JP3699701B2 - Easy-to-process high-strength, high-conductivity copper alloy - Google Patents
Easy-to-process high-strength, high-conductivity copper alloy Download PDFInfo
- Publication number
- JP3699701B2 JP3699701B2 JP2002317644A JP2002317644A JP3699701B2 JP 3699701 B2 JP3699701 B2 JP 3699701B2 JP 2002317644 A JP2002317644 A JP 2002317644A JP 2002317644 A JP2002317644 A JP 2002317644A JP 3699701 B2 JP3699701 B2 JP 3699701B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- copper alloy
- hot rolling
- inclusions
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Conductive Materials (AREA)
Description
【0001】
【産業上の利用分野】
本発明は易加工高力高導電性銅合金に関するものであり、さらに詳しく述べるならば、各種端子、コネクター、リレーまたはスイッチ等に使用される導電性ばね材に関する。
【0002】
【従来の技術】
各種端子、コネクター、リレーまたはスイッチ等に使用される導電性ばね材には、次のような材料特性が求められている。
(a)薄い板厚においても高い接触圧を生じるための十分な強度を有すること。
(b)応力緩和率が低く、高温下で長期間使用しても接触圧が低下しないこと。
(c)導電率が高く、通電時にジュール熱の発生しにくいこと、また、発生する熱を放散しやすいこと。
(d)厳しい曲げ加工を行っても曲げ部に割れや肌あれを生じないこと。
(e)高いばね応力まで使用できるようにばね限界値が高いこと。
【0003】
そして、各種端子、コネクター、リレーまたはスイッチ等に使用される導電性ばね材として、従来、りん青銅が使用されてきた。ところが、近年、電子機器類およびその部品には小型化、薄肉化が要求されている。このような要求に応えるためにCu−Cr系銅合金あるいはCu−Cr−Zr系銅合金が種々開発されている。
【特許文献1】
特開平9−087814号公報
【特許文献2】
特開平7−258804号公報
【特許文献3】
特開平7−258806号公報
【特許文献4】
特開平7−258807号公報
【特許文献5】
特開平7−268573号公報
【特許文献6】
特許2682577号公報
【0004】
Cu−Cr系銅合金あるいはCu−Cr−Zr系銅合金においては、溶体化処理後に時効させることにより銅母相中にCr、ZrあるいはCu−Zrを析出させて強度の向上を図っている。しかしながら、溶解工程で溶けきれないため、あるいは、鋳造工程で晶出あるいは析出するため、合金中にCr、Cu−Zr、あるいはZr−Sを基とした介在物が生じるが、介在物の寸法が大きすぎると強度やエッチング性が劣化し好ましくない。
【0005】
Zn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co、及びSiの添加元素群(以下、「第3元素」という。)は、強度向上、半田濡れ性向上のために、Cu−Cr系銅合金あるいはCu−Cr−Zr系銅合金に対し添加することが知られている。
【0006】
そして、Cu−Cr系銅合金あるいはCu−Cr−Zr系銅合金は、一般的に、原料配合、溶解、鋳造、均質化焼鈍、熱間圧延、(冷間圧延)、溶体化処理、冷間圧延、時効処理(冷間圧延)の工程を順次行って製造される。
【0007】
【発明が解決しようとする課題】
しかしながら、発明者は、Cu−Cr系銅合金あるいはCu−Cr−Zr系銅合金中の介在物について研究し、所定寸法以上の粗大介在物にいわゆる第3元素が取り込まれると母相への固溶強化や析出強化が著しく低下することを見出した。そこで、本発明の目的は、いわゆる第3元素の作用を損なうことのない易加工高力高導電性銅合金を提供することである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、発明者は鋭意研究を行い、本発明に至ったものであるが、本発明は、請求項1に記載のように、質量率でCr:0.05〜1.0%、Zr:0.05〜0.25%を含み、更にZn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co及びSiのうち1種又は2種以上、総量で0.01〜1.0%含有すると共に、残部がCu及び不可避的不純物から成る成分組成からなり、かつ粒径2μm以上の介在物の中に含有されるZn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co及びSiが総量で5%以下であることを特徴とする易加工高力高導電性銅合金である。
【0009】
【作用】
Cr、Zr:
合金を溶体化処理後、時効させることにより、Cr、Zrは銅母相中に析出して強度向上に寄与する。Crは含有量が0.05%未満ではその作用による寄与が得られず、1.0%を超える添加で更なる強度の向上は得られない。Zrは含有量が0.05%未満ではその作用による寄与が得られず、0.25%を超える添加で更なる強度上昇は得られない。
【0010】
Zn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co及びSi(第3元素)
これらの元素は何れも導電率を大きく低下させずに銅母相中に固溶、析出し、主として強度向上に寄与する。添加量が0.05%以下ではその寄与は小さく、1.0%以上では導電率を低下させることから0.05%以上1.0%以下とした。
【0011】
導電率と強度のバランスから、第3元素は少量の添加で大きな強度上昇を得ることが好ましいが、添加量の一部は粗大介在物に取りこまれることによって強度向上に寄与していない。第3添加元素が含まれた粗大介在物はインゴット内の偏析に起因することを発明者は見出した。本発明では、均質化焼鈍、熱間圧延の条件を制御することにより第3元素が含まれた粗大介在物を減少させることに成功した。よって、少量の第3添加元素添加で大きな強度向上を得ることができる。
【0012】
本発明が問題にする第3元素を含む介在物は粗大介在物である。その介在物寸法が2μm未満の場合、介在物に含まれる第3元素の割合は、熱間圧延以後の熱処理(溶体化処理、時効処理等)の影響を受けやすいが、2μm以上の介在物は熱間圧延後の熱処理によっても安定に存在する。また、溶体化処理により、介在物に含まれる第3元素の割合を低減させると、結晶粒が粗大化するため強度、加工性の観点から好ましくない。一方で均質化焼鈍、熱間圧延の条件を制御することにより、2μm以上の介在物のみならず、2μm未満の介在物についても介在物中に含まれる添加元素の質量率を低下させることができるため介在物寸法を2μm以上とした。
【0013】
2μm以上の介在物に含まれる添加元素の総量が2μm以上の介在物の総量に対して5%より多量に存在するとき、第3元素添加による強度上昇の寄与を小さくするため、介在物中に含まれる第3元素の重量含有量は5%以下とした。
【0014】
【発明の実施の形態】
以下、本発明に係る易加工高力高導電性銅合金の実施形態について、詳細に説明する。
【0015】
電気銅あるいは無酸素銅を主原料とし、成分組成を所定の割合で配合し、溶解炉にて溶解した後に、インゴットを不活性雰囲気または真空中にて鋳造した。次に、インゴットを900℃以上の温度で300min以上の均質化焼鈍した後に、圧延加工度50%以上、熱間圧延終了時の材料温度が600℃以上になるような熱間圧延を実施する。熱間圧延以降については冷間圧延、溶体化処理、時効処理、冷間圧延、歪取焼鈍の従来の製造工程、従来の製造条件で実施した。
【0016】
すなわち、本発明の実施形態の製造方法は、従来方法とは異なり、均質化焼鈍、熱間圧延を次の条件で行うことを特徴とする。
1)均質化焼鈍が900℃以上の温度で300minより長時間行われること。
2)熱間圧延の加工率が50%以上であること。
3)熱間圧延終了時に材料温度が600℃以上であること。
【0017】
実施例及び比較例について表1に示す化学組成でインゴットを溶製した。なお、実施例の番号と比較例の番号が同じもの(例えば実施例1と比較例1、実施例2と比較例2など)は、同じような化学組成になるように調整をした。インゴット溶製後、均質化焼鈍、熱間圧延、冷間圧延、溶体化処理、時効処理、冷間圧延、歪取焼鈍の製造工程を順次経て板厚0.15mmの製品を作製した。
【表1】
均質化焼鈍工程及び熱間圧延工程については、実施例及び比較例について、表2に示すような均質化焼鈍の温度、熱間圧延の加工度および熱間圧延終了時の材料温度を設定し、実施した。熱間圧延以降の工程については従来の条件で実施した。
【表2】
実施例については0016欄に上述した1)、2)、3)の製造方法上の特徴をすべて満たしているが、比較例については0016欄に上述した1)、2)、3)の製造方法上の特徴のいずれかを満たしていない。
【0018】
以上のようにして得た実施例及び比較例の銅合金について、析出物寸法及び組成同定のために、例えば歪取焼鈍後の板材を機械研磨後、電解研磨を行い、析出物をSEM等で観察、AESで同定することにより行った。また、得た銅合金の特性評価のために、引張試験、W曲げ試験(圧延直角方向、R/t=1(R=0.15、t=0.15)、その他の条件は日本伸銅協会技術標準に定められた方法に従う)、4端子法による導電率測定を行った。なお、W曲げ試験において日本伸銅協会技術標準に定められたA、B、Cランクのものを「良」とし、D、Eランクのものを「悪」とした。
【0019】
本発明合金の実施態様と比較例についての特性を表3に示す。
【表3】
【0020】
実施例と比較例の番号が同じもの(例えば実施例1と比較例1、実施例2と比較例2など)を比較すると、化学組成はほぼ同一ではあるが、製造条件が異なっている。表2に示したように、実施例はいずれも、均質化焼鈍の温度、熱間圧延の加工度および熱間圧延終了時の材料温度について、0016欄に上述した1)、2)、3)の条件を満足しており、2μm以上の介在物に含まれる第3元素の含有量が5%以下である。比較例は、比較例1、2、3、11、12は均質化焼鈍の温度、比較例4、5、6、13、14、15は熱間圧延の加工度、比較例7、8、9、10、16、17は熱間圧延終了時の材料温度について、0016欄に上述した1)、2)、3)の条件から外れている。それゆえ、比較例ではいずれも2μm以上の介在物に含まれる第3元素の含有量が5%を超えている。
従って、同じ番号の実施例の引張強さと比較例の引張強さを比べると実施例のほうが高くなっている。また、曲げ性についても比較例はW曲げ試験で「悪」となるものがあるのに対し実施例はすべて「良」であり、実施例の曲げ性が良好であることがわかる。なお、導電率について、実施例と比較例との大きな差はなく、比較例つまり従来品とは同等である。
【0021】
【発明の効果】
本発明に係る易加工高力高導電性銅合金によれば、導電性、強度、曲げ性の良好で特性のバランスが良い銅合金を得ることが可能となり、電子機器類の小型化や性能向上に大きく寄与し得るなど、産業上きわめて有効な効果がもたらされる。[0001]
[Industrial application fields]
The present invention relates to an easily processable high-strength, high-conductivity copper alloy, and more specifically to a conductive spring material used for various terminals, connectors, relays, switches, and the like.
[0002]
[Prior art]
Conductive spring materials used for various terminals, connectors, relays, switches, etc. are required to have the following material characteristics.
(A) It has sufficient strength to generate a high contact pressure even in a thin plate thickness.
(B) The stress relaxation rate is low, and the contact pressure does not decrease even when used for a long time at high temperatures.
(C) It has a high electrical conductivity, is less likely to generate Joule heat when energized, and easily dissipates the generated heat.
(D) Even if severe bending is performed, cracks and skin roughness do not occur in the bent portion.
(E) The spring limit value is high so that even a high spring stress can be used.
[0003]
Conventionally, phosphor bronze has been used as a conductive spring material used for various terminals, connectors, relays or switches. However, in recent years, electronic devices and their components are required to be reduced in size and thickness. In order to meet such a demand, various Cu—Cr based copper alloys or Cu—Cr—Zr based copper alloys have been developed.
[Patent Document 1]
JP-A-9-087814 [Patent Document 2]
JP-A-7-258804 [Patent Document 3]
JP-A-7-258806 [Patent Document 4]
JP-A-7-258807 [Patent Document 5]
JP 7-268573 A [Patent Document 6]
Japanese Patent No. 2682577 [0004]
In a Cu—Cr based copper alloy or a Cu—Cr—Zr based copper alloy, Cr, Zr or Cu—Zr is precipitated in the copper matrix by aging after solution treatment, thereby improving the strength. However, since it cannot be completely melted in the melting process, or crystallizes or precipitates in the casting process, inclusions based on Cr, Cu-Zr, or Zr-S are generated in the alloy. If it is too large, the strength and etching properties deteriorate, which is not preferable.
[0005]
Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co, and Si added element group (hereinafter referred to as “third element”) improves strength and improves solder wettability. Therefore, it is known to add to a Cu—Cr based copper alloy or a Cu—Cr—Zr based copper alloy.
[0006]
And Cu-Cr system copper alloy or Cu-Cr-Zr system copper alloy is generally mixed with raw materials, melting, casting, homogenizing annealing, hot rolling, (cold rolling), solution treatment, cold. Manufactured by sequentially performing rolling and aging treatment (cold rolling).
[0007]
[Problems to be solved by the invention]
However, the inventor has studied the inclusions in the Cu-Cr-based copper alloy or Cu-Cr-Zr-based copper alloy, and when a so-called third element is incorporated into coarse inclusions of a predetermined size or larger, solidification into the parent phase is performed. It has been found that solution strengthening and precipitation strengthening are significantly reduced. Therefore, an object of the present invention is to provide an easily processable high-strength and highly-conductive copper alloy that does not impair the action of the so-called third element.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventor has intensively researched to arrive at the present invention. As described in claim 1, the present invention has a mass ratio of Cr: 0.05 to 1.0. %, Zr: 0.05 to 0.25%, Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co and Si, one or more, Zn, Sn, Mn, P, containing 0.01 to 1.0% in total, with the balance being a component composition consisting of Cu and inevitable impurities, and contained in inclusions having a particle size of 2 μm or more An easy-working high-strength and high-conductivity copper alloy characterized in that In, Mg, Fe, Ni, Be, Al, B, Co, and Si are 5% or less in total.
[0009]
[Action]
Cr, Zr:
By aging the alloy after solution treatment, Cr and Zr precipitate in the copper matrix and contribute to strength improvement. If the Cr content is less than 0.05%, no contribution due to its action can be obtained, and if it exceeds 1.0%, no further improvement in strength can be obtained. If the content of Zr is less than 0.05%, no contribution due to its action can be obtained, and if it exceeds 0.25%, no further increase in strength can be obtained.
[0010]
Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co, and Si (third element)
All of these elements are dissolved and precipitated in the copper matrix phase without greatly lowering the electrical conductivity, and mainly contribute to the improvement of strength. If the added amount is 0.05% or less, the contribution is small, and if it is 1.0% or more, the conductivity is lowered, so 0.05% or more and 1.0% or less.
[0011]
From the balance between conductivity and strength, it is preferable to obtain a large increase in the strength of the third element by adding a small amount, but a part of the added amount does not contribute to the improvement of strength by being incorporated into coarse inclusions. The inventors have found that coarse inclusions containing the third additive element are caused by segregation in the ingot. The present invention succeeded in reducing the coarse inclusions containing the third element by controlling the conditions of homogenization annealing and hot rolling. Therefore, a great improvement in strength can be obtained by adding a small amount of the third additive element.
[0012]
The inclusion containing the third element which is a problem of the present invention is a coarse inclusion. When the inclusion size is less than 2 μm, the ratio of the third element contained in the inclusion is easily affected by heat treatment (solution treatment, aging treatment, etc.) after hot rolling. It exists stably even by heat treatment after hot rolling. Further, if the ratio of the third element contained in the inclusion is reduced by solution treatment, the crystal grains become coarse, which is not preferable from the viewpoint of strength and workability. On the other hand, by controlling the conditions of homogenization annealing and hot rolling, the mass ratio of additive elements contained in inclusions can be reduced not only for inclusions of 2 μm or more but also inclusions of less than 2 μm. Therefore, the inclusion size was set to 2 μm or more.
[0013]
When the total amount of additive elements contained in inclusions of 2 μm or more is greater than 5% with respect to the total amount of inclusions of 2 μm or more, in order to reduce the contribution of strength increase due to the addition of the third element, The weight content of the third element contained was set to 5% or less.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an easily processable high-strength, high-conductivity copper alloy according to the present invention will be described in detail.
[0015]
Electrical copper or oxygen-free copper was used as the main raw material, the component composition was blended at a predetermined ratio, and after melting in a melting furnace, the ingot was cast in an inert atmosphere or vacuum. Next, after the ingot is homogenized and annealed at a temperature of 900 ° C. or higher for 300 min or longer, hot rolling is performed such that the rolling process degree is 50% or higher and the material temperature at the end of hot rolling is 600 ° C. or higher. After the hot rolling, the conventional manufacturing process and conventional manufacturing conditions of cold rolling, solution treatment, aging treatment, cold rolling and strain relief annealing were performed.
[0016]
That is, unlike the conventional method, the manufacturing method of the embodiment of the present invention is characterized in that homogenization annealing and hot rolling are performed under the following conditions.
1) The homogenization annealing is performed at a temperature of 900 ° C. or higher for a longer time than 300 minutes.
2) The processing rate of hot rolling is 50% or more.
3) The material temperature is 600 ° C. or higher at the end of hot rolling.
[0017]
Ingots were melted with the chemical compositions shown in Table 1 for Examples and Comparative Examples. In addition, it adjusted so that the number of an Example and the number of a comparative example might be the same (for example, Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, etc.). After ingot melting, a product having a plate thickness of 0.15 mm was manufactured through the following manufacturing steps: homogenization annealing, hot rolling, cold rolling, solution treatment, aging treatment, cold rolling, and strain relief annealing.
[Table 1]
For the homogenization annealing step and the hot rolling step, for the examples and comparative examples, set the temperature of the homogenization annealing as shown in Table 2, the workability of the hot rolling and the material temperature at the end of the hot rolling, Carried out. About the process after hot rolling, it implemented on the conventional conditions.
[Table 2]
The examples satisfy all of the characteristics of the production methods 1), 2) and 3) described in the column 0016, but the comparative examples describe the production methods 1), 2) and 3) described in the column 0016. Does not meet one of the above characteristics.
[0018]
For the copper alloys of the examples and comparative examples obtained as described above, for the purpose of identifying the size and composition of the precipitates, for example, the plate material after strain relief annealing is mechanically polished and then electropolished, and the precipitates are subjected to SEM or the like. This was done by observation and identification by AES. In addition, in order to evaluate the properties of the obtained copper alloy, a tensile test, a W-bending test (in the direction perpendicular to the rolling direction, R / t = 1 (R = 0.15, t = 0.15), and other conditions are Nippon Shindoh According to the method stipulated in the Association Technical Standard), the conductivity was measured by the 4-terminal method. In the W bending test, A, B, and C ranks defined in the technical standards of the Japan Copper and Brass Association were designated as “good”, and D and E ranks were designated as “bad”.
[0019]
Table 3 shows the characteristics of the embodiment and comparative examples of the alloy of the present invention.
[Table 3]
[0020]
When the numbers of the example and the comparative example are the same (for example, the example 1 and the comparative example 1, the example 2 and the comparative example 2), the chemical compositions are almost the same, but the production conditions are different. As shown in Table 2, in all the examples, the homogenization annealing temperature, the hot rolling workability, and the material temperature at the end of the hot rolling were described in the column 0016, 1), 2), 3). The content of the third element contained in the inclusions of 2 μm or more is 5% or less. Comparative examples are Comparative Examples 1, 2, 3, 11, and 12, homogenization annealing temperature, Comparative Examples 4, 5, 6, 13, 14, and 15 are hot rolling workability, Comparative Examples 7, 8, and 9 Nos. 10, 16, and 17 deviate from the conditions 1), 2), and 3) described above in column 0016 for the material temperature at the end of hot rolling. Therefore, in all the comparative examples, the content of the third element contained in the inclusions of 2 μm or more exceeds 5%.
Therefore, when the tensile strength of the example of the same number is compared with the tensile strength of the comparative example, the example is higher. Further, regarding the bendability, some comparative examples are “bad” in the W-bend test, while all the examples are “good”, and it can be seen that the bendability of the examples is good. In addition, regarding conductivity, there is no big difference between the example and the comparative example, and it is equivalent to the comparative example, that is, the conventional product.
[0021]
【The invention's effect】
According to the easily processable high-strength and high-conductivity copper alloy according to the present invention, it is possible to obtain a copper alloy having good conductivity, strength and bendability and a good balance of properties, and miniaturization and performance improvement of electronic devices. It is possible to make a great contribution to the industry and bring about extremely effective effects in the industry.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002317644A JP3699701B2 (en) | 2002-10-31 | 2002-10-31 | Easy-to-process high-strength, high-conductivity copper alloy |
KR1020030074083A KR100559812B1 (en) | 2002-10-31 | 2003-10-23 | High strength and electric conductivity copper alloy excellent in workability |
CNB200310113842XA CN1279195C (en) | 2002-10-31 | 2003-10-31 | Easy machining, high strength and high conductive copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002317644A JP3699701B2 (en) | 2002-10-31 | 2002-10-31 | Easy-to-process high-strength, high-conductivity copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004149874A JP2004149874A (en) | 2004-05-27 |
JP3699701B2 true JP3699701B2 (en) | 2005-09-28 |
Family
ID=32460987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002317644A Expired - Fee Related JP3699701B2 (en) | 2002-10-31 | 2002-10-31 | Easy-to-process high-strength, high-conductivity copper alloy |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3699701B2 (en) |
KR (1) | KR100559812B1 (en) |
CN (1) | CN1279195C (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4068626B2 (en) * | 2005-03-31 | 2008-03-26 | 日鉱金属株式会社 | Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same |
CN100445403C (en) * | 2005-06-10 | 2008-12-24 | 日立电线株式会社 | Soft copper alloy and soft copper alloy wire or board |
JP2007100136A (en) * | 2005-09-30 | 2007-04-19 | Nikko Kinzoku Kk | Copper alloy for lead frame excellent in uniform plating property |
CN101268206B (en) * | 2005-09-30 | 2010-12-29 | 古河电气工业株式会社 | Copper alloy for an electric connecting device |
KR100779754B1 (en) * | 2007-02-26 | 2007-11-26 | 주식회사원일사 | Copper alloy having excellent heat-resistant property and electric conductivity and manufacturing method thereof |
JP4937815B2 (en) * | 2007-03-30 | 2012-05-23 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same |
WO2009041194A1 (en) * | 2007-09-27 | 2009-04-02 | Nippon Mining & Metals Co., Ltd. | High-strength high-electroconductivity copper alloy possessing excellent hot workability |
JP5426936B2 (en) * | 2009-06-18 | 2014-02-26 | 株式会社Shカッパープロダクツ | Copper alloy manufacturing method and copper alloy |
CN101671783B (en) * | 2009-10-14 | 2011-05-18 | 郑州机械研究所 | Copper-zinc-nickel-cobalt-indium alloy and preparation method thereof |
JP5539055B2 (en) * | 2010-06-18 | 2014-07-02 | 株式会社Shカッパープロダクツ | Copper alloy material for electric / electronic parts and method for producing the same |
CN101984107B (en) * | 2010-12-03 | 2012-03-07 | 中南大学 | Method for preparing CuNiSiAl elastic copper alloy |
CN102719694A (en) * | 2012-06-21 | 2012-10-10 | 铜陵金威铜业有限公司 | CuCrZr alloy material, preparation method thereof and method for preparing strips with same |
CN103898425B (en) * | 2012-12-24 | 2016-06-22 | 北京有色金属研究总院 | A kind of compound deformation heat treatment method suitable in Cu-Cr-Zr system alloy wire |
CN103117116A (en) * | 2013-01-16 | 2013-05-22 | 浙江宏磊铜业股份有限公司 | High-strength high-conductivity enameled copper alloy wire |
CN104342579B (en) * | 2013-07-30 | 2017-03-29 | 北京有色金属研究总院 | A kind of high-strength high-elasticity Cu Ni Mn alloys and preparation method thereof |
JP5668814B1 (en) * | 2013-08-12 | 2015-02-12 | 三菱マテリアル株式会社 | Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars |
CN103773993B (en) * | 2014-01-10 | 2016-01-20 | 滁州学院 | A kind of zinc electroplating bath cupronickel alloy material and preparation method thereof |
CN103757473B (en) * | 2014-01-10 | 2016-01-20 | 滁州学院 | A kind of environment-protective free-cutting nickel silver alloy material and preparation method thereof |
CN103757465B (en) * | 2014-01-10 | 2016-01-20 | 滁州学院 | A kind of corrosion-resistant easy cutting Cu alloy material and preparation method thereof |
CN105323878B (en) * | 2015-08-17 | 2017-11-24 | 林月瑜 | One kind heating wire material and preparation method thereof |
JP6736869B2 (en) * | 2015-11-09 | 2020-08-05 | 三菱マテリアル株式会社 | Copper alloy material |
CN107046768B (en) * | 2016-02-05 | 2019-12-31 | Jx金属株式会社 | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device |
CN110527866B (en) * | 2019-09-29 | 2021-02-05 | 广东和润新材料股份有限公司 | High-conductivity and high-strength copper strip and preparation method thereof |
CN110747371B (en) * | 2019-12-06 | 2021-11-09 | 沈阳金科有色产品研制有限公司 | High-conductivity high-strength high-hardness copper alloy and preparation method thereof |
CN111575531B (en) * | 2020-06-28 | 2021-01-05 | 杭州铜信科技有限公司 | High-conductivity copper alloy plate and manufacturing method thereof |
CN112159911B (en) * | 2020-10-26 | 2022-10-21 | 有研工程技术研究院有限公司 | High-strength high-conductivity fatigue-resistant copper alloy and preparation method and application thereof |
CN115896537B (en) * | 2022-09-20 | 2024-04-02 | 宁波兴业鑫泰新型电子材料有限公司 | High-strength corrosion-resistant Cu-Ni-Sn alloy and preparation method thereof |
CN115976364B (en) * | 2022-11-28 | 2024-05-03 | 烟台万隆真空冶金股份有限公司 | High-strength conductive copper alloy and preparation method thereof |
CN116426788A (en) * | 2023-04-17 | 2023-07-14 | 浙江惟精新材料股份有限公司 | Copper-chromium alloy and preparation method and application thereof |
CN118326201B (en) * | 2024-06-17 | 2024-09-17 | 上海理工大学 | Copper-base alloy contact wire and continuous production method thereof |
-
2002
- 2002-10-31 JP JP2002317644A patent/JP3699701B2/en not_active Expired - Fee Related
-
2003
- 2003-10-23 KR KR1020030074083A patent/KR100559812B1/en active IP Right Grant
- 2003-10-31 CN CNB200310113842XA patent/CN1279195C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100559812B1 (en) | 2006-03-10 |
CN1279195C (en) | 2006-10-11 |
JP2004149874A (en) | 2004-05-27 |
CN1498978A (en) | 2004-05-26 |
KR20040038677A (en) | 2004-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3699701B2 (en) | Easy-to-process high-strength, high-conductivity copper alloy | |
JP5367999B2 (en) | Cu-Ni-Si alloy for electronic materials | |
JP5045784B2 (en) | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment | |
JP4418028B2 (en) | Cu-Ni-Si alloy for electronic materials | |
JP4809602B2 (en) | Copper alloy | |
JP5619389B2 (en) | Copper alloy material | |
JP2011241412A (en) | Copper alloy for electronic device, method for producing copper alloy for electronic device and copper alloy rolled material for electronic device | |
JP2013047360A (en) | Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME | |
JP2008081762A (en) | Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JP2004315940A (en) | Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD | |
JP2002180161A (en) | High strength copper alloy | |
JP2012193408A (en) | Cu-Ni-Si ALLOY HAVING EXCELLENT BENDABILITY | |
KR20150126064A (en) | Copper-cobalt-silicon alloy for electrode material | |
JP4916206B2 (en) | Cu-Cr-Si alloy and Cu-Cr-Si alloy foil for electric and electronic parts | |
JP2013104068A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP2007246931A (en) | Copper alloy for electrical and electronic equipment parts having excellent electric conductivity | |
JP5045782B2 (en) | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment | |
JP4130593B2 (en) | High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics | |
JP4175920B2 (en) | High strength copper alloy | |
JPH0987814A (en) | Production of copper alloy for electronic equipment | |
JP3807387B2 (en) | Copper alloy for terminal / connector and manufacturing method thereof | |
JP2012229467A (en) | Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
TW201714185A (en) | Cu-Co-Ni-Si Alloy for Electronic Components | |
JP2010236029A (en) | Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3699701 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080715 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090715 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100715 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110715 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110715 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110715 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110715 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120715 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120715 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130715 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130715 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |