JPH0418016B2 - - Google Patents

Info

Publication number
JPH0418016B2
JPH0418016B2 JP60239827A JP23982785A JPH0418016B2 JP H0418016 B2 JPH0418016 B2 JP H0418016B2 JP 60239827 A JP60239827 A JP 60239827A JP 23982785 A JP23982785 A JP 23982785A JP H0418016 B2 JPH0418016 B2 JP H0418016B2
Authority
JP
Japan
Prior art keywords
temperature
copper
hot
rolling
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60239827A
Other languages
Japanese (ja)
Other versions
JPS6299430A (en
Inventor
Akira Sugawara
Mitsutomi Iwasaka
Kazutaka Nakajima
Naoyuki Kanehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KINZOKU KOGYO KK
DOWA KOGYO KK
Original Assignee
DOWA KINZOKU KOGYO KK
DOWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KINZOKU KOGYO KK, DOWA KOGYO KK filed Critical DOWA KINZOKU KOGYO KK
Priority to JP23982785A priority Critical patent/JPS6299430A/en
Publication of JPS6299430A publication Critical patent/JPS6299430A/en
Publication of JPH0418016B2 publication Critical patent/JPH0418016B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ばね性、強度、導電率および加工性
が共に優れた端子・コネクター用の銅基合金およ
びその製造法に関する。 〔従来の技術〕 プラグ側およびソケツト側の導電端子を構成す
る端子・コネクター用材料は、その形状や大きさ
を問わず、弾性、強度、応力緩和特性、耐食性等
の様々の諸特性を兼備したうえ加工が容易で且つ
安価な材料であることが要求される。かような端
子・コネクター用材料として、従来より最も普通
に使用されているものに黄銅およびりん青銅があ
る。Ni,Fe,P,SnおよびBをCuに適量含有さ
せた導電材料(リードフレーム材料)が同一出願
人に係る特公昭59−39492号公報に示されている。 〔発明が解決しようとする問題点〕 黄銅は成形加工性が非常に良好で且つ安価であ
るという長所を持つが、耐食性、耐応力腐食割れ
性が極端に悪いので、急激な進歩を遂げている最
近の電気または電子工業における端子・コネクタ
ー材料としては信頼性に欠ける場合がある。りん
青銅は強度、ばね性、耐食性および耐応力腐食割
れ性は良好であるが、Snを3.0%以上含有するの
で高価であり、また応力緩和性が悪いという問題
がある。 特公昭59−39492号公報に記載の材料はリード
フレーム材料としては優れたものであるが、ばね
限界値が低いので端子・コネクター用には適さな
い。また、強度も端子・コネクター用としては十
分ではない。 〔問題点を解決する手段〕 本発明は上記のような問題点を解決した端子・
コネクター用材料として、重量%において、
Sn;1.0〜2.0%,Ni;0.05〜0.40%,Fe;0.16〜
0.40%,P;0.05〜0.10%,B;0.005〜0.06%、
残部がCuおよび不可避的不純物からなり、Snお
よびBを固溶した銅マトリツクス中にFe−Ni−
P系化合物が分散析出した組織を有する銅基合金
を提供するものである。本発明による銅基合金
は、Snの適量の添加によつてばね性を発現させ
ると共に強度を高め且つFe−Ni−P系化合物に
よる析出硬化によつて端子・コネクターにとつて
好ましい諸特性を発現した点に基本的な特徴があ
る。そして、端子・コネクターにとつて好ましい
諸特性を有利に発現させるための本発明合金の製
造法として、Sn;1.0〜2.0%,Ni;0.05〜0.40%,
Fe;0.16〜0.40%,P;0.05〜0.10%,B;0.005
〜0.06%、残部がCuおよび不可避的不純物からな
る銅基合金の鋳片を製造する工程、 この鋳片を圧下率60%以上、熱延仕上温度700
℃以上のもとで熱間圧延したうえ、該熱延仕上温
度から300℃以下の温度にまで30℃/分以上の冷
却速度で冷却して前記合金元素の実質的に全てが
銅中に固溶した熱延板を得る工程、 得られた熱延板を圧下率50%以上のもとで第一
回目の冷間圧延を行い、この第一回目の冷間圧延
のあとで400〜600℃の温度で5〜720分間の焼鈍
行つてSnおよびBを固溶した銅マトリツクス中
にFe−Ni−P系化合物を微細に分散析出させる
工程、 この焼鈍材を、所望板厚にまで冷間圧延によつ
て板厚減少を行う工程、 そして、最終冷間圧延後に300〜750℃の温度で
5〜180秒のテンシヨンアニールを行う工程、 を経る端子・コネクター用銅基合金の製造法を提
供するものである。 本発明の銅基合金の添加元素の含有量(重量
%)について、その範囲を定めた理由の概要を説
明すると如くである。 Snは、銅マトリツクス中に固溶して強度とば
ね限界値を向上させる。この効果はSn含有量が
1.0%未満では十分ではなく、他方、Sn含有量が
2.0%を越えると導電性および熱間加工性が悪く
なり、また経済的にも不利となる。この理由から
本発明銅基合金のSn含有量は1.0〜2.0%の範囲と
する。 Niは、銅マトリツクス中に固溶して強度、耐
軟化性および耐食性を向上させるが、さらに、本
発明合金の特徴であるFe−Ni−P系化合物の形
成に寄与する元素であり、このためには少なくと
も0.05%以上の添加が必要である。しかし、0.40
%を越えて含有させると、導電率の低下が顕著と
なり、また経済的にも不利となる。したがつて、
Ni含有量は0.05〜0.40%とする。 Feは、銅マトリツクス中に過飽和に固溶させ
ると時効によりNiおよびPと化合物を形成して
銅マトリツクス中に析出し、強度、ばね限界値お
よび耐軟化性を向上させる。Fe含有量が0.16%未
満では強度、ばね限界値および耐軟化性が低く、
0.40%を越えると導電率および成形加工性が低下
する。したがつて、Fe含有量は0.16〜0.40%の範
囲とする。 Pは、本発明合金の溶製時において脱酸剤とし
て機能し、SnおよびFeの酸化防止作用も供すし
て、健全なインゴツトを得るうえで重要な役割を
果たす。そして、銅マトリツクス中に過飽和に固
溶したPは、FeおよびNiと共にFe−Ni−P系化
合物を形成する。P含有量が0.05%未満ではこの
ような効果が十分ではなく、また0.10%を越えて
添加すると導電性および加工性が悪くなる。した
がつて、P含有量は0.05〜0.10%の範囲とする。 Bは、本発明合金の伸びの改善に寄与する。こ
れは、BがPと共に本発明合金の溶湯の脱酸効果
を高め、銅マトリツクス中の溶質酸素原子を減少
させる結果、加工時の転位との相互作用を減少さ
せるからであると考えられる。Bが0.005%未満
では脱酸効果が十分ではなく伸びの改善効果が十
分に発揮できない。B含有量を多くすれば脱酸効
果は向上するが、Bの銅マトリツクス中への固溶
限は室温で約0.06%付近であり、この固溶限を越
えるとCuとBとの化合物が形成してかえつて加
工性が低下するようになる。この理由からB含有
量は0.005〜0.06%の範囲とする。 このような成分組成をもつ本発明に従う銅基合
金は、主としてSnによる固溶強化とFe−Ni−P
系化合物の析出硬化との相乗的な効果によつて、
端子・コネクターに必要な強度とばね限界値を兼
備し且つ十分な導電率を具備することができる。
このような諸特性は、鋳片から熱間圧延工程と冷
間圧延工程を経て所望の板厚にまで加工するさい
の製造条件を適切にコントロールすることによつ
て有利に発揮させることができる。以下にその製
造法の詳細を説明する。 熱間圧延工程 本発明に従う成分組成の鋳片を溶解鋳造によつ
て製造し、この鋳片(鋳塊)を熱間圧延に供する
のであるが、この熱間圧延は鋳片を850℃以上に
加熱し、熱延圧出下率を60%以上、好ましくは90
%以上とし熱延仕上温度を700℃以上として実施
するのがよい。これによつて、鋳造組織を完全に
つぶすことができ、且つ鋳塊に生じている偏析の
影響をなくすことができる。 そして、熱延仕上温度から300℃以下にまでの
温度域を30℃/分以上の冷却速度で冷却する。こ
の冷却は熱延したあとただちに急水冷を実施する
ことによつて行うのがよい。これよつてFe,Ni
およびPが完全に固溶した熱延材を得ることがで
きる。この熱延後の冷却を30℃/分より遅い冷却
速度で行うとその冷却過程においてこれらの元素
が析出して粗大なFe−Ni−P系化合物が生ずる
ことになる。この温度域を前記のように急冷した
としてもその急冷開始温度が700℃より低いと、
また急冷開始温度か700℃以上であつても冷却速
度が30℃/分より遅いと、この間に粗大なFe−
Ni−P系化合物が析出する。この段階で析出し
たFe−Ni−P系化合物は母相と不整合であり、
これによるばね限界値並びに応力緩和特性の向上
は期待できない。したがつて、本発明においては
Fe,Ni,Pが完全に固溶した状態の熱延板が得
られるような熱延条件を採用する点に一つの特徴
がある。なおこの急冷のさいの冷却終点温度につ
いては300℃以下であればよい。300℃以下の温度
においてはFe−Ni−P系化合物の析出は実質上
起こらないからである。 冷間圧延および焼鈍工程 前工程で得られた熱延板は次いで必要に応じて
表面研削あるいは酸洗を行つたあと、焼鈍を挟ん
だ冷間圧延を必要回数行つて所望板厚にまで冷延
するのであるが、最初の冷間圧延と焼鈍の条件を
適切にして、この段階で微細なFe−Ni−P系化
合物を均一に析出させる。 まず、第一回目の冷間圧延は圧下率50%以上、
好ましくは80%以上で行ない、この第一回目の冷
間圧延後の焼鈍を400〜600℃の温度で5〜720分
の条件で実施する。この最初の冷間圧延および焼
鈍の条件は本発明において極めて重要である。第
一回目の冷間圧延の圧下率が50%未満では圧延組
織が均質化せず、引続く焼鈍においてFe−Ni−
P系化合物が均一微細に析出できなくなる。この
最初の焼鈍を600℃を越える温度で実施すると、
析出するFe−Ni−P系化合物が凝集粗大化し、
ばね限界値並びに成形加工性の一層の向上が期待
できなくなるし、400℃未満の温度ではFe−Ni−
P系化合物を析出させるに要する時間が長くなり
すぎるので、最初の焼鈍は400〜600℃の温度で行
い、焼鈍時間は5〜720分の範囲で行えばよい。
焼鈍時間が5分未満ではFe−Ni−P系化合物の
形成が十分でなく、またこの焼鈍による伸びの回
復が不十分となる。しかし、720分を越えるよう
な長時間では微細に析出した析出物の成長が進行
するようになるので好ましくなく、経済的にも負
担となる。 このようにして第一回目の冷間圧延と焼鈍を適
切に行うことによつて、Fe−Ni−P系化合物が
微細且つ均一に析出した材料となるが、以後は所
望厚さにまで、冷間圧延を必要に応じて必要回数
実施すればよい。そのさい数回の冷間圧延を行う
場合には中間焼鈍を挟んでもよい。 そして、所望板厚にまで冷間圧延したあとの冷
延材に、300〜750℃の温度で5〜180秒のテンシ
ヨンアニール処理を実施する。このテンシヨンア
ニールによつてばね限界値の向上と伸びの回復が
実現でき、均質且つ平坦度の良好な製品を得るこ
とができる。このテンシヨンアニール処理を実施
するにさいし、300℃未満の温度では局部残留応
力除去の効果が少なく、他方、750℃を越える温
度では短時間でも材料が軟化してしまうので、テ
ンシヨンアニールの処理温度は300〜750℃の範囲
で行うのがよい。また、その処理時間については
5秒未満では均質な材料が得られず、180秒を越
えても効果には差が現れないので、5〜180秒の
範囲とするのがよい。 以下に本発明の実施例を挙げる。 実施例 第1表にその化学成分値(重量%)を示すNo.1
〜10の銅基合金を高周波真空溶解炉を用いて溶製
し、40mm×40mm×140mmの鋳塊に鋳造した。この
鋳塊を40mm×40mm×20mmの大きさに切断し、この
鋳片を850℃で均熱したあと、厚さ5mmまで熱間
圧延を行い、750℃の温度から水中に冷却した。
得られた熱延板を第一回目の冷間圧延によつて厚
さ1.0mmまで冷延し、次いで550℃×60分間の焼鈍
を行つた。そして、圧下率50%で冷間圧延し、厚
さ0.5mmの冷延板を得た。得られた冷延板を10Kg
f/mm2の張力を付加しながら、400℃×20秒間の
テンシヨンアニール処理を施した。この処理を終
えた材料を試験材とした。なお表中のNo.11は前記
の製造工程を経たものではなく、市販のりん青銅
を低温焼鈍したものである。 各試験材の引張強さ、伸び、導電率、ばね限界
値、軟化温度を測定し、また90°W曲げ加工試験
に供した。これらの測定結果を第1表に併記し
た。引張強さと伸びの測定はJIS−Z−2241に、
導電率の測定はJIS−H−0505に、そしてばね限
界値の測定はJIS−H−3130に従つた。軟化温度
は、試料をその温度で30分加熱したときに加熱後
の硬度が初期硬度の80%となつたときの温度であ
る。90°W曲げ加工試験はCES−M0002−6の規
定に従つた。すなわち、R=0.2mmの冶具で90°W
曲げ加工したときの中央部山表面の状況を調べ、
割れが発生したものを×、ややシワが発生したも
のを△、良好なものを○と評価した。 なお、第1図には、第1表のNo.1〜No.8の合金
について、Sn含有量と引張強さ、伸び、導電率
およびばね限界値との関係を整理して示した。 また、第1表の本発明合金No.5と比較合金No.11
について、応力緩和特性の測定を行い、その結果
を第2表に示した。試験は試験片の中央部の応力
が耐力の80%となるようにU字曲げを行い、150
℃の温度で1000時間保持後の曲げぐせを応力緩和
率として次式により算出した。 応力緩和率(%)={(L1−L2)/(L1−L0)}×
100 ただし、L0;冶具の長さ(mm) L1;開始時の試料長さ(mm) L2;処理後の試料端間の水平距離(mm) である。
[Industrial Field of Application] The present invention relates to a copper-based alloy for terminals and connectors that has excellent spring properties, strength, electrical conductivity, and workability, and a method for producing the same. [Prior art] Terminal/connector materials that make up the conductive terminals on the plug side and socket side have various properties such as elasticity, strength, stress relaxation properties, and corrosion resistance, regardless of their shape or size. Moreover, it is required to be a material that is easy to process and inexpensive. Brass and phosphor bronze are the most commonly used materials for such terminals and connectors. A conductive material (lead frame material) containing appropriate amounts of Ni, Fe, P, Sn and B in Cu is disclosed in Japanese Patent Publication No. 59-39492 filed by the same applicant. [Problems to be solved by the invention] Brass has the advantages of very good moldability and low cost, but its corrosion resistance and stress corrosion cracking resistance are extremely poor, so rapid progress has been made. It can be unreliable as a terminal/connector material in modern electrical or electronic industries. Although phosphor bronze has good strength, elasticity, corrosion resistance, and stress corrosion cracking resistance, it is expensive because it contains 3.0% or more of Sn, and it also has poor stress relaxation properties. Although the material described in Japanese Patent Publication No. 59-39492 is excellent as a lead frame material, it has a low spring limit value and is therefore not suitable for terminals and connectors. Also, the strength is not sufficient for terminals and connectors. [Means for solving the problems] The present invention provides a terminal and a device that solves the above-mentioned problems.
As a material for connectors, in weight%,
Sn; 1.0~2.0%, Ni; 0.05~0.40%, Fe; 0.16~
0.40%, P; 0.05-0.10%, B; 0.005-0.06%,
The remainder consists of Cu and unavoidable impurities, and Fe-Ni-
The present invention provides a copper-based alloy having a structure in which a P-based compound is dispersed and precipitated. The copper-based alloy according to the present invention exhibits spring properties and increases strength by adding an appropriate amount of Sn, and exhibits various properties favorable for terminals and connectors by precipitation hardening with Fe-Ni-P-based compounds. There is a basic characteristic in this point. As a method for manufacturing the alloy of the present invention to advantageously exhibit various properties preferable for terminals and connectors, Sn: 1.0 to 2.0%, Ni: 0.05 to 0.40%,
Fe; 0.16-0.40%, P; 0.05-0.10%, B; 0.005
~0.06%, the balance being Cu and unavoidable impurities. The process of manufacturing copper-based alloy slabs, where the slabs are rolled at a reduction rate of 60% or more and hot-rolled at a finishing temperature of 700.
After hot rolling at a temperature of 300°C or higher, substantially all of the alloying elements are solidified in the copper by cooling from the hot rolling finish temperature to a temperature of 300°C or lower at a cooling rate of 30°C/min or higher. The process of obtaining a melted hot-rolled sheet, the obtained hot-rolled sheet is subjected to the first cold rolling at a reduction ratio of 50% or more, and after this first cold rolling, the temperature is 400 to 600℃. Annealing for 5 to 720 minutes at a temperature of Provides a method for producing a copper-based alloy for terminals and connectors, which includes the following steps: a step of reducing the plate thickness by a process of reducing the plate thickness by a method of reducing the thickness of the copper-based alloy, and a step of performing tension annealing at a temperature of 300 to 750°C for 5 to 180 seconds after final cold rolling. It is something to do. The reason for determining the range of the content (wt%) of the additive elements in the copper-based alloy of the present invention will now be briefly explained. Sn forms a solid solution in the copper matrix to improve strength and spring limit. This effect is due to the Sn content.
Less than 1.0% is not sufficient; on the other hand, Sn content
If it exceeds 2.0%, conductivity and hot workability will deteriorate, and it will also be economically disadvantageous. For this reason, the Sn content of the copper-based alloy of the present invention is in the range of 1.0 to 2.0%. Ni is a solid solution in the copper matrix to improve strength, softening resistance, and corrosion resistance, but it is also an element that contributes to the formation of Fe-Ni-P compounds, which are the characteristics of the alloy of the present invention. It is necessary to add at least 0.05% or more. But 0.40
If the content exceeds %, the conductivity will decrease significantly and it will also be economically disadvantageous. Therefore,
Ni content shall be 0.05 to 0.40%. When Fe is dissolved as a supersaturated solid solution in the copper matrix, it forms a compound with Ni and P by aging and precipitates in the copper matrix, improving strength, spring limit value, and softening resistance. If the Fe content is less than 0.16%, the strength, spring limit value and softening resistance will be low;
If it exceeds 0.40%, conductivity and moldability will decrease. Therefore, the Fe content should be in the range of 0.16 to 0.40%. P functions as a deoxidizing agent during melting of the alloy of the present invention, and also provides an anti-oxidation effect for Sn and Fe, thus playing an important role in obtaining a sound ingot. P, which is supersaturated as a solid solution in the copper matrix, forms a Fe--Ni--P based compound together with Fe and Ni. If the P content is less than 0.05%, this effect will not be sufficient, and if it exceeds 0.10%, the conductivity and processability will deteriorate. Therefore, the P content should be in the range of 0.05 to 0.10%. B contributes to improving the elongation of the alloy of the present invention. This is considered to be because B, together with P, enhances the deoxidizing effect of the molten metal of the alloy of the present invention and reduces solute oxygen atoms in the copper matrix, thereby reducing interaction with dislocations during processing. If B is less than 0.005%, the deoxidizing effect will not be sufficient and the elongation improving effect will not be fully exhibited. Increasing the B content improves the deoxidizing effect, but the solid solubility limit of B in the copper matrix is around 0.06% at room temperature, and when this solid solubility limit is exceeded, compounds of Cu and B are formed. On the contrary, workability deteriorates. For this reason, the B content is set in the range of 0.005 to 0.06%. The copper-based alloy according to the present invention having such a composition is mainly solid solution strengthened by Sn and Fe-Ni-P.
Due to the synergistic effect of precipitation hardening of the system compound,
It can have both the strength and spring limit value required for terminals and connectors, and also have sufficient electrical conductivity.
These properties can be advantageously brought out by appropriately controlling the manufacturing conditions when processing a slab to a desired thickness through a hot rolling process and a cold rolling process. The details of the manufacturing method will be explained below. Hot rolling process A slab having the composition according to the present invention is produced by melting and casting, and this slab (ingot) is subjected to hot rolling. Heating and hot rolling reduction rate of 60% or more, preferably 90
% or more, and the hot rolling finishing temperature is preferably 700°C or more. As a result, the cast structure can be completely crushed, and the influence of segregation occurring in the ingot can be eliminated. Then, it is cooled at a cooling rate of 30°C/min or more in a temperature range from the hot rolling finishing temperature to 300°C or less. This cooling is preferably carried out by performing rapid water cooling immediately after hot rolling. This means Fe, Ni
A hot rolled material in which P is completely dissolved in solid solution can be obtained. If this cooling after hot rolling is performed at a cooling rate slower than 30° C./min, these elements will precipitate during the cooling process to form coarse Fe--Ni--P compounds. Even if this temperature range is rapidly cooled as described above, if the rapid cooling start temperature is lower than 700℃,
Furthermore, even if the quenching start temperature is 700°C or higher, if the cooling rate is slower than 30°C/min, coarse Fe-
A Ni-P compound precipitates. The Fe-Ni-P-based compound precipitated at this stage is incompatible with the parent phase,
This cannot be expected to improve the spring limit value or stress relaxation properties. Therefore, in the present invention
One of the characteristics of this method is that hot rolling conditions are adopted such that a hot rolled sheet in which Fe, Ni, and P are completely dissolved in solid solution is obtained. Note that the cooling end point temperature during this rapid cooling may be 300°C or less. This is because precipitation of Fe-Ni-P compounds does not substantially occur at temperatures below 300°C. Cold rolling and annealing process The hot-rolled plate obtained in the previous process is then subjected to surface grinding or pickling as necessary, and then cold-rolled to the desired plate thickness by performing cold rolling with annealing a necessary number of times. However, the initial cold rolling and annealing conditions are made appropriate to uniformly precipitate fine Fe-Ni-P compounds at this stage. First, the first cold rolling has a reduction rate of 50% or more.
It is preferably carried out at 80% or more, and annealing after this first cold rolling is carried out at a temperature of 400 to 600° C. for 5 to 720 minutes. This initial cold rolling and annealing conditions are extremely important in the present invention. If the reduction ratio in the first cold rolling is less than 50%, the rolling structure will not become homogeneous, and in the subsequent annealing, Fe-Ni-
P-based compounds cannot be precipitated uniformly and finely. If this first annealing is carried out at a temperature above 600°C,
The precipitated Fe-Ni-P compounds aggregate and coarsen,
Further improvement in spring limit value and formability cannot be expected, and Fe−Ni−
Since the time required to precipitate the P-based compound is too long, the first annealing may be performed at a temperature of 400 to 600°C and the annealing time may be in the range of 5 to 720 minutes.
If the annealing time is less than 5 minutes, the formation of the Fe-Ni-P-based compound will not be sufficient, and recovery of elongation due to this annealing will be insufficient. However, if the time is longer than 720 minutes, the growth of fine precipitates will progress, which is undesirable and becomes an economical burden. By appropriately performing the first cold rolling and annealing in this way, a material with Fe-Ni-P-based compounds precipitated finely and uniformly is obtained. Inter-rolling may be performed as many times as necessary. If cold rolling is performed several times during this process, intermediate annealing may be performed. After cold rolling to a desired thickness, the cold rolled material is subjected to tension annealing at a temperature of 300 to 750°C for 5 to 180 seconds. Through this tension annealing, it is possible to improve the spring limit value and recover the elongation, and it is possible to obtain a product that is homogeneous and has good flatness. When carrying out this tension annealing treatment, it is important to note that temperatures below 300°C have little effect in relieving local residual stress, while temperatures above 750°C soften the material even for a short period of time. The temperature is preferably 300 to 750°C. Further, regarding the treatment time, it is preferable to set the treatment time to a range of 5 to 180 seconds, since a homogeneous material cannot be obtained if the treatment time is less than 5 seconds, and no difference in effectiveness will be seen even if the treatment time exceeds 180 seconds. Examples of the present invention are listed below. Example No. 1 whose chemical component values (weight %) are shown in Table 1
~10 copper-based alloys were melted using a high-frequency vacuum melting furnace and cast into ingots of 40 mm x 40 mm x 140 mm. This ingot was cut into a size of 40 mm x 40 mm x 20 mm, and the ingot was soaked at 850°C, hot rolled to a thickness of 5 mm, and cooled in water from a temperature of 750°C.
The obtained hot-rolled sheet was cold-rolled to a thickness of 1.0 mm by the first cold rolling, and then annealed at 550°C for 60 minutes. Then, cold rolling was performed at a reduction rate of 50% to obtain a cold rolled plate with a thickness of 0.5 mm. 10kg of the obtained cold-rolled plate
Tension annealing was performed at 400° C. for 20 seconds while applying a tension of f/mm 2 . The material that had undergone this treatment was used as a test material. Note that No. 11 in the table does not undergo the above manufacturing process, but is commercially available phosphor bronze annealed at a low temperature. The tensile strength, elongation, electrical conductivity, spring limit value, and softening temperature of each test material were measured, and the material was also subjected to a 90°W bending test. These measurement results are also listed in Table 1. Measurement of tensile strength and elongation is according to JIS-Z-2241.
The conductivity was measured in accordance with JIS-H-0505, and the spring limit value was measured in accordance with JIS-H-3130. The softening temperature is the temperature at which the hardness after heating becomes 80% of the initial hardness when the sample is heated at that temperature for 30 minutes. The 90°W bending test was conducted in accordance with the regulations of CES-M0002-6. In other words, 90°W with R = 0.2mm jig
Investigate the condition of the central mountain surface when bending,
Those with cracks were rated as x, those with slight wrinkles were rated as △, and those that were good were rated as ○. In addition, in FIG. 1, the relationship between Sn content, tensile strength, elongation, electrical conductivity, and spring limit value is summarized and shown for alloys No. 1 to No. 8 in Table 1. In addition, the present invention alloy No. 5 and comparative alloy No. 11 in Table 1
The stress relaxation properties were measured and the results are shown in Table 2. In the test, U-shaped bending was performed so that the stress in the center of the specimen was 80% of the proof stress.
The bending after holding at a temperature of 1,000 hours was calculated as the stress relaxation rate using the following formula. Stress relaxation rate (%) = {(L 1 − L 2 )/(L 1 − L 0 )}×
100 However, L 0 : Length of the jig (mm) L 1 : Length of the sample at the start (mm) L 2 : Horizontal distance between the edges of the sample after processing (mm).

【表】【table】

【表】【table】

【表】 第1表の結果から次のことが明らかである。 本発明によるNo.1〜No.5の合金は、いずれも引
張強さ50Kgf/mm2以上、ばね限界値45Kgf/mm2
上、導電率33%以上を示し、曲げ加工性に優れ且
つ軟化温度も440℃以上である。したがつて、端
子・コネクター用銅基合金として非常に優れた合
金であることがわかる。 これに対し、Snが本発明で規定するより少な
いNo.6およびNo.7の比較合金、並びにSnとFeが
少ないNo.9の比較合金はいずれも強度おばね限界
値が低い。また、Feが本発明で規定するより多
いNo.10の比較合金は曲げ加工性が劣つている。
Sn量を本発明で規定するより多く含有させたNo.
8の比較合金は導電率が低くなるが端子・コネク
ターとしての特性上は問題ない。しかし熱間加工
性が悪いという欠点がある。 第2表の結果からは、本発明合金は従来の代表
的な端子・コネクター用材料であるりん青銅に比
べて応力緩和特性が優れていることがわかる。 また、第1図に見られるように、本発明合金に
おいてSn量が増加すると強度、ばね限界値並び
に硬度が向上することがわかる。
[Table] The following is clear from the results in Table 1. All alloys No. 1 to No. 5 according to the present invention have a tensile strength of 50 Kgf/mm 2 or more, a spring limit value of 45 Kgf/mm 2 or more, and an electrical conductivity of 33% or more, and have excellent bending workability and a softening temperature. is also over 440℃. Therefore, it can be seen that this is an extremely excellent copper-based alloy for terminals and connectors. On the other hand, comparative alloys No. 6 and No. 7, which contain less Sn than specified in the present invention, and comparative alloy No. 9, which contains less Sn and Fe, both have a low strength spring limit value. In addition, comparative alloy No. 10, which has a higher Fe content than specified in the present invention, has poor bending workability.
No. containing more Sn than specified in the present invention.
Although comparative alloy No. 8 has lower conductivity, there is no problem in terms of characteristics as a terminal/connector. However, it has the disadvantage of poor hot workability. The results in Table 2 show that the alloy of the present invention has superior stress relaxation properties compared to phosphor bronze, which is a typical conventional terminal/connector material. Moreover, as seen in FIG. 1, it can be seen that as the amount of Sn increases in the alloy of the present invention, the strength, spring limit value, and hardness improve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明合金における強度、ばね限界
値、硬度、導電率、伸びとSn含有量との関係を
示した図である。
FIG. 1 is a diagram showing the relationship between strength, spring limit value, hardness, electrical conductivity, elongation, and Sn content in the alloy of the present invention.

Claims (1)

【特許請求の範囲】 1 重量%において、Sn;1.0〜2.0%,Ni;0.05
〜0.40%,Fe;0.16〜0.40%,P;0.05〜0.10%,
B;0.005〜0.06%、残部がCuおよび不可避的不
純物からなり、SnおよびBを固溶した銅マトリ
ツクス中にFe−Ni−P系化合物が分散析出した
組織を有する端子・コネクター用銅基合金。 2 重量%において、Sn;1.0〜2.0%,Ni;0.05
〜0.40%,Fe;0.16〜0.40%,P;0.05〜0.10%,
B;0.005〜0.06%、残部がCuおよび不可避的不
純物からなる銅基合金の鋳片を製造する工程、 この鋳片を圧下率60%以上、熱延仕上温度700
℃以上のもとで熱間圧延したうえ、該熱延仕上温
度から300℃以下の温度にまで30℃/分以上の冷
却速度で冷却して前記合金元素の実質的に全てが
銅中に固溶した熱延板を得る工程、 該熱延板を圧下率50%以上のもとで第一回目の
冷間圧延を行い、この第一回目の冷間圧延のあと
で400〜600℃の温度で5〜720分間の焼鈍を行つ
てSnおよびBを固溶した銅マトリツクス中にFe
−Ni−P系化合物を微細に分散析出させる工程、 この焼鈍材を、所望板厚にまで冷間圧延によつ
て板厚減少を行う工程、そして、 最終冷間圧延後に300〜750℃の温度で5〜180
秒のテンシヨンアニールを行う工程、 を経る端子・コネクター用銅基合金の製造法。
[Claims] 1% by weight: Sn: 1.0-2.0%, Ni: 0.05
~0.40%, Fe; 0.16~0.40%, P; 0.05~0.10%,
B: A copper-based alloy for terminals and connectors, consisting of 0.005 to 0.06%, the balance being Cu and unavoidable impurities, and having a structure in which a Fe-Ni-P compound is dispersed and precipitated in a copper matrix containing Sn and B as a solid solution. 2 In weight%, Sn: 1.0-2.0%, Ni: 0.05
~0.40%, Fe; 0.16~0.40%, P; 0.05~0.10%,
B: Process of manufacturing a slab of copper-based alloy consisting of 0.005 to 0.06%, the balance being Cu and unavoidable impurities, hot rolling the slab at a rolling reduction of 60% or more and a finishing temperature of 700.
After hot rolling at a temperature of 300°C or higher, substantially all of the alloying elements are solidified in the copper by cooling from the hot rolling finish temperature to a temperature of 300°C or lower at a cooling rate of 30°C/min or higher. A step of obtaining a melted hot-rolled sheet, the hot-rolled sheet is cold-rolled for the first time under a reduction ratio of 50% or more, and after this first cold-rolling, the hot-rolled sheet is heated at a temperature of 400 to 600°C. By annealing for 5 to 720 minutes at
- A step of finely dispersing and precipitating a Ni-P compound, a step of reducing the thickness of this annealed material by cold rolling to a desired thickness, and a temperature of 300 to 750°C after the final cold rolling. 5~180
A method for manufacturing copper-based alloys for terminals and connectors, which involves a process of tensile annealing for seconds.
JP23982785A 1985-10-26 1985-10-26 Copper alloy for terminal or connector and its manufacture Granted JPS6299430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23982785A JPS6299430A (en) 1985-10-26 1985-10-26 Copper alloy for terminal or connector and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23982785A JPS6299430A (en) 1985-10-26 1985-10-26 Copper alloy for terminal or connector and its manufacture

Publications (2)

Publication Number Publication Date
JPS6299430A JPS6299430A (en) 1987-05-08
JPH0418016B2 true JPH0418016B2 (en) 1992-03-26

Family

ID=17050440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23982785A Granted JPS6299430A (en) 1985-10-26 1985-10-26 Copper alloy for terminal or connector and its manufacture

Country Status (1)

Country Link
JP (1) JPS6299430A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139736A (en) * 1987-11-25 1989-06-01 Yazaki Corp Copper alloy
JPH083141B2 (en) * 1989-10-27 1996-01-17 日本碍子株式会社 Beryllium copper alloy member manufacturing method
JP3550233B2 (en) * 1995-10-09 2004-08-04 同和鉱業株式会社 Manufacturing method of high strength and high conductivity copper base alloy
JP4680765B2 (en) * 2005-12-22 2011-05-11 株式会社神戸製鋼所 Copper alloy with excellent stress relaxation resistance
EP2339038B8 (en) 2006-07-21 2017-01-11 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
WO2009019990A1 (en) * 2007-08-07 2009-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751253A (en) * 1980-09-11 1982-03-26 Kobe Steel Ltd Manufacture of copper alloy with high electric conductivity
JPS58113334A (en) * 1981-12-28 1983-07-06 Tamagawa Kikai Kinzoku Kk Phosphor bronze with superior hot workability
JPS60245754A (en) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd High strength copper alloy having high electric conductivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751253A (en) * 1980-09-11 1982-03-26 Kobe Steel Ltd Manufacture of copper alloy with high electric conductivity
JPS58113334A (en) * 1981-12-28 1983-07-06 Tamagawa Kikai Kinzoku Kk Phosphor bronze with superior hot workability
JPS60245754A (en) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd High strength copper alloy having high electric conductivity

Also Published As

Publication number Publication date
JPS6299430A (en) 1987-05-08

Similar Documents

Publication Publication Date Title
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
KR890004537B1 (en) Precipitation hardenable copper alloy and process
JPH0841612A (en) Copper alloy and its preparation
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
US20110005644A1 (en) Copper alloy material for electric/electronic parts
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP4396874B2 (en) Manufacturing method of copper base alloy strip for terminal
JPH0418016B2 (en)
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
TWI692535B (en) Titanium copper plate, pressed processed product and method for manufacturing pressed processed product
JP3733548B2 (en) Method for producing a copper-based alloy having excellent stress relaxation resistance
JPH0314901B2 (en)
JPS6142772B2 (en)
JPH0355532B2 (en)
JPH108167A (en) Copper alloy excellent in hot workability
JP2005264337A (en) Copper-based alloy having excellent stress relaxation characteristic
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JP2000273561A (en) Copper base alloy for terminal and its production
JPS61288036A (en) Copper alloy for lead frame and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term