JP2007100136A - Copper alloy for lead frame excellent in uniform plating property - Google Patents

Copper alloy for lead frame excellent in uniform plating property Download PDF

Info

Publication number
JP2007100136A
JP2007100136A JP2005288679A JP2005288679A JP2007100136A JP 2007100136 A JP2007100136 A JP 2007100136A JP 2005288679 A JP2005288679 A JP 2005288679A JP 2005288679 A JP2005288679 A JP 2005288679A JP 2007100136 A JP2007100136 A JP 2007100136A
Authority
JP
Japan
Prior art keywords
copper alloy
size
mass
inclusions
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005288679A
Other languages
Japanese (ja)
Inventor
Ikuya Kurosaki
郁也 黒▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2005288679A priority Critical patent/JP2007100136A/en
Publication of JP2007100136A publication Critical patent/JP2007100136A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy for a lead frame excellent in uniform plating property. <P>SOLUTION: In the copper alloy of Ni-Si based copper alloy, Cr-Zr based copper alloy, Sn-P based copper alloy, etc., the copper alloy for lead frame excellent in the uniform plating property satisfies the following relations, as regards the size D of inclusion present in the depth L from the uppermost layer: in the case of 0.1μm≤L, D≤0.1μm; in the case of 0.1μm<L≤5μm, D<L; and in the case of 5μm<L≤10μm, D≤5μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体パッケージのリードフレーム材およびこれを用いた電子部品に関する。   The present invention relates to a lead frame material for a semiconductor package and an electronic component using the same.

近年、携帯電話やパソコン等の電子機器においては、高密度の実装化が進み、これに伴い、これら電子機器に使用される電子部品については、小型化・薄肉化が進められている。電子部品の中核をなす半導体パッケージは、経済性と量産性に優れることから、半導体、抵抗、コンデンサなどの回路構成部品をリードフレームと共に熱硬化性樹脂でモールドしたプラスチックパッケージが多く用いられている。この半導体パッケージに使用される通電用のリードフレームは、熱放射や信号伝達の高速化への対応から、銅合金が広く用いられている。   In recent years, electronic devices such as mobile phones and personal computers have been mounted with high density, and accordingly, electronic parts used in these electronic devices have been reduced in size and thickness. A semiconductor package that is the core of an electronic component is excellent in economy and mass productivity. Therefore, a plastic package in which circuit components such as a semiconductor, a resistor, and a capacitor are molded together with a lead frame with a thermosetting resin is often used. A copper alloy is widely used for the lead frame for energization used in this semiconductor package in order to cope with heat radiation and high-speed signal transmission.

上述のリードフレームの製造工程においては、銅合金素材をエッチングあるいはプレス加工によりパターンを成形した後、全面あるいは部分的にめっき処理を施す工程がある。半導体の組立工程において、リードフレームは、半導体素子をリードフレームに接合するダイボンディング工程および半導体素子とリードフレームAu線で接合するワイヤボンディング工程を経るが、その接合部には、通常、薄い下地Cuめっきを施した上にAgめっきが施されている。
リードフレーム用銅合金のAgめっきは、半導体素子およびAuリードフレームとの接合不良を防止するために平滑であることが要求されているが、従来はAgの析出状態が不均一となり、Agめっきの突起が発生する問題が発生していた。これを防止する方法としては、銅合金中の特定成分、例えばMg、Al、Ca含有量を制御することにより不均一析出を防止する技術が特許文献1に開示されている。
また、リードフレーム材のめっき性を劣化させないため、材料中の析出物の大きさと存在密度を規定する技術が、特許文献2に開示されている。
In the lead frame manufacturing process described above, there is a process in which a copper alloy material is formed by etching or pressing, followed by a plating process entirely or partially. In the semiconductor assembly process, the lead frame undergoes a die bonding process for bonding the semiconductor element to the lead frame and a wire bonding process for bonding the semiconductor element to the lead frame Au wire. After plating, Ag plating is performed.
Ag plating of copper alloy for lead frames is required to be smooth in order to prevent poor bonding between the semiconductor element and the Au lead frame. Conventionally, however, the Ag deposition state becomes non-uniform, and Ag plating There was a problem of protrusions. As a method for preventing this, Patent Document 1 discloses a technique for preventing non-uniform precipitation by controlling the contents of specific components, for example, Mg, Al, and Ca, in a copper alloy.
Further, Patent Document 2 discloses a technique for defining the size and density of precipitates in a material so as not to deteriorate the plating properties of the lead frame material.

特許第3056394号公報Japanese Patent No. 3056394 特許第2501275号公報Japanese Patent No. 2501275

しかしながら、成分の調整では、ある程度Agめっきの突起の発生を防止できる場合もあるが、完全に防止することはできない。
また、介在物や析出物の大きさを規定するだけでは、Agめっきの突起の発生を防止できない。
本発明の解決すべき課題は、均一で平滑なAgめっきが可能なリードフレーム用銅合金を提供することである。
However, the adjustment of the components may prevent the occurrence of Ag plating protrusions to some extent, but cannot completely prevent them.
Moreover, the generation | occurrence | production of the protrusion of Ag plating cannot be prevented only by prescribing the size of inclusions and precipitates.
The problem to be solved by the present invention is to provide a copper alloy for lead frames capable of uniform and smooth Ag plating.

本発明者等は、Agめっきの突起の発生部分について鋭意調査したところ、突起発生部分の母相(銅合金)に介在物が存在することを見出した。また、これら介在物の存在状態を詳細に調査したところ、これらが存在する位置、即ち母材表面からの深さおよびその大きさとAgめっきの突起発生の有無との間に相関を見出した。また、Agめっきの突起発生に関与する介在物の大きさに関しては、0.1μm未満の場合には、突起の発生に影響が無いことも見出した。   The present inventors conducted extensive investigations on the portion where the Ag plating protrusion was generated, and found that inclusions exist in the parent phase (copper alloy) of the protrusion generation portion. Further, when the existence state of these inclusions was investigated in detail, a correlation was found between the position where these inclusions exist, that is, the depth from the surface of the base material and its size, and the presence or absence of protrusions of Ag plating. In addition, regarding the size of inclusions involved in the generation of protrusions in Ag plating, it has also been found that when the size is less than 0.1 μm, the generation of protrusions is not affected.

介在物や析出物の存在によってAgめっきの突起が発生する理由は定かでないが、介在物や析出物は母相(銅合金)と導電率が異なるため、これらの存在状態が電気めっきにおける部分電流密度の分布に影響し、不均一電着の原因になると推察される。
なお、ここで「介在物」とは、鋳造時に発生する晶出物、時効などの熱処理時に発生する介在物を含む総称とする。
The reason for the occurrence of Ag plating protrusions due to the presence of inclusions and precipitates is not clear, but the inclusions and precipitates have different electrical conductivities from the parent phase (copper alloy). It is presumed that the density distribution is affected and that nonuniform electrodeposition is caused.
Here, the “inclusion” is a generic name including inclusions generated during heat treatment such as crystallization generated during casting and aging.

即ち、以下の通りである。
(1)最表層からの深さ(以下「L」と表記)に存在する介在物の大きさ(以下「D」と表記)について、以下の関係を満たすことを特徴とする、均一めっき性に優れたリードフレーム用銅合金、
0.1≦Lの場合、D≦0.1μm
0.1<L≦5μmの場合、D<L
5μm<L≦10μmの場合、D≦5μm。
That is, it is as follows.
(1) With respect to the size of inclusions (hereinafter referred to as “D”) existing in the depth from the outermost layer (hereinafter referred to as “L”), the following relationship is satisfied. Excellent copper alloy for lead frame,
When 0.1 ≦ L, D ≦ 0.1 μm
When 0.1 <L ≦ 5 μm, D <L
When 5 μm <L ≦ 10 μm, D ≦ 5 μm.

(2)Ni:1.0〜4.8質量%、Si:0.2〜1.4質量%を基本成分として含有し、さらにMg、Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag又はBeのうち1種以上を総量で0.005〜2質量%含有し、残部が実質的にCuであり、NiSi、Cu−S、Mg−Sなどの析出物や成分組成の酸化物が最表層からの深さ(L)と析出物の大きさ(D)について、以下の関係を満たすことを特徴とする、均一めっき性に優れたリードフレーム用銅合金、
0.1≦Lの場合、D≦0.1μm
0.1<L≦5μmの場合、D<L
5μm<L≦10μmの場合、D≦5μm。
(2) Ni: 1.0 to 4.8% by mass, Si: 0.2 to 1.4% by mass as basic components, and Mg, Zn, Sn, Fe, Ti, Zr, Cr, Al, One or more of P, Mn, Ag, or Be is contained in a total amount of 0.005 to 2% by mass, the balance is substantially Cu, and precipitates such as Ni 2 Si, Cu—S, and Mg—S The lead frame copper alloy having excellent uniform plating properties, characterized in that the oxide of the component composition satisfies the following relationship with respect to the depth (L) from the outermost layer and the size (D) of the precipitates:
When 0.1 ≦ L, D ≦ 0.1 μm
When 0.1 <L ≦ 5 μm, D <L
When 5 μm <L ≦ 10 μm, D ≦ 5 μm.

(3)Cr:0.04〜0.4質量%、Zr:0.03〜0.25質量%を基本成分として含有し、さらにMg、Zn、Fe、Al、P、Mn、CoおよびNiの郡から選ばれる1種以上を総量で0.01〜1.0%含有し、残部が実質的にCuであり、Cr、Cu−Zrなどの析出物や成分組成の酸化物が最表層からの深さ(L)と析出物の大きさ(D)について、以下の関係を満たすことを特徴とする、均一めっき性に優れたリードフレーム用銅合金、
0.1≦Lの場合、D≦0.1μm
0.1<L≦5μmの場合、D<L
5μm<L≦10μmの場合、D≦5μm。
(3) Cr: 0.04 to 0.4% by mass, Zr: 0.03 to 0.25% by mass as basic components, and further Mg, Zn, Fe, Al, P, Mn, Co and Ni One or more kinds selected from the county are contained in a total amount of 0.01 to 1.0%, the balance is substantially Cu, and precipitates such as Cr and Cu-Zr and oxides of component composition are from the outermost layer. A copper alloy for lead frames excellent in uniform plating property, characterized by satisfying the following relationship with respect to depth (L) and size (D) of precipitates:
When 0.1 ≦ L, D ≦ 0.1 μm
When 0.1 <L ≦ 5 μm, D <L
When 5 μm <L ≦ 10 μm, D ≦ 5 μm.

(4)Sn:3.5〜11質量%、P:0.03〜0.35質量%含有し、S:0.001質量%以下、残部がCuおよびその不可避的不純物からなり、析出物や成分組成の酸化物が最表層からの深さ(L)と析出物の大きさ(D)について、以下の関係を満たすことを特徴とする、均一めっき性に優れたリードフレーム用銅合金、
0.1≦Lの場合、D≦0.1μm
0.1<L≦5μmの場合、D<L
5μm<L≦10μmの場合、D≦5μm。
(4) Sn: 3.5 to 11% by mass, P: 0.03 to 0.35% by mass, S: 0.001% by mass or less, the balance being made of Cu and its inevitable impurities, The lead frame copper alloy having excellent uniform plating properties, characterized in that the oxide of the component composition satisfies the following relationship with respect to the depth (L) from the outermost layer and the size (D) of the precipitates:
When 0.1 ≦ L, D ≦ 0.1 μm
When 0.1 <L ≦ 5 μm, D <L
When 5 μm <L ≦ 10 μm, D ≦ 5 μm.

なお、上記の銅合金以外であっても、Fe、P、Zn、Sn、Ni、Mg、Alの中から少なくとも1種以上を含有するリードフレーム用銅合金であれば、介在物とAgめっきの突起発生の有無との間に上記と同様の関係が見られる。   In addition to the above copper alloys, inclusions and Ag plating can be used as long as they are copper alloys for lead frames containing at least one of Fe, P, Zn, Sn, Ni, Mg, and Al. A relationship similar to the above is observed between the presence or absence of protrusions.

以上のように、介在物が存在する材料表層からの深さおよびその大きさを規定し、一定範囲に制御することで、均一で平滑なAgめっきが可能なリードフレーム用銅合金が提供できる。   As described above, by defining the depth from the material surface layer where inclusions exist and the size thereof and controlling them within a certain range, a copper alloy for lead frames capable of uniform and smooth Ag plating can be provided.

以下に本発明の限定理由を説明する。
(1)介在物の存在位置と大きさの関係
本発明者らは、リードフレームに用いられる材料について、Agめっきによる突起発生の有無および突起部分の調査を鋭意実施した結果、突起が発生する部分には、銅合金の母材中に介在物の粒子が存在し、粒子が存在する母材表面からの深さと粒子の大きさの関連に着目して整理した結果、これらに強い相関関係があることを見出した。
The reason for limitation of the present invention will be described below.
(1) Relationship between the position and size of inclusions The present inventors conducted extensive investigations on the presence or absence of protrusions due to Ag plating and the protrusions of the materials used in the lead frame, resulting in the occurrence of protrusions. , There are inclusion particles in the base material of copper alloy, and as a result of organizing the relationship between the depth from the surface of the base material where the particles exist and the size of the particles, there is a strong correlation between them. I found out.

また、この結果とAgめっきによる突起発生の関連について考察した結果、母材とは異なる導電率を持つ粒子が材料の表面近傍に存在する場合、材料の電流分布が影響を受け、これが原因となって部分的な電着異常になり、また、電流分布への影響は、粒子の大きさとその存在位置について材料表面から深さに依存すると考えられる。また、Agめっきの突起発生に関与する介在物の大きさに関しては、0.1μm未満の場合には、突起の発生に影響が無いことも見出した。   Also, as a result of considering the relationship between this result and the generation of protrusions due to Ag plating, when particles having a conductivity different from that of the base material exist in the vicinity of the surface of the material, the current distribution of the material is affected, which is the cause. It is considered that the partial electrodeposition abnormality occurs, and the influence on the current distribution depends on the particle size and the position of the particle depending on the depth from the material surface. In addition, regarding the size of inclusions involved in the generation of protrusions in Ag plating, it has also been found that when the size is less than 0.1 μm, the generation of protrusions is not affected.

以上により、介在物の大きさおよびこれらが存在する表面からの深さについて、Agめっきの突起が発生しない条件を以下の通りに規定する。
0.1≦Lの場合、D≦0.1μm
0.1<L≦5μmの場合、D<L
5μm<L≦10μmの場合、D≦5μm。
From the above, regarding the size of inclusions and the depth from the surface on which they exist, the conditions under which Ag plating protrusions do not occur are defined as follows.
When 0.1 ≦ L, D ≦ 0.1 μm
When 0.1 <L ≦ 5 μm, D <L
When 5 μm <L ≦ 10 μm, D ≦ 5 μm.

すなわち、介在物が0.1μm未満の場合には突起の発生に影響が無く、また、材料表面より深さ5μm以内に存在する場合は、介在物の大きさが存在深さよりも小さく、また、介在物が材料表面より深さ5〜10μmに存在する場合は、介在物の大きさが5μm以下であれば良い。なお、介在物が材料表面より深さ10μmを超える部分に存在する場合は、その大きさによらず、Agめっきの突起は発生しない。   That is, when the inclusion is less than 0.1 μm, there is no effect on the generation of the protrusion, and when the inclusion is within 5 μm in depth from the material surface, the size of the inclusion is smaller than the existing depth, When the inclusion exists at a depth of 5 to 10 μm from the material surface, the size of the inclusion may be 5 μm or less. In addition, when the inclusion exists in the part exceeding the depth of 10 μm from the material surface, the projection of Ag plating does not occur regardless of the size.

(2)リードフレーム用銅合金の種類
リードフレーム用銅合金であれば、いかなる合金でも本発明の介在物の存在位置と大きさの関係は成立つが、特に以下に述べる銅合金に有効である。
(a)Ni−Si系銅合金の化学組成
NiおよびSiは、時効処理を行うことによりNiとSiが相互に微細にNiSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる一方、電気伝導度も高く維持する合金である。Ni含有量を1.0〜4.8質量%、Si含有量を0.2〜1.4質量%とする。
(2) Types of copper alloys for lead frames Any copper alloy for lead frames can establish the relationship between the position and size of inclusions of the present invention, but is particularly effective for the copper alloys described below.
(A) Ni-Si-based chemical composition Ni and Si in the copper alloy, Ni and Si form the precipitated particles of the intermetallic compound mainly fine Ni 2 Si to each other by performing the aging treatment, the alloy An alloy that significantly increases strength while maintaining high electrical conductivity. The Ni content is 1.0 to 4.8 mass%, and the Si content is 0.2 to 1.4 mass%.

Mg、Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Ag又はBeには、Ni−Si系銅合金の強度および耐熱性を改善する作用がある。また、これらの中でZnには、半田接合部の耐熱性を改善する効果もあり、Feには組織を微細化する効果もある。さらにMg、Ti,Zr,AlおよびMnは熱間圧延性を改善する効果もある。そこで、これらの含有量を0.005〜2.0質量%とする。   Mg, Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, Ag, or Be has an effect of improving the strength and heat resistance of the Ni—Si based copper alloy. Among these, Zn has an effect of improving the heat resistance of the solder joint portion, and Fe has an effect of refining the structure. Furthermore, Mg, Ti, Zr, Al, and Mn also have an effect of improving hot rollability. Therefore, the content thereof is set to 0.005 to 2.0 mass%.

(b)Cr−Zr系銅合金の化学組成
CrおよびZrは、溶体化処理後に時効させることによりCu母相中にCrやCu−Zrが析出することで合金の強度を著しく増加させる一方、電気伝導度も高く維持する銅合金である。Cr含有量を0.05〜1.0質量%、Zr含有量を0.03〜0.25質量%とする。
(B) Chemical composition of Cr-Zr-based copper alloy Cr and Zr are aging after solution treatment, and Cr and Cu-Zr are precipitated in the Cu matrix, thereby significantly increasing the strength of the alloy. It is a copper alloy that maintains high conductivity. The Cr content is 0.05 to 1.0 mass%, and the Zr content is 0.03 to 0.25 mass%.

Mg、Zn、Fe、Al、P、Mn、Co又はNiは、電気伝導度を大きく低下させずに銅母相内に固溶又は析出することにより強度を向上させる作用がある。これら元素の含有量が総量で0.01〜1.0%とする。   Mg, Zn, Fe, Al, P, Mn, Co, or Ni has the effect of improving strength by being dissolved or precipitated in the copper matrix phase without greatly reducing the electrical conductivity. The total content of these elements is 0.01 to 1.0%.

(c)Sn−P系銅合金の化学組成
Sn−P系銅合金は、いわゆる固溶強化が他の合金であり、Sn含有量を3.5〜11.0質量%、P含有量を0.03〜0.35質量%である。と定めた。また、S含有量が0.001質量%以下の場合はS系介在物の発生数は少ないが、これが0.001質量%を超えると、S系介在物が増加し、めっき性が低下するため、S含有量を0.001質量%以下とした。
(C) Chemical composition of Sn-P based copper alloy The Sn-P based copper alloy is a so-called solid solution strengthening other alloy, the Sn content is 3.5 to 11.0 mass%, and the P content is 0. 0.03 to 0.35% by mass. It was determined. In addition, when the S content is 0.001% by mass or less, the number of S-based inclusions generated is small. However, when this content exceeds 0.001% by mass, the S-based inclusions are increased and the plating property is lowered. The S content was 0.001% by mass or less.

(3)介在物の評価
本発明では、材料中の介在物の大きさと材料表面からの存在位置を規定している。これら介在物の存在状態は、材料表面を化学研磨することで把握できる。
化学研磨に用いる化学研磨液としては、一般的な過酸化物と酸の混合液が用いられる。過酸化物は、酸素イオンを遊離させて母材の銅を酸化させる作用を持ち、一方、酸は酸化物を溶解する作用を持つ。従って、これらの共存により銅合金の表層を除去することができる。過酸化物としては、過酸化水素の他、過硫酸アンモニウム等の過硫酸塩が用いられる。また、酸としては、銅の溶解度が高いものが望ましく、例えば、硫酸、硝酸、塩酸ホウフッ酸等が用いられる。
(3) Evaluation of inclusions In the present invention, the size of inclusions in the material and the position of the inclusion from the material surface are defined. The presence state of these inclusions can be grasped by chemically polishing the material surface.
As a chemical polishing liquid used for chemical polishing, a general mixture of peroxide and acid is used. The peroxide has an action of liberating oxygen ions to oxidize copper as a base material, while the acid has an action of dissolving the oxide. Therefore, the surface layer of the copper alloy can be removed by coexistence of these. As the peroxide, hydrogen peroxide and persulfates such as ammonium persulfate are used. Moreover, as an acid, a thing with high solubility of copper is desirable, For example, a sulfuric acid, nitric acid, borohydrofluoric acid, etc. are used.

なお、本発明でいう介在物の存在する深さとは、化学研磨により初めて介在物の観察が可能となった場合に、除去された板厚をいう。また、本発明でいう介在物の大きさとは、介在物を光学顕微鏡や走査型電子顕微鏡で観察した際、その介在物を含む最小円の直径をいう。   In the present invention, the depth of inclusions refers to the thickness removed when the inclusions can be observed for the first time by chemical polishing. In addition, the size of the inclusion in the present invention refers to the diameter of the minimum circle including the inclusion when the inclusion is observed with an optical microscope or a scanning electron microscope.

(1)実施例1
表1に示す各種成分組成の銅合金を高周波溶解炉にて溶製し、厚さ20mmのインゴットに鋳造した。次に、このインゴットを表1に記載した温度で厚さ8mmまで各温度条件で熱間圧延を行い、表面のスケール除去のため面削を施した後、冷間圧延により2mmの板とした。その後、750℃以上900℃未満の温度で10分間の溶体化処理を行った後、0.5mmまで冷間圧延した。そして400〜600℃で5時間の時効処理を行い、その後、さらに高強度が得られるよう、冷間圧延で厚さ0.15mmの板とし、最後に500〜550℃で30秒から10分の歪取り焼鈍を適宜施した。
(1) Example 1
Copper alloys having various compositions shown in Table 1 were melted in a high frequency melting furnace and cast into an ingot having a thickness of 20 mm. Next, this ingot was hot-rolled at a temperature described in Table 1 up to a thickness of 8 mm under various temperature conditions, and after chamfering was performed for removing scale on the surface, a 2 mm plate was formed by cold rolling. Then, after performing the solution treatment for 10 minutes at the temperature of 750 degreeC or more and less than 900 degreeC, it cold-rolled to 0.5 mm. Then, an aging treatment is performed at 400 to 600 ° C. for 5 hours, and then a sheet having a thickness of 0.15 mm is formed by cold rolling so as to obtain a higher strength, and finally at 500 to 550 ° C. for 30 seconds to 10 minutes. Strain relief annealing was applied as appropriate.

Figure 2007100136
Figure 2007100136

このようにして得られた各合金について、特性を評価した。強度については、引張試験により引張強さを測定した。電気伝導性は導電率(%IACS)により評価した。介在物は、材料表面を化学研磨し、研磨後の表面10mm×10mmの範囲を光学顕微鏡にて観察し、観察範囲内で最大となった介在物の大きさを測定した。めっき性は、試料表面に厚さ5μmの銀めっきを施した後、銀めっき表面を観察し大きさが10μm以上の突起が観察された場合を「×」、観察されなかった場合を「○」と判定した。   The characteristics of each alloy thus obtained were evaluated. As for strength, tensile strength was measured by a tensile test. Electrical conductivity was evaluated by electrical conductivity (% IACS). The inclusions were obtained by chemically polishing the surface of the material, observing a 10 mm × 10 mm surface after polishing with an optical microscope, and measuring the size of the inclusions that became the maximum within the observation range. The plating property is “X” when the surface of the sample is subjected to silver plating with a thickness of 5 μm, and then the surface of the silver plating is observed, and a protrusion having a size of 10 μm or more is observed, and “○” when it is not observed. It was determined.

発明例No.1〜3では、化学組成を本特許請求の範囲とし、熱間圧延条件および時効条件を制御することで、介在物の大きさが本特許請求範囲にあるため、良好な銀めっき性が得られている。
一方、比較例No.4では、実施例1、2と同じ化学組成、かつ時効条件であるが、熱間圧延前の加熱温度、熱間圧延終了後の温度が低いため、鋳造時に生成した粗大な晶出物、析出物が熱間圧延前の加熱および熱間圧延にて固溶せずに残存したため、表面からの深さ3μm以上で介在物の大きさが本特許請求の範囲から外れるため、銀めっきで10μm以上の突起の発生が見られる。
Invention Example No. 1 to 3, the chemical composition is within the scope of the present patent claim, and by controlling the hot rolling and aging conditions, the size of the inclusion is within the scope of the present patent claim, so that good silver plating properties can be obtained. ing.
On the other hand, Comparative Example No. 4 is the same chemical composition and aging conditions as in Examples 1 and 2, but because the heating temperature before hot rolling and the temperature after hot rolling are low, the coarse crystallized product and precipitation generated during casting Since the object remained without being dissolved in the heating and hot rolling before hot rolling, the inclusion size was outside the scope of the present invention at a depth of 3 μm or more from the surface. Generation of protrusions is observed.

比較例No.5では、実施例1と同じ化学組成、かつ熱間圧延条件であるが、時効処理の温度が高く、さらに時間も長くなっており、過時効の条件となっているため、析出物が粗大化し、表面からの深さ1μm以上で介在物の大きさが本特許請求の範囲から外れるため、銀めっきで10μm以上の突起の発生が見られる。
比較例No.6では、実施例1と同じ熱間圧延および時効条件であるが、Siの成分量が本特許請求の範囲を超えており、鋳造工程での粗大な晶出物や析出物あるいは時効工程での析出物の粗大化により、表面から1μm以上で介在物の大きさが本特許請求の範囲外となり、銀めっきで10μm以上の突起の発生が見られる。
(2)実施例2
Comparative Example No. In No. 5, the same chemical composition as in Example 1 and hot rolling conditions were used, but the temperature of the aging treatment was high, the time was longer, and the conditions were overaging, so the precipitates were coarsened. Further, since the size of inclusions deviates from the scope of the present invention at a depth of 1 μm or more from the surface, the generation of protrusions of 10 μm or more is observed in silver plating.
Comparative Example No. 6 is the same hot rolling and aging conditions as in Example 1, but the amount of Si component exceeds the scope of the present claim, and the coarse crystallization and precipitates in the casting process or in the aging process Due to the coarsening of the precipitate, the size of inclusions is outside the scope of the present invention at 1 μm or more from the surface, and protrusions of 10 μm or more are observed in silver plating.
(2) Example 2

表2に示す各種成分組成の銅合金を高周波溶解炉にて真空中で溶製し、厚さ30mmのインゴットに鋳造した。次に、このインゴットを900℃以上で300分以上均質化焼鈍した後、熱間圧延し、熱間圧延後に材料温度が650℃になるまでの冷却速度0.5〜10℃/秒にて溶体化処理を行い、冷間圧延、時効処理、冷間圧延、歪取り焼鈍の工程で加工し、厚さ0.15mmの板とした。なお、介在物は、熱間圧延および時効処理条件にて制御した。   Copper alloys having various compositions shown in Table 2 were melted in a vacuum in a high-frequency melting furnace and cast into an ingot having a thickness of 30 mm. Next, the ingot is subjected to homogenization annealing at 900 ° C. or more for 300 minutes or more, then hot-rolled, and the solution is heated at a cooling rate of 0.5 to 10 ° C./second until the material temperature becomes 650 ° C. after the hot rolling. The sheet was processed in the steps of cold rolling, aging treatment, cold rolling, and strain relief annealing to obtain a plate having a thickness of 0.15 mm. Inclusions were controlled by hot rolling and aging conditions.

Figure 2007100136
Figure 2007100136

このようにして得られた各合金について、特性を評価した。強度については、引張試験により引張強さを測定した。電気伝導性は導電率(%IACS)により評価した。介在物は、材料表面を化学研磨し、研磨後の表面10mm×10mmの範囲を光学顕微鏡にて観察し、観察範囲内で最大となった介在物の大きさを測定した。めっき性は、試料表面に厚さ5μmの銀めっきを施した後、銀めっき表面を観察し大きさが10μm以上の突起が観察された場合を「×」、観察されなかった場合を「○」と判定した。   The characteristics of each alloy thus obtained were evaluated. As for strength, tensile strength was measured by a tensile test. Electrical conductivity was evaluated by electrical conductivity (% IACS). The inclusions were obtained by chemically polishing the surface of the material, observing a 10 mm × 10 mm surface after polishing with an optical microscope, and measuring the size of the inclusions that became the maximum within the observation range. The plating property is “X” when the surface of the sample is subjected to silver plating with a thickness of 5 μm, and then the surface of the silver plating is observed, and a protrusion having a size of 10 μm or more is observed, and “○” when it is not observed. It was determined.

発明例No.7〜10では、化学組成を本特許請求の範囲とし、熱間圧延条件、溶体化処理条件および時効条件を制御することで、介在物の大きさが本特許請求の範囲にあるため、良好な銀めっき性が得られている。   Invention Example No. 7-10, the chemical composition is within the scope of the present claims, and by controlling the hot rolling conditions, the solution treatment conditions and the aging conditions, the size of the inclusions is within the scope of the present claims. Silver plating property is obtained.

一方、比較例No.11では、発明例No.8と同じ化学組成、溶体化処理条件、かつ熱間圧延条件であるが、時効処理の温度が高く、さらに時間も長くなっており、過時効の条件となっているため、析出物が粗大化し、表面からの深さ1μmで介在物の大きさが本特許請求の範囲から外れるため、銀めっきで10μm以上の突起の発生が見られる。   On the other hand, Comparative Example No. 11, Invention Example No. 8 has the same chemical composition, solution treatment conditions, and hot rolling conditions, but the temperature of the aging treatment is high, the time is longer, and the conditions are overaging, so the precipitates are coarsened. Since the size of the inclusion is outside the scope of the present invention at a depth of 1 μm from the surface, the generation of protrusions of 10 μm or more is observed in silver plating.

比較例No.12では、発明例No.8と同じ化学組成、熱間圧延および時効条件であるが、溶体化処理における冷却速度が遅く、十分に溶体化処理されないため、析出粒子が残存し、表層からの深さ1μmで介在物の大きさが本特許請求の範囲から外れるため、銀めっきで10μm以上の突起の発生が見られる。   Comparative Example No. 12, Invention Example No. 8 has the same chemical composition, hot rolling and aging conditions, but the cooling rate in the solution treatment is slow and the solution treatment is not sufficient, so that precipitated particles remain and the depth of inclusions is 1 μm from the surface layer. Is out of the scope of the present patent claims, the generation of protrusions of 10 μm or more is observed in silver plating.

比較例No.13では、発明例No.9と同じ熱間圧延、溶体化処理条件および時効条件であるが、Crの成分量が本特許請求の範囲を超えており、鋳造工程での粗大な晶出物や析出物あるいは時効工程での析出物の粗大化により、表面から1μm以上で介在物の大きさが本特許請求の範囲外となり、銀めっきで10μm以上の突起の発生が見られる。   Comparative Example No. In Invention No. 13, Invention Example No. 9 is the same hot rolling, solution treatment conditions and aging conditions as in No. 9, but the Cr content exceeds the scope of the present claim, and the coarse crystallization and precipitates in the casting process or in the aging process Due to the coarsening of the precipitate, the size of inclusions is outside the scope of the present invention at 1 μm or more from the surface, and protrusions of 10 μm or more are observed in silver plating.

比較例No.14では、発明例No.10と同じ化学組成、溶体化処理条件および熱間圧延条件であるが、時効条件の温度が高く、析出物が再固溶して強度が低く、さらに導電率が大幅に低下している。析出物が固溶したため、介在物が小さく、銀めっき性は問題ないが、強度が低く導電率が低いため、リードフレーム用材料として使用不可である。   Comparative Example No. 14, Invention Example No. 10 has the same chemical composition, solution treatment conditions, and hot rolling conditions, but the temperature of the aging conditions is high, the precipitate is re-dissolved, the strength is low, and the conductivity is greatly reduced. Since the precipitate is dissolved, the inclusions are small and the silver plating property is not a problem. However, since the strength is low and the conductivity is low, it cannot be used as a lead frame material.

各種成分組成の銅合金を大気溶解にて、一部は脱硫処理して溶製し、厚さ30mmのインゴットを鋳造した。その後、均質化焼鈍、冷間圧延、再結晶焼鈍、冷間圧延、歪取り焼鈍の工程で加工し、厚さ0.15mmの板とした。表3には、各種成分組成の分析結果と材料表面を化学研磨して観察範囲内で最大となった介在物の大きさを測定した結果を示す。   Copper alloys having various component compositions were melted in the atmosphere and partly desulfurized and melted to cast ingots having a thickness of 30 mm. Then, it processed in the process of homogenization annealing, cold rolling, recrystallization annealing, cold rolling, and strain relief annealing, and was set as the board of thickness 0.15mm. Table 3 shows the analysis results of various component compositions and the results of measuring the size of the inclusions that were maximized within the observation range by chemically polishing the material surface.

Figure 2007100136
Figure 2007100136

このようにして得られた各合金について、めっき性を評価した。評価方法は、材料表面を化学研磨し、研磨後の表面10mm×10mmの範囲を光学顕微鏡にて観察し、観察範囲内で最大となった介在物の大きさを測定した。めっき性は、試料表面に厚さ5μmの銀めっきを施した後、銀めっき表面を観察し大きさが10μm以上の突起が観察された場合を「×」、観察されなかった場合を「○」と判定した。   With respect to each alloy thus obtained, the plating property was evaluated. In the evaluation method, the surface of the material was chemically polished, and the surface 10 mm × 10 mm after polishing was observed with an optical microscope, and the size of the inclusion that became the maximum within the observation range was measured. The plating property is “X” when the surface of the sample is subjected to silver plating with a thickness of 5 μm, and then the surface of the silver plating is observed, and a protrusion having a size of 10 μm or more is observed, and “○” when it is not observed. It was determined.

発明例No.15〜17では、化学組成を本特許請求の範囲とし、S濃度を制御することで、介在物の大きさが本特許請求の範囲にあるため、良好な銀めっき性が得られている。
一方、比較例No.18〜20では、S含有量が本特許請求範囲を超えているため、介在物発生数増加と共に介在物が粗大化し、表面からの深さ1μmで介在物の大きさが本特許請求の範囲から外れるため、銀めっきで10μm以上の突起の発生が見られる。
Invention Example No. In Nos. 15 to 17, since the chemical composition is within the scope of the present claims and the S concentration is controlled, the size of the inclusions is within the scope of the present claims, and therefore, good silver plating properties are obtained.
On the other hand, Comparative Example No. In 18-20, since the S content exceeds the scope of this patent claim, the inclusion becomes coarser as the number of inclusions increases, and the size of the inclusion is 1 μm from the surface. Since it comes off, generation | occurrence | production of 10 micrometers or more protrusion is seen by silver plating.

Claims (4)

最表層からの深さ(以下「L」と表記)に存在する介在物の大きさ(以下「D」と表記)について、以下の関係を満たすことを特徴とする、均一めっき性に優れたリードフレーム用銅合金、
0.1≦Lの場合、D≦0.1μm
0.1<L≦5μmの場合、D<L
5μm<L≦10μmの場合、D≦5μm。
Lead with excellent uniform plating characteristics, characterized by satisfying the following relationship with respect to the size of inclusions (hereinafter referred to as “D”) existing in the depth from the outermost layer (hereinafter referred to as “L”) Copper alloy for frame,
When 0.1 ≦ L, D ≦ 0.1 μm
When 0.1 <L ≦ 5 μm, D <L
When 5 μm <L ≦ 10 μm, D ≦ 5 μm.
Ni:1.0〜4.8質量%、Si:0.2〜1.4質量%を基本成分として含有し、さらにMg、Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、AgおよびBeの群から選ばれる1種以上を総量で0.005〜2質量%含有し、残部が実質的にCuであり、NiSi、Cu−S、Mg−Sなどの析出物や成分組成の酸化物が最表層からの深さ(L)と析出物の大きさ(D)について、以下の関係を満たすことを特徴とする、均一めっき性に優れたリードフレーム用銅合金、
0.1≦Lの場合、D≦0.1μm
0.1<L≦5μmの場合、D<L
5μm<L≦10μmの場合、D≦5μm。
Ni: 1.0 to 4.8% by mass, Si: 0.2 to 1.4% by mass as basic components, and further Mg, Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn 1 or more selected from the group of Ag and Be in a total amount of 0.005 to 2% by mass, with the balance being substantially Cu, precipitates such as Ni 2 Si, Cu—S, Mg—S, The lead frame copper alloy having excellent uniform plating properties, characterized in that the oxide of the component composition satisfies the following relationship with respect to the depth (L) from the outermost layer and the size (D) of the precipitates:
When 0.1 ≦ L, D ≦ 0.1 μm
When 0.1 <L ≦ 5 μm, D <L
When 5 μm <L ≦ 10 μm, D ≦ 5 μm.
Cr:0.05〜1.0質量%、Zr:0.03〜0.25質量%を基本成分として含有し、さらにMg、Zn、Fe、Al、P、Mn、CoおよびNiの群から選ばれる1種以上を総量で0.01〜1.0%含有し、残部が実質的にCuであり、Cr、Cu−Zrなどの析出物や成分組成の酸化物が最表層からの深さ(L)と析出物の大きさ(D)について、以下の関係を満たすことを特徴とする、均一めっき性に優れたリードフレーム用銅合金、
0.1≦Lの場合、D≦0.1μm
0.1<L≦5μmの場合、D<L
5μm<L≦10μmの場合、D≦5μm。
Cr: 0.05 to 1.0% by mass, Zr: 0.03 to 0.25% by mass as basic components, and further selected from the group of Mg, Zn, Fe, Al, P, Mn, Co and Ni The total amount of one or more of the above is 0.01 to 1.0%, the balance is substantially Cu, and precipitates such as Cr and Cu-Zr and oxides of component compositions are deep from the outermost layer ( L) and the size of the precipitate (D) satisfying the following relationship, the copper alloy for lead frames excellent in uniform plating properties,
When 0.1 ≦ L, D ≦ 0.1 μm
When 0.1 <L ≦ 5 μm, D <L
When 5 μm <L ≦ 10 μm, D ≦ 5 μm.
Sn:3.5〜11質量%、P:0.03〜0.35質量%含有し、S:0.001質量%以下、残部がCuおよびその不可避的不純物からなり、析出物や成分組成の酸化物が最表層からの深さ(L)と析出物の大きさ(D)について、以下の関係を満たすことを特徴とする、均一めっき性に優れたリードフレーム用銅合金、
0.1≦Lの場合、D≦0.1μm
0.1<L≦5μmの場合、D<L
5μm<L≦10μmの場合、D≦5μm。
Sn: 3.5 to 11% by mass, P: 0.03 to 0.35% by mass, S: 0.001% by mass or less, the balance being made of Cu and its inevitable impurities, A copper alloy for lead frames with excellent uniform plating properties, characterized in that the oxide satisfies the following relationship with respect to the depth (L) from the outermost layer and the size (D) of the precipitates:
When 0.1 ≦ L, D ≦ 0.1 μm
When 0.1 <L ≦ 5 μm, D <L
When 5 μm <L ≦ 10 μm, D ≦ 5 μm.
JP2005288679A 2005-09-30 2005-09-30 Copper alloy for lead frame excellent in uniform plating property Pending JP2007100136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288679A JP2007100136A (en) 2005-09-30 2005-09-30 Copper alloy for lead frame excellent in uniform plating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288679A JP2007100136A (en) 2005-09-30 2005-09-30 Copper alloy for lead frame excellent in uniform plating property

Publications (1)

Publication Number Publication Date
JP2007100136A true JP2007100136A (en) 2007-04-19

Family

ID=38027365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288679A Pending JP2007100136A (en) 2005-09-30 2005-09-30 Copper alloy for lead frame excellent in uniform plating property

Country Status (1)

Country Link
JP (1) JP2007100136A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294231A (en) * 2007-05-24 2008-12-04 Nichicon Corp Solid-state electrolytic capacitor and manufacturing method therefor
JP2010007174A (en) * 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
CN112251629A (en) * 2020-10-21 2021-01-22 有研工程技术研究院有限公司 Copper alloy material for 6G communication connector and preparation method thereof
KR102421870B1 (en) * 2022-05-19 2022-07-19 주식회사 풍산 Cu-Ni-Si-Mn-Sn based Copper alloy material with excellent strength, electrical conductivity and bendability, and method for preparing the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183425A (en) * 1985-02-07 1986-08-16 Furukawa Electric Co Ltd:The Precipitation type copper alloy material for lead frame
JPS6393837A (en) * 1986-10-07 1988-04-25 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JPS6396231A (en) * 1986-10-09 1988-04-27 Kobe Steel Ltd Lead frame material combining high strength with high electric conductivity
JPH01159336A (en) * 1987-12-16 1989-06-22 Nippon Mining Co Ltd High tensile and high electric conductive copper alloy having excellent thermal peeling resistance of solder
JPH0456739A (en) * 1990-06-25 1992-02-24 Nikko Kyodo Co Ltd Phosphor bronze excellent in bendability
JPH05311279A (en) * 1991-12-24 1993-11-22 Nikko Kinzoku Kk Hot dip tin or solder plated material
JPH06184680A (en) * 1992-12-21 1994-07-05 Kobe Steel Ltd Copper alloy excellent in bendability
JPH07268573A (en) * 1994-03-25 1995-10-17 Nikko Kinzoku Kk Production of high strength and high conductivity copper alloy for electronic equipment
JPH08319527A (en) * 1995-05-25 1996-12-03 Kobe Steel Ltd Copper alloy, excellent in adhesion of soft solder and plating suitability and easy of cleaning, and its production
JPH09209062A (en) * 1996-01-30 1997-08-12 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment, excellent in surface characteristic
JPH10219374A (en) * 1997-02-10 1998-08-18 Kobe Steel Ltd High strength copper alloy excellent in shearing property
JP2001049369A (en) * 1999-08-05 2001-02-20 Nippon Mining & Metals Co Ltd Copper alloy for electronic material and its production
JP2004149874A (en) * 2002-10-31 2004-05-27 Nikko Metal Manufacturing Co Ltd Easily-workable high-strength high-electric conductive copper alloy

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183425A (en) * 1985-02-07 1986-08-16 Furukawa Electric Co Ltd:The Precipitation type copper alloy material for lead frame
JPS6393837A (en) * 1986-10-07 1988-04-25 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JPS6396231A (en) * 1986-10-09 1988-04-27 Kobe Steel Ltd Lead frame material combining high strength with high electric conductivity
JPH01159336A (en) * 1987-12-16 1989-06-22 Nippon Mining Co Ltd High tensile and high electric conductive copper alloy having excellent thermal peeling resistance of solder
JPH0456739A (en) * 1990-06-25 1992-02-24 Nikko Kyodo Co Ltd Phosphor bronze excellent in bendability
JPH05311279A (en) * 1991-12-24 1993-11-22 Nikko Kinzoku Kk Hot dip tin or solder plated material
JPH06184680A (en) * 1992-12-21 1994-07-05 Kobe Steel Ltd Copper alloy excellent in bendability
JPH07268573A (en) * 1994-03-25 1995-10-17 Nikko Kinzoku Kk Production of high strength and high conductivity copper alloy for electronic equipment
JPH08319527A (en) * 1995-05-25 1996-12-03 Kobe Steel Ltd Copper alloy, excellent in adhesion of soft solder and plating suitability and easy of cleaning, and its production
JPH09209062A (en) * 1996-01-30 1997-08-12 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment, excellent in surface characteristic
JPH10219374A (en) * 1997-02-10 1998-08-18 Kobe Steel Ltd High strength copper alloy excellent in shearing property
JP2001049369A (en) * 1999-08-05 2001-02-20 Nippon Mining & Metals Co Ltd Copper alloy for electronic material and its production
JP2004149874A (en) * 2002-10-31 2004-05-27 Nikko Metal Manufacturing Co Ltd Easily-workable high-strength high-electric conductive copper alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294231A (en) * 2007-05-24 2008-12-04 Nichicon Corp Solid-state electrolytic capacitor and manufacturing method therefor
JP2010007174A (en) * 2008-05-29 2010-01-14 Nippon Mining & Metals Co Ltd Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
CN112251629A (en) * 2020-10-21 2021-01-22 有研工程技术研究院有限公司 Copper alloy material for 6G communication connector and preparation method thereof
CN112251629B (en) * 2020-10-21 2022-05-27 有研工程技术研究院有限公司 Copper alloy material for 6G communication connector and preparation method thereof
KR102421870B1 (en) * 2022-05-19 2022-07-19 주식회사 풍산 Cu-Ni-Si-Mn-Sn based Copper alloy material with excellent strength, electrical conductivity and bendability, and method for preparing the same
WO2023224218A1 (en) * 2022-05-19 2023-11-23 주식회사 풍산 Copper-nickel-silicon-manganese-tin-based copper alloy material having excellent strength, electrical conductivity, and bending workability, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4143662B2 (en) Cu-Ni-Si alloy
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP4494258B2 (en) Copper alloy and manufacturing method thereof
JP4959141B2 (en) High strength copper alloy
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP2008056977A (en) Copper alloy and its production method
JP2008196042A (en) Copper alloy sheet for electrical/electronic component having excellent strength and formability
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP2012001781A (en) Copper alloy material for electric/electronic component, and method of manufacturing the same
JP2010059543A (en) Copper alloy material
JP2006291356A (en) Ni-sn-p based copper alloy
JP2010031379A (en) Electronic component composed of copper alloy sheet having excellent bending workability
WO2009116649A1 (en) Copper alloy material for electric and electronic components
JP5468798B2 (en) Copper alloy sheet
JP2010031339A (en) COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP4459067B2 (en) High strength and high conductivity copper alloy
JP2007100136A (en) Copper alloy for lead frame excellent in uniform plating property
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP5232794B2 (en) High strength and high conductivity copper alloy with excellent hot workability
JP2012001780A (en) Copper alloy material for electric/electronic component, and method of manufacturing the same
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705