KR100559812B1 - High strength and electric conductivity copper alloy excellent in workability - Google Patents

High strength and electric conductivity copper alloy excellent in workability Download PDF

Info

Publication number
KR100559812B1
KR100559812B1 KR1020030074083A KR20030074083A KR100559812B1 KR 100559812 B1 KR100559812 B1 KR 100559812B1 KR 1020030074083 A KR1020030074083 A KR 1020030074083A KR 20030074083 A KR20030074083 A KR 20030074083A KR 100559812 B1 KR100559812 B1 KR 100559812B1
Authority
KR
South Korea
Prior art keywords
copper alloy
strength
hot rolling
workability
contained
Prior art date
Application number
KR1020030074083A
Other languages
Korean (ko)
Other versions
KR20040038677A (en
Inventor
간무리가쯔끼
후까마찌가즈히꼬
Original Assignee
닛코 킨조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛코 킨조쿠 가부시키가이샤 filed Critical 닛코 킨조쿠 가부시키가이샤
Publication of KR20040038677A publication Critical patent/KR20040038677A/en
Application granted granted Critical
Publication of KR100559812B1 publication Critical patent/KR100559812B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Conductive Materials (AREA)

Abstract

(과제) 이른바 제 3 원소의 작용을 손상시키지 않는 가공이 용이한 고력 고도전성 구리합금을 제공한다. (Problem) Provided is a high-strength highly conductive copper alloy that is easy to process without impairing the action of so-called third elements.

(해결수단) 질량%로 Cr: 0.05∼1.0%, Zr: 0.05∼0.25% 를 함유하고, 또한 Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co 및 Si 중 1 종 또는 2 종 이상을 총량으로 0.01∼1.0% 함유하는 동시에, 잔부가 Cu 및 불가피한 불순물로 이루어지는 성분조성으로 이루어지고, 또한 입경 2㎛ 이상의 개재물 중에 함유되는 Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co 및 Si 가 총량으로 5% 이하인 것을 특징으로 하는 가공이 용이한 고력 고도전성 구리합금이다. (Measures) Containing by mass: 0.05% to 1.0%, Zr: 0.05% to 0.25%, Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co and Si Zn, Sn, Mn, P, In contained one or two or more of them in a total amount of 0.01 to 1.0%, the balance being composed of a component composition consisting of Cu and unavoidable impurities, and contained in inclusions having a particle diameter of 2 µm or more. , Mg, Fe, Ni, Be, Al, B, Co and Si is a high-strength highly conductive copper alloy easy to process, characterized in that the total amount of 5% or less.

고력 고도전성 구리합금High Strength High Conductivity Copper Alloy

Description

가공이 용이한 고력 고도전성 구리합금 {HIGH STRENGTH AND ELECTRIC CONDUCTIVITY COPPER ALLOY EXCELLENT IN WORKABILITY}High-strength highly conductive copper alloy that is easy to process {HIGH STRENGTH AND ELECTRIC CONDUCTIVITY COPPER ALLOY EXCELLENT IN WORKABILITY}

본 발명은 가공이 용이한 고력 고도전성 구리합금에 관한 것으로 보다 상세하게 서술하면 각종 단자, 커넥터, 릴레이 또는 스위치 등에 사용되는 도전성 스프링재에 관한 것이다. The present invention relates to a high-strength highly conductive copper alloy that is easy to process, and more particularly, to a conductive spring material used for various terminals, connectors, relays or switches.

각종 단자, 커넥터, 릴레이 또는 스위치 등에 사용되는 도전성 스프링재에는 다음과 같은 재료 등이 요구되고 있다. The following materials etc. are calculated | required for the conductive spring material used for various terminals, a connector, a relay, a switch, etc.

(a) 얇은 판두께에서도 높은 접촉압을 생기게 하기 위한 충분한 강도를 가질 것,(a) have sufficient strength to produce high contact pressures even at thin plate thicknesses;

(b) 응력 완화율이 낮고 고온하에서 장기간 사용해도 접촉압이 저하되지 않을 것,(b) The stress relaxation rate is low and the contact pressure will not decrease even if used for a long time under high temperature.

(c) 도전율이 높고 통전시에 주울 열 (Joule's heat) 이 잘 발생되지 않을 것, 또한 발생되는 열을 방산시키기 쉬울 것,(c) high conductivity and not good Joule's heat during energization, and easy to dissipate generated heat;

(d) 심한 벤딩가공을 실시해도 벤딩부에 균열이나 표면거침을 생기게 하지 않을 것,(d) Cracking or surface roughening of bending part should not be caused by severe bending process.

(e) 높은 스프링 응력까지 사용할 수 있도록 스프링 한계값이 높을 것.(e) The spring limit should be high so that high spring stresses can be used.

그리고, 각종 단자, 커넥터, 릴레이 또는 스위치 등에 사용되는 도전성 스프링재로서 종래 인청동이 사용되어 왔다. 그런데, 최근 전자기기류 및 그 부품에는 소형화, 박육화가 요구되고 있다. 이와 같은 요구에 응하기 위해 Cu-Cr 계 구리합금 또는 Cu-Cr-Zr 계 구리합금이 다양하게 개발되고 있다. In addition, conventional phosphor bronze has been used as a conductive spring material used in various terminals, connectors, relays, switches, and the like. However, in recent years, miniaturization and thinning of electronic devices and their components are required. In order to meet such demands, various Cu-Cr-based copper alloys or Cu-Cr-Zr-based copper alloys have been developed.

[특허문헌 1][Patent Document 1]

일본 공개특허공보 평9-087814호Japanese Laid-Open Patent Publication No. 9-087814

[특허문헌 2][Patent Document 2]

일본 공개특허공보 평7-258804호Japanese Laid-Open Patent Publication No. 7-258804

[특허문헌 3][Patent Document 3]

일본 공개특허공보 평7-258806호Japanese Laid-Open Patent Publication No. 7-258806

[특허문헌 4][Patent Document 4]

일본 공개특허공보 평7-258807호Japanese Laid-Open Patent Publication No. 7-258807

[특허문헌 5][Patent Document 5]

일본 공개특허공보 평7-268573호Japanese Patent Laid-Open No. 7-268573

[특허문헌 6][Patent Document 6]

일본 특허공보 제2682577호Japanese Patent Publication No. 2662577

Cu-Cr 계 구리합금 또는 Cu-Cr-Zr 계 구리합금에서는 용체화처리 후에 시효시킴으로써 구리모상 중에 Cr, Zr 또는 Cu-Zr 을 석출시켜 강도향상을 도모하고 있다. 그러나, 용해공정에서 완전히 용해되지 않기 때문에, 또는 주조공정에서 정출 또는 석출되기 때문에 합금 중에 Cr, Cu-Zr, 또는 Zr-S 를 기초로 한 개재물이 발생하는데, 개재물의 치수가 지나치게 크면 강도나 에칭성이 열화되어 바람직하지 않다. In the Cu-Cr-based copper alloy or the Cu-Cr-Zr-based copper alloy, aging is performed after the solution treatment to precipitate Cr, Zr or Cu-Zr in the copper matrix to improve the strength. However, inclusions based on Cr, Cu-Zr, or Zr-S occur in the alloy because they are not completely dissolved in the melting process, or are crystallized or precipitated in the casting process. It is not preferable because the deterioration of the sex.

Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co 및 Si 의 첨가원소군 (이하,「제 3 원소」라고 함) 은 강도향상, 땜납 젖음성의 향상을 위해 Cu-Cr 계 구리합금 또는 Cu-Cr-Zr 계 구리합금에 대해 첨가하는 것이 알려져 있다. Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co and Si added element group (hereinafter referred to as “third element”) are used to improve strength and improve solder wettability. It is known to add to Cu-Cr type copper alloy or Cu-Cr-Zr type copper alloy.

그리고, Cu-Cr 계 구리합금 또는 Cu-Cr-Zr 계 구리합금은 일반적으로 원료배합, 용해, 주조, 균질화소둔, 열간압연, (냉간압연), 용체화처리, 냉간압연, 시효처리 (냉간압연) 의 공정을 순차적으로 실시하여 제조된다. Cu-Cr-based copper alloys or Cu-Cr-Zr-based copper alloys are generally blended, melted, cast, homogenized, annealed, hot rolled, (cold rolled), solution treatment, cold rolled, aged (cold rolled). ) Is produced by sequentially performing the process.

그러나, 발명자는 Cu-Cr 계 구리합금 또는 Cu-Cr-Zr 계 구리합금 중의 개재물에 대해 연구하여, 소정 치수 이상의 조대 개재물에 이른바 제 3 원소가 도입되면 모상에 대한 고용강화나 석출강화가 현저하게 저하되는 것을 발견하였다. 그래서, 본 발명의 목적은 이른바 제 3 원소의 작용을 손상시키지 않는 가공이 용이한 고력 고도전성 구리합금을 제공하는 것이다. However, the inventors have studied the inclusions in the Cu-Cr-based copper alloy or the Cu-Cr-Zr-based copper alloy, and when the so-called third element is introduced into the coarse inclusions having a predetermined dimension or more, the solid solution strengthening or precipitation strengthening of the mother phase is remarkable. It was found to be degraded. Therefore, it is an object of the present invention to provide a high-strength highly conductive copper alloy that is easy to process without impairing the action of so-called third elements.

상기 목적을 달성하기 위해 발명자는 예의 연구를 실시하여 본 발명에 도달하였는데, 본 발명은 청구항 1 에 기재된 바와 같이 질량%로 Cr: 0.05∼1.0%, Zr: 0.05∼0.25% 를 함유하고, 또한 Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co 및 Si 중 1 종 또는 2 종 이상, 총량으로 0.01∼1.0% 함유하는 동시에, 잔부가 Cu 및 불가피한 불순물로 이루어지는 성분조성으로 이루어지고, 또한 입경 2㎛ 이상의 개재물 중에 함유되는 Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co 및 Si 가 총량으로 5% 이하인 것을 특징으로 하는 가공이 용이한 고력 고도전성 구리합금이다. In order to achieve the above object, the inventor has made intensive studies and reached the present invention. The present invention contains Cr: 0.05 to 1.0%, Zr: 0.05 to 0.25% by mass, as described in claim 1, and Zn. 1, 2 or more of Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co, and Si, in a total amount of 0.01 to 1.0%, and the balance consists of Cu and unavoidable impurities Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co and Si in the composition of the composition and contained in inclusions having a particle diameter of 2 µm or more are 5% or less in total. It is a high strength highly conductive copper alloy that is easy to process.

[작용][Action]

Cr, Zr:Cr, Zr:

합금을 용체화처리 후에 시효시킴으로써 Cr, Zr 은 구리모상 중에 석출되어 강도향상에 기여한다. Cr 은 함유량이 0.05% 미만이면 그 작용에 의한 기여를 얻을 수 없고, 1.0% 를 초과하여 첨가해도 추가적인 강도향상은 얻을 수 없다. Zr 은 함유량이 0.05% 미만이면 그 작용에 의한 기여를 얻을 수 없고, 0.25% 를 초과하여 첨가해도 추가적인 강도상승은 얻을 수 없다. By aging the alloy after the solution treatment, Cr and Zr precipitate in the copper matrix to contribute to the improvement in strength. When Cr content is less than 0.05%, the contribution by the effect cannot be acquired, and even if it adds exceeding 1.0%, the additional strength improvement will not be obtained. If the content of Zr is less than 0.05%, the contribution by the action cannot be obtained, and even if it is added in excess of 0.25%, no further increase in strength can be obtained.

Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co 및 Si (제 3 원소)Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co and Si (third element)

이들 원소는 모두 도전율을 크게 저하시키지 않고 구리모상 중에 고용, 석출되어 주로 강도향상에 기여한다. 첨가량이 0.05% 이하이면 그 기여는 작고, 1.0% 이상이면 도전율을 저하시키기 때문에 0.05% 이상 1.0% 이하로 하였다. All of these elements dissolve and precipitate in the copper matrix without significantly lowering the electrical conductivity, thereby mainly contributing to the improvement in strength. If the addition amount is 0.05% or less, the contribution is small, and if it is 1.0% or more, the electrical conductivity is lowered, so it is set to 0.05% or more and 1.0% or less.

도전율과 강도의 균형면에서 제 3 원소는 소량의 첨가로 큰 강도상승을 얻는 것이 바람직하지만, 첨가량의 일부는 조대 개재물에 도입됨으로써 강도향상에 기여하지 않는다. 발명자는 제 3 첨가원소가 함유된 조대 개재물은 잉곳내의 편석에 기인하는 것을 발견하였다. 본 발명에서는 균질화소둔, 열간압연의 조건을 제어함으로써 제 3 원소가 함유된 조대 개재물을 감소시키는 데에 성공하였다. 이에 의해, 소량의 제 3 첨가원소의 첨가로 큰 강도향상을 얻을 수 있다. In terms of the balance between the conductivity and the strength, it is preferable that the third element obtain a large increase in strength by adding a small amount, but a part of the added amount does not contribute to the increase in strength by being introduced into the coarse inclusion. The inventors found that the coarse inclusions containing the third additional element are due to segregation in the ingot. The present invention succeeds in reducing coarse inclusions containing the third element by controlling the conditions of homogenization annealing and hot rolling. As a result, a large increase in strength can be obtained by adding a small amount of the third additional element.

본 발명이 문제로 하는 제 3 원소를 함유하는 개재물은 조대 개재물이다. 그 개재물 치수가 2㎛ 미만인 경우, 개재물에 함유되는 제 3 원소의 비율은 열간압연 이후의 열처리 (용체화처리, 시효처리 등) 의 영향을 받기 쉽지만, 2㎛ 이상의 개재물은 열간압연 후의 열처리에 의해서도 안정되게 존재한다. 또, 용체화처리에 의해 개재물에 함유되는 제 3 원소의 비율을 저감시키면 결정립이 조대화되기 때문에 강도, 가공성의 관점에서 바람직하지 않다. 한편 균질화소둔, 열간압연의 조건을 제어함으로써 2㎛ 이상의 개재물뿐만 아니라, 2㎛ 미만의 개재물에 대해서도 개재물 중에 함유되는 첨가원소의 질량%를 저하시킬 수 있기 때문에 개재물 치수를 2㎛ 이상으로 하였다. Inclusions containing the third element in question in the present invention are coarse inclusions. If the size of the inclusion is less than 2 μm, the proportion of the third element contained in the inclusion is easily affected by the heat treatment after hot rolling (solution treatment, aging treatment, etc.), but the inclusion of 2 μm or more may be affected by the heat treatment after hot rolling. It exists stable. In addition, when the ratio of the third element contained in the inclusions is reduced by the solution treatment, the crystal grains are coarsened, which is not preferable in view of strength and workability. On the other hand, by controlling the conditions of homogenization annealing and hot rolling, not only the inclusion of 2 µm or more but also the inclusion of less than 2 µm can reduce the mass% of the added element contained in the inclusion.

2㎛ 이상의 개재물에 함유되는 첨가원소의 총량이 2㎛ 이상의 개재물의 총량에 대해 5% 보다 다량으로 존재할 때, 제 3 원소첨가에 의한 강도 상승의 기여를 작게 하기 때문에 개재물 중에 함유되는 제 3 원소의 중량 함유량은 5% 이하로 하였다. When the total amount of the additional elements contained in the inclusions of 2 μm or more is present in an amount greater than 5% relative to the total amount of the inclusions of 2 μm or more, the contribution of the increase in strength due to the addition of the third element is reduced. The weight content was 5% or less.

발명의 실시형태Embodiment of the invention

이하, 본 발명에 관련되는 가공이 용이한 고력 고도전성 구리합금의 실시형태에 대해 상세하게 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, embodiment of the high strength highly conductive copper alloy which is easy to process concerning this invention is described in detail.

전기구리 또는 무산소구리를 주원료로 하고, 성분조성을 소정 비율로 배합하여 용해로에서 용해시킨 후, 잉곳을 불활성 분위기 또는 진공중에서 주조하였다. 이어서, 잉곳을 900℃ 이상의 온도에서 300 분 이상 균질화소둔한 후, 압연가공도 50% 이상, 열간압연 종료시의 재료온도가 600℃ 이상이 되도록 열간압연을 실시한 다. 열간압연 이후에 대해서는 냉간압연, 용체화처리, 시효처리, 냉간압연, 변형제거소둔의 종래의 제조공정, 종래의 제조조건으로 실시하였다. Copper or oxygen-free copper was used as the main raw material, and the composition was mixed at a predetermined ratio to dissolve in the melting furnace, and then the ingot was cast in an inert atmosphere or in a vacuum. Subsequently, the ingot is homogenized and annealed at a temperature of 900 ° C. or higher for at least 300 minutes, and then hot rolling is performed such that the rolling process is at least 50% and the material temperature at the end of hot rolling is 600 ° C. or higher. After hot rolling, the conventional production process of cold rolling, solution treatment, aging treatment, cold rolling, strain removal annealing, and the conventional production conditions were performed.

즉, 본 발명의 실시형태의 제조방법은 종래방법과는 달리 균질화소둔, 열간압연을 다음 조건으로 실시하는 것을 특징으로 한다. That is, the manufacturing method of embodiment of this invention is characterized by performing homogenizing annealing and hot rolling on the following conditions unlike a conventional method.

1) 균질화소둔이 900℃ 이상의 온도에서 300 분 보다 장시간 실시될 것,1) Homogenization annealing should be carried out for more than 300 minutes at temperature above 900 ℃

2) 열간압연의 가공률이 50% 이상일 것,2) The processing rate of hot rolling should be 50% or more,

3) 열간압연 종료시에 재료온도가 600℃ 이상일 것.3) At the end of hot rolling, the material temperature should be 600 ℃ or higher.

실시예 및 비교예에 대해 표 1 에 나타내는 화학조성으로 잉곳을 용제하였다. 또한, 실시예의 번호와 비교예의 번호가 동일한 것 (예컨대, 실시예 1 과 비교예 1, 실시예 2 와 비교예 2 등) 은 동일한 화학조성이 되도록 조정하였다. 잉곳 용제 후, 균질화소둔, 열간압연, 냉간압연, 용체화처리, 시효처리, 냉간압연, 변형제거소둔의 제조공정을 순차적으로 거쳐 판두께 0.15㎜ 의 제품을 제작하였다. The ingot was solvent-processed by the chemical composition shown in Table 1 about an Example and a comparative example. In addition, the same thing as the number of an Example and a comparative example (for example, Example 1, Comparative Example 1, Example 2, Comparative Example 2, etc.) was adjusted so that it might be same chemical composition. After the ingot solvent, a product having a plate thickness of 0.15 mm was produced sequentially through the manufacturing processes of homogenization annealing, hot rolling, cold rolling, solution treatment, aging treatment, cold rolling, and strain removal annealing.

Figure 112003039503737-pat00001
Figure 112003039503737-pat00001

균질화소둔공정 및 열간압연공정에 대해서는 실시예 및 비교예에 대해 표 2 에 나타내는 바와 같은 균질화소둔의 온도, 열간압연의 가공도 및 열간압연 종료시의 재료온도를 설정하여 실시하였다. 열간압연 이후의 공정에 대해서는 종래의 조건으로 실시하였다. The homogenizing annealing step and the hot rolling step were carried out by setting the temperature of the homogenizing annealing, the workability of the hot rolling, and the material temperature at the end of the hot rolling as shown in Table 2 in Examples and Comparative Examples. The process after hot rolling was performed under conventional conditions.

Figure 112003039503737-pat00002
Figure 112003039503737-pat00002

실시예에 대해서는 상기 식별번호〈38〉∼〈40〉에 서술한 1), 2), 3) 의 제조방법상의 특징을 모두 만족시키고 있지만, 비교예에 대해서는 상기 식별번호〈38〉∼〈40〉에 서술한 1), 2), 3) 의 제조방법상의 특징 중 어느 하나는 만족시키고 있지 않다. In the examples, all of the features of the manufacturing methods 1), 2) and 3) described in the above-mentioned identification numbers <38> to <40> are satisfied. For the comparative example, the identification numbers <38> to <40>. None of the characteristics on the manufacturing method of 1), 2), and 3) described above is satisfied.

이상과 같이 하여 얻은 실시예 및 비교예의 구리합금에 대해 석출물 치수 및 조성 동정을 위해, 예컨대 변경제거소둔 후의 판재를 기계연마 후, 전해연마를 실시하여 석출물을 SEM 등으로 관찰, AES 로 동정함으로써 실시하였다. 또, 얻은 구리합금의 특성평가를 위해 인장시험, W 벤딩시험 (압연직각방향, R/t=1 (R=0.15, t=0.15), 그 밖의 조건은 일본 신동협회 기술표준에 정해진 방법에 따름), 4 단자법에 의한 도전율 측정을 실시하였다. 또한, W 벤딩시험에서 일본 신동협회 기술표준에 정해진 A, B, C 랭크인 것을「양호」로 하고, D, E 랭크인 것을「불량」으로 하였다. The copper alloys of the Examples and Comparative Examples obtained as described above were subjected to electrolytic polishing after mechanical polishing of the plate material after change removal annealing, for example, to identify precipitates by SEM, and to identify precipitates by AES. It was. In addition, the tensile test, W bending test (rolling perpendicular direction, R / t = 1 (R = 0.15, t = 0.15), and other conditions for the evaluation of the characteristics of the obtained copper alloy are in accordance with the method specified in the Japanese Standards ) And the conductivity measurement by the four-terminal method. In the W bending test, "A", "B" and "C" ranks specified in the technical standards of the Japan Prodigy Association were designated as "good", and "D" and "E" ranks were "bad".

본 발명 합금의 실시양태와 비교예에 대한 특성을 표 3 에 나타낸다. Table 3 shows the characteristics of the embodiments and comparative examples of the alloy of the present invention.

Figure 112003039503737-pat00003
Figure 112003039503737-pat00003

실시예와 비교예의 번호가 동일한 것 (예컨대 실시예 1 과 비교예 1, 실시예 2 와 비교예 2 등) 을 비교하면, 화학조성은 거의 동일하지만 제조조건이 다르다. 표 2 에 나타낸 바와 같이, 실시예는 모두 균질화소둔의 온도, 열간압연의 가공도 및 열간압연 종료시의 재료온도에 대해 상기 식별번호〈38〉∼〈40〉에 서술한 1), 2), 3) 의 조건을 만족시키고 있어 2㎛ 이상의 개재물에 함유되는 제 3 원소의 함유량이 5% 이하이다. 비교예는 비교예 1, 2, 3, 11, 12 는 균질화소둔의 온도, 비교예 4, 5, 6, 13, 14, 15 는 열간압연의 가공도, 비교예 7, 8, 9, 10, 16, 17 은 열간압연 종료시의 재료온도에 대해 상기 식별번호〈38〉∼〈40〉에 서술한 1), 2), 3) 의 조건에서 벗어나 있다. 그로 인해, 비교예에서는 모두 2㎛ 이상의 개재물에 함유되는 제 3 원소의 함유량이 5% 를 초과하고 있다. When the numbers of the examples and the comparative examples are the same (for example, Example 1 and Comparative Example 1, Example 2, Comparative Example 2, etc.), the chemical composition is almost the same, but the manufacturing conditions are different. As shown in Table 2, all of the examples 1), 2), and 3 described above for the temperature of homogenization annealing, the workability of hot rolling, and the material temperature at the end of hot rolling. ), The content of the 3rd element contained in the inclusion of 2 micrometers or more is 5% or less. Comparative Examples 1, 2, 3, 11, 12 is the temperature of the homogenization annealing, Comparative Examples 4, 5, 6, 13, 14, 15 is the workability of hot rolling, Comparative Examples 7, 8, 9, 10, 16 and 17 deviate from the conditions 1), 2) and 3) described in the identification numbers <38> to <40> with respect to the material temperature at the end of hot rolling. Therefore, in all the comparative examples, content of the 3rd element contained in the inclusion of 2 micrometers or more exceeds 5%.

따라서, 동일 번호의 실시예의 인장강도와 비교예의 인장강도를 비교하면 실시예가 높게 되어 있다. 또, 벤딩성에 대해서도 비교예는 W 벤딩시험에서「불량」으로 되는 것이 있는 것에 반해 실시예는 모두「양호」로 실시예의 벤딩성이 양호함을 알 수 있다. 또한, 도전율에 대해 실시예와 비교예의 큰 차이는 없어 비교예 즉 종래품과는 동등하다. Therefore, when the tensile strength of the Example of the same number is compared with the tensile strength of a comparative example, an Example becomes high. In addition, also in the bending property, while the comparative example may become "defect" in the W bending test, all of the examples are "good", and it can be seen that the bending property of the example is good. Moreover, there is no big difference between an Example and a comparative example about an electrical conductivity, and it is equivalent to a comparative example, ie, a conventional product.

본 발명에 관련되는 가공이 용이한 고력 고도전성 구리합금에 의하면, 도전성, 강도, 벤딩성이 양호하여 특성의 균형이 우수한 구리합금을 얻는 것이 가능해져 전자기기류의 소형화나 성능향상에 크게 기여할 수 있는 등 산업상 매우 유효한 효과를 가져온다.According to the high-strength highly conductive copper alloy which can be easily processed according to the present invention, it is possible to obtain a copper alloy excellent in balance of characteristics due to its good conductivity, strength, and bendability, which can greatly contribute to miniaturization of electronic equipment and improved performance. Etc. It has a very effective effect in industry.

Claims (1)

질량%로 Cr: 0.05∼1.0%, Zr: 0.05∼0.25% 를 함유하고, 또한 Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co 및 Si 중 1 종 또는 2 종 이상, 총량으로 0.01∼1.0% 함유하는 동시에, 잔부가 Cu 및 불가피한 불순물로 이루어지는 성분조성으로 이루어지고, 또한 입경 2㎛ 이상의 개재물 중에 함유되는 Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co 및 Si 가 총량으로 5% 이하인 것을 특징으로 하는 가공이 용이한 고력 고도전성 구리합금.Cr: 0.05% to 1.0%, Zr: 0.05% to 0.25% by mass, and one of Zn, Sn, Mn, P, In, Mg, Fe, Ni, Be, Al, B, Co and Si or Zn, Sn, Mn, P, In, Mg, Fe contained two or more, 0.01 to 1.0% of the total amount, and the balance consists of a component composition consisting of Cu and unavoidable impurities, and contained in inclusions having a particle diameter of 2 µm or more. A high-strength highly conductive copper alloy that is easy to process, wherein the total amount of Ni, Be, Al, B, Co, and Si is 5% or less.
KR1020030074083A 2002-10-31 2003-10-23 High strength and electric conductivity copper alloy excellent in workability KR100559812B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002317644A JP3699701B2 (en) 2002-10-31 2002-10-31 Easy-to-process high-strength, high-conductivity copper alloy
JPJP-P-2002-00317644 2002-10-31

Publications (2)

Publication Number Publication Date
KR20040038677A KR20040038677A (en) 2004-05-08
KR100559812B1 true KR100559812B1 (en) 2006-03-10

Family

ID=32460987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030074083A KR100559812B1 (en) 2002-10-31 2003-10-23 High strength and electric conductivity copper alloy excellent in workability

Country Status (3)

Country Link
JP (1) JP3699701B2 (en)
KR (1) KR100559812B1 (en)
CN (1) CN1279195C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757465A (en) * 2014-01-10 2014-04-30 滁州学院 Corrosion-resistant free-cutting copper alloy material and preparation method thereof
CN103773993A (en) * 2014-01-10 2014-05-07 滁州学院 Environment-friendly zinc-copper-nickel alloy material and preparation method for same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4068626B2 (en) * 2005-03-31 2008-03-26 日鉱金属株式会社 Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
CN100445403C (en) * 2005-06-10 2008-12-24 日立电线株式会社 Soft copper alloy and soft copper alloy wire or board
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
CN101268206B (en) * 2005-09-30 2010-12-29 古河电气工业株式会社 Copper alloy for an electric connecting device
KR100779754B1 (en) * 2007-02-26 2007-11-26 주식회사원일사 Copper alloy having excellent heat-resistant property and electric conductivity and manufacturing method thereof
JP4937815B2 (en) * 2007-03-30 2012-05-23 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
CN101784684B (en) * 2007-09-27 2012-05-23 Jx日矿日石金属株式会社 High-strength high-electroconductivity copper alloy possessing excellent hot workability
JP5426936B2 (en) * 2009-06-18 2014-02-26 株式会社Shカッパープロダクツ Copper alloy manufacturing method and copper alloy
CN101671783B (en) * 2009-10-14 2011-05-18 郑州机械研究所 Copper-zinc-nickel-cobalt-indium alloy and preparation method thereof
JP5539055B2 (en) * 2010-06-18 2014-07-02 株式会社Shカッパープロダクツ Copper alloy material for electric / electronic parts and method for producing the same
CN101984107B (en) * 2010-12-03 2012-03-07 中南大学 Method for preparing CuNiSiAl elastic copper alloy
CN102719694A (en) * 2012-06-21 2012-10-10 铜陵金威铜业有限公司 CuCrZr alloy material, preparation method thereof and method for preparing strips with same
CN103898425B (en) * 2012-12-24 2016-06-22 北京有色金属研究总院 A kind of compound deformation heat treatment method suitable in Cu-Cr-Zr system alloy wire
CN103117116A (en) * 2013-01-16 2013-05-22 浙江宏磊铜业股份有限公司 High-strength high-conductivity enameled copper alloy wire
CN104342579B (en) * 2013-07-30 2017-03-29 北京有色金属研究总院 A kind of high-strength high-elasticity Cu Ni Mn alloys and preparation method thereof
JP5668814B1 (en) 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
CN103757473B (en) * 2014-01-10 2016-01-20 滁州学院 A kind of environment-protective free-cutting nickel silver alloy material and preparation method thereof
CN105323878B (en) * 2015-08-17 2017-11-24 林月瑜 One kind heating wire material and preparation method thereof
JP6736869B2 (en) * 2015-11-09 2020-08-05 三菱マテリアル株式会社 Copper alloy material
CN107046768B (en) * 2016-02-05 2019-12-31 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
CN110527866B (en) * 2019-09-29 2021-02-05 广东和润新材料股份有限公司 High-conductivity and high-strength copper strip and preparation method thereof
CN110747371B (en) * 2019-12-06 2021-11-09 沈阳金科有色产品研制有限公司 High-conductivity high-strength high-hardness copper alloy and preparation method thereof
CN111575531B (en) * 2020-06-28 2021-01-05 杭州铜信科技有限公司 High-conductivity copper alloy plate and manufacturing method thereof
CN112159911B (en) * 2020-10-26 2022-10-21 有研工程技术研究院有限公司 High-strength high-conductivity fatigue-resistant copper alloy and preparation method and application thereof
CN115896537B (en) * 2022-09-20 2024-04-02 宁波兴业鑫泰新型电子材料有限公司 High-strength corrosion-resistant Cu-Ni-Sn alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757465A (en) * 2014-01-10 2014-04-30 滁州学院 Corrosion-resistant free-cutting copper alloy material and preparation method thereof
CN103773993A (en) * 2014-01-10 2014-05-07 滁州学院 Environment-friendly zinc-copper-nickel alloy material and preparation method for same

Also Published As

Publication number Publication date
CN1279195C (en) 2006-10-11
JP2004149874A (en) 2004-05-27
KR20040038677A (en) 2004-05-08
CN1498978A (en) 2004-05-26
JP3699701B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
KR100559812B1 (en) High strength and electric conductivity copper alloy excellent in workability
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
KR100622320B1 (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP5619389B2 (en) Copper alloy material
KR101515668B1 (en) Copper alloy sheet material
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
WO2010016428A1 (en) Copper alloy material for electrical/electronic component
JP2002180161A (en) High strength copper alloy
KR20150126064A (en) Copper-cobalt-silicon alloy for electrode material
JP5468798B2 (en) Copper alloy sheet
JP2007169764A (en) Copper alloy
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP4302579B2 (en) High-strength, high-conductivity copper alloy for electronic equipment
JP4971856B2 (en) Precipitation type copper alloy
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JPH0987814A (en) Production of copper alloy for electronic equipment
KR100553511B1 (en) High strength and high electrical conductivity copper alloy having excellent fatigue property and intermediate temperature property
JP4175920B2 (en) High strength copper alloy
JP3807387B2 (en) Copper alloy for terminal / connector and manufacturing method thereof
EP3421628A1 (en) Wire material for connector terminal
KR20160001634A (en) Copper alloy material, method for producing copper alloy material, lead frames and connectors
JP4493083B2 (en) High-performance copper alloy for electronic equipment with excellent strength and conductivity and method for producing the same
EP3536816A1 (en) Connector terminal wire

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130227

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140220

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160218

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180219

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200218

Year of fee payment: 15