JP4143662B2 - Cu-Ni-Si alloy - Google Patents

Cu-Ni-Si alloy Download PDF

Info

Publication number
JP4143662B2
JP4143662B2 JP2006259294A JP2006259294A JP4143662B2 JP 4143662 B2 JP4143662 B2 JP 4143662B2 JP 2006259294 A JP2006259294 A JP 2006259294A JP 2006259294 A JP2006259294 A JP 2006259294A JP 4143662 B2 JP4143662 B2 JP 4143662B2
Authority
JP
Japan
Prior art keywords
mass
less
rolling
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006259294A
Other languages
Japanese (ja)
Other versions
JP2008075172A (en
Inventor
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2006259294A priority Critical patent/JP4143662B2/en
Priority to TW096134670A priority patent/TW200823302A/en
Priority to PCT/JP2007/068420 priority patent/WO2008038593A1/en
Priority to KR1020087031101A priority patent/KR101056973B1/en
Priority to US12/311,401 priority patent/US20100000637A1/en
Priority to CN2007800326042A priority patent/CN101512026B/en
Publication of JP2008075172A publication Critical patent/JP2008075172A/en
Application granted granted Critical
Publication of JP4143662B2 publication Critical patent/JP4143662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

本発明は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ等の各種電子部品に用いるのに好適なCu−Ni−Si系合金に関する。また、本発明は該合金の製造方法に関する。更に、本発明は該合金を利用した電子部品に関する。   The present invention relates to a Cu—Ni—Si based alloy suitable for use in various electronic components such as lead frames, connectors, pins, terminals, relays, and switches. The present invention also relates to a method for producing the alloy. Furthermore, this invention relates to the electronic component using this alloy.

電子部品等に使用される電子材料用銅合金には、基本特性として高い強度及び高い導電性(又は熱伝導性)を両立させることが要求される。また、曲げ加工性、耐応力緩和特性、耐熱性、耐熱剥離などのめっき特性、半田濡れ性、エッチング加工性、プレス打ち抜き性、耐食性等も求められる。   Copper alloys for electronic materials used for electronic parts and the like are required to satisfy both high strength and high conductivity (or thermal conductivity) as basic characteristics. In addition, bending workability, stress relaxation resistance, heat resistance, plating characteristics such as heat release, solder wettability, etching workability, press punchability, and corrosion resistance are also required.

このような背景の下、近年では電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、強度、導電率、応力緩和特性において固溶強化型銅合金よりも優れている時効硬化型の銅合金の使用量が増加している。時効硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し導電性が向上する。   Against this background, in recent years, as a copper alloy for electronic materials, instead of the conventional solid solution strengthened copper alloys represented by phosphor bronze, brass, etc., solid solution strengthened copper alloys in strength, conductivity and stress relaxation characteristics The amount of age-hardening type copper alloys, which are superior to the above, is increasing. In the age-hardening type copper alloy, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed, the strength of the alloy is increased, and at the same time, the amount of solid solution elements in copper is reduced. The conductivity is improved.

時効硬化型銅合金のうち、Cu−Ni−Si系合金は比較的高い導電性と強度を有する銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子が析出することにより強度と導電率が上昇する。   Of the age-hardening copper alloys, Cu-Ni-Si alloys are copper alloys having relatively high conductivity and strength, and are one of the alloys that are currently being actively developed in the industry. In this copper alloy, strength and electrical conductivity are increased by precipitation of fine Ni—Si intermetallic particles in the copper matrix.

例えば、特開2002−266042号公報(特許文献1)には高強度と曲げ加工性の両立を図ったCu−Ni−Si系合金が開示されている。該銅合金の製造にあたっては時効処理の前後における冷間圧延の加工率の和を40%以下とすべきこと、溶体化処理では再結晶粒の粒径が5〜15μmとなる加熱条件を選択すべきこと、時効処理は440〜500℃で30〜300分とすべきことが開示されている。
該文献に具体的に開示されている銅合金はW曲げで割れが発生せず、導電率が最も高い53%IACSのときで引張強さが520MPaであり、引張り強さが最も高い710MPaのときで導電率が46%IACSである(実施例の表2参照)。
For example, Japanese Patent Laid-Open No. 2002-266042 (Patent Document 1) discloses a Cu—Ni—Si based alloy that achieves both high strength and bending workability. In the production of the copper alloy, the sum of the cold rolling processing ratios before and after the aging treatment should be 40% or less, and in the solution treatment, the heating conditions are selected so that the grain size of the recrystallized grains is 5 to 15 μm. It is disclosed that the aging treatment should be performed at 440 to 500 ° C. for 30 to 300 minutes.
The copper alloy specifically disclosed in this document does not generate cracks by W-bending, and the tensile strength is 520 MPa at the highest conductivity of 53% IACS, and the highest tensile strength is 710 MPa. And the conductivity is 46% IACS (see Table 2 in the Examples).

特開2001−207229号公報(特許文献2)には強度、導電性に加え、良好な曲げ加工性を有するCu−Ni−Si系合金の開発を試みた例が記載されている。該文献には、合金中のNiとSiの重量比を金属間化合物であるNi2Siの濃度に近づけることにより、すなわちNiとSiの重量比をNi/Si=3〜7とすることにより良好な導電性が得られることが記載されている。また、Cu−Ni−Si系合金にFe及び/又はZr、Cr、Ti、Moのいずれか一種以上を添加し成分調整を行った上で、必要に応じMg、Zn、Sn、Al、P、Mn、AgまたはBeを含有させることにより電子材料用銅合金として好適な素材を提供できることが記載されている。
該文献に具体的に開示されている銅合金は90°曲げ(180°曲げではない)でクラックが発生せず、導電率が最も高い56%IACSのときで引張強さが640MPaであり、引張り強さが最も高い698MPaのときで導電率が44%IACSである(実施例の表1参照)。また、該文献の実施例では時効処理前及び後に行う冷間圧延の加工度をそれぞれ60%及び37.5%(合計で97.5%)としている。
Japanese Patent Laid-Open No. 2001-207229 (Patent Document 2) describes an example of an attempt to develop a Cu—Ni—Si alloy having good bending workability in addition to strength and conductivity. According to this document, the weight ratio between Ni and Si in the alloy is made closer to the concentration of Ni 2 Si, which is an intermetallic compound, that is, the weight ratio between Ni and Si is set to Ni / Si = 3-7. It is described that a good conductivity can be obtained. Moreover, after adding any one or more of Fe and / or Zr, Cr, Ti, and Mo to the Cu—Ni—Si-based alloy and adjusting the components, Mg, Zn, Sn, Al, P, It is described that a material suitable as a copper alloy for electronic materials can be provided by containing Mn, Ag or Be.
The copper alloy specifically disclosed in this document does not generate cracks by bending at 90 ° (not 180 ° bending), and has a tensile strength of 640 MPa at 56% IACS, which has the highest conductivity. When the strength is 698 MPa, the conductivity is 44% IACS (see Table 1 in the Examples). Moreover, in the Example of this literature, the workability of the cold rolling performed before and after the aging treatment is 60% and 37.5% (97.5% in total), respectively.

特開昭61−194158号公報(特許文献3)には、60%IACS以上の導電率を有し、高強度であり、スティフネス強度、繰り返し曲げ性に優れ、高耐熱性を有するCu−Ni−Si系合金が開示されている。該文献には添加元素としてMn:0.02〜1.0wt%、Zn:0.1〜5.0wt%、Mg:0.001〜0.01wt%を含有し、さらにCr、Ti、Zrのうちから選んだ1種又は2種以上を0.001〜0.01wt%含有すべきすべきことが記載されている。
該文献の実施例には、引張強さ51.0kgf/mm2(500MPa)、導電率67.0%IACSのデータ及び引張強さ62.0kgf/mm2(593MPa)、導電率64.0%IACSのデータ及びが開示されている(表2参照)。
該Cu−Ni−Si系合金は熱間圧延上がりの10mmから、途中で再結晶焼鈍を施すことなく、0.25mmまで冷間圧延されている。この場合の圧延加工度は97.5%と著しく高く、曲げ加工性が極度に悪化していることが推察される。なお、冷間圧延の途中及び後に450℃の焼鈍を行っているが、Cu−Ni−Si系合金の場合、この温度で析出反応は進行するものの再結晶は進行しない。
Japanese Patent Laid-Open No. 61-194158 (Patent Document 3) discloses Cu-Ni- having a conductivity of 60% IACS or higher, high strength, excellent stiffness strength, repeated bendability, and high heat resistance. Si-based alloys are disclosed. This document contains Mn: 0.02 to 1.0 wt%, Zn: 0.1 to 5.0 wt%, Mg: 0.001 to 0.01 wt% as additive elements, and Cr, Ti, and Zr. It is described that one or more selected from among them should be contained in an amount of 0.001 to 0.01 wt%.
Examples of this document include tensile strength 51.0 kgf / mm 2 (500 MPa), conductivity 67.0% IACS data and tensile strength 62.0 kgf / mm 2 (593 MPa), conductivity 64.0%. IACS data and are disclosed (see Table 2).
The Cu—Ni—Si alloy is cold-rolled from 10 mm after hot rolling to 0.25 mm without recrystallization annealing. In this case, the rolling degree is remarkably high at 97.5%, and it is assumed that the bending workability is extremely deteriorated. In addition, although annealing at 450 ° C. is performed during and after cold rolling, in the case of a Cu—Ni—Si based alloy, although the precipitation reaction proceeds at this temperature, recrystallization does not proceed.

特開平11−222641号公報(特許文献4)には、Sn、Mg、或いは更にZnを特定量添加し、S、O含有量を制限して、かつ結晶粒度を1μmを超え25μm以下としたことにより、優れた機械的特性、伝導性、応力緩和特性と曲げ加工性を兼ね備えたCu−Ni−Si系合金が開示されている。また、該文献には結晶粒度を上記範囲に調整するためには冷間加工後に再結晶処理を700〜920℃で行うべきことが記載されている。
該文献の実施例では、引張強さが610〜710MPaで180度密着曲げが可能なCu−Ni−Si系合金が開示されている。この合金の導電率は31〜42%IACSであり、150℃で1000時間加熱したときの応力緩和率は14〜22%である。
Japanese Patent Application Laid-Open No. 11-222641 (Patent Document 4) adds a specific amount of Sn, Mg, or Zn, restricts the S and O contents, and makes the grain size more than 1 μm and 25 μm or less. Discloses a Cu—Ni—Si alloy having excellent mechanical properties, conductivity, stress relaxation properties and bending workability. In addition, this document describes that recrystallization should be performed at 700 to 920 ° C. after cold working in order to adjust the crystal grain size to the above range.
In the examples of this document, a Cu—Ni—Si based alloy capable of 180 ° tight bending with a tensile strength of 610 to 710 MPa is disclosed. The conductivity of this alloy is 31-42% IACS, and the stress relaxation rate when heated at 150 ° C. for 1000 hours is 14-22%.

特許第3520034号公報(特許文献5)には、Mg、Sn、Zn、Sを特定量含有し、結晶粒径が0.001mmを超え0.025mm以下であり、かつ最終塑性加工方向と平行な断面における結晶粒の長径aと最終塑性加工方向と直角な断面における結晶粒の長径bの比(a/b)が0.8以上1.5以下であって、曲げ加工性及び応力緩和特性が優れることを特徴とするCu−Ni−Si系合金が開示されている。
該文献の実施例では、引張強さが685〜710MPa、導電率が32〜40%IACSであり、180度密着曲げが可能なCu−Ni−Si系合金が開示されている。
Japanese Patent No. 3520034 (Patent Document 5) contains a specific amount of Mg, Sn, Zn, and S, has a crystal grain size of more than 0.001 mm and 0.025 mm or less, and parallel to the final plastic working direction. The ratio (a / b) of the major axis a of the crystal grain in the cross section and the major axis b of the crystal grain in the cross section perpendicular to the final plastic working direction is 0.8 or more and 1.5 or less, and bending workability and stress relaxation characteristics are A Cu—Ni—Si based alloy characterized by being excellent is disclosed.
In the examples of this document, a Cu—Ni—Si based alloy having a tensile strength of 685 to 710 MPa, an electrical conductivity of 32 to 40% IACS, and capable of 180 ° contact bending is disclosed.

また、Cu−Ni−Si系合金の特性改良に関する最近の研究として、無析出帯(PFZ)に着目し強度及び曲げ性を改善する技術が、非特許文献1及び2等に報告されている。無析出帯とは、時効の際の粒界反応型析出(不連続析出)によって結晶粒界近傍に形成される、微細析出物が存在しない帯状の領域である。強度に寄与する微細析出物が存在しないため、外力が加わるとこの無析出帯が優先的に塑性変形を起こし、引張強さや曲げ加工性の低下を招く。
非特許文献1によれば、無析出帯の抑制にはP、Snの添加及び二段時効が有効である。後者に関しては、450℃×16hの通常時効の前に、250℃×48hの予備時効を付加することで伸びを損なうことなく強度が大きく増加したことが記載されている。具体的には引張強さが770〜900MPa、導電率が34〜36%IACSのCu−Ni−Si系合金が開示されている。
非特許文献2には、時効時間の増加に伴いPFZの幅が増加することが記載されている。
特開2002−266042号公報 特開2001−207229号公報 特開昭61−194158号公報 特開平11−222641号公報 特許第3520034号公報 渡邊千尋、宮腰勝、西嶋文哉、門前亮一:“Cu−4.0mass%Ni−0.95mass%Si−0.02mass%P合金の機械的特性の改善”、銅と銅合金、日本伸銅協会、2006年、第45巻、第1号、p.16−22 伊藤吾朗、鈴木俊亮、▲とう▼慶平、山本佳紀、伊藤伸英、“Cu−Ni−Si系合金板材の曲げ加工性に及ぼすNi、Si量と時効条件の影響”、銅と銅合金、日本伸銅協会、2006年、第45巻、第1号、p.71−75
In addition, as a recent study on improving characteristics of Cu—Ni—Si based alloys, Non-Patent Documents 1 and 2 report techniques for improving strength and bendability by paying attention to a precipitation-free zone (PFZ). The non-precipitation zone is a band-like region that is formed in the vicinity of a grain boundary by grain boundary reaction type precipitation (discontinuous precipitation) during aging and does not have fine precipitates. Since there are no fine precipitates that contribute to the strength, when no external force is applied, the precipitate-free zone preferentially undergoes plastic deformation, leading to a decrease in tensile strength and bending workability.
According to Non-Patent Document 1, the addition of P and Sn and two-stage aging are effective for suppressing the precipitation-free zone. Regarding the latter, it is described that the strength was greatly increased without impairing elongation by adding preliminary aging of 250 ° C. × 48 h before normal aging of 450 ° C. × 16 h. Specifically, a Cu—Ni—Si based alloy having a tensile strength of 770 to 900 MPa and a conductivity of 34 to 36% IACS is disclosed.
Non-Patent Document 2 describes that the width of PFZ increases as the aging time increases.
JP 2002-266042 A JP 2001-207229 A JP-A-61-194158 Japanese Patent Application Laid-Open No. 11-222641 Japanese Patent No. 3520034 Chihiro Watanabe, Masaru Miyakoshi, Fumiya Nishijima, Ryoichi Monzen: "Improvement of mechanical properties of Cu-4.0mass% Ni-0.95mass% Si-0.02mass% P alloy", copper and copper alloy, Japan Copper and Brass Association 2006, Vol. 45, No. 1, p. 16-22 Ito Goro, Suzuki Toshiaki, ▲ To ▼ Keihei, Yamamoto Yoshinori, Ito Nobuhide, “Effects of Ni, Si Content and Aging Conditions on the Bendability of Cu-Ni-Si Alloy Sheets”, Copper and Copper Alloy, Japan Copper and Brass Association, 2006, Vol. 45, No. 1, p. 71-75

上記のように、Cu−Ni−Si系合金の特性改善に関しては種々の手法が開発されているが、これまでは他の合金元素を添加することによって特性改善を図ろうとする手法が主体であった。しかしながら、近年ではリサイクル性の問題から合金への添加元素を減らすことが要請されつつある。   As described above, various methods have been developed for improving the properties of Cu-Ni-Si alloys, but until now the main method has been to improve the properties by adding other alloy elements. It was. However, in recent years, there has been a demand for reducing the amount of elements added to alloys due to recyclability problems.

また、近年の電子部品の高集積化及び小型化・薄肉化の進展に伴い、Cu−Ni−Si系合金の導電率の改善が求められている。これは通電部位の断面積が小さくなることにより、ジュール熱による部品の温度上昇が大きくなるためである。
ΔT=J2・L2/(2・E・H・S2
ここで、ΔTは温度上昇、Jは電流、Eは導電率、Hは熱伝導率、L及びSはそれぞれ通電部の長さ及び断面積である。HはEと比例関係にあるので、温度上昇は導電率の二乗と反比例することになる。
一方、部品の断面積が減少すると、コネクタ等の用途においてばね力が低下するため、引張強さ、耐応力緩和性といったばね力に関わる特性も重視される。したがって、導電率向上の代わりに引張強さや耐応力緩和性を低下させることは許容され難い。同様に、部品の小型化に伴い部品の加工が複雑になるため、曲げ性の低下も許容され難い。
In addition, with the recent progress of high integration, miniaturization, and thinning of electronic components, improvement in the electrical conductivity of Cu—Ni—Si based alloys is required. This is because the temperature rise of the component due to Joule heat increases as the cross-sectional area of the energized portion decreases.
ΔT = J 2 · L 2 / (2 ・ E ・ H ・ S 2 )
Here, ΔT is the temperature rise, J is the current, E is the electrical conductivity, H is the thermal conductivity, and L and S are the length and the cross-sectional area of the current-carrying part, respectively. Since H is proportional to E, the temperature rise is inversely proportional to the square of conductivity.
On the other hand, when the cross-sectional area of a part is reduced, the spring force is reduced in applications such as connectors, and therefore, characteristics relating to the spring force such as tensile strength and stress relaxation resistance are also emphasized. Therefore, it is difficult to reduce the tensile strength and the stress relaxation resistance instead of improving the conductivity. Similarly, since the processing of parts becomes complicated with the miniaturization of parts, it is difficult to allow a decrease in bendability.

そこで、本発明の課題は、他の合金元素を極力添加せず、しかも改善された導電率、強度、曲げ性及び応力緩和特性を兼備する電子材料用のCu−Ni−Si系合金を提供することである。
また、本発明の別の課題は、該Cu−Ni−Si系合金の製造方法を提供することである。
また、本発明の更に別の課題は、該Cu−Ni−Si系合金を用いた伸銅品及び電子部品を提供することである。
Accordingly, an object of the present invention is to provide a Cu—Ni—Si based alloy for electronic materials that does not contain other alloy elements as much as possible and has improved conductivity, strength, bendability and stress relaxation characteristics. That is.
Moreover, another subject of this invention is providing the manufacturing method of this Cu-Ni-Si type alloy.
Still another object of the present invention is to provide a rolled copper product and an electronic component using the Cu—Ni—Si based alloy.

本発明者は上記課題を解決するために鋭意研究したところ、不純物を極力抑えたCu−Ni−Si系合金の製造過程において、時効処理の昇温速度、材料の最高到達温度及び時効時間に特殊な条件を付与し、更に溶体化処理条件及び時効処理前後の圧延加工度を適正化することにより、優れた導電率、引張強さ、耐応力緩和特性及び曲げ性を兼ね備えたCu−Ni−Si系合金が得られることを見出した。   The present inventor has intensively studied to solve the above problems, and in the process of manufacturing a Cu-Ni-Si alloy with as few impurities as possible, specially in the temperature increase rate of the aging treatment, the maximum temperature of the material, and the aging time. Cu-Ni-Si that has excellent electrical conductivity, tensile strength, stress relaxation resistance and bendability by optimizing the solution treatment conditions and the rolling process degree before and after the aging treatment It has been found that a system alloy can be obtained.

上記知見を基礎として完成した本発明は一側面において、1.2〜3.5質量%のNi、Ni濃度(質量%)に対し1/6〜1/4の濃度(質量%)のSiを含有し、残部がCu及び総量で0.05質量%以下の不純物より構成され、次の特性を兼ね備えたことを特徴とするCu−Ni−Si系合金である。
(A)導電率:55〜62%IACS
(B)引張強さ:550〜700MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が30%以下
In one aspect, the present invention completed on the basis of the above knowledge includes 1.2 to 3.5% by mass of Ni, and Si concentration of 1/6 to 1/4 (% by mass) with respect to the Ni concentration (mass%). It is a Cu—Ni—Si alloy characterized by containing Cu and the balance of Cu and impurities in a total amount of 0.05% by mass or less and having the following characteristics.
(A) Conductivity: 55-62% IACS
(B) Tensile strength: 550 to 700 MPa
(C) Bendability: No cracks are generated by close contact bending at 180 degrees (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 30% or less

また、上記合金にZnを添加すると導電率が若干低下するが、Snめっきの耐熱剥離性改善への効果が大きいので、特に良好なSnめっきの耐熱剥離性を求める場合には上記合金に0.5質量%を上限としてZnを添加してもよい。
従って、本発明は別の一側面において、1.2〜3.5質量%のNi、Ni濃度(質量%)に対し1/6〜1/4の濃度(質量%)のSi、0.5質量%以下のZnを含有し、残部がCu及び総量で0.05質量%以下の不純物より構成され、次の特性を兼ね備えたことを特徴とするCu−Ni−Si系合金である。
(A)導電率:55〜62%IACS
(B)引張強さ:550〜700MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が30%以下
(E)耐熱剥離性:Snめっき耐熱剥離試験後にめっき剥離が認められない
Further, when Zn is added to the above alloy, the electrical conductivity is slightly lowered, but since the effect of improving the heat-resistant peelability of Sn plating is great, when the particularly good heat-resistant peelability of Sn plating is required, the alloy has a value of 0. Zn may be added up to 5 mass%.
Therefore, in another aspect of the present invention, Ni having a concentration (mass%) of 1/6 to 1/4 with respect to Ni and Ni concentration (mass%) of 1.2 to 3.5 mass%, 0.5 It is a Cu-Ni-Si based alloy characterized in that it contains Zn by mass or less, the balance is composed of Cu and impurities in a total amount of 0.05 mass% or less, and has the following characteristics.
(A) Conductivity: 55-62% IACS
(B) Tensile strength: 550 to 700 MPa
(C) Bendability: No cracks are generated by close contact bending at 180 degrees (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 30% or less (E) Heat release resistance: Sn plating heat release No plating peeling after test

また、本発明に係る銅合金は一実施形態において、圧延面に平行な断面の金属組織において、結晶粒の圧延方向と直交する方向の平均粒径をa、圧延方向と平行な方向の平均粒径をbとしたときに、
a=1〜15μm、b/a=1.05〜1.67
であり、さらに金属組織中の無析出帯の平均幅が10〜100nmである。
In one embodiment, the copper alloy according to the present invention has an average grain size in the direction perpendicular to the rolling direction of the crystal grains in the metal structure of the cross section parallel to the rolling surface, and an average grain in the direction parallel to the rolling direction. When the diameter is b,
a = 1 to 15 μm, b / a = 1.05 to 1.67
Furthermore, the average width of the precipitation-free zone in the metal structure is 10 to 100 nm.

また、本発明は更に別の一側面において、上記銅合金を用いた伸銅品である。   Moreover, this invention is another one side. WHEREIN: It is a copper elongation product using the said copper alloy.

また、本発明は更に別の一側面において、上記銅合金を用いたリードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品である。   Moreover, this invention is another one side. WHEREIN: It is electronic components, such as a lead frame using the said copper alloy, a connector, a pin, a terminal, a relay, a switch, and a foil material for secondary batteries.

また、本発明は更に別の一側面において、溶体化処理、冷間圧延、時効処理、冷間圧延の工程を順次行うことを含むCu−Ni−Si系合金の製造方法において、各工程を次の条件で行うことを特徴とする上記Cu−Ni−Si系合金の製造方法である。
(溶体化処理)平均結晶粒径を1〜15μmの範囲に調整する。
(時効処理)熱処理中の材料の最高温度を550℃以下とし、材料を450〜550℃の温度範囲で5〜15時間保持する。また、昇温過程において200〜250℃、250〜300℃及び300〜350℃の各温度区間における材料の平均昇温速度を50℃/h以下とする。
(冷間圧延)時効前の冷間圧延における圧延加工度と時効後の冷間圧延における圧延加工度との合計を5〜40%とする。
In addition, in another aspect of the present invention, in the method for producing a Cu—Ni—Si alloy including sequentially performing the steps of solution treatment, cold rolling, aging treatment, and cold rolling, each step is performed as follows. The process for producing a Cu—Ni—Si based alloy is characterized in that it is carried out under the following conditions.
(Solution Treatment) The average crystal grain size is adjusted to a range of 1 to 15 μm.
(Aging treatment) The maximum temperature of the material during the heat treatment is set to 550 ° C. or lower, and the material is held in a temperature range of 450 to 550 ° C. for 5 to 15 hours. Moreover, the average temperature increase rate of the material in each temperature area of 200-250 degreeC, 250-300 degreeC, and 300-350 degreeC in a temperature rising process shall be 50 degrees C / h or less.
(Cold rolling) The total of the rolling degree in cold rolling before aging and the rolling degree in cold rolling after aging is made 5 to 40%.

本発明により、Ni及びSi以外の合金元素が添加されておらず、又はNi、Si及びZn以外の合金元素が添加されておらず、しかも、改善された導電率、強度、曲げ性及び応力緩和特性を兼備する電子材料用のCu−Ni−Si系合金を提供することが可能となる。   According to the present invention, no alloying elements other than Ni and Si are added, or no alloying elements other than Ni, Si and Zn are added, and improved conductivity, strength, bendability and stress relaxation. It is possible to provide a Cu—Ni—Si based alloy for electronic materials having characteristics.

合金組成
本発明に係る銅合金においては、Si濃度(質量%)は、Ni濃度(質量%)の1/6〜1/4の範囲とする。Siがこの範囲から外れると、良好な導電率(例えば55%IACS以上)が得られないからである。好ましいSiの範囲はNiの1/5.5〜1/4.2であり、より好ましいSiの範囲はNiの1/5.2〜1/4.5である。
Alloy composition In the copper alloy according to the present invention, the Si concentration (mass%) is in the range of 1/6 to 1/4 of the Ni concentration (mass%). This is because good conductivity (for example, 55% IACS or more) cannot be obtained if Si is out of this range. A preferable Si range is 1 / 5.5 to 1 / 4.2 of Ni, and a more preferable Si range is 1 / 5.2 to 1 / 4.5 of Ni.

また、Niは1.2〜3.5質量%とする。Niが1.2質量%を下回ると良好な引張強さ(例えば550MPa以上)が得られない。Niが3.5質量%を超えると良好な曲げ加工性が得られない(例えば180度密着曲げで割れが発生する)。好ましいNi濃度は1.4〜2.5質量%であり、より好ましいNiの範囲は1.5〜2.0質量%である。   Ni is 1.2 to 3.5% by mass. When Ni is less than 1.2% by mass, good tensile strength (for example, 550 MPa or more) cannot be obtained. If Ni exceeds 3.5% by mass, good bending workability cannot be obtained (for example, cracking occurs in 180-degree contact bending). A preferable Ni concentration is 1.4 to 2.5% by mass, and a more preferable range of Ni is 1.5 to 2.0% by mass.

従来はCu−Ni−Si系合金に各種の合金元素を添加することにより合金特性の改善を行なうものが主体であったが、本発明の目的に従って他の合金元素(本発明では不純物ともいう。)を極力排除する。また、他の合金元素が有意に含まれる場合には充分な導電率が得られない傾向にあり、強度、導電率、曲げ性及び応力緩和特性を兼備するCu−Ni−Si系合金を得ることは困難であることも分かった。そこで、本発明においては不純物の総量を0.05質量%以下、好ましくは0.02質量%以下、より好ましくは0.01質量%以下に制御する。従って、本発明の好ましい実施形態においては、Cu−Ni−Si系合金中にNi及びSi以外の合金元素が不可避的不純物を除いて存在しない。   Conventionally, the main characteristic is to improve the alloy characteristics by adding various alloy elements to the Cu—Ni—Si based alloy. However, other alloy elements (also referred to as impurities in the present invention) are used in accordance with the object of the present invention. ) As much as possible. Further, when other alloy elements are significantly contained, sufficient conductivity tends not to be obtained, and a Cu—Ni—Si alloy having strength, conductivity, bendability and stress relaxation characteristics is obtained. Proved to be difficult. Therefore, in the present invention, the total amount of impurities is controlled to 0.05% by mass or less, preferably 0.02% by mass or less, more preferably 0.01% by mass or less. Therefore, in a preferred embodiment of the present invention, alloy elements other than Ni and Si are not present in the Cu—Ni—Si based alloy except for inevitable impurities.

但し、Znについては導電率への影響が比較的小さく、Snめっきの耐熱剥離性改善への効果が大きいため、特に良好なSnめっきの耐熱剥離性を求める場合にはZnを添加してもよい。Zn0.1質量%あたりの導電率低下は0.5%IACS程度である。しかしながら、Znが0.5質量%を超えると充分な導電率(例えば55%IACS以上)を得ることが難しくなり、Znが0.05質量%未満の場合はSnめっきの耐熱剥離性の改善効果がほとんど認められない。従って、好ましいZn濃度は0.05〜0.5質量%であり、より好ましいZn濃度は0.1〜0.3質量%である。   However, since Zn has a relatively small effect on conductivity and has a large effect on improving the heat-resistant peelability of Sn plating, Zn may be added when particularly good heat-resistant peelability of Sn plating is required. . The decrease in conductivity per 0.1% by mass of Zn is about 0.5% IACS. However, when Zn exceeds 0.5% by mass, it becomes difficult to obtain sufficient electrical conductivity (for example, 55% IACS or more). When Zn is less than 0.05% by mass, the effect of improving the heat-resistant peelability of Sn plating is improved. Is hardly recognized. Therefore, a preferable Zn concentration is 0.05 to 0.5% by mass, and a more preferable Zn concentration is 0.1 to 0.3% by mass.

金属組織
圧延面に平行な断面の金属組織において、結晶粒の圧延方向と直交する方向の平均粒径をa、圧延方向と平行な方向の平均粒径をbとしたときに、
a=1〜15μm、b/a=1.05〜1.67
とする。aが1μm未満になると、良好な応力緩和率が得られない(例えば30%を超える)。また、時効時に析出するNi2Siが不足し、良好な引張強さが得られない。一方、aが15μmを超えると、良好な曲げ加工性が得られない(例えば180度密着曲げで割れが発生する)。好ましくはa=2〜10μmであり、曲げ性を重視する場合にはa=2〜5μmがより好ましく、強度や耐応力緩和特性を重視する場合にはa=5〜10μmがより好ましい。
b/aが1.05未満になると良好な引張強さが得られない(例えば550MPaを下回る)。一方、b/aが1.67を超えると良好な曲げ性が得られない(例えば180度密着曲げで割れが発生する)。好ましくはb/a=1.10〜1.40であり、より好ましくはb/a=1.20〜1.30である。
When the average grain size in the direction perpendicular to the rolling direction of the crystal grains is a, and the average grain size in the direction parallel to the rolling direction is b,
a = 1 to 15 μm, b / a = 1.05 to 1.67
And When a is less than 1 μm, a good stress relaxation rate cannot be obtained (for example, more than 30%). Further, Ni 2 Si that precipitates during aging is insufficient, and good tensile strength cannot be obtained. On the other hand, when a exceeds 15 μm, good bending workability cannot be obtained (for example, cracking occurs in 180-degree contact bending). Preferably, a = 2 to 10 μm, and more preferably a = 2 to 5 μm when importance is attached to bendability, and more preferably 5 to 10 μm when importance is given to strength and stress relaxation resistance.
When b / a is less than 1.05, good tensile strength cannot be obtained (for example, less than 550 MPa). On the other hand, if b / a exceeds 1.67, good bendability cannot be obtained (for example, cracking occurs in 180-degree contact bending). Preferably it is b / a = 1.10-1.40, More preferably, it is b / a = 1.20-1.30.

また、圧延面に平行な断面の金属組織において、金属組織中の無析出帯の平均幅は10〜100nmとする。無析出帯の幅が大きくなると、充分な曲げ性、耐応力緩和性及び引張強さが得られない。無析出帯の幅が100nmを超えると、良好な曲げ性が得られず(例えば180度密着曲げで割れが発生する)、良好な応力緩和率も得られない(例えば30%を超える)。無析出帯の幅は狭いほど好ましいが、これを10nm未満に抑えようとすると、後に説明する本発明の特徴的な時効処理を施したとしても良好な導電率(例えば55%IACS以上)が得られない。従って、導電率、曲げ加工性及び耐応力緩和性をバランス良く向上させるための好ましい無析出帯の平均幅は20〜90nmであり、より好ましい無析出帯の平均幅は30〜80nmである。   Moreover, in the metal structure of a cross section parallel to the rolling surface, the average width of the precipitation-free zone in the metal structure is 10 to 100 nm. If the width of the precipitation-free zone is increased, sufficient bendability, stress relaxation resistance and tensile strength cannot be obtained. When the width of the precipitation-free zone exceeds 100 nm, good bendability cannot be obtained (for example, cracking occurs by 180-degree contact bending), and good stress relaxation rate cannot be obtained (for example, more than 30%). The width of the precipitation-free zone is preferably as narrow as possible. However, if it is attempted to suppress this to less than 10 nm, good conductivity (for example, 55% IACS or more) can be obtained even if the characteristic aging treatment of the present invention described later is performed. I can't. Therefore, the preferable average width of the precipitation-free zone for improving the electrical conductivity, bending workability and stress relaxation resistance in a balanced manner is 20 to 90 nm, and the more preferable average width of the precipitation-free zone is 30 to 80 nm.

なお、上記組織に調整することにより、強度上昇に寄与するnmオーダーの粒径を有する微細なNi−Si系金属間化合物粒子も高い頻度で析出する。   In addition, by adjusting to the said structure | tissue, the fine Ni-Si type | system | group intermetallic compound particle | grains which have a particle size of nm order which contributes to an intensity | strength raise | generate also with high frequency.

合金特性
本発明に係る銅合金は一実施形態において、以下の特性を兼備する。
(A)導電率:55〜62%IACS
(B)引張強さ:550〜700MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が30%以下(例示的には15〜30%)
Alloy Characteristics The copper alloy according to the present invention has the following characteristics in one embodiment.
(A) Conductivity: 55-62% IACS
(B) Tensile strength: 550 to 700 MPa
(C) Bendability: No cracks are generated by 180-degree contact bending (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 30% or less (illustratively 15-30%)

本発明に係る銅合金は好ましい一実施形態において、以下の特性を兼備する。
(A)導電率:56〜60%IACS
(B)引張強さ:600〜660MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が25%以下(例示的には15〜25%)
In a preferred embodiment, the copper alloy according to the present invention has the following characteristics.
(A) Conductivity: 56-60% IACS
(B) Tensile strength: 600 to 660 MPa
(C) Bendability: No cracks are generated by close contact bending at 180 degrees (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 25% or less (illustratively 15-25%)

本発明に係る銅合金は別の好ましい一実施形態において、以下の特性を兼備する。
(A)導電率:60〜62%IACS
(B)引張強さ:600〜610MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が25%以下(例示的には20〜25%)
In another preferred embodiment, the copper alloy according to the present invention has the following characteristics.
(A) Conductivity: 60-62% IACS
(B) Tensile strength: 600 to 610 MPa
(C) Bendability: No cracks are generated by 180-degree contact bending (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 25% or less (exemplarily 20 to 25%)

本発明に係る銅合金でZnを添加したものは別の一実施形態において、以下の特性を同時に達成することができる。
(A)導電率:55〜62%IACS
(B)引張強さ:550〜700MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が30%以下(例示的には15〜30%)
(E)耐熱剥離性:Snめっき耐熱剥離試験後にめっき剥離が認められない
In another embodiment, the copper alloy according to the present invention to which Zn is added can simultaneously achieve the following characteristics.
(A) Conductivity: 55-62% IACS
(B) Tensile strength: 550 to 700 MPa
(C) Bendability: No cracks are generated by 180-degree contact bending (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 30% or less (illustratively 15-30%)
(E) Heat-resistant peelability: No plating peeling is observed after Sn plating heat-resistant peeling test

本発明に係る銅合金でZnを添加したものは好ましい実施形態において、以下の特性を同時に達成することができる。
(A)導電率:56〜60%IACS
(B)引張強さ:600〜660MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が25%以下(例示的には15〜25%)
(E)耐熱剥離性:Snめっき耐熱剥離試験後にめっき剥離が認められない
In a preferred embodiment, the copper alloy according to the present invention to which Zn is added can simultaneously achieve the following characteristics.
(A) Conductivity: 56-60% IACS
(B) Tensile strength: 600 to 660 MPa
(C) Bendability: No cracks are generated by close contact bending at 180 degrees (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 25% or less (illustratively 15-25%)
(E) Heat-resistant peelability: No plating peeling is observed after Sn plating heat-resistant peeling test

本発明に係る銅合金でZnを添加したものは別の好ましい実施形態において、以下の特性を同時に達成することができる。
(A)導電率:56〜60%IACS
(B)引張強さ:640〜660MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が20%以下(例示的には15〜20%)
(E)耐熱剥離性:Snめっき耐熱剥離試験後にめっき剥離が認められない
In another preferred embodiment, the copper alloy according to the present invention added with Zn can simultaneously achieve the following characteristics.
(A) Conductivity: 56-60% IACS
(B) Tensile strength: 640 to 660 MPa
(C) Bendability: No cracking occurs due to 180-degree contact bending (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 20% or less (illustratively 15-20%)
(E) Heat-resistant peelability: No plating peeling is observed after Sn plating heat-resistant peeling test

なお、上記「Snめっき耐熱剥離試験」とは、以下の要領で試験片のSnめっき剥離を評価する方法のことをいう。
厚さ0.3μmのCu下地めっき及び厚さ1μのSnめっきを試験片に施し、リフロー処理として300℃で20秒間加熱する。
その後、Good Way(GW、曲げ軸が圧延方向と直行する方向)に曲げ半径0.5mmの90°曲げと曲げ戻し(90°曲げを往復一回)を行ってから、曲げ内周部表面に粘着テープ(メッキ用マスキングテープ、基材:ポリエステル、接着力:3.49N/cm(180°ピール)、例:住友3M製#851A)を貼って引き剥がす。
曲げ内周部表面を光学顕微鏡(倍率20倍)で観察し、めっき剥離の有無を評価する。
The “Sn plating heat-resistant peeling test” refers to a method for evaluating Sn plating peeling of a test piece in the following manner.
A 0.3 μm thick Cu base plating and a 1 μm thick Sn plating are applied to the test piece and heated at 300 ° C. for 20 seconds as a reflow treatment.
Then, 90 ° bending and bending back with a bending radius of 0.5 mm in the WAY (direction in which the bending axis is perpendicular to the rolling direction) and bending back (90 ° bending is performed once and again) are performed on the inner surface of the bending inner part. Adhesive tape (masking tape for plating, substrate: polyester, adhesive strength: 3.49 N / cm (180 ° peel), example: # 851A manufactured by Sumitomo 3M) is applied and peeled off.
The inner surface of the bending inner surface is observed with an optical microscope (magnification 20 times), and the presence or absence of plating peeling is evaluated.

本発明者の知る限り、本発明に係る銅合金と同一組成を有し、且つ、本発明に係る銅合金に匹敵する特性、すなわち、導電率、強度、曲げ加工性及び応力緩和特性を本発明のレベルにまでバランス良く達成した例はこれまで存在しない。   As far as the inventor knows, the present invention has the same composition as the copper alloy according to the present invention and has characteristics comparable to the copper alloy according to the present invention, that is, conductivity, strength, bending workability and stress relaxation characteristics. No example has been achieved in a balanced manner to this level.

製造方法
Cu−Ni−Si系銅合金の一般的な製造プロセスでは、まず大気溶解炉を用い、木炭被覆下で、電気銅、Ni、Si等の原料を溶解し、この溶湯をインゴットに鋳造する。その後、熱間圧延を行ない、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔(例えば0.08〜0.64mmの厚み)に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、約700〜約1000℃の高温で加熱して、鋳造時などに生じた粗大なNi−Si系化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では、約350〜約550℃の温度範囲で1h以上加熱し、溶体化処理で固溶させたNi及びSiの化合物を微細粒子として析出させる。この時効処理で強度と導電率が上昇する。より高い強度を得るために、時効前及び/又は時効後に冷間圧延を行なうことがある。また、時効後に冷間圧延を行なう場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行なうことがある。
Manufacturing method In a general manufacturing process of a Cu—Ni—Si based copper alloy, first, an atmospheric melting furnace is used to melt raw materials such as electrolytic copper, Ni and Si under a charcoal coating, and this molten metal is cast into an ingot. . Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics (for example, a thickness of 0.08 to 0.64 mm). Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of about 700 to about 1000 ° C., and a coarse Ni—Si compound generated during casting or the like is dissolved in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling. In the aging treatment, heating is performed for 1 hour or more in a temperature range of about 350 to about 550 ° C., and Ni and Si compounds dissolved in the solution treatment are precipitated as fine particles. This aging treatment increases strength and conductivity. In order to obtain higher strength, cold rolling may be performed before and / or after aging. Moreover, when performing cold rolling after aging, strain relief annealing (low temperature annealing) may be performed after cold rolling.

時効処理において、加熱温度を一定とし加熱時間を変化させると、導電率は時間とともに単調に上昇する。一方、引張強さはある時間で極大となり、その後は時間とともに低下するのが一般的である。時間一定で温度を変化させた場合でも、導電率は温度上昇と共に単調に上昇し、引張強さは極大値を示した後低下する。引張強さが極大となる条件で行なう時効はピーク時効と呼ばれ、時間または温度とともに引張強さが低下する領域で行なう時効は過時効と呼ばれる。
Cu−Ni−Si系合金の導電率を高めるためには過時効を行なえばよい。すなわち適当な時効時間と温度を選択すれば、良好な導電率(例えば60%IACS程度)は比較的容易に得られることとなる。しかしながら、引張強さは低下(例えば500MPa程度まで)し、そればかりではなく耐応力緩和特性や曲げ性の劣化も生じる。その後、高加工度の冷間圧延を行なえば引張強さは600MPa程度まで回復するが、加工歪により曲げ性が著しく劣化し、耐応力緩和特性の向上も望めない。特許文献3等に開示されている従来の高導電性Cu−Ni−Si系合金は、基本的にはこの過時効を応用した技術であった。
In the aging treatment, when the heating temperature is kept constant and the heating time is changed, the conductivity increases monotonously with time. On the other hand, the tensile strength generally reaches a maximum at a certain time and then decreases with time. Even when the temperature is changed at a constant time, the conductivity increases monotonously with the temperature rise, and the tensile strength decreases after showing the maximum value. Aging performed under conditions where the tensile strength is maximized is called peak aging, and aging performed in a region where the tensile strength decreases with time or temperature is called overaging.
In order to increase the electrical conductivity of the Cu-Ni-Si alloy, overaging may be performed. That is, if an appropriate aging time and temperature are selected, good conductivity (for example, about 60% IACS) can be obtained relatively easily. However, the tensile strength decreases (for example, up to about 500 MPa), and not only that, but also stress relaxation resistance and bendability deteriorate. After that, if cold rolling with a high degree of work is performed, the tensile strength is recovered to about 600 MPa, but the bendability is remarkably deteriorated due to work strain, and the improvement of stress relaxation resistance cannot be expected. The conventional highly conductive Cu—Ni—Si based alloy disclosed in Patent Document 3 and the like was basically a technology to which this overaging was applied.

本発明者は導電率、強度、曲げ性及び耐応力緩和特性をバランス良く改善するために検討を重ねたところ、不純物を極力抑えたCu−Ni−Si系合金の製造過程において、時効処理の昇温速度、材料の最高到達温度及び時効時間に特殊な条件を付与し、更に溶体化処理条件及び時効処理前後の圧延加工度を適正化することにより、優れた導電率、引張強さ、耐応力緩和特性及び曲げ性を兼ね備えたCu−Ni−Si系合金が得られることを見出した。   The present inventor has conducted studies to improve the electrical conductivity, strength, bendability and stress relaxation resistance in a well-balanced manner. Excellent electrical conductivity, tensile strength and stress resistance by applying special conditions to temperature rate, maximum material temperature and aging time, and further optimizing solution treatment conditions and rolling degree before and after aging treatment It has been found that a Cu—Ni—Si based alloy having both relaxation properties and bendability can be obtained.

従って、本発明に係る銅合金を製造するには溶体化処理の後の工程、すなわち、冷間圧延(中間圧延)、時効処理、冷間圧延(最終圧延)において一連の特徴的な流れが必要となる。とりわけ特徴的な時効処理を施すことが肝要である。   Therefore, in order to produce the copper alloy according to the present invention, a series of characteristic flows is necessary in the steps after the solution treatment, that is, cold rolling (intermediate rolling), aging treatment, and cold rolling (final rolling). It becomes. In particular, it is important to apply a characteristic aging treatment.

(時効処理)
時効条件として、昇温速度、材料の最高到達温度、材料が450〜550℃の温度に保持される時間及び材料の昇温速度を規定する。
(ア)昇温速度:材料を緩やかに昇温すると、昇温過程において結晶粒内に微細な析出核が生成し、その後の粒界反応型析出すなわち無析出帯の成長が抑制される。そのため、高導電率を得るために長時間の時効を行っても、無析出帯がそれほど成長せず、したがって機械的特性(強度、曲げ、応力緩和など)の低下も生じない。すなわち、従来、機械的特性改善のために時効時間を短くして無析出帯を抑制すると、高い導電率が得られなかった。また、導電率改善のために時効時間を長くすると、無析出帯が成長し良好な機械的特性が得られなかった。本発明は斯かる相反する特性を両立させた点に大きな意義を有するといえる。なお、本発明で推定する上記メカニズムについては、本発明を限定するものではない。
具体的には、200〜250℃、250〜300℃及び300〜350℃の各温度区間における材料の平均昇温速度を50℃/h以下にする必要がある。なお生産効率の点より、平均昇温速度は10℃/h以上とすることが好ましい。典型的には該平均昇温速度は20〜40℃/hである。
ここで、非特許文献1で記載されている250℃×48hの予備熱処理の付加によっても、ある程度の無析出帯の抑制効果は得られるが、予備熱処理の付加により生産効率が著しく低下する。本発明の昇温速度制御の手法は、生産効率をほとんど低下させず、工業的に極めて有効な方法である。
(Aging treatment)
As the aging conditions, the rate of temperature rise, the maximum temperature reached by the material, the time during which the material is held at a temperature of 450 to 550 ° C., and the rate of temperature rise of the material are specified.
(A) Rate of temperature rise: When the temperature of the material is raised gradually, fine precipitation nuclei are formed in the crystal grains during the temperature rise process, and subsequent grain boundary reaction type precipitation, that is, growth of no precipitation zone is suppressed. Therefore, even if aging is performed for a long time in order to obtain a high conductivity, the precipitation-free zone does not grow so much, and therefore mechanical properties (strength, bending, stress relaxation, etc.) do not deteriorate. That is, conventionally, when the aging time is shortened to suppress the precipitation-free zone in order to improve the mechanical characteristics, high conductivity cannot be obtained. In addition, when the aging time was increased to improve the conductivity, no precipitate zone grew and good mechanical properties could not be obtained. It can be said that the present invention has a great significance in satisfying such conflicting characteristics. In addition, about the said mechanism estimated by this invention, this invention is not limited.
Specifically, it is necessary to set the average temperature rising rate of the material in each temperature section of 200 to 250 ° C., 250 to 300 ° C., and 300 to 350 ° C. to 50 ° C./h or less. From the viewpoint of production efficiency, the average heating rate is preferably 10 ° C./h or more. Typically, the average heating rate is 20 to 40 ° C./h.
Here, even by the addition of the 250 ° C. × 48 h preliminary heat treatment described in Non-Patent Document 1, a certain degree of precipitation-free zone suppression effect can be obtained, but the production efficiency is significantly lowered by the addition of the preliminary heat treatment. The method of temperature increase rate control of the present invention is an industrially extremely effective method that hardly reduces the production efficiency.

(イ)材料の最高到達温度:550℃以下とする。550℃を超えると、如何に昇温速度を制御したとしても無析出帯の幅が広くなってしまうからである(例えば100nmを超える)。好ましくは530℃以下であり、より好ましくは500℃以下である。一方、最高到達温度が450℃未満だと良好な導電率が得られないことから、最高到達温度は450℃以上とするのが好ましく、より好ましくは480℃以上とする。 (A) Maximum material temperature: 550 ° C. or less. This is because when the temperature exceeds 550 ° C., the width of the precipitation-free zone becomes wide (for example, exceeds 100 nm), no matter how the heating rate is controlled. Preferably it is 530 degrees C or less, More preferably, it is 500 degrees C or less. On the other hand, if the maximum temperature reached is less than 450 ° C., good conductivity cannot be obtained. Therefore, the maximum temperature reached is preferably 450 ° C. or higher, more preferably 480 ° C. or higher.

(ウ)450〜550℃での保持時間:5〜15時間とする。5時間未満の加熱では無析出帯の幅は狭くなるが(例えば10nm未満)、昇温速度を抑えたとしても充分な導電率が得られなくなる。15時間を越えると、無析出帯の幅が広くなってしまう(例えば100nmを超える)。生産効率をも考慮したより好ましい時間は6〜10時間である。 (C) Holding time at 450 to 550 ° C .: 5 to 15 hours. When heating for less than 5 hours, the width of the precipitation-free zone becomes narrow (for example, less than 10 nm), but sufficient conductivity cannot be obtained even if the rate of temperature increase is suppressed. When it exceeds 15 hours, the width of the precipitation-free zone becomes wide (for example, it exceeds 100 nm). A more preferable time considering production efficiency is 6 to 10 hours.

(溶体化処理)
溶体化処理では、平均結晶粒径を1〜15μmの範囲に調整する。溶体化処理後の平均結晶粒径は上で規定した製品段階のaと実質的に等しくなるため、ここでの平均結晶粒径が1μm未満になると、製品の金属組織より求められるaが1μm未満となり、ここでの平均結晶粒径が15μmを超えるとaが15μmを超える。より好ましい平均結晶粒径は2〜10μmであり、a=2〜10μmが得られる。
上記結晶粒径をえるための溶体化処理の加熱温度及び加熱条件自体は公知であり、当業者であれば適宜設定することができるが、例えば、材料を700〜800℃の適当な温度において、5〜600秒の適当な時間保持し、その後速やかに空冷または水冷することにより、上記結晶粒径が得られる。
(Solution treatment)
In the solution treatment, the average crystal grain size is adjusted to a range of 1 to 15 μm. Since the average crystal grain size after solution treatment is substantially equal to a in the product stage defined above, if the average crystal grain size here is less than 1 μm, a obtained from the metal structure of the product is less than 1 μm. When the average crystal grain size here exceeds 15 μm, a exceeds 15 μm. A more preferable average crystal grain size is 2 to 10 μm, and a = 2 to 10 μm is obtained.
The heating temperature and heating conditions of the solution treatment for obtaining the crystal grain size are well known and can be appropriately set by those skilled in the art. For example, the material may be set at an appropriate temperature of 700 to 800 ° C. The crystal grain size is obtained by holding for an appropriate time of 5 to 600 seconds and then quickly cooling with air or water.

(冷間圧延)
中間圧延の加工度と最終圧延の加工度の合計を5〜40%とする。合計加工度が5%未満になると、製品の金属組織より求められるb/aが1.05未満となり、合計加工度が40%を超えるとb/aが1.67を超える。より好ましい合計加工度は10〜25%であり、b/a=1.10〜1.40が得られる。なお、中間圧延及び最終圧延のうち一方の圧延加工度をゼロにしても問題ない。
加工度Rは、R(%)=(to−t)/to×100(to:圧延前の厚み、t:圧延後の厚み)の式で定義される。「加工度の合計Rsum(%)」は、中間圧延で厚みをt0からt1とし、最終圧延でt1からt2としたときには、Rsum(%)=(to−t1)/to×100+(t1−t2)/t1×100で与えられる。
(Cold rolling)
The total of the degree of intermediate rolling and the degree of final rolling is 5 to 40%. When the total workability is less than 5%, b / a obtained from the metal structure of the product is less than 1.05, and when the total workability exceeds 40%, b / a exceeds 1.67. A more preferable total processing degree is 10 to 25%, and b / a = 1.10 to 1.40 is obtained. It should be noted that there is no problem even if the rolling degree of one of the intermediate rolling and the final rolling is zero.
The working degree R is defined by an equation of R (%) = (to-t) / to × 100 (to: thickness before rolling, t: thickness after rolling). “Total R sum (%) of degree of processing” is R sum (%) = (to−t 1 ) / when the thickness is changed from t 0 to t 1 in the intermediate rolling and from t 1 to t 2 in the final rolling. to × 100 + (t 1 −t 2 ) / t 1 × 100.

(歪取焼鈍)
最終冷間圧延の後、ばね限界値等を改善する目的で歪取焼鈍を行っても良い。歪取焼鈍は低温長時間(例えば300℃×30分)で行っても良いし、高温短時間(例えば500℃×30秒)で行っても良い。温度が高すぎるまたは時間が長すぎると、引張強さの低下が大きくなる。引張強さの低下量を10〜50MPaとし、条件を選定することが好ましい。
(Strain relief annealing)
After the final cold rolling, strain relief annealing may be performed for the purpose of improving the spring limit value and the like. The strain relief annealing may be performed at a low temperature for a long time (eg, 300 ° C. × 30 minutes) or at a high temperature for a short time (eg, 500 ° C. × 30 seconds). If the temperature is too high or the time is too long, the drop in tensile strength will increase. It is preferable to select the conditions by setting the amount of decrease in tensile strength to 10 to 50 MPa.

また、本発明に係る銅合金にすずめっきや金メッキなどの表面処理を施しても、本発明の効果は維持される。   Even if the copper alloy according to the present invention is subjected to a surface treatment such as tin plating or gold plating, the effect of the present invention is maintained.

従って、本発明に係る銅合金の製造方法の好適な一実施形態では、
− 1.2〜3.5質量%のNi、Ni濃度(質量%)に対し1/6〜1/4の濃度(質量%)のSi、及び随意成分としての0.5質量%以下のZnを含有し、残部がCu及び総量で0.05質量%以下の不純物より構成されるインゴットを溶解鋳造する工程と、
− 熱間圧延工程と、
− 冷間圧延工程と、
− 平均結晶粒径を1〜15μmの範囲に調整する溶体化処理工程と、
− 加工度0〜40%で行なう冷間圧延工程と、
− 熱処理中の材料の最高温度を550℃以下とし、材料を450〜550℃の温度範囲で5〜15時間保持し、昇温過程において200〜250℃、250〜300℃及び300〜350℃の各温度区間における材料の平均昇温速度を50℃/h以下とする時効処理工程と、
− 加工度0〜40%で行なう冷間圧延工程(但し時効処理前に行なう冷間圧延との加工度の合計を5〜40%とする。)と、
− 随意的な歪取焼鈍工程と、
をこの順に行なうことを含む。
Therefore, in a preferred embodiment of the method for producing a copper alloy according to the present invention,
-Ni of 1.2 to 3.5 mass%, Si of 1/6 to 1/4 concentration (mass%) relative to Ni concentration (mass%), and 0.5 mass% or less of Zn as an optional component A step of melt casting an ingot composed of impurities with a balance of Cu and a total amount of 0.05% by mass or less,
-A hot rolling process;
-A cold rolling process;
-A solution treatment step for adjusting the average crystal grain size in the range of 1 to 15 µm;
A cold rolling process performed at a working degree of 0 to 40%;
-The maximum temperature of the material during the heat treatment is set to 550 ° C or lower, the material is held in the temperature range of 450 to 550 ° C for 5 to 15 hours, and 200 to 250 ° C, 250 to 300 ° C and 300 to 350 ° C in the temperature rising process. An aging treatment step in which the average temperature rising rate of the material in each temperature section is 50 ° C./h or less
A cold rolling step performed at a working degree of 0 to 40% (however, the total working degree with the cold rolling performed before the aging treatment is 5 to 40%);
-Optional strain relief annealing process;
Are performed in this order.

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。   A person skilled in the art will understand that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

本発明のCu−Ni−Si系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、本発明によるCu−Ni−Si系銅合金はコネクタ、端子、リレ−、スイッチ等の導電性ばね材やトランジスタや集積回路等の半導体機器のリ−ドフレーム材として特に好適に用いることができる。   The Cu—Ni—Si based alloy of the present invention can be processed into various copper products, such as plates, strips, tubes, bars and wires, and the Cu—Ni—Si based copper alloy according to the present invention is a connector, It can be particularly suitably used as a conductive spring material such as terminals, relays and switches, and as a lead frame material for semiconductor devices such as transistors and integrated circuits.

以下、本発明及びその利点をより良く理解するための実施例を記載するが、本発明はこれらに限定されるものではない。   Hereinafter, examples for better understanding of the present invention and its advantages will be described, but the present invention is not limited thereto.

高周波誘導炉用い、内径60mm、深さ200mmの黒鉛るつぼ中で2kgの電気銅を溶解した。溶湯表面を木炭片で覆った後、所定量のNi、Si及び必要に応じてZnを添加し、溶湯温度を1200℃に調整した。次に、溶湯を金型に鋳込み、幅60mm、厚み30mmのインゴットを製造した。Ni、Si及びZn以外の元素すなわち不純物につき、インゴット中の濃度をグロー放電−質量分析法の全元素半定量分析により求めたところ、合計で約0.01質量%であった。比較的濃度が高い元素として、Fe(0.005質量%)、S(0.001質量%)、C(0.001質量%)があった。
インゴットを950℃で3時間加熱した後、厚さ8mmまで熱間圧延し、表面の酸化スケールをグラインダーで研削、除去した。その後、冷間圧延、溶体化処理、冷間圧延(中間圧延)、時効処理、冷間圧延(最終圧延)、歪取焼鈍の順で加工・熱処理を施した。最終圧延上がりの板厚が0.25mmになるように、各圧延での加工度及び熱処理時の板厚を調整した。溶体化処理後、時効処理後及び歪取焼鈍後には、熱処理で生じた表面酸化膜を除去するために、10質量%硫酸−1質量%過酸化水素溶液による酸洗及び#1200エメリー紙による機械研磨を順次行なった。
Using a high frequency induction furnace, 2 kg of electrolytic copper was dissolved in a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm. After covering the surface of the molten metal with a piece of charcoal, a predetermined amount of Ni, Si, and Zn as necessary were added, and the molten metal temperature was adjusted to 1200 ° C. Next, the molten metal was cast into a mold to produce an ingot having a width of 60 mm and a thickness of 30 mm. Concerning elements other than Ni, Si and Zn, that is, impurities, the concentration in the ingot was determined by semi-quantitative analysis of all elements by glow discharge-mass spectrometry, and the total amount was about 0.01% by mass. As elements having relatively high concentrations, there were Fe (0.005% by mass), S (0.001% by mass), and C (0.001% by mass).
The ingot was heated at 950 ° C. for 3 hours, and then hot-rolled to a thickness of 8 mm, and the oxidized scale on the surface was ground and removed with a grinder. Then, processing and heat treatment were performed in the order of cold rolling, solution treatment, cold rolling (intermediate rolling), aging treatment, cold rolling (final rolling), and strain relief annealing. The degree of processing in each rolling and the plate thickness during heat treatment were adjusted so that the plate thickness after final rolling was 0.25 mm. After solution treatment, after aging treatment and after stress relief annealing, in order to remove the surface oxide film generated by heat treatment, pickling with 10% sulfuric acid-1% by weight hydrogen peroxide solution and machine using # 1200 emery paper Polishing was performed sequentially.

溶体化処理では、試料を所定温度に調整した電気炉中に所定時間挿入した後、電気炉から直ちに取り出し空冷した。
時効処理では、電気炉を用い種々の温度条件で試料を加熱した。時効処理中、試料に熱電対を接触させ試料温度の変化を測定した。
歪取焼鈍では、試料を300℃の電気炉中に30分間挿入した後、電気炉から取り出し空冷した。なお最終圧延を行なわない場合には、この歪取焼鈍は行なわなかった。
In the solution treatment, the sample was inserted into an electric furnace adjusted to a predetermined temperature for a predetermined time, then immediately removed from the electric furnace and air-cooled.
In the aging treatment, the sample was heated under various temperature conditions using an electric furnace. During the aging treatment, the sample was contacted with a thermocouple, and the change in the sample temperature was measured.
In strain relief annealing, the sample was inserted into an electric furnace at 300 ° C. for 30 minutes, then taken out of the electric furnace and air-cooled. When the final rolling was not performed, this strain relief annealing was not performed.

得られた試料につき、以下の評価を行った。
(1)結晶粒形状
溶体化処理上がりの試料及び歪取焼鈍後(歪取焼鈍を行なわないものについては最終圧延後)の試料(以下、製品とする)につき、圧延面と平行な断面の組織を観察した。圧延面を機械研磨と電解研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させ、組織写真を撮影した。エッチング液には、アンモニア水と過酸化水素水を混合した水溶液を用い、組織写真の撮影には光学顕微鏡または走査型電子顕微鏡を適宜用いた。一方、結晶粒径が小さくエッチングによる結晶粒界判別が困難な場合は、電解研磨上がりの鏡面試料を用いてEBSP(Electron Backscattering Pattern)法により方位マップ像を撮影し、この像を用い結晶粒形状の測定を行った。
上記組織写真上において、圧延方向と直行する方向に直線を任意に3本引き、直線によって切断される結晶粒の個数を求めた。そして、直線の長さをこの結晶粒個数で割った値をaとした。同様に、圧延方向と平行方向に直線を任意に3本引き、直線によって切断される結晶粒の個数を求め、直線の長さをこの結晶粒個数で割った値をbとした。
溶体化処理上がりの試料では、(a+b)/2の値を求め、これを平均結晶粒径とした。また、製品ではb/aの値を求めた。
The following evaluation was performed about the obtained sample.
(1) Crystal grain shape The structure of the cross section parallel to the rolling surface of the sample after solution treatment and the sample after strain relief annealing (after final rolling for those not subjected to strain relief annealing) (hereinafter referred to as product) Was observed. The rolled surface was finished to a mirror surface by mechanical polishing and electrolytic polishing, and then crystal grain boundaries were revealed by etching, and a structure photograph was taken. As the etching solution, an aqueous solution in which ammonia water and hydrogen peroxide water were mixed was used, and an optical microscope or a scanning electron microscope was appropriately used for taking a structure photograph. On the other hand, when the crystal grain size is small and it is difficult to discriminate the crystal grain boundary by etching, an orientation map image is taken by an EBSP (Electron Backscattering Pattern) method using a mirror-finished sample after electropolishing, and the crystal grain shape is used. Was measured.
On the structure photograph, three straight lines were arbitrarily drawn in the direction perpendicular to the rolling direction, and the number of crystal grains cut by the straight line was determined. A value obtained by dividing the length of the straight line by the number of crystal grains was defined as a. Similarly, three straight lines are drawn in the direction parallel to the rolling direction, the number of crystal grains cut by the straight line is obtained, and the value obtained by dividing the length of the straight line by the number of crystal grains is defined as b.
For the sample after solution treatment, the value of (a + b) / 2 was determined and this was used as the average crystal grain size. For the product, the value of b / a was determined.

(2)無析出帯の幅
圧延面と平行な断面について、製品の結晶粒界近傍を透過型電子顕微鏡により10万倍程度の倍率で観察し、無析出帯の平均幅(任意の30カ所の平均値)を求めた。
(3)導電率
製品について、JIS H 0505に準拠し、4端子法で導電率を測定した。
(4)引張強さ
製品について、引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、引張強さを求めた。
(5)曲げ加工性
製品より幅10mmの短冊形試料を採取し、JIS Z 2248に準拠し、Good Way(GW、曲げ軸が圧延方向と直行する方向)及びBad Way(BW、曲げ軸が圧延方向と平行な方向)に、180度密着曲げ試験を行った。曲げ後の試料につき、曲げ部の表面及び断面から割れの有無を観察し、割れが観察されなかった場合を○、割れが認められた場合を×と評価した。なお、深さが10μmを超える亀裂を割れとみなした。
(6)応力緩和率
製品より幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図1−Aのように、l=25mmの位置を作用点として、試験片にyoのたわみを与え、0.2%耐力(圧延方向、JIS−Z2241に準拠して測定)の80%に相当する応力(σo)を負荷した。yoは次式により求めた。
yo=(2/3)・l2・σo/(E・t)
ここで、Eはヤング率であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図1−Bのように永久変形量(高さy)を測定し、応力緩和率(%)として、y/yo×100の値を算出した。
(7)Snめっき耐熱剥離試験
アルカリ脱脂及び10%硫酸による酸洗を行った後、厚さ0.3μmのCu下地めっきを施してから、厚さ1μmのSnめっきを施し、リフロ−処理として300℃で20秒間加熱した。めっき条件は次の通りである。
(Cu下地めっき)
・めっき浴組成:硫酸銅200g/L、硫酸60g/L
・めっき浴温度:25℃
・電流密度:5A/dm2
(Snめっき)
・めっき浴組成:酸化第一錫41g/L、フェノールスルホン酸268g/L、界面活性剤5g/L
・めっき浴温度:50℃
・電流密度:9A/dm2
リフロー後の試料より幅10mmの短冊試験片を採取し、150℃の温度で大気中1000時間加熱した。その後、Good Way(GW、曲げ軸が圧延方向と直行する方向)に曲げ半径0.5mmの90°曲げと曲げ戻し(90°曲げを往復一回)を行ない、さらに曲げ内周部表面に粘着テープ(住友3M製#851A)を貼って引き剥がした。そして、曲げ内周部表面を光学顕微鏡(倍率20倍)で観察し、めっき剥離の有無を調べた。めっき剥離が全く認められない場合を○と評価した。めっきが面状に剥離した場合を×と評価した。めっきが局部的に点状に剥離した場合を△と評価した。コネクタ等の用途において、実用上は△のレベルでも問題ない。
(2) Width of precipitation-free zone For the cross section parallel to the rolling surface, the vicinity of the crystal grain boundary of the product was observed with a transmission electron microscope at a magnification of about 100,000 times, and the average width of the precipitation-free zone (any 30 locations) The average value was determined.
(3) Electrical conductivity The electrical conductivity of the product was measured by a four-terminal method in accordance with JIS H 0505.
(4) Tensile strength About the product, a JIS13B test piece was prepared using a press so that the tensile direction was parallel to the rolling direction. The test piece was subjected to a tensile test according to JIS-Z2241, and the tensile strength was determined.
(5) Bending workability A strip-shaped sample having a width of 10 mm is taken from the product, and in accordance with JIS Z 2248, Good Way (GW, the direction in which the bending axis is perpendicular to the rolling direction) and Bad Way (BW, the bending axis is rolled). 180 ° contact bending test in a direction parallel to the direction). About the sample after a bending, the presence or absence of the crack was observed from the surface and cross section of the bending part, and the case where a crack was not observed was evaluated as (circle) and the case where a crack was recognized as x. A crack having a depth exceeding 10 μm was regarded as a crack.
(6) Stress relaxation rate A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected from the product so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 1-A, with the position of l = 25 mm as the working point, the specimen is given a deflection of yo, corresponding to 80% of 0.2% yield strength (rolling direction, measured according to JIS-Z2241). Stress (σo) was applied. yo was determined by the following equation.
yo = (2/3) · l 2 · σo / (E · t)
Here, E is Young's modulus, and t is the thickness of the sample. After unloading after heating at 150 ° C. for 1000 hours, the amount of permanent deformation (height y) was measured as shown in FIG. 1-B, and the value of y / yo × 100 was calculated as the stress relaxation rate (%).
(7) Sn plating heat-resistant peeling test After performing alkaline degreasing and pickling with 10% sulfuric acid, after applying Cu underplating with a thickness of 0.3 μm, Sn plating with a thickness of 1 μm is applied, and 300 is used as a reflow treatment. Heat at 20 ° C. for 20 seconds. The plating conditions are as follows.
(Cu base plating)
-Plating bath composition: copper sulfate 200 g / L, sulfuric acid 60 g / L
・ Plating bath temperature: 25 ℃
・ Current density: 5 A / dm 2
(Sn plating)
-Plating bath composition: stannous oxide 41 g / L, phenolsulfonic acid 268 g / L, surfactant 5 g / L
・ Plating bath temperature: 50 ℃
・ Current density: 9A / dm 2
A strip test piece having a width of 10 mm was taken from the sample after reflow and heated in the atmosphere at a temperature of 150 ° C. for 1000 hours. Thereafter, 90 ° bending and bending back (one round-trip of 90 ° bending) with a bending radius of 0.5 mm were performed on Good Way (GW, the direction in which the bending axis is orthogonal to the rolling direction), and further adhered to the inner surface of the bending A tape (# 851A manufactured by Sumitomo 3M) was applied and peeled off. And the bending inner peripheral part surface was observed with the optical microscope (magnification 20 times), and the presence or absence of plating peeling was investigated. A case where no plating peeling was observed was evaluated as ◯. The case where the plating peeled in a planar shape was evaluated as x. The case where the plating peeled off locally was evaluated as Δ. In practical applications, there is no problem even if the level is Δ.

試験例1
製造条件が製品の金属組織及び特性に及ぼす影響を説明する。試料の成分はCu−1.60質量%Ni−0.35質量%Si合金とし、溶体化処理条件、時効処理条件及び圧延条件を変えて、製品に加工した。
(代表的発明例と従来例)
図2は代表的な時効処理の温度チャートであり、破線は試料が接する雰囲気の温度を示し、実線は試料温度を示す。
(a)では、温度を200℃に調整した電気炉中に材料を挿入して1時間保持した後、炉温を200℃から5時間かけて350℃まで上げている。次に、1時間かけて炉温を500℃まで上げて8時間保持した後、電気炉から取り出し空冷している。
(b)では、温度を200℃に調整した電気炉中に材料を挿入して1時間保持した後、炉温を200℃から3時間かけて250℃まで上げ、2時間かけて300℃まで上げ、1時間かけて350℃まで上げている。次に、1時間かけて炉温を490℃まで上げて10時間保持した後、電気炉から取り出し空冷している。
(c)は温度を500℃に調整した電気炉中に材料を挿入し、9時間経過後に電気炉から取り出し空冷した場合である。これは従来の熱処理手順に相当する。
Test example 1
Explain the effect of manufacturing conditions on the microstructure and properties of products. The component of the sample was a Cu-1.60 mass% Ni-0.35 mass% Si alloy, and it was processed into a product by changing the solution treatment conditions, the aging treatment conditions, and the rolling conditions.
(Representative invention example and conventional example)
FIG. 2 is a temperature chart of a typical aging treatment, the broken line indicates the temperature of the atmosphere in contact with the sample, and the solid line indicates the sample temperature.
In (a), after inserting material in the electric furnace which adjusted temperature to 200 degreeC and hold | maintaining for 1 hour, the furnace temperature is raised to 350 degreeC over 200 hours from 200 degreeC. Next, after raising the furnace temperature to 500 ° C. over 1 hour and holding it for 8 hours, it is taken out from the electric furnace and air-cooled.
In (b), after inserting the material into an electric furnace whose temperature was adjusted to 200 ° C. and holding it for 1 hour, the furnace temperature was raised from 200 ° C. to 250 ° C. over 3 hours and then raised to 300 ° C. over 2 hours. The temperature is raised to 350 ° C. over 1 hour. Next, after raising the furnace temperature to 490 ° C. over 1 hour and holding it for 10 hours, it is taken out from the electric furnace and air-cooled.
(C) shows a case where the material is inserted into an electric furnace whose temperature is adjusted to 500 ° C., and is taken out from the electric furnace after 9 hours and air-cooled. This corresponds to a conventional heat treatment procedure.

図2の各時効パターンにつき、200→250℃、250→300℃及び300→350℃における平均昇温速度、材料の最高到達温度、450〜550℃の温度範囲における保持時間を求めた。また本発明の溶体化処理条件及び圧延条件で製品に加工し、組織及び特性を調査した。この結果を表1のNo.1〜3に示す。図2の(a)(b)(c)がそれぞれ表1のNo.1、2、3に対応する。   For each aging pattern in FIG. 2, the average rate of temperature increase at 200 → 250 ° C., 250 → 300 ° C. and 300 → 350 ° C., the highest temperature reached of the material, and the holding time in the temperature range of 450 to 550 ° C. were determined. Moreover, it processed into the product on the solution treatment conditions and rolling conditions of this invention, and investigated the structure | tissue and the characteristic. The results are shown in Table 1. 1-3. (A), (b), and (c) in FIG. Corresponding to 1, 2, and 3.

本発明の条件で製造されたNo.1、2は、本発明が規定する製品の金属組織及び特性を満たしている。
従来例であるNo.3の昇温速度は本発明範囲より大きく、それ以外の条件はNo.1と同じである。無析出帯が100nmを大きく超えたため、引張強さが550MPaを下回り、180度密着曲げで割れが発生し、応力緩和率は30%を超えた。
No.4も従来例であり、No.3の引張強さを550MPa以上にするために、圧延加工度を高くしたものである。加工度が高いことに加え、無析出帯が100nmを超えているため、180度密着曲げでは試料が破断するレベルの激しい割れが発生し、また応力緩和が30%を超えた。
No.5は従来の一般的なCu−Ni−Si系合金である。ピーク時効を行ない、引張強さを優先した特性作りこみを行っている。曲げ性と耐応力緩和性は良好であるが、導電率は50%IACSにも満たない。
No. manufactured under the conditions of the present invention. 1 and 2 satisfy the metal structure and characteristics of the product defined by the present invention.
No. which is a conventional example. The temperature increase rate of No. 3 is larger than the range of the present invention. Same as 1. Since the precipitation-free zone greatly exceeded 100 nm, the tensile strength was less than 550 MPa, cracks were generated by 180-degree contact bending, and the stress relaxation rate exceeded 30%.
No. 4 is also a conventional example. In order to make the tensile strength of No. 3 higher than 550 MPa, the degree of rolling is increased. In addition to the high degree of processing, the precipitation-free zone exceeded 100 nm, and therefore, 180 degree contact bending caused severe cracking at a level at which the sample broke, and stress relaxation exceeded 30%.
No. 5 is a conventional general Cu-Ni-Si alloy. We perform peak aging and create properties that prioritize tensile strength. The bendability and stress relaxation resistance are good, but the conductivity is less than 50% IACS.

(時効での昇温速度)
No.1に対し時効での昇温速度を変化させたときのデータを表2に示す。昇温速度を遅くすることで、無析出帯の幅が小さくなることがわかる。無析出帯の幅が小さくなると、引張強さ、曲げ性、耐応力緩和性が向上している。比較例No.9.10では、いずれかの温度区間において昇温速度が50℃/hを超えたため、無析出帯の幅が100nmを超え、引張強さが550MPaを下回り、180度密着曲げで割れが発生し、応力緩和率が30%を超えた。
(Temperature increase rate during aging)
No. Table 2 shows data obtained when the heating rate during aging was changed with respect to 1. It can be seen that the width of the precipitation-free zone is reduced by slowing the heating rate. When the width of the precipitation-free zone is reduced, the tensile strength, bendability, and stress relaxation resistance are improved. Comparative Example No. In 9.10, the rate of temperature rise exceeded 50 ° C./h in any temperature section, so the width of the precipitation-free zone exceeded 100 nm, the tensile strength was less than 550 MPa, and cracking occurred at 180 ° contact bending. The stress relaxation rate exceeded 30%.

(時効での最高到達温度及び450〜550℃での保持時間)
No.2に対し時効での最高到達温度及び450〜550℃での保持時間を変化させたときのデータを表3に示す。
450〜550℃での保持時間が長くなると、導電率が上昇するものの、無析出帯が広くなっている。時効時間が5時間に満たない比較例No.11では、無析出帯が10nm未満であり、導電率が55%IACSに達していない。時効時間が15時間を超えた比較例No.14では、無析出帯の幅が100nmを超え、引張強さが550MPaを下回り、180度密着曲げで割れが発生し、応力緩和率が30%を超えた。
最高到達温度が高くなると、導電率が上昇するものの、無析出帯の幅が広くなっている。時効時間が550℃を超えた比較例No.16では、無析出帯の幅が100nmを超え、引張強さが550MPaを下回り、180度密着曲げで割れが発生し、応力緩和率が30%を超えた。
(Maximum temperature at aging and holding time at 450-550 ° C)
No. Table 3 shows data when the maximum temperature achieved by aging and the holding time at 450 to 550 ° C. were changed.
When the holding time at 450 to 550 ° C. becomes longer, the conductivity increases, but the precipitation-free zone becomes wider. Comparative Example No. with an aging time of less than 5 hours In No. 11, the precipitation-free zone is less than 10 nm, and the conductivity does not reach 55% IACS. Comparative Example No. with an aging time exceeding 15 hours In No. 14, the width of the precipitation-free zone exceeded 100 nm, the tensile strength was less than 550 MPa, cracking occurred at 180 ° contact bending, and the stress relaxation rate exceeded 30%.
As the maximum temperature reaches higher, the conductivity increases, but the width of the precipitation-free zone becomes wider. Comparative Example No. aging time exceeded 550 ° C. In No. 16, the width of the precipitation-free zone exceeded 100 nm, the tensile strength was less than 550 MPa, cracking occurred at 180 ° contact bending, and the stress relaxation rate exceeded 30%.

(圧延加工度)
No.1に対し圧延加工度を変化させたときのデータを表4に示す。加工度が高くなるに従い、製品の金属組織から求めたb/aが大きくなり、引張強さが増加している。中間圧延加工度と最終圧延加工度の合計が5%に満たないNo.17のb/aは1.05未満であり、引張強さは550MPaに満たない。中間圧延加工度と最終圧延加工度の合計が40%を超えたNo.23のb/aは1.67より大きく、引張強さは700MPaを超え、180度密着曲げで割れが発生した。
(Rolling degree)
No. Table 4 shows data when the rolling degree is changed with respect to 1. As the degree of processing increases, b / a obtained from the metal structure of the product increases, and the tensile strength increases. The total of the intermediate rolling degree and the final rolling degree is less than 5%. The b / a of 17 is less than 1.05, and the tensile strength is less than 550 MPa. The total of the intermediate rolling workability and the final rolling workability exceeded 40%. The b / a of No. 23 was larger than 1.67, the tensile strength exceeded 700 MPa, and cracking occurred in 180-degree contact bending.

(溶体化処理上がりの結晶粒径)
No.2に対し溶体化処理上がりの結晶粒径を変化させたときのデータを表5に示す。溶体化処理上がりの結晶粒径が大きくなるに従い、製品の金属組織から求めたaが大きくなり、応力緩和率は小さくなっている。溶体化処理上がりの結晶粒径が1μmに満たないNo.24のaは1μm未満であり、応力緩和率が30%を超え、溶体化不足により引張強さが550MPaを下回った。溶体化処理上がりの結晶粒径が15μmを超えたNo.29のaは15μmを超え、180度密着曲げで割れが発生した。
(Grain size after solution treatment)
No. Table 5 shows data when the crystal grain size after solution treatment was changed with respect to 2. As the crystal grain size after the solution treatment increases, a obtained from the metal structure of the product increases and the stress relaxation rate decreases. The crystal grain size after solution treatment is less than 1 μm. 24a was less than 1 μm, the stress relaxation rate exceeded 30%, and the tensile strength was less than 550 MPa due to insufficient solution. No. in which the crystal grain size after solution treatment exceeded 15 μm. 29 of a exceeded 15 micrometers, and the crack generate | occur | produced by 180 degree | times adhesion bending.

試験例2
合金成分が製品の金属組織及び特性に及ぼす影響を説明する。種々の成分のCu−Ni−Si系合金を前述した発明例No.1と同じ製造条件で製品に加工した。なお、溶体化処理を750℃×60秒の条件で行なったところ、成分により結晶粒径が若干変化したものの、全試料の結晶粒径とも本発明の好ましい範囲に入った。
Test example 2
The influence of alloy components on the microstructure and properties of products will be explained. Various examples of Cu—Ni—Si based alloys are shown in the above-mentioned Invention No. The product was processed under the same production conditions as in 1. In addition, when the solution treatment was performed under the condition of 750 ° C. × 60 seconds, although the crystal grain size was slightly changed depending on the components, all the crystal grain sizes were within the preferable range of the present invention.

(Ni濃度/Si濃度比の影響)
Niを1.60質量%に固定しSi濃度を変化させたときのデータを表6に示す。No.1及びNo.5は、表1の試料と同じものである。ここで、No.5は導電率が55%IACSに満たない従来合金であり、その製造条件は他のものと異なる。
Ni濃度/Si濃度比が4〜6の範囲から外れると、導電率が55%IACS未満になっている。また、Ni濃度/Si濃度比が減少すると、引張強さが上昇しているが、これはSi濃度の増加によりNi2Siの析出量が増えたためである。
本発明合金のSnめっき耐熱剥離性評価結果は△(点状剥離)であった。一方、No.5、34の評価結果は×となっている。これは、固溶Siが耐熱剥離性を低下させるためである。すなわち、No.5ではNi2Siの析出量が少ないため、またNo.34ではNiに対しSiが過剰に添加されているため、固溶Siが増えたのである。
(Influence of Ni concentration / Si concentration ratio)
Table 6 shows data obtained when Ni was fixed at 1.60% by mass and the Si concentration was changed. No. 1 and no. 5 is the same as the sample of Table 1. Here, no. 5 is a conventional alloy having a conductivity of less than 55% IACS, and its production conditions are different from those of other alloys.
When the Ni concentration / Si concentration ratio is out of the range of 4 to 6, the conductivity is less than 55% IACS. Further, when the Ni concentration / Si concentration ratio decreases, the tensile strength increases. This is because the precipitation amount of Ni 2 Si increases due to the increase of the Si concentration.
The Sn plating heat release resistance evaluation result of the alloy of the present invention was Δ (point-like peeling). On the other hand, no. The evaluation results of 5 and 34 are x. This is because solute Si reduces the heat-resistant peelability. That is, no. In No. 5, since the precipitation amount of Ni 2 Si is small, no. In 34, since Si was excessively added to Ni, solute Si increased.

(Niの影響)
Ni濃度/Si濃度比を本発明範囲に保ちながら、Ni濃度を変化させたデータを表7に示す。Ni濃度が1.2質量%を下回ったNo.35では、引張強さが550MPa未満となった。Ni濃度が3.5質量%を超えたNo.41では、引張強さが700MPaを超え、180度密着曲げで割れが発生した。
(Influence of Ni)
Table 7 shows data obtained by changing the Ni concentration while maintaining the Ni concentration / Si concentration ratio within the range of the present invention. When the Ni concentration was less than 1.2% by mass, In 35, the tensile strength was less than 550 MPa. No. with Ni concentration exceeding 3.5 mass%. In No. 41, the tensile strength exceeded 700 MPa, and cracking occurred in 180 ° contact bending.

(Znの影響)
Zn添加の影響として、No.1に種々の濃度のZnを添加したときのデータを表8に示す。0.05質量%以上のZnを添加することにより、Snめっき耐熱剥離性評価結果が○(剥離なし)になった。一方、Znが増加するに従い導電率が低下したが、Znが0.5質量%以下の範囲では55%IACS以上の導電率が得られた。
(Influence of Zn)
As an effect of Zn addition, no. Table 8 shows the data obtained when various concentrations of Zn were added to 1. By adding 0.05% by mass or more of Zn, the Sn plating heat-resistant peelability evaluation result was “good” (no peeling). On the other hand, the conductivity decreased as Zn increased, but a conductivity of 55% IACS or higher was obtained in the range where Zn was 0.5% by mass or less.

(不純物の影響)
不純物として、No.43の不純物を増加させたデータを表9に示す。Snめっきした銅材料の混入を想定しSnを添加し、また溶解時の脱酸元素の残留を想定してMgを添加することにより、不純物の総量を変化させている。不純物が0.05質量%を超えたものでは導電率が55%IACS未満となっている。
(Influence of impurities)
As impurities, no. Table 9 shows data obtained by increasing 43 impurities. The total amount of impurities is changed by adding Sn assuming that Sn-plated copper material is mixed, and adding Mg assuming that the deoxidizing element remains at the time of dissolution. When the impurity content exceeds 0.05% by mass, the conductivity is less than 55% IACS.

Figure 0004143662
Figure 0004143662

Figure 0004143662
Figure 0004143662

Figure 0004143662
Figure 0004143662

Figure 0004143662
Figure 0004143662

Figure 0004143662
Figure 0004143662

Figure 0004143662
Figure 0004143662

Figure 0004143662
Figure 0004143662

Figure 0004143662
Figure 0004143662

Figure 0004143662
Figure 0004143662

応力緩和試験方法を説明する図である。It is a figure explaining a stress relaxation test method. 時効処理の温度チャート((a)及び(b)は発明例であり、(c)は従来例)を示す図である。It is a figure which shows the temperature chart ((a) and (b) is an invention example, (c) is a prior art example) of an aging treatment.

Claims (6)

1.2〜3.5質量%のNi、Ni濃度(質量%)に対し1/6〜1/4の濃度(質量%)のSiを含有し、残部がCu及び総量で0.05質量%以下の不純物より構成され、次の特性を兼ね備えたことを特徴とするCu−Ni−Si系合金。
(A)導電率:55〜62%IACS
(B)引張強さ:550〜700MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が30%以下
1.2 to 3.5% by mass of Ni, Si containing 1/6 to 1/4 of the concentration (% by mass) with respect to the Ni concentration (% by mass), the balance being Cu and 0.05% by mass in total A Cu—Ni—Si alloy composed of the following impurities and having the following characteristics:
(A) Conductivity: 55-62% IACS
(B) Tensile strength: 550 to 700 MPa
(C) Bendability: No cracks are generated by close contact bending at 180 degrees (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 30% or less
1.2〜3.5質量%のNi、Ni濃度(質量%)に対し1/6〜1/4の濃度(質量%)のSi、0.5質量%以下のZnを含有し、残部がCu及び総量で0.05質量%以下の不純物より構成され、次の特性を兼ね備えたことを特徴とするCu−Ni−Si系合金。
(A)導電率:55〜62%IACS
(B)引張強さ:550〜700MPa
(C)曲げ性:180度密着曲げで割れが発生しない
(D)耐応力緩和性:150℃で1000時間加熱したときの応力緩和率が30%以下
(E)耐熱剥離性:Snめっき耐熱剥離試験後にめっき剥離が認められない
1.2 to 3.5% by mass of Ni, Si concentration of 1/6 to 1/4 (% by mass) with respect to Ni concentration (% by mass), 0.5% by mass or less of Zn, the balance being A Cu—Ni—Si based alloy comprising Cu and impurities in a total amount of 0.05% by mass or less and having the following characteristics:
(A) Conductivity: 55-62% IACS
(B) Tensile strength: 550 to 700 MPa
(C) Bendability: No cracks are generated by close contact bending at 180 degrees (D) Stress relaxation resistance: Stress relaxation rate when heated at 150 ° C. for 1000 hours is 30% or less (E) Heat release resistance: Sn plating heat release No plating peeling after test
1.2〜3.5質量%のNi、Ni濃度(質量%)に対し1/6〜1/4の濃度(質量%)のSi、0.5質量%以下の随意成分としてのZnを含有し、残部がCu及び総量で0.05質量%以下の不純物より構成され、圧延面に平行な断面の金属組織において、結晶粒の圧延方向と直交する方向の平均粒径をa、圧延方向と平行な方向の平均粒径をbとしたときに、
a=1〜15μm、b/a=1.05〜1.67
であり、さらに金属組織中の無析出帯の平均幅が10〜100nmであるCu−Ni−Si系合金。
1.2 to 3.5% by mass of Ni, Si concentration of 1/6 to 1/4 (% by mass) with respect to Ni concentration (% by mass), 0.5% by mass or less of Zn as an optional component The balance is composed of Cu and impurities of 0.05% by mass or less in total, and in the metal structure of the cross section parallel to the rolling surface, the average grain size in the direction perpendicular to the rolling direction of the crystal grains is a, the rolling direction When the average particle size in the parallel direction is b,
a = 1 to 15 μm, b / a = 1.05 to 1.67
And a Cu—Ni—Si based alloy in which the average width of the precipitation-free zone in the metal structure is 10 to 100 nm.
請求項1〜3の何れか一項に記載のCu−Ni−Si系合金を用いた伸銅品。   The copper-stretched product using the Cu-Ni-Si type alloy as described in any one of Claims 1-3. 請求項1〜3の何れか一項に記載のCu−Ni−Si系合金を用いた電子部品。   The electronic component using the Cu-Ni-Si type alloy as described in any one of Claims 1-3. 溶体化処理、冷間圧延、時効処理、冷間圧延の工程を順次行なうことを含むCu−Ni−Si系合金の製造方法において、各工程を次の条件で行なうことを特徴とする請求項1〜3の何れか一項に記載のCu−Ni−Si系合金の製造方法。
(溶体化処理)平均結晶粒径を1〜15μmの範囲に調整する。
(時効処理)熱処理中の材料の最高温度を550℃以下とし、材料を450〜550℃の温度範囲で5〜15時間保持する。また、昇温過程において200〜250℃、250〜300℃及び300〜350℃の各温度区間における材料の平均昇温速度を50℃/h以下とする。
(冷間圧延)時効前の冷間圧延における圧延加工度と時効後の冷間圧延における圧延加工度との合計を5〜40%とする。
2. A method for producing a Cu—Ni—Si based alloy comprising sequentially performing steps of solution treatment, cold rolling, aging treatment, and cold rolling, wherein each step is performed under the following conditions. The manufacturing method of the Cu-Ni-Si type alloy as described in any one of -3.
(Solution Treatment) The average crystal grain size is adjusted to a range of 1 to 15 μm.
(Aging treatment) The maximum temperature of the material during the heat treatment is set to 550 ° C. or lower, and the material is held in a temperature range of 450 to 550 ° C. for 5 to 15 hours. Moreover, the average temperature increase rate of the material in each temperature area of 200-250 degreeC, 250-300 degreeC, and 300-350 degreeC in a temperature rising process shall be 50 degrees C / h or less.
(Cold rolling) The total of the rolling degree in cold rolling before aging and the rolling degree in cold rolling after aging is made 5 to 40%.
JP2006259294A 2006-09-25 2006-09-25 Cu-Ni-Si alloy Active JP4143662B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006259294A JP4143662B2 (en) 2006-09-25 2006-09-25 Cu-Ni-Si alloy
TW096134670A TW200823302A (en) 2006-09-25 2007-09-17 Cu-Ni-Si alloy
PCT/JP2007/068420 WO2008038593A1 (en) 2006-09-25 2007-09-21 Cu-Ni-Si ALLOY
KR1020087031101A KR101056973B1 (en) 2006-09-25 2007-09-21 Cu-Ni-Si alloy
US12/311,401 US20100000637A1 (en) 2006-09-25 2007-09-21 Cu-ni-si system alloy
CN2007800326042A CN101512026B (en) 2006-09-25 2007-09-21 Cu-ni-si alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259294A JP4143662B2 (en) 2006-09-25 2006-09-25 Cu-Ni-Si alloy

Publications (2)

Publication Number Publication Date
JP2008075172A JP2008075172A (en) 2008-04-03
JP4143662B2 true JP4143662B2 (en) 2008-09-03

Family

ID=39230028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259294A Active JP4143662B2 (en) 2006-09-25 2006-09-25 Cu-Ni-Si alloy

Country Status (6)

Country Link
US (1) US20100000637A1 (en)
JP (1) JP4143662B2 (en)
KR (1) KR101056973B1 (en)
CN (1) CN101512026B (en)
TW (1) TW200823302A (en)
WO (1) WO2008038593A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162848A (en) * 2010-02-10 2011-08-25 Kobe Steel Ltd Copper alloy having small strength anisotropy and superior bendability
US9514856B2 (en) 2011-08-04 2016-12-06 Kobe Steel, Ltd. Copper alloy

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946014A (en) * 2008-02-18 2011-01-12 古河电气工业株式会社 Copper alloy material
JP5468798B2 (en) * 2009-03-17 2014-04-09 古河電気工業株式会社 Copper alloy sheet
JP2010255042A (en) * 2009-04-24 2010-11-11 Hitachi Cable Ltd Copper alloy and method for producing copper alloy
KR101419147B1 (en) 2009-12-02 2014-07-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and process for producing same
EP2508631A1 (en) * 2009-12-02 2012-10-10 Furukawa Electric Co., Ltd. Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP5319578B2 (en) * 2010-03-01 2013-10-16 Jx日鉱日石金属株式会社 Manufacturing method of titanium copper for electronic parts
JP5654571B2 (en) * 2010-04-02 2015-01-14 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy for electronic materials
WO2011125264A1 (en) 2010-04-07 2011-10-13 古河電気工業株式会社 Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
JP4630387B1 (en) * 2010-04-07 2011-02-09 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
JP4830048B1 (en) * 2010-07-07 2011-12-07 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
CN103080347A (en) * 2010-08-27 2013-05-01 古河电气工业株式会社 Copper alloy sheet and method for producing same
JP4824124B1 (en) * 2010-09-17 2011-11-30 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
CN102021359B (en) * 2010-11-03 2013-01-02 西安理工大学 Cu-Ni-Si alloy with high Ni and Si content and preparation method thereof
JP5192536B2 (en) * 2010-12-10 2013-05-08 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same
JP5180283B2 (en) * 2010-12-24 2013-04-10 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same
US9159985B2 (en) * 2011-05-27 2015-10-13 Ostuka Techno Corporation Circuit breaker and battery pack including the same
TWI461549B (en) * 2012-02-14 2014-11-21 Jx Nippon Mining & Metals Corp Carbene alloy and its manufacturing method
JP5839126B2 (en) * 2012-07-26 2016-01-06 三菱電機株式会社 Copper alloy
KR101274063B1 (en) * 2013-01-22 2013-06-12 한국기계연구원 A metal matrix composite with two-way shape precipitation and method for manufacturing thereof
KR101765729B1 (en) * 2013-06-07 2017-08-07 파우데엠 메탈스 게엠베하 Method for the production of a metal foil
JP6301618B2 (en) * 2013-09-17 2018-03-28 古河電気工業株式会社 Copper alloy material and method for producing the same
CN107119247B (en) * 2017-06-08 2018-10-30 西安交通大学 It is a kind of improve in high tonnage melting CuNiSiCr alloy property stability heat treatment method
CN112813368B (en) * 2020-12-25 2022-05-13 大连交通大学 High-performance Cu-Ni-Si alloy plate strip and production process thereof
CN113249666A (en) * 2021-05-14 2021-08-13 太原晋西春雷铜业有限公司 Preparation method for reducing heat shrinkage rate of Cu-Ni-Si alloy
CN115029581B (en) * 2022-06-10 2022-12-09 中铁建电气化局集团轨道交通器材有限公司 Silicon bronze forging and integral forging and pressing and heat treatment method without internal stress
CN115627380B (en) * 2022-11-11 2023-07-25 安徽鑫科铜业有限公司 Low-concentration copper-nickel-silicon alloy material and preparation method thereof
CN115613043A (en) * 2022-11-11 2023-01-17 安徽鑫科铜业有限公司 Copper-nickel-silicon alloy strip surface treatment solution and copper-nickel-silicon alloy strip surface treatment method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162553A (en) * 1989-11-22 1991-07-12 Nippon Mining Co Ltd Manufacture of high strength and high conductivity copper alloy having good bendability
JP3334157B2 (en) * 1992-03-30 2002-10-15 三菱伸銅株式会社 Copper alloy strip with less wear on stamping mold
JP2001207229A (en) 2000-01-27 2001-07-31 Nippon Mining & Metals Co Ltd Copper alloy for electronic material
CN1195395C (en) * 2001-01-30 2005-03-30 日鉱金属股份有限公司 Copper alloy foil for integrated board
JP2004315940A (en) * 2003-04-18 2004-11-11 Nikko Metal Manufacturing Co Ltd Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP4255330B2 (en) * 2003-07-31 2009-04-15 日鉱金属株式会社 Cu-Ni-Si alloy member with excellent fatigue characteristics
JP4100629B2 (en) * 2004-04-16 2008-06-11 日鉱金属株式会社 High strength and high conductivity copper alloy
JP2006176886A (en) * 2006-03-10 2006-07-06 Furukawa Electric Co Ltd:The Copper alloy material for terminal or connector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162848A (en) * 2010-02-10 2011-08-25 Kobe Steel Ltd Copper alloy having small strength anisotropy and superior bendability
US9514856B2 (en) 2011-08-04 2016-12-06 Kobe Steel, Ltd. Copper alloy

Also Published As

Publication number Publication date
KR101056973B1 (en) 2011-08-16
TWI355426B (en) 2012-01-01
WO2008038593A1 (en) 2008-04-03
CN101512026A (en) 2009-08-19
TW200823302A (en) 2008-06-01
CN101512026B (en) 2011-03-09
JP2008075172A (en) 2008-04-03
US20100000637A1 (en) 2010-01-07
KR20090016485A (en) 2009-02-13

Similar Documents

Publication Publication Date Title
JP4143662B2 (en) Cu-Ni-Si alloy
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
KR101570555B1 (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP4830035B2 (en) Cu-Si-Co alloy for electronic materials and method for producing the same
JP5619389B2 (en) Copper alloy material
JP2011214088A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2006009137A (en) Copper alloy
JP2008024999A (en) Cu-Ni-Si TYPE COPPER ALLOY SHEET WITH EXCELLENT PROOF STRESS AND BENDABILITY
KR101338710B1 (en) Ni-si-co copper alloy and manufacturing method therefor
JP6835638B2 (en) Copper alloy plate with excellent strength and conductivity
JP6113061B2 (en) Copper alloy sheet with excellent electrical conductivity, stress relaxation resistance and formability
JP6099543B2 (en) Copper alloy sheet with excellent conductivity, stress relaxation resistance and formability
JP2010215976A (en) Copper alloy sheet material
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016053220A (en) Copper alloy sheet excellent in conductivity, stress relaxation characteristic and molding processability
JP2011219860A (en) Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP6111028B2 (en) Corson alloy and manufacturing method thereof
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080515

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4143662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250