JP3699701B2 - Easy-to-process high-strength, high-conductivity copper alloy - Google Patents

Easy-to-process high-strength, high-conductivity copper alloy Download PDF

Info

Publication number
JP3699701B2
JP3699701B2 JP2002317644A JP2002317644A JP3699701B2 JP 3699701 B2 JP3699701 B2 JP 3699701B2 JP 2002317644 A JP2002317644 A JP 2002317644A JP 2002317644 A JP2002317644 A JP 2002317644A JP 3699701 B2 JP3699701 B2 JP 3699701B2
Authority
JP
Japan
Prior art keywords
strength
copper alloy
hot rolling
inclusions
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002317644A
Other languages
Japanese (ja)
Other versions
JP2004149874A (en
Inventor
和樹 冠
一彦 深町
Original Assignee
日鉱金属加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属加工株式会社 filed Critical 日鉱金属加工株式会社
Priority to JP2002317644A priority Critical patent/JP3699701B2/en
Priority to KR1020030074083A priority patent/KR100559812B1/en
Priority to CNB200310113842XA priority patent/CN1279195C/en
Publication of JP2004149874A publication Critical patent/JP2004149874A/en
Application granted granted Critical
Publication of JP3699701B2 publication Critical patent/JP3699701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Conductive Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は易加工高力高導電性銅合金に関するものであり、さらに詳しく述べるならば、各種端子、コネクター、リレーまたはスイッチ等に使用される導電性ばね材に関する。
【0002】
【従来の技術】
各種端子、コネクター、リレーまたはスイッチ等に使用される導電性ばね材には、次のような材料特性が求められている。
(a)薄い板厚においても高い接触圧を生じるための十分な強度を有すること。
(b)応力緩和率が低く、高温下で長期間使用しても接触圧が低下しないこと。
(c)導電率が高く、通電時にジュール熱の発生しにくいこと、また、発生する熱を放散しやすいこと。
(d)厳しい曲げ加工を行っても曲げ部に割れや肌あれを生じないこと。
(e)高いばね応力まで使用できるようにばね限界値が高いこと。
【0003】
そして、各種端子、コネクター、リレーまたはスイッチ等に使用される導電性ばね材として、従来、りん青銅が使用されてきた。ところが、近年、電子機器類およびその部品には小型化、薄肉化が要求されている。このような要求に応えるためにCu−Cr系銅合金あるいはCu−Cr−Zr系銅合金が種々開発されている。
【特許文献1】
特開平9−087814号公報
【特許文献2】
特開平7−258804号公報
【特許文献3】
特開平7−258806号公報
【特許文献4】
特開平7−258807号公報
【特許文献5】
特開平7−268573号公報
【特許文献6】
特許2682577号公報
【0004】
Cu−Cr系銅合金あるいはCu−Cr−Zr系銅合金においては、溶体化処理後に時効させることにより銅母相中にCr、ZrあるいはCu−Zrを析出させて強度の向上を図っている。しかしながら、溶解工程で溶けきれないため、あるいは、鋳造工程で晶出あるいは析出するため、合金中にCr、Cu−Zr、あるいはZr−Sを基とした介在物が生じるが、介在物の寸法が大きすぎると強度やエッチング性が劣化し好ましくない。
【0005】
Zn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co、及びSiの添加元素群(以下、「第3元素」という。)は、強度向上、半田濡れ性向上のために、Cu−Cr系銅合金あるいはCu−Cr−Zr系銅合金に対し添加することが知られている。
【0006】
そして、Cu−Cr系銅合金あるいはCu−Cr−Zr系銅合金は、一般的に、原料配合、溶解、鋳造、均質化焼鈍、熱間圧延、(冷間圧延)、溶体化処理、冷間圧延、時効処理(冷間圧延)の工程を順次行って製造される。
【0007】
【発明が解決しようとする課題】
しかしながら、発明者は、Cu−Cr系銅合金あるいはCu−Cr−Zr系銅合金中の介在物について研究し、所定寸法以上の粗大介在物にいわゆる第3元素が取り込まれると母相への固溶強化や析出強化が著しく低下することを見出した。そこで、本発明の目的は、いわゆる第3元素の作用を損なうことのない易加工高力高導電性銅合金を提供することである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、発明者は鋭意研究を行い、本発明に至ったものであるが、本発明は、請求項1に記載のように、質量率でCr:0.05〜1.0%、Zr:0.05〜0.25%を含み、更にZn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co及びSiのうち1種又は2種以上、総量で0.01〜1.0%含有すると共に、残部がCu及び不可避的不純物から成る成分組成からなり、かつ粒径2μm以上の介在物の中に含有されるZn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co及びSiが総量で5%以下であることを特徴とする易加工高力高導電性銅合金である。
【0009】
【作用】
Cr、Zr:
合金を溶体化処理後、時効させることにより、Cr、Zrは銅母相中に析出して強度向上に寄与する。Crは含有量が0.05%未満ではその作用による寄与が得られず、1.0%を超える添加で更なる強度の向上は得られない。Zrは含有量が0.05%未満ではその作用による寄与が得られず、0.25%を超える添加で更なる強度上昇は得られない。
【0010】
Zn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co及びSi(第3元素)
これらの元素は何れも導電率を大きく低下させずに銅母相中に固溶、析出し、主として強度向上に寄与する。添加量が0.05%以下ではその寄与は小さく、1.0%以上では導電率を低下させることから0.05%以上1.0%以下とした。
【0011】
導電率と強度のバランスから、第3元素は少量の添加で大きな強度上昇を得ることが好ましいが、添加量の一部は粗大介在物に取りこまれることによって強度向上に寄与していない。第3添加元素が含まれた粗大介在物はインゴット内の偏析に起因することを発明者は見出した。本発明では、均質化焼鈍、熱間圧延の条件を制御することにより第3元素が含まれた粗大介在物を減少させることに成功した。よって、少量の第3添加元素添加で大きな強度向上を得ることができる。
【0012】
本発明が問題にする第3元素を含む介在物は粗大介在物である。その介在物寸法が2μm未満の場合、介在物に含まれる第3元素の割合は、熱間圧延以後の熱処理(溶体化処理、時効処理等)の影響を受けやすいが、2μm以上の介在物は熱間圧延後の熱処理によっても安定に存在する。また、溶体化処理により、介在物に含まれる第3元素の割合を低減させると、結晶粒が粗大化するため強度、加工性の観点から好ましくない。一方で均質化焼鈍、熱間圧延の条件を制御することにより、2μm以上の介在物のみならず、2μm未満の介在物についても介在物中に含まれる添加元素の質量率を低下させることができるため介在物寸法を2μm以上とした。
【0013】
2μm以上の介在物に含まれる添加元素の総量が2μm以上の介在物の総量に対して5%より多量に存在するとき、第3元素添加による強度上昇の寄与を小さくするため、介在物中に含まれる第3元素の重量含有量は5%以下とした。
【0014】
【発明の実施の形態】
以下、本発明に係る易加工高力高導電性銅合金の実施形態について、詳細に説明する。
【0015】
電気銅あるいは無酸素銅を主原料とし、成分組成を所定の割合で配合し、溶解炉にて溶解した後に、インゴットを不活性雰囲気または真空中にて鋳造した。次に、インゴットを900℃以上の温度で300min以上の均質化焼鈍した後に、圧延加工度50%以上、熱間圧延終了時の材料温度が600℃以上になるような熱間圧延を実施する。熱間圧延以降については冷間圧延、溶体化処理、時効処理、冷間圧延、歪取焼鈍の従来の製造工程、従来の製造条件で実施した。
【0016】
すなわち、本発明の実施形態の製造方法は、従来方法とは異なり、均質化焼鈍、熱間圧延を次の条件で行うことを特徴とする。
1)均質化焼鈍が900℃以上の温度で300minより長時間行われること。
2)熱間圧延の加工率が50%以上であること。
3)熱間圧延終了時に材料温度が600℃以上であること。
【0017】
実施例及び比較例について表1に示す化学組成でインゴットを溶製した。なお、実施例の番号と比較例の番号が同じもの(例えば実施例1と比較例1、実施例2と比較例2など)は、同じような化学組成になるように調整をした。インゴット溶製後、均質化焼鈍、熱間圧延、冷間圧延、溶体化処理、時効処理、冷間圧延、歪取焼鈍の製造工程を順次経て板厚0.15mmの製品を作製した。
【表1】

Figure 0003699701
均質化焼鈍工程及び熱間圧延工程については、実施例及び比較例について、表2に示すような均質化焼鈍の温度、熱間圧延の加工度および熱間圧延終了時の材料温度を設定し、実施した。熱間圧延以降の工程については従来の条件で実施した。
【表2】
Figure 0003699701
実施例については0016欄に上述した1)、2)、3)の製造方法上の特徴をすべて満たしているが、比較例については0016欄に上述した1)、2)、3)の製造方法上の特徴のいずれかを満たしていない。
【0018】
以上のようにして得た実施例及び比較例の銅合金について、析出物寸法及び組成同定のために、例えば歪取焼鈍後の板材を機械研磨後、電解研磨を行い、析出物をSEM等で観察、AESで同定することにより行った。また、得た銅合金の特性評価のために、引張試験、W曲げ試験(圧延直角方向、R/t=1(R=0.15、t=0.15)、その他の条件は日本伸銅協会技術標準に定められた方法に従う)、4端子法による導電率測定を行った。なお、W曲げ試験において日本伸銅協会技術標準に定められたA、B、Cランクのものを「良」とし、D、Eランクのものを「悪」とした。
【0019】
本発明合金の実施態様と比較例についての特性を表3に示す。
【表3】
Figure 0003699701
【0020】
実施例と比較例の番号が同じもの(例えば実施例1と比較例1、実施例2と比較例2など)を比較すると、化学組成はほぼ同一ではあるが、製造条件が異なっている。表2に示したように、実施例はいずれも、均質化焼鈍の温度、熱間圧延の加工度および熱間圧延終了時の材料温度について、0016欄に上述した1)、2)、3)の条件を満足しており、2μm以上の介在物に含まれる第3元素の含有量が5%以下である。比較例は、比較例1、2、3、11、12は均質化焼鈍の温度、比較例4、5、6、13、14、15は熱間圧延の加工度、比較例7、8、9、10、16、17は熱間圧延終了時の材料温度について、0016欄に上述した1)、2)、3)の条件から外れている。それゆえ、比較例ではいずれも2μm以上の介在物に含まれる第3元素の含有量が5%を超えている。
従って、同じ番号の実施例の引張強さと比較例の引張強さを比べると実施例のほうが高くなっている。また、曲げ性についても比較例はW曲げ試験で「悪」となるものがあるのに対し実施例はすべて「良」であり、実施例の曲げ性が良好であることがわかる。なお、導電率について、実施例と比較例との大きな差はなく、比較例つまり従来品とは同等である。
【0021】
【発明の効果】
本発明に係る易加工高力高導電性銅合金によれば、導電性、強度、曲げ性の良好で特性のバランスが良い銅合金を得ることが可能となり、電子機器類の小型化や性能向上に大きく寄与し得るなど、産業上きわめて有効な効果がもたらされる。[0001]
[Industrial application fields]
The present invention relates to an easily processable high-strength, high-conductivity copper alloy, and more specifically to a conductive spring material used for various terminals, connectors, relays, switches, and the like.
[0002]
[Prior art]
Conductive spring materials used for various terminals, connectors, relays, switches, etc. are required to have the following material characteristics.
(A) It has sufficient strength to generate a high contact pressure even in a thin plate thickness.
(B) The stress relaxation rate is low, and the contact pressure does not decrease even when used for a long time at high temperatures.
(C) It has a high electrical conductivity, is less likely to generate Joule heat when energized, and easily dissipates the generated heat.
(D) Even if severe bending is performed, cracks and skin roughness do not occur in the bent portion.
(E) The spring limit value is high so that even a high spring stress can be used.
[0003]
Conventionally, phosphor bronze has been used as a conductive spring material used for various terminals, connectors, relays or switches. However, in recent years, electronic devices and their components are required to be reduced in size and thickness. In order to meet such a demand, various Cu—Cr based copper alloys or Cu—Cr—Zr based copper alloys have been developed.
[Patent Document 1]
JP-A-9-087814 [Patent Document 2]
JP-A-7-258804 [Patent Document 3]
JP-A-7-258806 [Patent Document 4]
JP-A-7-258807 [Patent Document 5]
JP 7-268573 A [Patent Document 6]
Japanese Patent No. 2682577 [0004]
In a Cu—Cr based copper alloy or a Cu—Cr—Zr based copper alloy, Cr, Zr or Cu—Zr is precipitated in the copper matrix by aging after solution treatment, thereby improving the strength. However, since it cannot be completely melted in the melting process, or crystallizes or precipitates in the casting process, inclusions based on Cr, Cu-Zr, or Zr-S are generated in the alloy. If it is too large, the strength and etching properties deteriorate, which is not preferable.
[0005]
Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co, and Si added element group (hereinafter referred to as “third element”) improves strength and improves solder wettability. Therefore, it is known to add to a Cu—Cr based copper alloy or a Cu—Cr—Zr based copper alloy.
[0006]
And Cu-Cr system copper alloy or Cu-Cr-Zr system copper alloy is generally mixed with raw materials, melting, casting, homogenizing annealing, hot rolling, (cold rolling), solution treatment, cold. Manufactured by sequentially performing rolling and aging treatment (cold rolling).
[0007]
[Problems to be solved by the invention]
However, the inventor has studied the inclusions in the Cu-Cr-based copper alloy or Cu-Cr-Zr-based copper alloy, and when a so-called third element is incorporated into coarse inclusions of a predetermined size or larger, solidification into the parent phase is performed. It has been found that solution strengthening and precipitation strengthening are significantly reduced. Therefore, an object of the present invention is to provide an easily processable high-strength and highly-conductive copper alloy that does not impair the action of the so-called third element.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventor has intensively researched to arrive at the present invention. As described in claim 1, the present invention has a mass ratio of Cr: 0.05 to 1.0. %, Zr: 0.05 to 0.25%, Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co and Si, one or more, Zn, Sn, Mn, P, containing 0.01 to 1.0% in total, with the balance being a component composition consisting of Cu and inevitable impurities, and contained in inclusions having a particle size of 2 μm or more An easy-working high-strength and high-conductivity copper alloy characterized in that In, Mg, Fe, Ni, Be, Al, B, Co, and Si are 5% or less in total.
[0009]
[Action]
Cr, Zr:
By aging the alloy after solution treatment, Cr and Zr precipitate in the copper matrix and contribute to strength improvement. If the Cr content is less than 0.05%, no contribution due to its action can be obtained, and if it exceeds 1.0%, no further improvement in strength can be obtained. If the content of Zr is less than 0.05%, no contribution due to its action can be obtained, and if it exceeds 0.25%, no further increase in strength can be obtained.
[0010]
Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co, and Si (third element)
All of these elements are dissolved and precipitated in the copper matrix phase without greatly lowering the electrical conductivity, and mainly contribute to the improvement of strength. If the added amount is 0.05% or less, the contribution is small, and if it is 1.0% or more, the conductivity is lowered, so 0.05% or more and 1.0% or less.
[0011]
From the balance between conductivity and strength, it is preferable to obtain a large increase in the strength of the third element by adding a small amount, but a part of the added amount does not contribute to the improvement of strength by being incorporated into coarse inclusions. The inventors have found that coarse inclusions containing the third additive element are caused by segregation in the ingot. The present invention succeeded in reducing the coarse inclusions containing the third element by controlling the conditions of homogenization annealing and hot rolling. Therefore, a great improvement in strength can be obtained by adding a small amount of the third additive element.
[0012]
The inclusion containing the third element which is a problem of the present invention is a coarse inclusion. When the inclusion size is less than 2 μm, the ratio of the third element contained in the inclusion is easily affected by heat treatment (solution treatment, aging treatment, etc.) after hot rolling. It exists stably even by heat treatment after hot rolling. Further, if the ratio of the third element contained in the inclusion is reduced by solution treatment, the crystal grains become coarse, which is not preferable from the viewpoint of strength and workability. On the other hand, by controlling the conditions of homogenization annealing and hot rolling, the mass ratio of additive elements contained in inclusions can be reduced not only for inclusions of 2 μm or more but also inclusions of less than 2 μm. Therefore, the inclusion size was set to 2 μm or more.
[0013]
When the total amount of additive elements contained in inclusions of 2 μm or more is greater than 5% with respect to the total amount of inclusions of 2 μm or more, in order to reduce the contribution of strength increase due to the addition of the third element, The weight content of the third element contained was set to 5% or less.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an easily processable high-strength, high-conductivity copper alloy according to the present invention will be described in detail.
[0015]
Electrical copper or oxygen-free copper was used as the main raw material, the component composition was blended at a predetermined ratio, and after melting in a melting furnace, the ingot was cast in an inert atmosphere or vacuum. Next, after the ingot is homogenized and annealed at a temperature of 900 ° C. or higher for 300 min or longer, hot rolling is performed such that the rolling process degree is 50% or higher and the material temperature at the end of hot rolling is 600 ° C. or higher. After the hot rolling, the conventional manufacturing process and conventional manufacturing conditions of cold rolling, solution treatment, aging treatment, cold rolling and strain relief annealing were performed.
[0016]
That is, unlike the conventional method, the manufacturing method of the embodiment of the present invention is characterized in that homogenization annealing and hot rolling are performed under the following conditions.
1) The homogenization annealing is performed at a temperature of 900 ° C. or higher for a longer time than 300 minutes.
2) The processing rate of hot rolling is 50% or more.
3) The material temperature is 600 ° C. or higher at the end of hot rolling.
[0017]
Ingots were melted with the chemical compositions shown in Table 1 for Examples and Comparative Examples. In addition, it adjusted so that the number of an Example and the number of a comparative example might be the same (for example, Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, etc.). After ingot melting, a product having a plate thickness of 0.15 mm was manufactured through the following manufacturing steps: homogenization annealing, hot rolling, cold rolling, solution treatment, aging treatment, cold rolling, and strain relief annealing.
[Table 1]
Figure 0003699701
For the homogenization annealing step and the hot rolling step, for the examples and comparative examples, set the temperature of the homogenization annealing as shown in Table 2, the workability of the hot rolling and the material temperature at the end of the hot rolling, Carried out. About the process after hot rolling, it implemented on the conventional conditions.
[Table 2]
Figure 0003699701
The examples satisfy all of the characteristics of the production methods 1), 2) and 3) described in the column 0016, but the comparative examples describe the production methods 1), 2) and 3) described in the column 0016. Does not meet one of the above characteristics.
[0018]
For the copper alloys of the examples and comparative examples obtained as described above, for the purpose of identifying the size and composition of the precipitates, for example, the plate material after strain relief annealing is mechanically polished and then electropolished, and the precipitates are subjected to SEM or the like. This was done by observation and identification by AES. In addition, in order to evaluate the properties of the obtained copper alloy, a tensile test, a W-bending test (in the direction perpendicular to the rolling direction, R / t = 1 (R = 0.15, t = 0.15), and other conditions are Nippon Shindoh According to the method stipulated in the Association Technical Standard), the conductivity was measured by the 4-terminal method. In the W bending test, A, B, and C ranks defined in the technical standards of the Japan Copper and Brass Association were designated as “good”, and D and E ranks were designated as “bad”.
[0019]
Table 3 shows the characteristics of the embodiment and comparative examples of the alloy of the present invention.
[Table 3]
Figure 0003699701
[0020]
When the numbers of the example and the comparative example are the same (for example, the example 1 and the comparative example 1, the example 2 and the comparative example 2), the chemical compositions are almost the same, but the production conditions are different. As shown in Table 2, in all the examples, the homogenization annealing temperature, the hot rolling workability, and the material temperature at the end of the hot rolling were described in the column 0016, 1), 2), 3). The content of the third element contained in the inclusions of 2 μm or more is 5% or less. Comparative examples are Comparative Examples 1, 2, 3, 11, and 12, homogenization annealing temperature, Comparative Examples 4, 5, 6, 13, 14, and 15 are hot rolling workability, Comparative Examples 7, 8, and 9 Nos. 10, 16, and 17 deviate from the conditions 1), 2), and 3) described above in column 0016 for the material temperature at the end of hot rolling. Therefore, in all the comparative examples, the content of the third element contained in the inclusions of 2 μm or more exceeds 5%.
Therefore, when the tensile strength of the example of the same number is compared with the tensile strength of the comparative example, the example is higher. Further, regarding the bendability, some comparative examples are “bad” in the W-bend test, while all the examples are “good”, and it can be seen that the bendability of the examples is good. In addition, regarding conductivity, there is no big difference between the example and the comparative example, and it is equivalent to the comparative example, that is, the conventional product.
[0021]
【The invention's effect】
According to the easily processable high-strength and high-conductivity copper alloy according to the present invention, it is possible to obtain a copper alloy having good conductivity, strength and bendability and a good balance of properties, and miniaturization and performance improvement of electronic devices. It is possible to make a great contribution to the industry and bring about extremely effective effects in the industry.

Claims (1)

質量率でCr:0.05〜1.0%、Zr:0.05〜0.25%を含み、更にZn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co及びSiのうち1種又は2種以上、総量で0.01〜1.0%含有すると共に、残部がCu及び不可避的不純物から成る成分組成からなり、かつ粒径2μm以上の介在物の中に含有されるZn、Sn、Mn、P、In、Mg、Fe、Ni、Be、Al、B、Co及びSiが総量で5%以下であることを特徴とする易加工高力高導電性銅合金。In a mass ratio, Cr: 0.05 to 1.0%, Zr: 0.05 to 0.25%, Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, One or more of Co and Si, in a total amount of 0.01 to 1.0%, with the balance being a component composition consisting of Cu and inevitable impurities, and in inclusions having a particle size of 2 μm or more Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co, and Si contained in a total amount of 5% or less in total, easily processable high-strength high-conductivity copper alloy.
JP2002317644A 2002-10-31 2002-10-31 Easy-to-process high-strength, high-conductivity copper alloy Expired - Fee Related JP3699701B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002317644A JP3699701B2 (en) 2002-10-31 2002-10-31 Easy-to-process high-strength, high-conductivity copper alloy
KR1020030074083A KR100559812B1 (en) 2002-10-31 2003-10-23 High strength and electric conductivity copper alloy excellent in workability
CNB200310113842XA CN1279195C (en) 2002-10-31 2003-10-31 Easy machining, high strength and high conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317644A JP3699701B2 (en) 2002-10-31 2002-10-31 Easy-to-process high-strength, high-conductivity copper alloy

Publications (2)

Publication Number Publication Date
JP2004149874A JP2004149874A (en) 2004-05-27
JP3699701B2 true JP3699701B2 (en) 2005-09-28

Family

ID=32460987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317644A Expired - Fee Related JP3699701B2 (en) 2002-10-31 2002-10-31 Easy-to-process high-strength, high-conductivity copper alloy

Country Status (3)

Country Link
JP (1) JP3699701B2 (en)
KR (1) KR100559812B1 (en)
CN (1) CN1279195C (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4068626B2 (en) * 2005-03-31 2008-03-26 日鉱金属株式会社 Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
CN100445403C (en) * 2005-06-10 2008-12-24 日立电线株式会社 Soft copper alloy and soft copper alloy wire or board
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
CN101268206B (en) * 2005-09-30 2010-12-29 古河电气工业株式会社 Copper alloy for an electric connecting device
KR100779754B1 (en) * 2007-02-26 2007-11-26 주식회사원일사 Copper alloy having excellent heat-resistant property and electric conductivity and manufacturing method thereof
JP4937815B2 (en) * 2007-03-30 2012-05-23 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2009041194A1 (en) * 2007-09-27 2009-04-02 Nippon Mining & Metals Co., Ltd. High-strength high-electroconductivity copper alloy possessing excellent hot workability
JP5426936B2 (en) * 2009-06-18 2014-02-26 株式会社Shカッパープロダクツ Copper alloy manufacturing method and copper alloy
CN101671783B (en) * 2009-10-14 2011-05-18 郑州机械研究所 Copper-zinc-nickel-cobalt-indium alloy and preparation method thereof
JP5539055B2 (en) * 2010-06-18 2014-07-02 株式会社Shカッパープロダクツ Copper alloy material for electric / electronic parts and method for producing the same
CN101984107B (en) * 2010-12-03 2012-03-07 中南大学 Method for preparing CuNiSiAl elastic copper alloy
CN102719694A (en) * 2012-06-21 2012-10-10 铜陵金威铜业有限公司 CuCrZr alloy material, preparation method thereof and method for preparing strips with same
CN103898425B (en) * 2012-12-24 2016-06-22 北京有色金属研究总院 A kind of compound deformation heat treatment method suitable in Cu-Cr-Zr system alloy wire
CN103117116A (en) * 2013-01-16 2013-05-22 浙江宏磊铜业股份有限公司 High-strength high-conductivity enameled copper alloy wire
CN104342579B (en) * 2013-07-30 2017-03-29 北京有色金属研究总院 A kind of high-strength high-elasticity Cu Ni Mn alloys and preparation method thereof
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
CN103773993B (en) * 2014-01-10 2016-01-20 滁州学院 A kind of zinc electroplating bath cupronickel alloy material and preparation method thereof
CN103757473B (en) * 2014-01-10 2016-01-20 滁州学院 A kind of environment-protective free-cutting nickel silver alloy material and preparation method thereof
CN103757465B (en) * 2014-01-10 2016-01-20 滁州学院 A kind of corrosion-resistant easy cutting Cu alloy material and preparation method thereof
CN105323878B (en) * 2015-08-17 2017-11-24 林月瑜 One kind heating wire material and preparation method thereof
JP6736869B2 (en) * 2015-11-09 2020-08-05 三菱マテリアル株式会社 Copper alloy material
CN107046768B (en) * 2016-02-05 2019-12-31 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
CN110527866B (en) * 2019-09-29 2021-02-05 广东和润新材料股份有限公司 High-conductivity and high-strength copper strip and preparation method thereof
CN110747371B (en) * 2019-12-06 2021-11-09 沈阳金科有色产品研制有限公司 High-conductivity high-strength high-hardness copper alloy and preparation method thereof
CN111575531B (en) * 2020-06-28 2021-01-05 杭州铜信科技有限公司 High-conductivity copper alloy plate and manufacturing method thereof
CN112159911B (en) * 2020-10-26 2022-10-21 有研工程技术研究院有限公司 High-strength high-conductivity fatigue-resistant copper alloy and preparation method and application thereof
CN115896537B (en) * 2022-09-20 2024-04-02 宁波兴业鑫泰新型电子材料有限公司 High-strength corrosion-resistant Cu-Ni-Sn alloy and preparation method thereof
CN115976364B (en) * 2022-11-28 2024-05-03 烟台万隆真空冶金股份有限公司 High-strength conductive copper alloy and preparation method thereof
CN116426788A (en) * 2023-04-17 2023-07-14 浙江惟精新材料股份有限公司 Copper-chromium alloy and preparation method and application thereof
CN118326201B (en) * 2024-06-17 2024-09-17 上海理工大学 Copper-base alloy contact wire and continuous production method thereof

Also Published As

Publication number Publication date
KR100559812B1 (en) 2006-03-10
CN1279195C (en) 2006-10-11
JP2004149874A (en) 2004-05-27
CN1498978A (en) 2004-05-26
KR20040038677A (en) 2004-05-08

Similar Documents

Publication Publication Date Title
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
JP5045784B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP4809602B2 (en) Copper alloy
JP5619389B2 (en) Copper alloy material
JP2011241412A (en) Copper alloy for electronic device, method for producing copper alloy for electronic device and copper alloy rolled material for electronic device
JP2013047360A (en) Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP2002180161A (en) High strength copper alloy
JP2012193408A (en) Cu-Ni-Si ALLOY HAVING EXCELLENT BENDABILITY
KR20150126064A (en) Copper-cobalt-silicon alloy for electrode material
JP4916206B2 (en) Cu-Cr-Si alloy and Cu-Cr-Si alloy foil for electric and electronic parts
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP5045782B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP4130593B2 (en) High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics
JP4175920B2 (en) High strength copper alloy
JPH0987814A (en) Production of copper alloy for electronic equipment
JP3807387B2 (en) Copper alloy for terminal / connector and manufacturing method thereof
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
TW201714185A (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP2010236029A (en) Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050708

R150 Certificate of patent or registration of utility model

Ref document number: 3699701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees