0.5質量%、Zn、Sn、Mg、Ag、Mn、Zrのうち1種又は2種以上を合計で0.01〜1.0質量%、それぞれ含有し、残部がCuおよび不可避的不純物からなる銅合金材料であって、Cube方位の結晶粒の面積率が10%以上、かつRDW方位の結晶粒の面積率が10%以上であることを特徴とする高強度で、曲げ加工性に優れた電気電子部品用銅合金材料。
(2) 0.5 to 5.0% by mass in total of either one or both of Ni and Co, 0.2 to 1.5% by mass of Si, and 0.01 to 0.5% by mass of Cr, respectively A copper alloy material containing Cu and inevitable impurities, wherein the area ratio of the Cube-oriented crystal grains is 10% or more and the area ratio of the RDW-oriented crystal grains is 10% or more A copper alloy material for electrical and electronic parts with high strength and excellent bending workability.
(3) 0.5 to 5.0% by mass in total of either one or both of Ni and Co, 0.2 to 1.5% by mass of Si, Zn, Sn, Mg, Ag, Mn, Zr It is a copper alloy material containing one or two or more in total of 0.01 to 1.0% by mass, with the balance being Cu and inevitable impurities, and the area ratio of Cube-oriented crystal grains is 10% A copper alloy material for electrical and electronic parts having high strength and excellent bending workability, characterized in that the area ratio of crystal grains in the RDW orientation is 10% or more.
(4) 0.5 to 5.0 mass% in total of either one or both of Ni and Co, Si to 0.2 to 1.5 mass%, Cr to 0.01 to 0.5 mass%, Zn , Sn, Mg, Ag, Mn, Zr, a total of 0.01 to 1.0% by mass of one or more of Zr, each of which is a copper alloy material composed of Cu and inevitable impurities A copper alloy for electrical and electronic parts having high strength and excellent bending workability, characterized in that the area ratio of crystal grains of Cube orientation is 10% or more and the area ratio of crystal grains of RDW orientation is 10% or more material.
本発明の銅合金材料は、曲げ加工性に優れ、高い強度を有し、電気・電子機器用の部品、例えばリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに好適である。 The copper alloy material of the present invention has excellent bending workability and high strength, and is a component for electrical and electronic equipment, such as lead frames, connectors, terminal materials, etc., connectors and terminal materials for automobiles, relays, Suitable for switches and the like.
本発明の銅合金材料の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、(加工前であって所定の合金組成を有する)銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。なお、実施形態として板材、条材について以下に説明する。
本発明の銅合金材料が奏する高強度とは、引張強度が500MPa以上であることを意味し、好ましくは650MPa以上、更に好ましくは800MPa以上である。
本発明の銅合金材料が奏する優れた曲げ加工性とは、次の意味である。すなわち、曲げ加工試験として、曲げ試験片の幅wを10mmで、曲げR=0〜0.4mmの0.025mm単位として、BW(Bad Way:圧延垂直方向)の90°曲げを行う。曲げ加工性は、割れの生じない最小の曲げ半径(R)と板厚(t)の比をR/tとして、銅合金材料が有する引張強度のレベルに応じた以下の合格基準を満たすかどうかにより評価する。引張強度が800MPa未満の場合はR/t=0.5以下を合格とし、引張強度が800MPa以上900MPa未満はR/t=1.5以下を合格とし、引張強度が900MPa以上の場合はR/t=2.0以下を合格とする。
本発明の銅合金材料は、導電性が高く、好ましくは導電率が35%IACS以上であり、更に好ましくは40%IACS以上であり、より好ましくは45%IACS以上である。
上記、高強度で、良好な曲げ加工性を有し、さらには高導電率である本発明の銅合金材料について、まず、その組織を説明する。
A preferred embodiment of the copper alloy material of the present invention will be described in detail. Here, “copper alloy material” means a copper alloy material (before processing and having a predetermined alloy composition) processed into a predetermined shape (for example, plate, strip, foil, bar, wire, etc.) Means. In addition, a board | plate material and a strip are demonstrated below as embodiment.
The high strength exhibited by the copper alloy material of the present invention means that the tensile strength is 500 MPa or more, preferably 650 MPa or more, more preferably 800 MPa or more.
The excellent bending workability exhibited by the copper alloy material of the present invention has the following meaning. That is, as a bending test, a BW (Bad Way: vertical direction of rolling) 90 ° bending is performed with a width w of the bending test piece being 10 mm and a bending R = 0 to 0.4 mm in 0.025 mm units. Whether the bending workability satisfies the following acceptance criteria corresponding to the level of tensile strength of the copper alloy material, with the ratio of the minimum bending radius (R) and thickness (t) at which cracks do not occur as R / t Evaluate by When the tensile strength is less than 800 MPa, R / t = 0.5 or less is accepted, when the tensile strength is 800 MPa or more and less than 900 MPa, R / t = 1.5 or less is accepted, and when the tensile strength is 900 MPa or more, R / t t = 2.0 or less is accepted.
The copper alloy material of the present invention has a high conductivity, preferably a conductivity of 35% IACS or more, more preferably 40% IACS or more, and more preferably 45% IACS or more.
First, the structure of the copper alloy material of the present invention having high strength, good bending workability, and high conductivity will be described.
本発明者らは、コルソン系などの銅合金の曲げ加工におけるメカニズムを検討した結果、曲げ加工の際板表面で生じるせん断帯がわれの原因であることを確認した。また、このせん断帯はCube方位やRDW方位を増加させることによって、せん断帯を軽減しクラックの発生を抑制できることを見出した。しかし、Cube方位またはRDW方位を単独で増加させると、優先的にCube方位またはRDW方位の結晶粒が成長し、結晶粒が粗大化してしまい、引張強度や0.2%耐力が低下するという問題点も見出した。また、Cube方位やRDW方位は、変形時の加工硬化係数が小さいため、比較的低い強度で変形が生じ、これらの方位を単独で高めた場合には、強度が低下することも問題である。 As a result of examining the mechanism in bending of a Corson-based copper alloy, the present inventors have confirmed that a shear band generated on the surface of the plate during bending is a cause of cracking. Further, the present inventors have found that this shear band can reduce the shear band and suppress the generation of cracks by increasing the Cube direction and the RDW direction. However, when the Cube orientation or RDW orientation is increased alone, the crystal grains of the Cube orientation or RDW orientation preferentially grow, the crystal grains become coarse, and the tensile strength and 0.2% proof stress decrease. I also found a point. In addition, since the Cube orientation and the RDW orientation have a small work hardening coefficient at the time of deformation, deformation occurs at a relatively low strength, and when these orientations are increased alone, the strength is also a problem.
我々は強度を低下させず、曲げ性が良好であるコルソン系合金を鋭意研究した結果、Cube方位とRDW方位を同時に所定の範囲まで増加させることによって、強度と曲げ加工性を両立できることを見出し、本発明を完成させるに至った。これによって、従来のコルソン系合金よりも高強度と優れた曲げ加工性を併せ持つことが可能となる。 As a result of diligent research on a Corson alloy that has good bendability without reducing strength, we found that it is possible to achieve both strength and bending workability by simultaneously increasing the Cube orientation and RDW orientation to a predetermined range. The present invention has been completed. This makes it possible to have both higher strength and better bending workability than conventional Corson alloys.
(集合組織)
本発明の銅合金材料の集合組織は、特に、強度と曲げ加工性を両立するために、SEM−EBSD法によるND方向からの測定結果で、Cube方位からのずれ角度が10°以下の面積率が10%以上かつRDW方位からのずれ角度が10°以下の結晶粒の面積率が10%以上である集合組織を有するものとする。
Cube方位からのずれ角度が10°以下の領域の面積率の好ましい範囲は12〜45%、更に好ましい範囲は15〜30%である。RDW方位からのずれ角度が10°以下の領域の面積率の好ましい範囲は12〜45%、更に好ましい範囲は15〜30%である。
(Gathering organization)
In particular, the texture of the copper alloy material of the present invention is an area ratio in which the deviation angle from the Cube orientation is 10 ° or less as a result of measurement from the ND direction by the SEM-EBSD method in order to achieve both strength and bending workability. Is a texture in which the area ratio of crystal grains having a deviation angle of 10 ° or less from the RDW orientation is 10% or more.
A preferable range of the area ratio of the region where the deviation angle from the Cube orientation is 10 ° or less is 12 to 45%, and a more preferable range is 15 to 30%. A preferable range of the area ratio of the region where the deviation angle from the RDW orientation is 10 ° or less is 12 to 45%, and a more preferable range is 15 to 30%.
銅合金板の場合、主に、以下に示す如き、Cube方位、Goss方位、Brass方位、Copper方位、S方位等と呼ばれる集合組織を形成し、それらに応じた結晶面が存在する。 In the case of a copper alloy plate, a texture called a Cube orientation, a Goss orientation, a Brass orientation, a Copper orientation, an S orientation or the like is mainly formed as shown below, and there are crystal planes corresponding to them.
これらの集合組織の形成は同じ結晶系の場合でも加工、熱処理方法によって異なる。圧延による板材の集合組織の場合は、面と方向で表されており、面は{ABC}で表現され、方向は<DEF>で表現される。本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延面法線方向を(ND)をZ軸の直角座標系をとり、材料中の各領域がZ軸に垂直な(圧延面に平行な)結晶面の指数(hkl)とX軸に平行な(圧延面に垂直な)結晶方向の指数[uvw]とを用いて(hkl)[uvw]の形で示す。また、(1 3 2)[6 −4 3]と(2 3 1)[3 −4 6]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリーを表すカッコ記号を使用し、{h k l}<u v w>と示す。上述の表記に伴い、各方位は下記の如く表現される。 The formation of these textures differs depending on the processing and heat treatment methods even in the case of the same crystal system. In the case of a texture of a plate material by rolling, it is represented by a plane and a direction, the plane is represented by {ABC}, and the direction is represented by <DEF>. The crystal orientation display method in this specification uses a rectangular coordinate system in which the rolling direction (RD) of the material is the X axis, the sheet width direction (TD) is the Y axis, and the rolling surface normal direction (ND) is the Z axis. Using the index (hkl) of the crystal plane perpendicular to the Z axis (parallel to the rolling surface) and the index [uvw] of the crystal direction parallel to the X axis (perpendicular to the rolling surface) in each region in the material It is shown in the form of (hkl) [uvw]. For the equivalent orientations under the cubic symmetry of the copper alloy, such as (1 3 2) [6 -4 3] and (2 3 1) [3 -4 6], It uses {h k l} <u v w> using the parenthesis symbol. With the above notation, each direction is expressed as follows.
Cube方位 {001}<100>
RDW方位 {210}<100>
Goss方位 {011}<100>
Rotated−Goss方位 {011}<011>
Brass方位 {011}<211>
Copper方位 {112}<111>
S方位 {123}<634>
P方位 {011}<111>
Cube orientation {001} <100>
RDW orientation {210} <100>
Goss orientation {011} <100>
Rotated-Goss orientation {011} <011>
Brass orientation {011} <211>
Copper orientation {112} <111>
S orientation {123} <634>
P direction {011} <111>
通常の銅合金板の集合組織は、これらの結晶面の構成割合が変化すると板材の弾性挙動が変化し、曲げなどの加工性が変化する。 In the texture of a normal copper alloy plate, when the composition ratio of these crystal planes changes, the elastic behavior of the plate material changes, and the workability such as bending changes.
従来のコルソン系高強度銅合金板の集合組織は、通常の方法によって製造した場合、S方位{123}<634>や、Brass方位{011}<211>が主体となり、Cube方位の割合は減少することを本発明者らは確認した。このため、特に、BW曲げ加工において、せん断帯が生成し易く曲げ加工性が悪化する。一方、Cube方位やRDW方位を単独で集積を高めて曲げ性を改善した場合、強度が低下するという問題が生じることも、本発明者らは確認した。 When the texture of the conventional Corson-based high-strength copper alloy plate is manufactured by a normal method, the S orientation {123} <634> and the Brass orientation {011} <211> are mainly used, and the ratio of the Cube orientation is reduced. The present inventors have confirmed that this is done. For this reason, in particular, in BW bending, a shear band is easily generated and bending workability is deteriorated. On the other hand, the present inventors have also confirmed that there is a problem that the strength is lowered when the integration of the Cube orientation and the RDW orientation is increased to improve the bendability.
したがって、本発明の銅合金材料の集合組織は、Cube方位{001}<100>とRDW方位{420}<100>の結晶粒の面積率を、それぞれ10%以上併せ持つ強度と曲げ性に優れる集合組織を有するものとする。ただし、本発明において、Cube方位とRDW方位の結晶粒の面積率がともに10%以上であれば、他の方位が副方位として存在することを許容する。 Therefore, the texture of the copper alloy material of the present invention is an aggregate having excellent strength and bendability in which the area ratio of the crystal grains of the Cube orientation {001} <100> and the RDW orientation {420} <100> is 10% or more respectively. It shall have an organization. However, in the present invention, if the area ratios of the crystal grains of the Cube orientation and the RDW orientation are both 10% or more, other orientations are allowed to exist as sub-azimuths.
銅合金板の集合組織のCube方位{001}<100>やRDW方位{420}<100>方位粒の集積度測定は、SEMによる電子顕微鏡組織を、EBSDを用いて測定したデータを基に、結晶方位分布関数(ODF)を用いて方位解析することによって得られる。ここでは、結晶粒を400個以上含む、600μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析した。なお、これらの方位分布は板厚方向に変化しているため、板厚方向に何点か任意にとって平均をとることによって求める方が好ましい。 Cube orientation {001} <100> and RDW orientation {420} <100> orientation grain accumulation measurement of the texture of the copper alloy plate is based on the data obtained by measuring the electron microscopic structure by SEM using EBSD. Obtained by orientation analysis using the crystal orientation distribution function (ODF). Here, a sample area of 600 μm square containing 400 or more crystal grains was scanned in a 0.5 μm step, and the orientation was analyzed. Since these orientation distributions change in the plate thickness direction, it is preferable to obtain them by taking an average for some points in the plate thickness direction.
このSEM−EBSD法は、Scanning Electron Microscopy−Electron Back Scattered Diffraction Pattern法の略称である。即ち、SEM画面上にあらわれる個々の結晶粒に電子ビ−ムを照射し、その回折電子から個々の結晶方位を同定するものである。 This SEM-EBSD method is an abbreviation for Scanning Electron Microscopy-Electron Back Scattered Diffraction Pattern Method. That is, an electron beam is irradiated to individual crystal grains appearing on the SEM screen, and individual crystal orientations are identified from the diffracted electrons.
本発明においては、前記RD−Rotated−Cube(RDW)方位およびCube(W)方位の各集合組織方位成分をもつ結晶粒とその原子面の面積を、以下に述べる所定のずれ角度の範囲内にあるかどうかで規定する。
上記指数で示される理想方位からのずれ角度については、(i)各測定点の結晶方位と、(ii)対象となる理想方位としてのRDWまたはCube方位とについて、(i)と(ii)に共通の回転軸を中心に回転角を計算し、そのずれ角度とした。例えば、S方位(2 3 1)[6 −4 3]に対して、(1 2 1)[1 −1 1]は(20 10 17)方向を回転軸にして、19.4°回転した関係になっており、この角度をずれ角度とする。前記共通の回転軸は40以下の3つの整数であるが、その内で最も小さいずれ角度で表現できるものを採用した。全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、RDW方位の前記ずれ角から10°以下またはCube方位の前記ずれ角から10°以下の方位を持つ結晶粒の面積を全測定面積で除し、それぞれの方位の原子面の面積率とした。
In the present invention, the area of the crystal grain having each texture orientation component of the RD-Rotated-Cube (RDW) orientation and the Cube (W) orientation and the atomic plane thereof is within the range of the predetermined deviation angle described below. It is specified by whether or not there is.
Regarding the deviation angle from the ideal orientation indicated by the index, (i) the crystal orientation of each measurement point and (ii) the RDW or Cube orientation as the ideal orientation to be considered are (i) and (ii) The rotation angle was calculated around a common rotation axis, and the deviation angle was calculated. For example, with respect to the S orientation (2 3 1) [6 -4 3], (1 2 1) [1 -1 1] is rotated by 19.4 ° with the (20 10 17) direction as the rotation axis. This angle is defined as a deviation angle. The common rotation axis is three integers of 40 or less, and the one that can be expressed by the smallest angle among them is adopted. This deviation angle is calculated for all measurement points and the first decimal place is an effective number, and the crystal has an azimuth of 10 ° or less from the deviation angle of the RDW orientation or 10 ° or less from the deviation angle of the Cube orientation. The area of the grains was divided by the total measurement area to obtain the area ratio of the atomic plane in each orientation.
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。
EBSD測定にあたっては、鮮明な菊地線回折像を得るために、機械研磨の後に、コロイダルシリカの砥粒を使用して、基体表面を鏡面研磨した後に、測定を行うことが好ましい。また、測定は板表面から行った。
The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio.
In the EBSD measurement, in order to obtain a clear Kikuchi line diffraction image, it is preferable to perform the measurement after mirror polishing the surface of the substrate using a colloidal silica abrasive after mechanical polishing. The measurement was performed from the plate surface.
(銅合金材料の成分組成)
つぎに高強度化、かつ、曲げ加工においても良好な曲げ加工性を有するための前提となる、本発明の銅合金材料における化学成分組成の限定理由を説明する(記載の含有量%は全て質量%である)。
(Component composition of copper alloy material)
Next, the reason for limiting the chemical composition in the copper alloy material of the present invention, which is a precondition for increasing the strength and having good bending workability even in bending, will be described (all the content% described is mass). %).
(Ni:0.5〜5.0%)
Niは後述するSiと共に含有されて、時効処理で析出したNi2Si相を形成して、銅合金材料の強度の向上に寄与する元素である。Niの含有量が少なすぎる場合は、前記Ni2Si相が不足し、銅合金材料の引張強さを高めることができない。一方、Niの含有量が多すぎると、導電率が低下する。また、熱間圧延加工性が悪化する。したがって、Ni含有量は0.5〜5.0%の範囲とし、好ましくは1.5〜4.0%である。
(Ni: 0.5-5.0%)
Ni is an element that is contained together with Si to be described later, forms a Ni 2 Si phase precipitated by aging treatment, and contributes to improving the strength of the copper alloy material. If the content of Ni is too small, the Ni 2 Si phase is insufficient, it is impossible to increase the tensile strength of the copper alloy material. On the other hand, when there is too much content of Ni, electrical conductivity will fall. Moreover, hot rolling workability deteriorates. Therefore, the Ni content is in the range of 0.5 to 5.0%, preferably 1.5 to 4.0%.
(Co:0.5〜5.0%)
CoはSiと共に含有されて、時効処理で析出したCo2Si相を形成して、銅合金材料の強度の向上に寄与する元素である。Coの含有量が少なすぎる場合は、前記Co2Si相が不足し、銅合金材料の引張強さを高めることができない。一方、Coの含有量が多すぎると、導電率が低下する。また、熱間圧延加工性が悪化する。したがって、Co含有量は0.5〜5.0%の範囲とし、好ましくは0.8〜3.0%である。
(Co: 0.5-5.0%)
Co is an element that is contained together with Si and contributes to improving the strength of the copper alloy material by forming a Co 2 Si phase precipitated by aging treatment. When the content of Co is too small, the Co 2 Si phase is insufficient, and the tensile strength of the copper alloy material cannot be increased. On the other hand, when there is too much content of Co, electrical conductivity will fall. Moreover, hot rolling workability deteriorates. Therefore, the Co content is in the range of 0.5 to 5.0%, preferably 0.8 to 3.0%.
これらNiとCoは両方を含有してもよいが、これらの含有量を合計で0.5〜5.0%とする。NiとCoの両方を含有すると、時効処理の際にNi2SiとCo2Siの両方が析出し、時効強度を高めることができる。これらの含有量の合計が少なすぎる場合は、引張強さを高めることができず、多すぎると導電率や熱間圧延加工性が低下する。したがって、NiとCoの含有量の合計は0.5〜5.0%の範囲とし、好ましくは0.8〜4.0%の範囲とする。 These Ni and Co may contain both, but the total content thereof is 0.5 to 5.0%. When both Ni and Co are contained, both Ni 2 Si and Co 2 Si precipitate during the aging treatment, and the aging strength can be increased. When the total of these contents is too small, the tensile strength cannot be increased, and when it is too large, the conductivity and hot rolling processability are lowered. Therefore, the total content of Ni and Co is in the range of 0.5 to 5.0%, preferably in the range of 0.8 to 4.0%.
(Si)
Siは前記Ni、Coと共に含有されて、時効処理で析出したNi2SiまたはCo2Si相を形成して、銅合金材料の強度の向上に寄与する。Siの含有量は、0.2〜1.5%とし、好ましくは0.2〜1.0%である。Siの含有量は化学量論比でNi/Si=4.2、Co/Si=4.2とするのが最も導電率と強度のバランスがよい。そのためSiの含有量は、Ni/Si、Co/Si、(Ni+Co)/Siが3.2〜5.2の範囲となるようにするのが好ましく、より好ましくは3.5〜4.8である。
(Si)
Si is contained together with the Ni and Co, and forms a Ni 2 Si or Co 2 Si phase precipitated by aging treatment, thereby contributing to an improvement in the strength of the copper alloy material. The Si content is 0.2 to 1.5%, preferably 0.2 to 1.0%. The balance between conductivity and strength is best when the Si content is stoichiometrically Ni / Si = 4.2 and Co / Si = 4.2. Therefore, the Si content is preferably Ni / Si, Co / Si, and (Ni + Co) / Si in the range of 3.2 to 5.2, more preferably 3.5 to 4.8. is there.
この範囲から外れ、Siが過剰に含まれた場合、銅合金材料の引張強さを高くすることができるが、過剰な分のSiが銅のマトリックス中に固溶し、銅合金材料の導電率が低下する。また、Siが過剰に含まれた場合、鋳造での鋳造性や、熱間および冷間での圧延加工も低下し、鋳造割れや圧延割れが生じやすくなる。一方、この範囲から外れ、Siの含有量が少な過ぎる場合は、Ni2SiやCo2Siの析出相が不足し材料の引張強さを高くすることができない。 When the Si is excessively contained outside this range, the tensile strength of the copper alloy material can be increased, but the excess amount of Si is dissolved in the copper matrix, and the conductivity of the copper alloy material is increased. Decreases. Moreover, when Si is contained excessively, the castability in casting, the hot and cold rolling processes are also reduced, and casting cracks and rolling cracks are likely to occur. On the other hand, if it is out of this range and the Si content is too small, the precipitated phase of Ni 2 Si or Co 2 Si is insufficient and the tensile strength of the material cannot be increased.
(Cr)
上記組成に加えて、Crを0.01〜0.5mass%含有してもよい。Crは合金中の結晶粒を微細化する効果があり、銅合金材料の強度や曲げ加工性の向上に寄与する。少なすぎるとその効果が小さく、多すぎると鋳造時に晶出物を形成し時効強度が低下する。
(Cr)
In addition to the above composition, Cr may be contained in an amount of 0.01 to 0.5 mass%. Cr has an effect of refining crystal grains in the alloy, and contributes to improvement of the strength and bending workability of the copper alloy material. If the amount is too small, the effect is small. If the amount is too large, a crystallized product is formed during casting, and the aging strength is lowered.
(その他の合金元素)
本発明の銅合金材料は、上記基本組成の他に添加元素として、質量%で、Sn:0.05〜1.0%、Zn:0.01〜1.0%、Ag:0.01〜1.0%、Mn:0.01〜1.0%、Zr:0.1〜1.0%、Mg:0.01〜1.0%の一種または二種以上を合計で0.01〜1.0%の量で、必要に応じて含有してもよい。これらの元素は、いずれも本発明の銅合金材料が奏しようとする高い強度や導電率あるいは良好な曲げ加工性のいずれかを向上させる共通の効果があるか、これに加えてあるいはこれに代えて、さらに他の性質(耐応力緩和特性など)を向上させる元素である。以下に、各元素の特徴的な作用効果と含有範囲の意義を記載する。
(Other alloy elements)
In addition to the above basic composition, the copper alloy material of the present invention includes, as an additive element, mass%, Sn: 0.05 to 1.0%, Zn: 0.01 to 1.0%, Ag: 0.01 to 1.0%, Mn: 0.01 to 1.0%, Zr: 0.1 to 1.0%, Mg: 0.01 to 1.0%, or a total of 0.01 to 1.0% It may be contained as needed in an amount of 1.0%. All of these elements have a common effect of improving any of the high strength, electrical conductivity, or good bending workability that the copper alloy material of the present invention is intended to achieve, or in addition to or in place of this. Furthermore, it is an element that improves other properties (such as stress relaxation resistance). Below, the characteristic effect of each element and the significance of the content range are described.
(Sn)
Snは主に銅合金材料の強度を向上させる元素であり、これらの特性を重視する用途に使用する場合には、選択的に含有させる。Snの含有量が少なすぎるとその強度向上効果が小さい。一方、Snを含有させると銅合金材料の導電率が低下する。特に、Snが多すぎると、銅合金材料の導電率を20%IACS以上とすることが難しくなる。したがって、含有させる場合には、Snの含有量を0.01〜1.0%の範囲とする。
(Sn)
Sn is an element mainly improving the strength of the copper alloy material, and is selectively contained when used for applications in which these characteristics are important. When there is too little content of Sn, the strength improvement effect will be small. On the other hand, when Sn is contained, the electrical conductivity of the copper alloy material is lowered. In particular, if there is too much Sn, it will be difficult to make the conductivity of the copper alloy material 20% IACS or more. Therefore, when it contains, content of Sn shall be 0.01 to 1.0% of range.
(Zn)
Zn添加により、半田の耐熱剥離性や耐マイグレーション性を向上させることができる。Znの含有量が少なすぎるとその効果が小さい。一方、Znを含有させると銅合金材料の導電率が低下し、Znが多すぎると、銅合金材料の導電率を20%IACS以上とすることが難しくなる。したがって、Znの含有量を0.01〜1.0%の範囲とする。
(Zn)
Addition of Zn can improve the heat-resistant peelability and migration resistance of the solder. The effect is small when there is too little content of Zn. On the other hand, if Zn is contained, the electrical conductivity of the copper alloy material is lowered, and if there is too much Zn, it becomes difficult to make the electrical conductivity of the copper alloy material 20% IACS or more. Therefore, the Zn content is in the range of 0.01 to 1.0%.
(Ag)
Agは強度の上昇に寄与する。Agの含有量が少なすぎるとその効果が小さい。一方、Agを1.0%を超えて含有させても、その効果が飽和するだけである。したがって、含有させる場合には、Agの含有量を0.01〜1.0%の範囲とする。
(Ag)
Ag contributes to an increase in strength. If the content of Ag is too small, the effect is small. On the other hand, even if Ag is contained in excess of 1.0%, the effect is only saturated. Therefore, when it contains, content of Ag shall be 0.01 to 1.0% of range.
(Mn)
Mnは主に熱間圧延での加工性を向上させる。Mnの含有量が少なすぎるとその効果が小さい。一方、Mnが多すぎると、銅合金の造塊時の湯流れ性が悪化して造塊歩留まりが低下する。したがって、含有させる場合には、Mnの含有量を0.01〜1.0%の範囲とする。
(Mn)
Mn mainly improves the workability in hot rolling. If the Mn content is too small, the effect is small. On the other hand, when there is too much Mn, the hot water flow property at the time of ingot-making of a copper alloy will deteriorate, and ingot-making yield will fall. Therefore, when it contains, the content of Mn is made 0.01 to 1.0% of range.
(Zr)
Zrは主に結晶粒を微細化させて、銅合金材料の強度や曲げ加工性を向上させる。Zrの含有量が少なすぎるとその効果が小さい。一方、Zrが多すぎると、化合物を形成し、銅合金材料の圧延などの加工性が低下する。したがって、含有させる場合には、Zrの含有量を0.01〜1.0%の範囲とする。
(Zr)
Zr mainly refines the crystal grains to improve the strength and bending workability of the copper alloy material. If the Zr content is too small, the effect is small. On the other hand, when there is too much Zr, a compound will be formed and workability, such as rolling of a copper alloy material, will fall. Therefore, when it contains, content of Zr shall be 0.01 to 1.0% of range.
(Mg)
Mgは耐応力緩和特性を向上させる。したがって、耐応力緩和特性が必要な場合には、0.01〜1.0%の範囲で選択的に含有させる。少なすぎると、添加した効果が小さく、多すぎる場合は導電率が低下する。
なお、Mg、Sn、Znは、Cu−Ni−Si系、Cu−Ni−Co−Si系、Cu−Co−Si系銅合金に添加することで、いずれも耐応力緩和特性が向上する。それぞれを単独で添加した場合よりも併せて添加した場合に相乗効果によってさらに耐応力緩和特性が向上する。また、半田脆化を著しく改善する効果がある。
(Mg)
Mg improves stress relaxation resistance. Therefore, when the stress relaxation resistance is required, it is selectively contained in the range of 0.01 to 1.0%. When the amount is too small, the added effect is small, and when the amount is too large, the electrical conductivity decreases.
Note that Mg, Sn, and Zn are all added to Cu—Ni—Si, Cu—Ni—Co—Si, and Cu—Co—Si copper alloys to improve the stress relaxation resistance. The stress relaxation resistance is further improved by a synergistic effect when each of them is added together than when they are added alone. In addition, there is an effect of remarkably improving solder embrittlement.
(製造条件)
次に、本発明の銅合金材料の好ましい製造条件について以下に説明する。本発明の銅合金材料は、例えば、鋳造、熱間圧延、冷間圧延1、中間焼鈍、冷間圧延2、溶体化熱処理、時効熱処理、仕上げ冷間圧延、低温焼鈍、の各工程を経て製造される。本発明の銅合金材料は、従来のコルソン系合金とほぼ同様の設備で製造できる。所定の集合組織を得るには、各工程の製造条件を適宜調整する必要がある。この点、本発明の銅合金材料は、熱間圧延後の処理か、溶体化処理前の冷間圧延と中間焼鈍かの、少なくともいずれかの処理もしくは加工を所定の条件で行なうことで製造することができる。
(Production conditions)
Next, preferable production conditions for the copper alloy material of the present invention will be described below. The copper alloy material of the present invention is manufactured through, for example, the steps of casting, hot rolling, cold rolling 1, intermediate annealing, cold rolling 2, solution heat treatment, aging heat treatment, finish cold rolling, and low temperature annealing. Is done. The copper alloy material of the present invention can be manufactured with almost the same equipment as a conventional Corson alloy. In order to obtain a predetermined texture, it is necessary to appropriately adjust the manufacturing conditions in each step. In this regard, the copper alloy material of the present invention is manufactured by performing at least one of treatment or processing under a predetermined condition, either a treatment after hot rolling, a cold rolling before solution treatment, or an intermediate annealing. be able to.
鋳造は、上記組成範囲に成分調整した銅合金溶湯を鋳造する。そして、鋳塊を面削後、800〜1000℃で加熱または均質化熱処理した後に熱間圧延する。ここで、通常のコルソン系合金の製造方法では熱間圧延後ただちに水冷などの方法で急冷する。一方、本発明の銅合金材料を製造する方法の好ましい第1の実施態様では、熱間圧延後のRD方向に(100)方位をもつ結晶粒を増加させるために急冷を実施せず、徐冷する。徐冷する際の冷却速度は5K/秒以下が好ましい。RD方向に(100)方位をもつ結晶粒は他の方位に比べて、低温で回復現象を生じ、ND方向から解析したときの熱間圧延組織中に{h k l}<100>方位の面積率を高めることができる。この熱間圧延組織に{h k l}<100>をもつ方位粒を高めると、後の工程である溶体化工程において、Cube方位{001}<100>やRDW{420}<100>の方位をもつ結晶粒の面積率を高めることができる。冷却の際の温度が350℃未満では組織の変化は生じないため、温度が350℃未満まで冷却された後には、製造時間を短縮するために水冷などの方法で急冷してもよい。 Casting is performed by casting a molten copper alloy whose components are adjusted to the above composition range. Then, after chamfering the ingot, heating or homogenizing heat treatment is performed at 800 to 1000 ° C. and then hot rolling is performed. Here, in a normal method for producing a Corson alloy, it is rapidly cooled by a method such as water cooling immediately after hot rolling. On the other hand, in the first preferred embodiment of the method for producing a copper alloy material of the present invention, rapid cooling is not performed in order to increase the number of crystal grains having a (100) orientation in the RD direction after hot rolling. To do. The cooling rate at the time of slow cooling is preferably 5 K / second or less. Crystal grains having a (100) orientation in the RD direction cause a recovery phenomenon at a lower temperature than other orientations, and the area of the {h k l} <100> orientation in the hot rolled structure when analyzed from the ND direction. The rate can be increased. When the orientation grains having {h k l} <100> are increased in this hot rolled structure, the orientation of the Cube orientation {001} <100> or RDW {420} <100> is obtained in the subsequent solution treatment step. The area ratio of the crystal grains having can be increased. Since the structure does not change when the temperature at the time of cooling is less than 350 ° C., after the temperature is cooled to less than 350 ° C., it may be rapidly cooled by a method such as water cooling in order to shorten the production time.
次に、前記熱間圧延と冷却とが完了後、表面を面削し、冷間圧延1を行う。この冷間圧延1の圧延率が低すぎると、その後最終製品まで製造してもBrass方位やS方位などが発達し、Cube方位やRDW方位の面積率を高めることが難しくなる。そのため、冷間圧延1の圧延率は70%以上とすることが好ましい。 Next, after the hot rolling and cooling are completed, the surface is chamfered and cold rolling 1 is performed. If the rolling rate of the cold rolling 1 is too low, the Brass orientation, the S orientation, and the like develop even if the final product is manufactured thereafter, and it becomes difficult to increase the area ratio of the Cube orientation and the RDW orientation. Therefore, the rolling rate of the cold rolling 1 is preferably 70% or more.
冷間圧延1の後、300〜800℃で5秒〜2時間、中間焼鈍を施す。中間焼鈍の後、圧延率5〜50%の冷間圧延2を行う。この中間焼鈍と冷間圧延2を繰り返し行うと、さらにCube方位やRDWの面積率を高めることができる。そこで、本発明の銅合金材料を製造する方法の好ましい第2の実施態様では、前記中間焼鈍と冷間圧延2とを2回以上繰り返して行なう。ここで、結晶粒が過度に粗大化すると強度が低下するので、結晶粒が20μm以上に粗大化しないようにすることが好ましい。中間焼鈍後の冷間圧延率が低すぎると結晶粒が粗大化するため5〜50%以上の圧延率で冷間圧延を施すことが好ましい。 After cold rolling 1, intermediate annealing is performed at 300 to 800 ° C. for 5 seconds to 2 hours. After the intermediate annealing, cold rolling 2 with a rolling rate of 5 to 50% is performed. When this intermediate annealing and cold rolling 2 are repeated, the Cube orientation and the area ratio of RDW can be further increased. Therefore, in a second preferred embodiment of the method for producing a copper alloy material of the present invention, the intermediate annealing and the cold rolling 2 are repeated twice or more. Here, since an intensity | strength will fall when a crystal grain coarsens too much, it is preferable not to make a crystal grain coarsen to 20 micrometers or more. If the cold rolling rate after the intermediate annealing is too low, the crystal grains become coarse, so it is preferable to perform cold rolling at a rolling rate of 5 to 50% or more.
溶体化処理は、600〜1000℃で5秒〜300秒の条件で行う。NiやCoの濃度によって必要な温度条件が変わるため、Ni、Co濃度に応じて適切な温度条件を選択する必要がある。溶体化温度が低すぎると、時効処理工程において強度が不足し、溶体化温度が高すぎると材料が必要以上に軟化して形状制御が難しくなるため好ましくない。 The solution treatment is performed at 600 to 1000 ° C. for 5 to 300 seconds. Since necessary temperature conditions vary depending on the Ni and Co concentrations, it is necessary to select appropriate temperature conditions according to the Ni and Co concentrations. If the solution temperature is too low, the strength is insufficient in the aging treatment step, and if the solution temperature is too high, the material softens more than necessary and shape control becomes difficult.
時効処理は、400〜600℃で0.5時間〜8時間の範囲で行う。NiやCoの濃度によって必要な温度条件が変わるため、Ni、Co濃度に応じて適切な温度条件を選択する必要がある。時効処理の温度が低すぎると、時効析出量が低下し強度が不足する。また、時効処理の温度が高すぎると析出物が粗大化し、強度が低下する。 The aging treatment is performed at 400 to 600 ° C. for 0.5 to 8 hours. Since necessary temperature conditions vary depending on the Ni and Co concentrations, it is necessary to select appropriate temperature conditions according to the Ni and Co concentrations. When the temperature of the aging treatment is too low, the amount of aging precipitation is lowered and the strength is insufficient. Moreover, when the temperature of an aging treatment is too high, a precipitate will coarsen and intensity | strength will fall.
溶体化処理後の仕上げ冷間圧延の加工率を50%以下とするのが好ましい。このように加工率を適正に規制することにより、Cube方位やRDW方位がBrass、S、Copper方位などへと方位回転することを抑制し、本発明で規定する集合組織の状態を達成することができる。 The processing rate of finish cold rolling after the solution treatment is preferably 50% or less. By appropriately regulating the processing rate in this way, it is possible to suppress the azimuth rotation of the Cube azimuth and RDW azimuth to the Brass, S, Copper azimuth, etc., and achieve the texture state defined in the present invention it can.
低温焼鈍は、300〜700℃で2秒間〜5時間の条件で行う。この焼鈍によって、転位の再配列が起き、より熱的に安定な原子配置に変化することによって、耐応力緩和特性が向上する。 The low temperature annealing is performed at 300 to 700 ° C. for 2 seconds to 5 hours. This annealing causes rearrangement of dislocations and changes to a more thermally stable atomic arrangement, thereby improving the stress relaxation resistance.
本発明の銅合金材料を得るより好ましい製造方法においては、前記第1の実施態様と第2の実施態様の両方の工程を行い、つまり、熱間圧延後に少なくとも350℃未満の温度域となるまでは急冷ではなく徐冷(好ましくは冷却速度5K/秒以下)し、中間焼鈍と冷間圧延2とを2回以上繰り返して行なう。 In a more preferable manufacturing method for obtaining the copper alloy material of the present invention, the steps of both the first embodiment and the second embodiment are performed, that is, until a temperature range of at least less than 350 ° C. is obtained after hot rolling. Is not rapid quenching but slow cooling (preferably at a cooling rate of 5 K / sec or less), and intermediate annealing and cold rolling 2 are repeated twice or more.
上記方法により製造された本発明の銅合金材料が所定の特性を有することを保証するためには、銅合金材料の組織が規定範囲内であるかどうか、EBSD解析によって検証すればよい。 In order to ensure that the copper alloy material of the present invention produced by the above method has a predetermined property, it is sufficient to verify whether the structure of the copper alloy material is within a specified range by EBSD analysis.
以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
下記表1、2に示す各組成の銅合金を鋳造して銅合金板を製造し、強度、導電率、曲げ加工性などの各特性を評価した。 Copper alloy plates were produced by casting copper alloys having the compositions shown in Tables 1 and 2 below, and properties such as strength, electrical conductivity, and bending workability were evaluated.
まず、DC(Direct Chill)法により鋳造して、厚さ30mm,幅100mm,長さ150mmの鋳塊を得た。次にこれら鋳塊を950℃に加熱し、この温度に1時間保持後、厚さ14mmに熱間圧延し、1K/秒の冷却速度で徐冷し、300℃以下になったら水冷した。次いで両面を2mm以上ずつ面削して酸化被膜を除去した後、圧延率90〜95%の冷間圧延1を施した。この後、350〜700℃で30分の中間焼鈍と、10〜30%の冷間圧延率で冷間圧延2を行った。その後、700〜950℃で5秒〜10分の種々の条件で溶体化処理を行い、直ちに15K/秒以上の冷却速度で冷却した。次に不活性ガス雰囲気中で、400〜600℃で2時間の時効処理を施し、その後圧延率20%以下の仕上げ圧延を行い、最終的な板厚を0.2mmに揃えた。仕上げ圧延後、400℃で30秒の低温焼鈍を施して、各合金組成の銅合金板材を得た。
なお、表2の中の比較例9〜12に関しては、上記の熱間圧延において700℃以上950℃以下の温度域で圧延率60%以上、かつ400℃以上700℃未満の温度域で圧延率40%以上とし、85%以上の冷間圧延の後に中間焼鈍を行わずに、100℃から700℃の昇温時間が20秒間以下で700℃から850℃の温度に到達する溶体化熱処理を行い、圧延率0〜50%の中間圧延と、その後に400〜500℃の時効析出熱処理、圧延率0〜40%の仕上げ圧延、150〜550℃の低温焼鈍を行った。
First, it cast by DC (Direct Chill) method, and obtained the ingot of thickness 30mm, width 100mm, and length 150mm. Next, these ingots were heated to 950 ° C., held at this temperature for 1 hour, hot-rolled to a thickness of 14 mm, gradually cooled at a cooling rate of 1 K / second, and cooled to water at 300 ° C. or lower. Next, both surfaces were chamfered by 2 mm or more to remove the oxide film, and then cold rolling 1 with a rolling rate of 90 to 95% was performed. After that, cold rolling 2 was performed at 350 to 700 ° C. for 30 minutes with an intermediate annealing and a cold rolling rate of 10 to 30%. Thereafter, solution treatment was performed at 700 to 950 ° C. under various conditions for 5 seconds to 10 minutes, and immediately cooled at a cooling rate of 15 K / second or more. Next, an aging treatment was performed at 400 to 600 ° C. for 2 hours in an inert gas atmosphere, and then finish rolling with a rolling rate of 20% or less was performed, so that the final plate thickness was adjusted to 0.2 mm. After the finish rolling, low temperature annealing was performed at 400 ° C. for 30 seconds to obtain copper alloy sheet materials having various alloy compositions.
In addition, regarding Comparative Examples 9 to 12 in Table 2, the rolling rate is 60% or more in the temperature range of 700 ° C. or more and 950 ° C. or less and the rolling rate in the temperature range of 400 ° C. or more and less than 700 ° C. in the above hot rolling. 40% or more, without performing intermediate annealing after 85% or more of cold rolling, a solution heat treatment is performed to reach a temperature of 700 to 850 ° C. in a temperature rising time of 100 to 700 ° C. within 20 seconds. Then, intermediate rolling at a rolling rate of 0 to 50%, followed by aging precipitation heat treatment at 400 to 500 ° C., finish rolling at a rolling rate of 0 to 40%, and low temperature annealing at 150 to 550 ° C. were performed.
このようにして製造した銅合金板に対して、各例とも、低温焼鈍処理を施した銅合金板から切り出した試料を使用し、以下に示す試験及び評価を実施した。 With respect to the copper alloy plate thus manufactured, in each example, a sample cut out from the copper alloy plate subjected to the low-temperature annealing treatment was used, and the following tests and evaluations were performed.
(1)各結晶方位粒の面積率
銅合金板試料の組織について、ND方向からEBSD解析したときのCube方位およびRDW方位の結晶粒の面積率を次のように求めた。EBSD法により、約600μm四方の測定領域で、スキャンステップが0.5μmの条件で測定を行った。測定面積は結晶粒を400個以上含むことを基準として調整した。上記の通り、各理想方位から10°以下のずれ角度を有する結晶粒の原子面について、各方位を有する原子面の面積を求めて、該面積を全測定面積で割ることで各方位の結晶粒の面積率を得た。ここで、Cube方位方位からのずれ角度が10°以下かつRDW方位からのずれ角度が10°以下の結晶粒については同一方位粒とした。
(1) Area ratio of each crystal orientation grain About the structure of the copper alloy plate sample, the area ratio of the crystal grains of the Cube orientation and the RDW orientation when the EBSD analysis was performed from the ND direction was determined as follows. The measurement was performed by the EBSD method in a measurement area of about 600 μm square under the condition that the scan step was 0.5 μm. The measurement area was adjusted based on the inclusion of 400 or more crystal grains. As described above, for the atomic plane of a crystal grain having a deviation angle of 10 ° or less from each ideal orientation, the area of the atomic plane having each orientation is obtained, and the crystal grain in each orientation is divided by the total measurement area The area ratio was obtained. Here, the crystal grains having a deviation angle of 10 ° or less from the Cube orientation and a deviation angle of 10 ° or less from the RDW orientation were set to the same orientation.
(2)引張強度
引張強さは、各供試材からJIS Z 2201記載の5号試験片を切り出して、JIS Z 2241に準拠して求めた。引張強度は5MPaの整数倍に丸めて示した。
(3)導電率
導電率はJIS H 0505に準拠して求めた。
(4)曲げ加工性
曲げ加工試験は、曲げ試験片の幅wを10mmで、曲げR=0〜0.4mmの0.025mm単位として、BW(Bad Way:圧延垂直方向)の90°曲げを行った。曲げ加工性は、割れの生じない最小の曲げ半径(R)と板厚(t)の比をR/tとして評価した。供試材が有した引張強度のレベルに応じて、合格基準は以下の通りとした。引張強度が800MPa未満の場合はR/t=0.5以下を合格とし、引張強度が800MPa以上900MPa未満はR/t=1.5以下を合格とし、引張強度が900MPa以上の場合はR/t=2.0以下を合格とした。
これらの結果を表1、2に示す。
(2) Tensile strength Tensile strength was determined in accordance with JIS Z 2241 by cutting out No. 5 test piece described in JIS Z 2201 from each specimen. The tensile strength is shown rounded to an integral multiple of 5 MPa.
(3) Electrical conductivity Electrical conductivity was determined according to JIS H 0505.
(4) Bending workability The bending work test is performed by performing a BW (Bad Way: vertical direction of rolling) 90 ° bending with a width w of a bending test piece of 10 mm and a bending R = 0 to 0.4 mm in 0.025 mm units. went. Bending workability was evaluated by setting the ratio of the minimum bending radius (R) and thickness (t) at which no cracks occurred to R / t. The acceptance criteria were as follows according to the level of tensile strength of the test material. When the tensile strength is less than 800 MPa, R / t = 0.5 or less is accepted, when the tensile strength is 800 MPa or more and less than 900 MPa, R / t = 1.5 or less is accepted, and when the tensile strength is 900 MPa or more, R / t t = 2.0 or less was accepted.
These results are shown in Tables 1 and 2.
表1に、本発明の実施例を示す。実施例1〜31は集合組織が本発明の範囲内にあり、引張強度、導電率、曲げ加工性がいずれも優れるものであった。 Table 1 shows examples of the present invention. In Examples 1 to 31, the texture was within the range of the present invention, and the tensile strength, conductivity, and bending workability were all excellent.
表2に本発明に対する比較例を示す。比較例1、2、5は、Niおよび/またはCoの含有量とSiの含有量とが本発明の範囲より少なかったため、引張強度が劣った。比較例3、4、6、7は、Niおよび/またはCoの含有量が多く、熱間圧延時に割れが生じたため製造を中止した。比較例8は、Siの添加量が多すぎたため導電率が劣った。比較例2−2、2−3は実施例2と同一の鋳塊を用いた例である。比較例2−2は、熱間圧延後ただちに水冷し、中間焼鈍と冷間圧延2を省略し、その他については実施例2と同様に作製した例であるが、Cube方位の面積率とRDWの面積率が低く、本発明例と比較して曲げ加工性が著しく劣った。比較例2−3は、熱間圧延後ただちに水冷すること以外は実施例2と同様に作製した例であるが、RDWの面積率が本発明の範囲内を満たしておらず、曲げ加工性が実施例に比べて大きく劣った。比較例9〜12はcube方位面積率が低く、曲げ加工性が劣った。 Table 2 shows a comparative example for the present invention. Comparative Examples 1, 2, and 5 were inferior in tensile strength because the contents of Ni and / or Co and the content of Si were less than the scope of the present invention. In Comparative Examples 3, 4, 6, and 7, production was stopped because the content of Ni and / or Co was large and cracking occurred during hot rolling. In Comparative Example 8, the conductivity was inferior because the amount of Si added was too large. Comparative Examples 2-2 and 2-3 are examples using the same ingot as in Example 2. Comparative Example 2-2 is an example in which water cooling is performed immediately after hot rolling, intermediate annealing and cold rolling 2 are omitted, and the others are produced in the same manner as in Example 2. However, the area ratio of the Cube orientation and the RDW The area ratio was low, and the bending workability was remarkably inferior compared with the examples of the present invention. Comparative Example 2-3 is an example prepared in the same manner as in Example 2 except that water cooling is performed immediately after hot rolling, but the area ratio of RDW does not satisfy the scope of the present invention, and bending workability is improved. It was greatly inferior to the examples. Comparative Examples 9 to 12 had a low cube orientation area ratio and were inferior in bending workability.
表3に他の実施例を示す。 Table 3 shows another embodiment.
実施例10−2、18−2、25−2は、表1の実施例10、18、25とそれぞれ同一の鋳塊を用いて、熱間圧延後ただちに水冷し、中間焼鈍と冷間圧延2を2度繰り返し、その他については表1の各実施例と同様に作製し、同様に各特性を評価した例である。これらはCube方位とRDW方位の結晶粒の面積率が高く、本発明の範囲内にあり、強度、曲げ加工性、導電率に優れる。
実施例10−3、18−3、25−3は、表1の実施例10、18、25とそれぞれ同一の鋳塊を用いて、中間焼鈍と冷間圧延2を2度繰り返し、その他については表1の各実施例と同様に作製し、同様に各特性を評価した例である。これらはCube方位とRDW方位の面積率が特に高く、強度、導電率に優れ、かつ、特に優れた曲げ加工性を示した。
Examples 10-2, 18-2, and 25-2 were water-cooled immediately after hot rolling using the same ingots as Examples 10, 18 and 25 of Table 1, respectively, and intermediate annealing and cold rolling 2 These are repeated twice, and the others are prepared in the same manner as in the examples of Table 1, and the characteristics are evaluated in the same manner. These have a high area ratio of crystal grains of Cube orientation and RDW orientation, are within the scope of the present invention, and are excellent in strength, bending workability, and electrical conductivity.
In Examples 10-3, 18-3, and 25-3, using the same ingot as each of Examples 10, 18, and 25 in Table 1, intermediate annealing and cold rolling 2 were repeated twice, and the others were This is an example in which each of the examples in Table 1 was produced in the same manner and each characteristic was similarly evaluated. These had particularly high area ratios in the Cube orientation and RDW orientation, were excellent in strength and conductivity, and exhibited particularly excellent bending workability.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009274997A JP5448763B2 (en) | 2009-12-02 | 2009-12-02 | Copper alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009274997A JP5448763B2 (en) | 2009-12-02 | 2009-12-02 | Copper alloy material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011117034A JP2011117034A (en) | 2011-06-16 |
JP5448763B2 true JP5448763B2 (en) | 2014-03-19 |
Family
ID=44282689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009274997A Active JP5448763B2 (en) | 2009-12-02 | 2009-12-02 | Copper alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5448763B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4987155B1 (en) * | 2011-03-09 | 2012-07-25 | Jx日鉱日石金属株式会社 | Cu-Ni-Si alloy and method for producing the same |
JP5539932B2 (en) * | 2011-08-01 | 2014-07-02 | Jx日鉱日石金属株式会社 | Cu-Co-Si alloy with excellent bending workability |
WO2013021970A1 (en) * | 2011-08-05 | 2013-02-14 | 古河電気工業株式会社 | Rolled copper foil for secondary battery collector and production method therefor |
WO2013021969A1 (en) * | 2011-08-05 | 2013-02-14 | 古河電気工業株式会社 | Rolled copper foil for secondary battery collector and production method therefor |
JP5117604B1 (en) * | 2011-08-29 | 2013-01-16 | Jx日鉱日石金属株式会社 | Cu-Ni-Si alloy and method for producing the same |
JP6246454B2 (en) * | 2011-11-02 | 2017-12-13 | Jx金属株式会社 | Cu-Ni-Si alloy and method for producing the same |
JP2013104078A (en) * | 2011-11-11 | 2013-05-30 | Jx Nippon Mining & Metals Corp | Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME |
CN104011236B (en) * | 2011-12-22 | 2016-03-16 | 三菱伸铜株式会社 | Mould wear resistance and the good Cu-Ni-Si series copper alloy plate of shearing and manufacture method thereof |
JP6226511B2 (en) * | 2012-02-14 | 2017-11-08 | Jx金属株式会社 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
JP6111028B2 (en) * | 2012-03-26 | 2017-04-05 | Jx金属株式会社 | Corson alloy and manufacturing method thereof |
JP2016084542A (en) * | 2012-03-26 | 2016-05-19 | Jx金属株式会社 | Corson alloy and manufacturing method therefor |
CN104126251B (en) * | 2013-02-23 | 2018-02-06 | 古河电气工业株式会社 | The manufacture method of terminal, wire connecting fabric body and terminal |
JP6581755B2 (en) * | 2013-08-09 | 2019-09-25 | 古河電気工業株式会社 | Copper alloy sheet and manufacturing method thereof |
WO2015152261A1 (en) * | 2014-03-31 | 2015-10-08 | 古河電気工業株式会社 | Rolled copper foil, method for producing rolled copper foil, flexible flat cable, and method for producing flexible flat cable |
KR101935987B1 (en) | 2014-05-30 | 2019-01-07 | 후루카와 덴키 고교 가부시키가이샤 | Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet |
JP6387755B2 (en) * | 2014-09-10 | 2018-09-12 | 三菱マテリアル株式会社 | Copper rolled sheets and parts for electronic and electrical equipment |
JP6378819B1 (en) | 2017-04-04 | 2018-08-22 | Dowaメタルテック株式会社 | Cu-Co-Si-based copper alloy sheet, manufacturing method, and parts using the sheet |
JP6756348B2 (en) * | 2018-08-15 | 2020-09-16 | 三菱マテリアル株式会社 | Copper rolled plate and parts for electronic and electrical equipment |
JP7430502B2 (en) * | 2019-09-19 | 2024-02-13 | Jx金属株式会社 | Copper alloy wire and electronic equipment parts |
CN114855026B (en) * | 2022-03-25 | 2023-02-14 | 宁波博威合金材料股份有限公司 | High-performance precipitation strengthening type copper alloy and preparation method thereof |
-
2009
- 2009-12-02 JP JP2009274997A patent/JP5448763B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011117034A (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5448763B2 (en) | Copper alloy material | |
JP4809935B2 (en) | Copper alloy sheet having low Young's modulus and method for producing the same | |
JP4934759B2 (en) | Copper alloy sheet, connector using the same, and method for producing copper alloy sheet | |
JP4357536B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent strength and formability | |
JP4875768B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP4584692B2 (en) | High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof | |
TWI447239B (en) | Copper alloy sheet and method of manufacturing the same | |
JP4596493B2 (en) | Cu-Ni-Si alloy used for conductive spring material | |
JP4885332B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP5476149B2 (en) | Copper alloy with low strength anisotropy and excellent bending workability | |
KR101935987B1 (en) | Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet | |
JP5525247B2 (en) | Copper alloy with high strength and excellent bending workability | |
WO2010064547A1 (en) | Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor | |
JP5503791B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP5619389B2 (en) | Copper alloy material | |
WO2013018228A1 (en) | Copper alloy | |
JP5451674B2 (en) | Cu-Si-Co based copper alloy for electronic materials and method for producing the same | |
KR101114116B1 (en) | Copper Alloy Material for Electric and Electronic Apparatuses, and Electric and Electronic Components | |
JP5261619B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP2010270355A (en) | Copper alloy sheet material and method for producing the same | |
JP5876995B2 (en) | Copper alloy sheet with excellent strength, bending workability, stress relaxation characteristics, and fatigue characteristics | |
JP5117602B1 (en) | Copper alloy sheet with low deflection coefficient and excellent bending workability | |
KR20240137545A (en) | Copper alloy sheet and its manufacturing method | |
JP5595961B2 (en) | Cu-Ni-Si based copper alloy for electronic materials and method for producing the same | |
JP2011012302A (en) | Copper alloy material for terminal/connector and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120801 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131224 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5448763 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |