JP5192536B2 - Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same - Google Patents

Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same Download PDF

Info

Publication number
JP5192536B2
JP5192536B2 JP2010275536A JP2010275536A JP5192536B2 JP 5192536 B2 JP5192536 B2 JP 5192536B2 JP 2010275536 A JP2010275536 A JP 2010275536A JP 2010275536 A JP2010275536 A JP 2010275536A JP 5192536 B2 JP5192536 B2 JP 5192536B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
grain boundary
cold rolling
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010275536A
Other languages
Japanese (ja)
Other versions
JP2012122114A (en
Inventor
健 櫻井
良雄 阿部
晃 斉藤
嘉裕 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2010275536A priority Critical patent/JP5192536B2/en
Publication of JP2012122114A publication Critical patent/JP2012122114A/en
Application granted granted Critical
Publication of JP5192536B2 publication Critical patent/JP5192536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、深絞り加工性及び耐疲労特性に優れたCu−Ni−Si系銅合金に関し、特に、各種電子部品の素材として所定形状にて長時間に亘り高温及び高振動環境下での使用に耐え得るCu−Ni−Si系銅合金及びその製造方法に関する。   The present invention relates to a Cu-Ni-Si-based copper alloy excellent in deep drawing workability and fatigue resistance, and in particular, as a material for various electronic components, used in a predetermined shape for a long time in a high temperature and high vibration environment. The present invention relates to a Cu—Ni—Si based copper alloy that can withstand heat resistance and a method for producing the same.

近年の電子機器の軽薄短小化に伴い、リレー、端子、コネクタ等も小型化及び薄肉化が進行しており、それに使用される銅合金材料には、高強度と曲げ加工性が要求されている。
それに伴い、従来の燐青銅や黄銅といった固溶強化型銅合金に替わり、コルソン(Cu−Ni−Si系)合金、ベリリウム銅、チタン銅といった析出強化型銅合金の需要が増加している。
なかでも、コルソン合金は、ケイ化ニッケル化合物の銅に対する固溶限が温度によって著しく変化する合金で、焼き入れ・焼き戻しによって硬化する析出硬化型合金の一種であり、比較的安価で耐熱性や高温強度も良好で、強度と導電率のバランスにも優れ、導電用各種ばねや高抗張力用電線などに広く使用されており、最近では、リレー、端子、コネクタ等の電子部品に使用される頻度が高まっている。
一般に強度と曲げ加工性は相反する性質であり、コルソン合金においても、高い強度を維持しつつ、曲げ加工性を改善することが従来から研究されており、製造工程を調整し、結晶粒径、析出物の個数及び形状、集合組織を個々にあるいは相互に制御することで曲げ加工性を改善しようという取り組みが広く行われてきた。
また、コルソン合金を各種電子部品にて所定形状にて長時間に亘り厳しい環境下で使用して行く為には、疲労特性、曲げ加工性と共に所定形状とする為の加工の容易性、特に優れた深絞り加工性が要求され始めている。
As electronic devices have become lighter and thinner in recent years, relays, terminals, connectors, etc. are also becoming smaller and thinner, and the copper alloy materials used for them are required to have high strength and bending workability. .
Accordingly, the demand for precipitation-strengthened copper alloys such as corson (Cu—Ni—Si) alloys, beryllium copper and titanium copper is increasing in place of conventional solid solution strengthened copper alloys such as phosphor bronze and brass.
Among them, the Corson alloy is an alloy in which the solid solubility limit of the nickel silicide compound with respect to copper changes remarkably with temperature, and is a kind of precipitation hardening type alloy that hardens by quenching and tempering. Good high-temperature strength, excellent balance between strength and electrical conductivity, widely used in various springs for electric conduction and electric wires for high tensile strength, and recently used in electronic parts such as relays, terminals, connectors, etc. Is growing.
Generally, strength and bending workability are contradictory properties, and in Corson alloys, it has been studied conventionally to improve bending workability while maintaining high strength, adjusting the manufacturing process, crystal grain size, There have been widespread efforts to improve bending workability by controlling the number, shape, and texture of precipitates individually or mutually.
In addition, in order to use Corson alloy in various electronic parts in a predetermined shape for a long time in a harsh environment, fatigue characteristics, bending workability, and ease of processing to make a predetermined shape, particularly excellent Deep drawing workability is beginning to be required.

特許文献1には、Niを1.0〜4.0質量%、Niに対し1/6〜1/4濃度のSiを含有し、全結晶粒界中の双晶境界(Σ3境界)の頻度が15〜60%である強度、曲げ加工性のバランスに優れた電子部品用Cu−Ni−Si系基合金が開示されている。
特許文献2には、圧延方向の引張強さと、圧延方向となす角度が45°方向の引張強さと、圧延方向となす角度が90°方向の引張強さの3つの引張強さ間の各差の最大値が100MPa以下である接点材用銅基析出型合金板材であり、2〜4質量%Ni及び0.4〜1質量%Siを含有し、必要ならさらにMg、Sn、Zn、Crの群から選ばれる少なくとも1つを適量含有さる残部が銅と不可避不純物からなる銅基析出型合金板材が開示される。その接点材用銅基析出型合金板材は、溶体化処理した銅合金板材に時効熱処理を施し、その後圧延率30%以下の冷間圧延を施して製造され、電子機器などに用いられる多機能スイッチの操作性を改善する。
特許文献3には、耐力が700N/mm以上、導電率が35%IACS以上、かつ曲げ加工性にも優れたコルソン(Cu−N−Si系)銅合金板が開示される。この銅合金板は、Ni:2.5%(質量%、以下同じ)以上6.0%未満、及びSi:0.5%以上1.5%未満を、NiとSiの質量比Ni/Siが4〜5の範囲となるように含み、さらにSn:0.01% 以上4% 未満を含み、残部がCu及び不可避的不純物からなり、平均結晶粒径が10μm以下、SEM−EBSP法による測定結果でCube方位{001}〈100〉の割合が50%以上である集合組織を有し、連続焼鈍により溶体化再結晶組織を得た後、加工率20%以下の冷間圧延及び400〜600℃×1〜8時間の時効処理を行い、続いて加工率1〜20%の最終冷間圧延後、400〜550℃×30秒以下の短時間焼鈍を行って製造される。
特許文献4には、導電性、強度を高く維持しながら、曲げ加工性および疲労特性を顕著に改善した電気・電子部品に好適な銅合金板材が開示されており、析出強化型銅合金の冷間圧延材にテンションレベラーで繰り返し曲げ加工を施すことにより、板厚方向1 / 8 位置における平均硬さHs(HV) と板厚方向1/2 位置における平均硬さHc(HV) が(Hs−Hc)/Hc×100 ≦−5 を満たすように、両表層部を中央部より軟質にした銅合金板材である。合金組成として、例えば質量% でNi:0 .4〜4 .8% 、Si: 0 .1〜1 .2 % 、必要に応じてMg:0 .3 %以下またはZn:15 % 以下を含み、さらに必要に応じてSn、Co、Cr、P 、B 、Al、Fe 、Zr 、Ti 、Mn の1種以上を合計3% 以下の範囲で含み、残部実質的にCuの組成が挙げられる。
Patent Document 1 contains 1.0 to 4.0% by mass of Ni and 1/6 to 1/4 concentration of Si, and the frequency of twin boundaries (Σ3 boundary) in all grain boundaries. Has disclosed a Cu—Ni—Si based alloy for electronic parts having a good balance between strength and bending workability of 15 to 60%.
In Patent Document 2, each difference between the tensile strength in the rolling direction, the tensile strength in the direction of 45 ° with respect to the rolling direction, and the tensile strength in the direction of 90 ° with respect to the rolling direction. Is a copper-based precipitation type alloy sheet for contact material having a maximum value of 100 MPa or less, contains 2 to 4 mass% Ni and 0.4 to 1 mass% Si, and further contains Mg, Sn, Zn, Cr if necessary. A copper-based precipitation type alloy sheet is disclosed in which the balance containing at least one selected from the group is made of copper and inevitable impurities. The copper-based precipitation type alloy sheet for contact material is a multi-function switch that is manufactured by subjecting a solution-treated copper alloy sheet to aging heat treatment, and then subjecting it to cold rolling with a rolling rate of 30% or less. Improve the operability.
Patent Document 3 discloses a Corson (Cu—N—Si) copper alloy plate having a yield strength of 700 N / mm 2 or more, an electrical conductivity of 35% IACS or more, and excellent bending workability. This copper alloy plate has Ni: 2.5% (mass%, the same shall apply hereinafter) and less than 6.0%, and Si: 0.5% and less than 1.5%. In the range of 4 to 5, Sn: 0.01% or more and less than 4%, the balance is made of Cu and inevitable impurities, the average crystal grain size is 10 μm or less, and measurement by SEM-EBSP method As a result, after having a texture where the ratio of Cube orientation {001} <100> is 50% or more and obtaining a solution recrystallized structure by continuous annealing, cold rolling with a working rate of 20% or less and 400 to 600 It is manufactured by performing an aging treatment at 1 ° C. for 1 to 8 hours, followed by a short annealing at 400 to 550 ° C. for 30 seconds or less after the final cold rolling at a processing rate of 1 to 20%.
Patent Document 4 discloses a copper alloy sheet material suitable for electric / electronic parts that has significantly improved bending workability and fatigue characteristics while maintaining high conductivity and strength. By subjecting the cold rolled material to repeated bending with a tension leveler, the average hardness Hs (HV) at the 1/8 position in the plate thickness direction and the average hardness Hc (HV) at the 1/2 position in the plate thickness direction are (Hs− Hc) / Hc × 100 ≦ −5 A copper alloy sheet in which both surface layer portions are softer than the center portion. The alloy composition includes, for example, Ni: 0.4 to 4.8% by mass, Si: 0.1 to 1.2%, and Mg: 0.3% or less or Zn: 15% or less as required. Further, if necessary, the composition contains one or more of Sn, Co, Cr, P 2, B 3, Al, Fe 3, Zr 3, Ti 3, and Mn 3 in a total amount of 3% or less, and the remainder is substantially composed of Cu.

特開2009−263784号公報JP 2009-263784 A 特開2008−95186号公報JP 2008-95186 A 特開2006−283059号公報JP 2006-283059 A 特開2007−100145号公報JP 2007-1000014 A

従来のCu−Ni−Si系のコルソン合金は、各種電子部品の素材として所定形状にて長時間に亘り高温及び高振動環境下で使用して行く為には、疲労特性の変動が大きく十分ではなく、曲げ加工性と共に所定形状とする為の加工の容易性も十分ではなかった。
本発明は、この様な事情に鑑みてなされたものであり、優れた深絞り加工性及び耐疲労特性を有するCu−Ni−Si系銅合金を提供することを目的とする。
The conventional Cu-Ni-Si-based Corson alloy has a large variation in fatigue characteristics and is not sufficient to be used as a material for various electronic components in a predetermined shape for a long time in a high temperature and high vibration environment. In addition, the ease of processing to obtain a predetermined shape as well as bending workability was not sufficient.
This invention is made | formed in view of such a situation, and it aims at providing the Cu-Ni-Si type | system | group copper alloy which has the outstanding deep drawing workability and fatigue resistance.

本発明者らは、鋭意検討の結果、1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、更にSnを0.2〜0.8質量%、Znを0.3〜1.5質量%含有し、Mgを0.001〜0.2質量%含有し、残部がCu及び不可避的不純物からなるCu−Ni−Si系銅合金板において、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度が2.0〜6.0%であり、KAM(Kernel Average Misorientation)の平均値が0.9〜1.5°であり、結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が60〜70%であると、深絞り加工性及び耐疲労特性に優れた特性を発揮することを見出した。 As a result of intensive studies, the inventors of the present invention contain 1.0 to 3.0 mass% Ni, contain Si at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni, and further Sn. 0.2-0.8 mass%, Zn 0.3-1.5 mass%, Mg 0.001-0.2 mass%, with the balance being Cu- In a Ni-Si based copper alloy plate, the Goss orientation density measured by the EBSD method with a scanning electron microscope with a backscattered electron diffraction image system is 2.0 to 6.0%, and the KAM (Kernel Average Missoration) The average value is 0.9 to 1.5 °, and the ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L of the crystal grain boundary is 60 to 70%. And exhibits excellent deep drawing workability and fatigue resistance Heading was.

更に、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度及びKAM(Kernel Average Misorientation)は、耐疲労特性に大きく関与し、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)は、深絞り加工性に大きく関与することを見出した。   In addition, Goss orientation density and KAM (Kernel Average Misoration) measured by the EBSD method with a scanning electron microscope with a backscattered electron diffraction image system are greatly involved in fatigue resistance characteristics, and scanning with a backscattered electron diffraction image system. The ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L of the crystal grain boundary measured by the EBSD method using a scanning electron microscope greatly affects deep drawability. I found.

また、本発明のCu−Ni−Si系銅合金板を熱間圧延、冷間圧延、溶体化処理、時効化処理、酸洗処理、最終冷間圧延、低温焼鈍をこの順序で含む工程で製造するに際して、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度とKAM(KernelAverage Misorientation)は、基本的に、製造工程の酸洗処理時の研磨における機械研磨及び化学研磨の条件により左右され、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)は、製造工程の溶体化処理直前の冷間圧延の加工率及び最終冷間圧延の加工率により影響されることも見出した。   In addition, the Cu-Ni-Si based copper alloy sheet of the present invention is manufactured in a process including hot rolling, cold rolling, solution treatment, aging treatment, pickling treatment, final cold rolling, and low temperature annealing in this order. In this case, the Goss orientation density and KAM (Kernel Average Misoration) measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system are basically determined by mechanical polishing and polishing in the pickling process in the manufacturing process. Depending on the conditions of chemical polishing, the total special grain boundary length Lσ of the special grain boundary relative to the total grain boundary length L of the grain boundary measured by the EBSD method with a scanning electron microscope with a backscattered electron diffraction image system It has also been found that the ratio (Lσ / L) is affected by the cold rolling processing rate and the final cold rolling processing rate immediately before the solution treatment in the manufacturing process.

これらの知見より、本発明の深絞り加工性及び耐疲労特性に優れたCu−Ni−Si系銅合金板は、1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、更にSnを0.2〜0.8質量%、Znを0.3〜1.5質量%含有し、Mgを0.001〜0.2質量%含有し、残部がCu及び不可避的不純物からなり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度が2.0〜6.0%であり、KAMの平均値が0.9〜1.5°であり、結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が60〜70%であることを特徴とする。 From these findings, the Cu—Ni—Si based copper alloy sheet excellent in deep drawability and fatigue resistance of the present invention contains 1.0 to 3.0 mass% Ni, and the mass% concentration of Ni. 1 to 1 to 1/4 of the concentration of Si , 0.2 to 0.8 mass% of Sn, 0.3 to 1.5 mass% of Zn, and 0.001 to Mg. It contains 0.2% by mass, the balance is made of Cu and inevitable impurities, and the Goss orientation density measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system is 2.0 to 6.0%. Yes, the average value of KAM is 0.9 to 1.5 °, and the ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L of the crystal grain boundary is 60 to It is characterized by 70%.

Ni及びSiは、適切な熱処理を行うことにより、NiSiを主とする金属間化合物の微細な粒子を形成する。その結果、合金の強度が著しく増加し、同時に電気伝導性も上昇する。
Niは1.0〜3.0質量%、好ましくは、1.5〜2.5質量%の範囲で添加する。Niが1.0質量%未満であると充分な強度が得られない。Niが3.0質量%を超えると熱間割れが発生する。Siの添加濃度(質量%)は、Niの添加濃度(質量%)の1/6〜1/4とする。Si添加濃度がNi添加濃度の1/6より少ないと強度が低下し、Ni添加濃度の1/4より多いと強度に寄与しないばかりでなく、過剰なSiによって導電性が低下する。
Goss方位密度が2.0%未満では、耐疲労特性が低下し、Goss方位密度が6.0%を超えると、耐疲労特性が低下して数値の変動が大きくなる共に引張強度も低下する傾向がある。
KAMの平均値が0.9°未満、或いは、1.5°を超えると耐疲労特性が低下をきたす。
特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が、60%未満、或いは、70%を超えると、深絞り加工性の低下をきたす。
Ni and Si form fine particles of an intermetallic compound mainly composed of Ni 2 Si by performing an appropriate heat treatment. As a result, the strength of the alloy is significantly increased and at the same time the electrical conductivity is increased.
Ni is added in the range of 1.0 to 3.0% by mass, preferably 1.5 to 2.5% by mass. If Ni is less than 1.0% by mass, sufficient strength cannot be obtained. When Ni exceeds 3.0 mass%, a hot crack will generate | occur | produce. The addition concentration (mass%) of Si is 1/6 to 1/4 of the addition concentration (mass%) of Ni. If the Si addition concentration is less than 1/6 of the Ni addition concentration, the strength is reduced. If the Si addition concentration is more than 1/4 of the Ni addition concentration, not only does not contribute to the strength, but the conductivity is reduced due to excessive Si.
When the Goss orientation density is less than 2.0%, the fatigue resistance is lowered, and when the Goss orientation density is more than 6.0%, the fatigue resistance is lowered and the numerical value is increased and the tensile strength is also lowered. There is.
When the average value of KAM is less than 0.9 ° or exceeds 1.5 °, the fatigue resistance is deteriorated.
If the ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundaries is less than 60% or exceeds 70%, the deep drawability is deteriorated.

n及びZnには、強度及び耐熱性を改善する作用があり、更にSnには耐応力緩和特性の改善作用が、Znには、はんだ接合の耐熱性を改善する作用がある。Snは0.2〜0.8質量%、Znは0.3〜1.5質量%の範囲で添加する。前述の範囲を下回ると所望の効果が得られず、上回ると導電性が低下する。 The S n and Zn, has the effect of improving the strength and heat resistance, further improvement effect of stress relaxation characteristics of Sn is, the Zn, an effect of improving the heat resistance of the solder joint. Sn is added in the range of 0.2 to 0.8 mass%, and Zn is added in the range of 0.3 to 1.5 mass%. If it is below the above range, the desired effect cannot be obtained, and if it exceeds, the conductivity is lowered.

gには応力緩和特性及び熱間加工性を改善する効果があるが、0.2質量%を超えると鋳造性(鋳肌品質の低下)、熱間加工性及びめっき耐熱剥離性が低下する。 Although the M g has the effect of improving the stress relaxation resistance and hot workability, castability and exceeds 0.2 wt% (casting surface quality deterioration), hot workability and plating thermal peeling resistance is lowered .

更に、本発明のCu−Ni−Si系銅合金は、更にFe:0.007〜0.25質量%、P:0.001〜0.2質量%、C:0.0001〜0.001質量%、Cr及びZr:0.001〜0.3質量%1種又は2種以上を含有してもよい。
Feには、熱間圧延性を向上させる効果(表面割れや耳割れの発生を抑制する効果)およびNiとSiの化合物析出を微細化し、よってメッキ加熱密着性を向上させる効果等を通じて、コネクタの信頼性を高める作用があるが、その含有量が0.007%未満では上記作用に所望の効果が得られず、一方、その含有量が0.25%を越えると熱間圧延性効果が飽和し、むしろ低下傾向が現われるようになると共に、導電性にも悪影響を及ぼすようになることから、その含有量を0.007〜0.25%と定めた。
Pには、曲げ加工によって起るばね性の低下を抑制し、よって成型加工して得たコネクタの挿抜特性を向上させる作用および耐マイグレーション特性を向上させる作用があるが、その含有量が0.001%未満では所望の効果が得られず、一方、その含有量が0.2%を越えると、はんだ耐熱剥離性を著しく損なうようになることから、その含有量を0.001〜0.2%と定めた。
Cには、打抜き加工性を向上させる作用があり、さらにNiとSiの化合物を微細化させることにより合金の強度を向上させる作用があるが、その含有量が0.0001%未満では所望の効果が得られず、一方、0.001%を越えて含有すると熱間加工性に悪い影響を与えるので好ましくない。したがって、C含有量は0.0001〜0.001%に定めた。
CrおよびZrには、Cとの親和力が強くCu合金中にCを含有させ易くするほか、NiおよびSiの化合物を一層微細化して合金の強度を向上させる作用およびそれ自身の析出によって強度を一層向上させる作用を有するが、CrおよびZrのうちの1種または2種の含有量が0.001%未満含有されていても合金の強度向上効果が得られず、一方、0.3%を越えて含有するとCrおよび/またはZrの大きな析出物が生成し、そのためにめっき性が悪くなり、打抜き加工性も悪くなるとともにさらに熱間加工性が損われるようになるので好ましくない。したがって、CrおよびZrのうちの1種または2種の含有量は0.001〜0.3%に定めた。
Furthermore, the Cu—Ni—Si based copper alloy of the present invention is further Fe: 0.007 to 0.25 mass%, P: 0.001 to 0.2 mass%, and C: 0.0001 to 0.001 mass. %, Cr and Zr : 0.001 to 0.3% by mass or one or more of them may be contained.
Fe has the effect of improving the hot rolling property (the effect of suppressing the occurrence of surface cracks and ear cracks) and the effect of minimizing the Ni and Si compound precipitation, thereby improving the plating heat adhesion. Although there is an action to increase the reliability, if the content is less than 0.007%, a desired effect cannot be obtained in the above action. On the other hand, if the content exceeds 0.25%, the hot rolling effect is saturated. However, since the decreasing tendency appears and the conductivity is adversely affected, the content is determined to be 0.007 to 0.25%.
P has an effect of suppressing a decrease in spring property caused by bending, thereby improving an insertion / extraction characteristic of a connector obtained by molding and an effect of improving migration resistance. If the content is less than 001%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.2%, the heat resistance peelability of the solder is remarkably impaired. %.
C has an effect of improving punching workability, and further has an effect of improving the strength of the alloy by refining a compound of Ni and Si. However, when the content is less than 0.0001%, the desired effect is obtained. On the other hand, if the content exceeds 0.001%, the hot workability is adversely affected. Therefore, the C content is set to 0.0001 to 0.001%.
Cr and Zr have a strong affinity for C and make it easy to contain C in the Cu alloy. In addition, Ni and Si compounds are further refined to improve the strength of the alloy and by precipitation of the alloy itself, the strength is further increased. Although it has an action to improve, even if the content of one or two of Cr and Zr is less than 0.001%, the effect of improving the strength of the alloy cannot be obtained, while it exceeds 0.3% If it is contained, a large precipitate of Cr and / or Zr is generated, which results in poor plating properties, poor punching workability, and further deteriorates hot workability. Therefore, the content of one or two of Cr and Zr is set to 0.001 to 0.3%.

更に、本発明の深絞り加工性及び耐疲労特性に優れたCu−Ni−Si系銅合金板の製造方法は、熱間圧延、冷間圧延、溶体化処理、時効化処理、酸洗処理、最終冷間圧延、低温焼鈍をこの順序で含む工程で銅合金板を製造するに際して、溶体化処理直前の冷間圧延時の加工率を50〜60%にて実施し、酸洗処理時の研磨にて機械研磨および化学研磨を実施し、最終冷間圧延時の加工率を3〜20%にて実施するとともに、前記機械研磨を表面粒度が#320〜#600の研磨ロールで実施し、前記化学研磨を硫酸5〜20質量%及び過酸化水素1〜10質量%を含有する液温30〜70℃の処理液中にて10〜30秒間浸漬して実施することを特徴とする。 Furthermore, the manufacturing method of the Cu-Ni-Si-based copper alloy plate excellent in deep drawing workability and fatigue resistance of the present invention includes hot rolling, cold rolling, solution treatment, aging treatment, pickling treatment, When manufacturing a copper alloy sheet in a process including final cold rolling and low temperature annealing in this order, the processing rate during cold rolling immediately before the solution treatment is performed at 50 to 60%, and polishing during pickling processing The mechanical polishing and chemical polishing are carried out at a final cold rolling rate of 3 to 20% , and the mechanical polishing is carried out with a polishing roll having a surface grain size of # 320 to # 600, The chemical polishing is performed by immersing in a treatment solution containing 5 to 20% by mass of sulfuric acid and 1 to 10% by mass of hydrogen peroxide at a solution temperature of 30 to 70 ° C. for 10 to 30 seconds .

酸洗処理時の研磨にて最適な条件にて機械研磨に続き化学研磨を実施することにより、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度を2.0〜6.0%とし、KAMの平均値を0.9〜1.5°として、優れた耐疲労性を発揮させる。Goss方位密度とKAMの平均値のどちらか一方が上記規定範囲値外であると優れた耐疲労性は発揮されない。
溶体化処理直前の冷間圧延時の加工率を50〜60%にて実施し、最終冷間圧延を加工率3〜20%にて実施することにより、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)を60〜70%とし、優れた深絞り加工性を発揮させる。
溶体化処理直前の冷間圧延時の加工率を50〜60%とすることにより、Lσ/Lを60〜70%とする素地を作り、最終冷間圧延の加工率3〜20%とすることにより、Lσ/Lを60〜70%の範囲内に収めることが可能となる。
溶体化処理直前の冷間圧延時の加工率が50%未満、或いは、60%を超えると、素地作製効果は十分ではなく、最終冷間圧延の加工率が3%未満、或いは、20%を超えると、Lσ/Lが60〜70%の範囲内に収まらず深絞り加工性の低下を来たす。
The Goss orientation density measured by the EBSD method with a scanning electron microscope with a backscattered electron diffraction image system is obtained by performing chemical polishing followed by mechanical polishing under optimum conditions for polishing during pickling. 0 to 6.0% and an average value of KAM is set to 0.9 to 1.5 ° to exhibit excellent fatigue resistance. If either the Goss orientation density or the average value of KAM is outside the above specified range value, excellent fatigue resistance is not exhibited.
A scanning type with a backscattered electron diffraction image system is implemented by carrying out the processing rate at the time of cold rolling immediately before the solution treatment at 50 to 60% and the final cold rolling at a processing rate of 3 to 20%. The ratio of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L of the grain boundary measured by the EBSD method with an electron microscope (Lσ / L) is 60 to 70%, and excellent deep drawing To show the sex.
By making the processing rate at the time of cold rolling immediately before the solution treatment 50-60%, make a substrate with Lσ / L 60-70%, and the final cold rolling processing rate 3-20% Therefore, Lσ / L can be kept within the range of 60 to 70%.
If the processing rate at the time of cold rolling immediately before the solution treatment is less than 50% or more than 60%, the substrate preparation effect is not sufficient, and the processing rate of the final cold rolling is less than 3% or 20%. If it exceeds, Lσ / L does not fall within the range of 60 to 70%, and the deep drawability is deteriorated.

機械研磨を表面粒度(JIS R6001に準拠する)が#320〜#600の研磨ロールで押圧して実施し、引き続き、化学研磨を硫酸5〜20質量%及び過酸化水素1〜10質量%を含む液温30〜70℃の処理液中に10〜30秒間浸漬して実施することで、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度が2.0〜6.0%となり、KAMの平均値が0.9〜1.5°の範囲内に収まり、優れた耐疲労性が発揮される。
研磨ロールの表面粒度が#320未満、或いは、#600を超えると、主にGoss方位密度が所定範囲内に収まらず、化学研磨液の液温或いは化学研磨液への浸漬時間が上述の範囲外であると、主にKAMの平均値が所定範囲内に収まらない傾向がある。
Mechanical polishing is performed by pressing with a polishing roll having a surface particle size (according to JIS R6001) of # 320 to # 600, followed by chemical polishing containing 5-20 mass% sulfuric acid and 1-10 mass% hydrogen peroxide. By performing immersion for 10 to 30 seconds in a treatment liquid having a liquid temperature of 30 to 70 ° C., the Goss orientation density measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system is 2.0 to 2.0. The average value of KAM falls within the range of 0.9 to 1.5 °, and excellent fatigue resistance is exhibited.
If the surface particle size of the polishing roll is less than # 320 or exceeds # 600, the Goss orientation density mainly does not fall within the predetermined range, and the temperature of the chemical polishing liquid or the immersion time in the chemical polishing liquid is outside the above range. When it is, there exists a tendency which the average value of KAM does not mainly fall in the predetermined range.

本発明は、各種電子部品の素材として所定形状にて長時間に亘り高温及び高振動環境下での使用に耐え得る優れた深絞り加工性及び耐疲労特性を有するCu−Ni−Si系銅合金を提供する。   The present invention relates to a Cu-Ni-Si based copper alloy having excellent deep drawing workability and fatigue resistance capable of withstanding use under high temperature and high vibration environment for a long time in a predetermined shape as a material of various electronic components. I will provide a.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

[銅合金条の成分組成]
本発明の銅合金条材は、質量%で、1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、残部がCu及び不可避的不純物である組成を有する。
Ni及びSiは、適切な熱処理を行うことにより、NiSiを主とする金属間化合物の微細な粒子を形成する。その結果、合金の強度が著しく増加し、同時に電気伝導性も上昇する。
Niは1.0〜3.0質量%、好ましくは、1.5〜2.5質量%の範囲で添加する。Niが1.0質量%未満であると充分な強度が得られない。Niが3.0質量%を超えると熱間割れが発生する。Siの添加濃度(質量%)は、Niの添加濃度(質量%)の1/6〜1/4とする。Si添加濃度がNi添加濃度の1/6より少ないと強度が低下し、Ni添加濃度の1/4より多いと強度に寄与しないばかりでなく、過剰なSiによって導電性が低下する。
また、この銅合金は、上記の基本組成に対して、更にSnを0.2〜0.8質量%、Znを0.3〜1.5質量%含有しても良い。
Sn及びZnには、強度及び耐熱性を改善する作用があり、更にSnには耐応力緩和特性の改善作用が、Znには、はんだ接合の耐熱性を改善する作用がある。Snは0.2〜0.8質量%、Znは0.3〜1.5質量%の範囲で添加する。前述の範囲を下回ると所望の効果が得られず、上回ると導電性が低下する。
また、この銅合金は、上記の基本組成に対して、更にMgを0.001〜0.2質量%含有しても良い。Mgには、応力緩和特性及び熱間加工性を改善する効果があり、0.001〜0.2質量%の範囲で添加する。0.2質量%を超えると鋳造性(鋳肌品質の低下)、熱間加工性及びめっき耐熱剥離性が低下する。
また、この銅合金は、上記の基本組成に対して、更にFe:0.007〜0.25質量%、P:0.001〜0.2質量%、C:0.0001〜0.001質量%、Cr:0.001〜0.3質量%、Zr:0.001〜0.3質量%を1種又は2種以上を含有しても良い。
Feには、熱間圧延性を向上させる効果(表面割れや耳割れの発生を抑制する効果)およびNiとSiの化合物析出を微細化し、よってメッキ加熱密着性を向上させる効果等を通じて、コネクタの信頼性を高める作用があるが、その含有量が0.007%未満では上記作用に所望の効果が得られず、一方、その含有量が0.25%を越えると熱間圧延性効果が飽和し、むしろ低下傾向が現われるようになると共に、導電性にも悪影響を及ぼすようになることから、その含有量を0.007〜0.25%と定めた。
Pには、曲げ加工によって起るばね性の低下を抑制し、よって成型加工して得たコネクタの挿抜特性を向上させる作用および耐マイグレーション特性を向上させる作用があるが、その含有量が0.001%未満では所望の効果が得られず、一方、その含有量が0.2%を越えると、はんだ耐熱剥離性を著しく損なうようになることから、その含有量を0.001〜0.2%と定めた。
Cには、打抜き加工性を向上させる作用があり、さらにNiとSiの化合物を微細化させることにより合金の強度を向上させる作用があるが、その含有量が0.0001%未満では所望の効果が得られず、一方、0.001%を越えて含有すると熱間加工性に悪い影響を与えるので好ましくない。したがって、C含有量は0.0001〜0.001%に定めた。
CrおよびZrには、Cとの親和力が強くCu合金中にCを含有させ易くするほか、NiおよびSiの化合物を一層微細化して合金の強度を向上させる作用およびそれ自身の析出によって強度を一層向上させる作用を有するが、CrおよびZrのうちの1種または2種の含有量が0.001%未満含有されていても合金の強度向上効果が得られず、一方、0.3%を越えて含有するとCrおよび/またはZrの大きな析出物が生成し、そのためにめっき性が悪くなり、打抜き加工性も悪くなるとともにさらに熱間加工性が損われるようになるので好ましくない。したがって、CrおよびZrのうちの1種または2種の含有量は0.001〜0.3%に定めた。
[Component composition of copper alloy strip]
The copper alloy strip of the present invention is 1.0% by mass and contains 1.0 to 3.0% by mass of Ni, and contains Si at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni. The balance is Cu and inevitable impurities.
Ni and Si form fine particles of an intermetallic compound mainly composed of Ni 2 Si by performing an appropriate heat treatment. As a result, the strength of the alloy is significantly increased and at the same time the electrical conductivity is increased.
Ni is added in the range of 1.0 to 3.0% by mass, preferably 1.5 to 2.5% by mass. If Ni is less than 1.0% by mass, sufficient strength cannot be obtained. When Ni exceeds 3.0 mass%, a hot crack will generate | occur | produce. The addition concentration (mass%) of Si is 1/6 to 1/4 of the addition concentration (mass%) of Ni. If the Si addition concentration is less than 1/6 of the Ni addition concentration, the strength is reduced. If the Si addition concentration is more than 1/4 of the Ni addition concentration, not only does not contribute to the strength, but the conductivity is reduced due to excessive Si.
Moreover, this copper alloy may contain Sn 0.2-0.8 mass% and Zn 0.3-1.5 mass% further with respect to said basic composition.
Sn and Zn have an effect of improving strength and heat resistance, Sn has an effect of improving stress relaxation resistance, and Zn has an effect of improving heat resistance of solder joints. Sn is added in the range of 0.2 to 0.8 mass%, and Zn is added in the range of 0.3 to 1.5 mass%. If it is below the above range, the desired effect cannot be obtained, and if it exceeds, the conductivity is lowered.
Moreover, this copper alloy may contain 0.001-0.2 mass% of Mg further with respect to said basic composition. Mg has an effect of improving stress relaxation characteristics and hot workability, and is added in the range of 0.001 to 0.2 mass%. When it exceeds 0.2% by mass, castability (decrease in casting surface quality), hot workability, and plating heat resistance peelability are deteriorated.
Moreover, this copper alloy is further Fe: 0.007-0.25 mass%, P: 0.001-0.2 mass%, C: 0.0001-0.001 mass with respect to said basic composition. %, Cr: 0.001 to 0.3 mass%, Zr: 0.001 to 0.3 mass%, or one or more of them may be contained.
Fe has the effect of improving the hot rolling property (the effect of suppressing the occurrence of surface cracks and ear cracks) and the effect of minimizing the Ni and Si compound precipitation, thereby improving the plating heat adhesion. Although there is an action to increase the reliability, if the content is less than 0.007%, a desired effect cannot be obtained in the above action. On the other hand, if the content exceeds 0.25%, the hot rolling effect is saturated. However, since the decreasing tendency appears and the conductivity is adversely affected, the content is determined to be 0.007 to 0.25%.
P has an effect of suppressing a decrease in spring property caused by bending, thereby improving an insertion / extraction characteristic of a connector obtained by molding and an effect of improving migration resistance. If the content is less than 001%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.2%, the heat resistance peelability of the solder is remarkably impaired. %.
C has an effect of improving punching workability, and further has an effect of improving the strength of the alloy by refining a compound of Ni and Si. However, when the content is less than 0.0001%, the desired effect is obtained. On the other hand, if the content exceeds 0.001%, the hot workability is adversely affected. Therefore, the C content is set to 0.0001 to 0.001%.
Cr and Zr have a strong affinity for C and make it easy to contain C in the Cu alloy. In addition, Ni and Si compounds are further refined to improve the strength of the alloy and by precipitation of the alloy itself, the strength is further increased. Although it has an action to improve, even if the content of one or two of Cr and Zr is less than 0.001%, the effect of improving the strength of the alloy cannot be obtained, while it exceeds 0.3% If it is contained, a large precipitate of Cr and / or Zr is generated, which results in poor plating properties, poor punching workability, and further deteriorates hot workability. Therefore, the content of one or two of Cr and Zr is set to 0.001 to 0.3%.

[銅合金条の合金組織]
本発明のCu−Ni−Si系銅合金条は、合金組織中の後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度が2.0〜6.0%であり、KAMの平均値が0.9〜1.5°であり、結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が60〜70%であり、深絞り加工性及び耐疲労特性に優れている。
[Alloy structure of copper alloy strip]
The Cu—Ni—Si based copper alloy strip of the present invention has a Goss orientation density of 2.0 to 6.0% measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system in the alloy structure. Yes, the average value of KAM is 0.9 to 1.5 °, and the ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L of the crystal grain boundary is 60 to It is 70% and is excellent in deep drawing workability and fatigue resistance.

[Goss方位密度、KAM、Lσ/L]
EBSD法によるGoss方位密度、KAM、特殊粒界比率の測定は次のように実施した。
10mm×10mmの試料を機械研磨、バフ研磨後、日立ハイテクノロジーズ社製イオンミリング装置で加速電圧6kV、入射角10°、照射時間15分として表面を調整し、日立ハイテクノロジーズ社製SEM(型番「S−3400N」)と、TSL社製のEBSD測定・解析システムOIM(Orientation Imaging Micrograph)を用い、測定領域を六角形の領域(ピクセル)に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得てピクセルの方位を測定した。測定した方位データを同システムの解析ソフト(ソフト名「OIM Analysis」)を用いて解析し、各種パラメータを算出した。観察条件は、加速電圧25kV、測定面積は300μm×300μmとし、隣接するピクセル間の距離(ステップサイズ)は0.5μmとした。隣接するピクセル間の方位差が5°以上を結晶粒界とみなした。
Goss方位密度は密度ミラー指数で表した場合、圧延面に{110}、圧延方向に〈001〉が平行である方位で、理想方位から15°以内の方位のピクセルの全面積に対する面積率として算出した。
Goss方位密度が2.0%未満では、耐疲労特性が低下し、Goss方位密度が6.0%を超えると、耐疲労特性が低下し値がばらつくと共に引張強度も低下する傾向がある。
KAMは結晶粒内のあるピクセルと、結晶粒界を超えない範囲に存在する隣接ピクセルとの方位差の平均値を計算し、測定全面積を構成する全ピクセルにおける平均値として算出した。
KAMの平均値が0.9°未満、或いは、1.5°を超えると耐疲労特性が低下する。
特殊粒界は測定範囲における結晶粒界の全粒界長さLを測定し、全特殊粒界長さLσと、上記測定した結晶粒界の全粒界長さLとの粒界長比率Lσ/Lを求めることで、特殊粒界長さ比率として算出した。
特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が、60%未満、或いは、70%を超えると、深絞り加工性が低下をきたす。
[Goss orientation density, KAM, Lσ / L]
The measurement of Goss orientation density, KAM, and special grain boundary ratio by the EBSD method was performed as follows.
After mechanical polishing and buffing of a 10 mm x 10 mm sample, the surface was adjusted with an ion milling device manufactured by Hitachi High-Technologies Corporation with an acceleration voltage of 6 kV, an incident angle of 10 °, and an irradiation time of 15 minutes. S-3400N ") and an EBSD measurement / analysis system OIM (Orientation Imaging Micrograph) manufactured by TSL, the measurement area is divided into hexagonal areas (pixels), and each divided area is incident on the sample surface. The Kikuchi pattern was obtained from the reflected electrons of the electron beam and the orientation of the pixel was measured. The measured azimuth data was analyzed using the analysis software (software name “OIM Analysis”) of the system, and various parameters were calculated. The observation conditions were an acceleration voltage of 25 kV, a measurement area of 300 μm × 300 μm, and a distance (step size) between adjacent pixels of 0.5 μm. An orientation difference between adjacent pixels of 5 ° or more was regarded as a crystal grain boundary.
The Goss orientation density is calculated as the area ratio of the total area of pixels in the orientation with the orientation of {110} on the rolling surface and <001> parallel to the rolling direction and within 15 ° from the ideal orientation when expressed by the density mirror index. did.
When the Goss orientation density is less than 2.0%, the fatigue resistance is lowered. When the Goss orientation density is more than 6.0%, the fatigue resistance is lowered, the value varies, and the tensile strength tends to be lowered.
KAM calculated the average value of the azimuth | direction difference of a certain pixel in a crystal grain, and the adjacent pixel which exists in the range which does not exceed a crystal grain boundary, and computed it as the average value in all the pixels which comprise the measurement total area.
When the average value of KAM is less than 0.9 ° or exceeds 1.5 °, the fatigue resistance is deteriorated.
For the special grain boundary, the total grain boundary length L of the grain boundary in the measurement range is measured, and the grain boundary length ratio Lσ between the total special grain boundary length Lσ and the total grain boundary length L of the above measured grain boundary. / L was calculated as a special grain boundary length ratio.
If the ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundaries is less than 60% or exceeds 70%, the deep drawing workability deteriorates.

[製造方法]
本発明のCu−Ni−Si系銅合金の製造方法は、熱間圧延、冷間圧延、溶体化処理、時効化処理、酸洗処理、最終冷間圧延、低温焼鈍をこの順序で含む工程で銅合金板を製造するに際して、溶体化処理直前の冷間圧延時の加工率を50〜60%にて実施し、酸洗処理時の研磨にて機械研磨および化学研磨を実施し、最終冷間圧延の加工率を3〜20%にて実施する。
製造工程の酸洗処理時の研磨にて最適な条件にて機械研磨に続く化学研磨を実施することにより、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度を2.0〜6.0%とし、KAMの平均値を0.9〜1.5°として、優れた耐疲労性を発揮させる。Goss方位密度とKAMの平均値のどちらか一方が規定範囲値外であると優れた耐疲労性は発揮されない。
製造工程の溶体化処理直前の冷間圧延時の加工率を50〜60%にて実施し、最終冷間圧延を加工率3〜20%にて実施することにより、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)を60〜70%とし、優れた深絞り加工性を発揮させる。
溶体化処理直前の冷間圧延時の加工率を50〜60%とすることにより、Lσ/Lを60〜70%とする素地を作り、最終冷間圧延の加工率3〜20%とすることにより、Lσ/Lを60〜70%の範囲内に収める。
溶体化処理直前の冷間圧延時の加工率が50%未満、或いは、60%を超えると、素地作製効果は十分ではなく、最終冷間圧延の加工率が3%未満、或いは、20%を超えると、Lσ/Lが60〜70%の範囲内に収まらず、深絞り加工性が低下する。冷間圧延は焼鈍処理等を挟んで複数回実施してもよく、その複数回の冷間圧延のうち、溶体化処理直前の冷間圧延が上述の範囲の加工率であればよい。
更に、機械研磨を表面粒度(JIS R6001に準拠する)が#320〜#600の研磨ロールで実施し、化学研磨を硫酸5〜20質量%及び過酸化水素1〜10質量%を含む液温30〜70℃の処理液中にて10〜30秒間浸漬して実施することにて、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度が2.0〜6.0%であり、KAMの平均値が0.9〜1.5°の範囲内に収まり、優れた耐疲労性が発揮される。
研磨ロールの表面粒度が#320未満、或いは、#600を超えると、主にGoss方位密度が所定範囲値内に収まらず、化学研磨液の液温或いは化学研磨液への浸漬時間が上述の範囲外であると、主にKAMの平均値が所定範囲値内に収まらない傾向がある。
[Production method]
The method for producing a Cu—Ni—Si based copper alloy of the present invention is a process including hot rolling, cold rolling, solution treatment, aging treatment, pickling treatment, final cold rolling, and low temperature annealing in this order. When manufacturing a copper alloy sheet, the processing rate during cold rolling immediately before the solution treatment is 50 to 60%, mechanical polishing and chemical polishing are performed during polishing during pickling, and the final cold The rolling processing rate is 3 to 20%.
Goss orientation density measured by EBSD method using a scanning electron microscope with a backscattered electron diffraction image system by performing chemical polishing followed by mechanical polishing under optimum conditions for polishing during pickling treatment in the manufacturing process Of 2.0 to 6.0% and an average value of KAM of 0.9 to 1.5 °, exhibiting excellent fatigue resistance. If either the Goss orientation density or the average value of KAM is outside the specified range value, excellent fatigue resistance is not exhibited.
With backscattering electron diffraction image system, the processing rate during cold rolling immediately before the solution treatment in the manufacturing process is performed at 50 to 60%, and the final cold rolling is performed at a processing rate of 3 to 20%. The ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L of the crystal grain boundary measured by the EBSD method using a scanning electron microscope of 60 to 70% was excellent. Demonstrate deep drawability.
By making the processing rate at the time of cold rolling immediately before the solution treatment 50-60%, make a substrate with Lσ / L 60-70%, and the final cold rolling processing rate 3-20% Thus, Lσ / L is within the range of 60 to 70%.
If the processing rate at the time of cold rolling immediately before the solution treatment is less than 50% or more than 60%, the substrate preparation effect is not sufficient, and the processing rate of the final cold rolling is less than 3% or 20%. If it exceeds, Lσ / L does not fall within the range of 60 to 70%, and the deep drawability is deteriorated. The cold rolling may be performed a plurality of times with the annealing treatment or the like interposed therebetween, and the cold rolling immediately before the solution heat treatment may be a processing rate in the above range among the plurality of cold rollings.
Further, mechanical polishing is performed with a polishing roll having a surface particle size (based on JIS R6001) of # 320 to # 600, and chemical polishing is performed at a liquid temperature of 30 to 20% by mass sulfuric acid and 1 to 10% by mass hydrogen peroxide. The Goss azimuth density measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system is 2.0 to 6 by being immersed in a processing solution at ˜70 ° C. for 10 to 30 seconds. 0.0%, the average value of KAM falls within the range of 0.9 to 1.5 °, and excellent fatigue resistance is exhibited.
When the surface particle size of the polishing roll is less than # 320 or exceeds # 600, the Goss orientation density is not mainly within the predetermined range value, and the temperature of the chemical polishing liquid or the immersion time in the chemical polishing liquid is in the above range. If it is outside, there is a tendency that the average value of KAM does not mainly fall within the predetermined range value.

具体的な製造方法の一例としては、次の方法があげられる。
先ず、本発明のCu−Ni−Si系銅合金板の組成となるように材料を調合し、還元性雰囲気の低周波溶解炉を用いて溶解鋳造を行い銅合金鋳塊を得る。次に、この銅合金鋳塊を900〜980℃に加熱した後、熱間圧延にて適度の厚みの熱延板とし、この熱延板を水冷した後に両面を適度に面削する。次に、圧延率60〜90%にて冷間圧延を施し、適度な厚みの冷延板を作製した後、710〜750℃にて7〜15秒間保持の条件で連続焼鈍を施した後に、50〜60%の加工率にて冷間圧延を施して適度な厚み冷延板を作製し、この冷延板を710〜780℃にて7〜15秒間保持した後に急冷して溶体化処理を施す。
次に、430〜470℃にて3時間保持して時効化処理を施した後、酸洗処理時の研磨にて機械研磨を表面粒度が#320〜#600の研磨ロールで実施し、化学研磨を硫酸5〜20質量%及び過酸化水素1〜10質量%を含む液温30〜70℃の処理液中に10〜30秒間浸漬して実施した後に、3〜20%の加工率にて最終冷間圧延を施した後、300〜400℃にて20〜60秒間保持の条件で連続低温焼鈍を施して銅合金板を作製する。
この様に製造されたCu−Ni−Si系銅合金板は、1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、残部がCu及び不可避的不純物からなり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度が2.0〜6.0%であり、KAMの平均値が0.9〜1.5°であり、結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が60〜70%となり、優れた深絞り加工性及び耐疲労特性を有する。
The following method is mention | raise | lifted as an example of a specific manufacturing method.
First, materials are prepared so as to have the composition of the Cu—Ni—Si based copper alloy plate of the present invention, and melt casting is performed using a low frequency melting furnace in a reducing atmosphere to obtain a copper alloy ingot. Next, after heating this copper alloy ingot to 900-980 degreeC, it is set as the hot-rolled board of moderate thickness by hot rolling, and after hot-cooling this hot-rolled board, both sides are faced moderately. Next, after performing cold rolling at a rolling rate of 60 to 90% and producing a cold-rolled sheet having an appropriate thickness, after performing continuous annealing at 710 to 750 ° C. for 7 to 15 seconds, Cold rolling is performed at a processing rate of 50 to 60% to produce a cold rolled sheet having an appropriate thickness, and the cold rolled sheet is held at 710 to 780 ° C. for 7 to 15 seconds and then rapidly cooled to perform a solution treatment. Apply.
Next, after holding at 430 to 470 ° C. for 3 hours and performing an aging treatment, mechanical polishing is carried out with polishing rolls having a surface particle size of # 320 to # 600 by polishing during pickling, and chemical polishing is performed. Is immersed in a treatment solution containing 5 to 20% by mass of sulfuric acid and 1 to 10% by mass of hydrogen peroxide for 10 to 30 seconds, and finally processed at a processing rate of 3 to 20%. After cold rolling, continuous low temperature annealing is performed at 300 to 400 ° C. for 20 to 60 seconds to produce a copper alloy sheet.
The Cu—Ni—Si-based copper alloy plate thus produced contains 1.0 to 3.0% by mass of Ni, and Si has a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni. The balance is made of Cu and inevitable impurities, and the Goss orientation density measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system is 2.0 to 6.0%, The average value is 0.9 to 1.5 °, and the ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L of the crystal grain boundary is 60 to 70%. Excellent deep drawability and fatigue resistance.

表1に示す成分となるように材料を調合し、還元性雰囲気の低周波溶解炉を用いて溶解後に鋳造して厚さ80mm、幅200mm、長さ800mmの寸法の銅合金鋳塊を製造した。この銅合金鋳塊を900〜980℃に加熱した後、熱間圧延にて厚さ11mmの熱延板とし、この熱延板を水冷した後に両面を0.5mm面削した。次に、圧延率87%にて冷間圧延を施して厚さ1.3mmの冷延板を作製した後、710〜750℃にて7〜15秒間保持の条件で連続焼鈍を施し、表1に示す加工率にて冷間圧延(溶体化処理直前の冷間圧延)を施して所定厚さの冷延板を作製した。この冷延板を710〜780℃にて7〜15秒間保持した後に急冷して溶体化処理を施した後、430〜470℃にて3時間保持して時効化処理を施した。次に、表1に示す条件にて酸洗処理を施した後に、表1に示す条件にて最終冷間圧延を施し、引き続き、300〜400℃にて20〜60秒間保持の条件で連続低温焼鈍を施して、実施例1〜10、比較例1〜9の銅合金薄板を作製した。   Materials were prepared so as to have the components shown in Table 1, and cast after melting using a low-frequency melting furnace in a reducing atmosphere to produce a copper alloy ingot having a thickness of 80 mm, a width of 200 mm, and a length of 800 mm. . After heating this copper alloy ingot to 900-980 degreeC, it was set as the hot rolled sheet of thickness 11mm by hot rolling, and after hot-cooling this hot rolled sheet, both surfaces were faced 0.5mm. Next, after cold rolling was performed at a rolling rate of 87% to produce a cold-rolled sheet having a thickness of 1.3 mm, continuous annealing was performed at 710 to 750 ° C. for 7 to 15 seconds. Table 1 Cold rolling (cold rolling immediately before the solution treatment) was performed at a processing rate shown in FIG. The cold-rolled sheet was held at 710 to 780 ° C. for 7 to 15 seconds and then rapidly cooled to give a solution treatment, and then held at 430 to 470 ° C. for 3 hours to perform an aging treatment. Next, after the pickling treatment is performed under the conditions shown in Table 1, the final cold rolling is performed under the conditions shown in Table 1, and the continuous low temperature is maintained at 300 to 400 ° C. for 20 to 60 seconds. It annealed and produced the copper alloy thin plate of Examples 1-10 and Comparative Examples 1-9.

Figure 0005192536
Figure 0005192536

実施例1〜10、比較例1〜9の銅合金薄板から得られた試料につき、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、Goss方位密度、KAM、結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)を測定した。更に、各試料の深絞り加工性及び耐疲労特性を測定した。   Samples obtained from the copper alloy thin plates of Examples 1 to 10 and Comparative Examples 1 to 9 were analyzed for Goss orientation density, KAM, and grain boundary by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. The ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L was measured. Furthermore, the deep drawability and fatigue resistance of each sample were measured.

EBSD法によるGoss方位密度、KAM、特殊粒界比率の測定は次のように実施した。
10mm×10mmの試料を機械研磨、バフ研磨後、日立ハイテクノロジーズ社製イオンミリング装置で加速電圧6kV、入射角10°、照射時間15分として表面を調整し、日立ハイテクノロジーズ社製SEM(型番「S−3400N」)と、TSL社製のEBSD測定・解析システムOIM(Orientation Imaging Micrograph)を用い、測定領域を六角形の領域(ピクセル)に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得てピクセルの方位を測定した。測定した方位データを同システムの解析ソフト(ソフト名「OIM Analysis」)を用いて解析し、各種パラメータを算出した。観察条件は、加速電圧25kV、測定面積は300μm×300μmとし、隣接するピクセル間の距離(ステップサイズ)は0.5μmとした。隣接するピクセル間の方位差が5°以上を結晶粒界とみなした。
Goss方位密度は密度ミラー指数で表した場合、圧延面に{110}、圧延方向に〈001〉が平行である方位で、理想方位から15°以内の方位のピクセルの全面積に対する面積率として算出した。
KAMは結晶粒内のあるピクセルと、結晶粒界を超えない範囲に存在する隣接ピクセルとの方位差の平均値を計算し、測定全面積を構成する全ピクセルにおける平均値として算出した。
特殊粒界は測定範囲における結晶粒界の全粒界長さLを測定し、全特殊粒界長さLσと、上記測定した結晶粒界の全粒界長さLとの粒界長比率Lσ/Lを求めることで、特殊粒界長さ比率として算出した。
深絞り加工性は次のように測定した。
エリクセン社製試験機を用い、ポンチ径:Φ10mm、潤滑剤:グリスの条件で、カップを作製し、外観を観察し、良好なものを○、耳部にかけ又はワレが生じていたものを×とした。
耐疲労特性は次のように測定した。
JIS Z2273に準拠し、両振り平面曲げの疲労試験を行い採取した。試験片は幅10mmの短冊形とし、圧延方向平行と試験片の長さ方向を一致させた。試験条件は、試験片の板厚t(mm)、試験片表面に付加する最大曲げ応力σ(MPa)、試験片に与える片振幅δ(mm)、合金のヤング率E(GPa)、支点−応力作用点間距離l(mm)が、l=√(3Etδ/(2σ))の関係を満たすように試験片を設置して、最大曲げ応力σを500(MPa)として行い、試料が破断したときの回数Nを測定した。測定回数は4回行いNの平均値を求め、各試験片の疲労寿命とした。
これらの測定結果を表2に示す。
The measurement of Goss orientation density, KAM, and special grain boundary ratio by the EBSD method was performed as follows.
After mechanical polishing and buffing of a 10 mm x 10 mm sample, the surface was adjusted with an ion milling device manufactured by Hitachi High-Technologies Corporation with an acceleration voltage of 6 kV, an incident angle of 10 °, and an irradiation time of 15 minutes. S-3400N ") and an EBSD measurement / analysis system OIM (Orientation Imaging Micrograph) manufactured by TSL, the measurement area is divided into hexagonal areas (pixels), and each divided area is incident on the sample surface. The Kikuchi pattern was obtained from the reflected electrons of the electron beam and the orientation of the pixel was measured. The measured azimuth data was analyzed using the analysis software (software name “OIM Analysis”) of the system, and various parameters were calculated. The observation conditions were an acceleration voltage of 25 kV, a measurement area of 300 μm × 300 μm, and a distance (step size) between adjacent pixels of 0.5 μm. An orientation difference between adjacent pixels of 5 ° or more was regarded as a crystal grain boundary.
The Goss orientation density is calculated as the area ratio of the total area of pixels in the orientation with the orientation of {110} on the rolling surface and <001> parallel to the rolling direction and within 15 ° from the ideal orientation when expressed by the density mirror index. did.
KAM calculated the average value of the azimuth | direction difference of a certain pixel in a crystal grain, and the adjacent pixel which exists in the range which does not exceed a crystal grain boundary, and computed it as the average value in all the pixels which comprise the measurement total area.
For the special grain boundary, the total grain boundary length L of the grain boundary in the measurement range is measured, and the grain boundary length ratio Lσ between the total special grain boundary length Lσ and the total grain boundary length L of the above measured grain boundary. / L was calculated as a special grain boundary length ratio.
Deep drawability was measured as follows.
Using a test machine manufactured by Eriksen Co., with a punch diameter of Φ10 mm and a lubricant of grease, a cup was prepared, the appearance was observed, a good one was put on the ear, or a crack was generated on the ear. did.
The fatigue resistance was measured as follows.
In accordance with JIS Z2273, a double-bending plane bending fatigue test was performed and collected. The test piece was a strip with a width of 10 mm, and the parallel direction of the rolling and the length direction of the test piece were matched. The test conditions were the thickness t (mm) of the test piece, the maximum bending stress σ B (MPa) applied to the surface of the test piece, the piece amplitude δ (mm) given to the test piece, the Young's modulus E (GPa) of the alloy, and the fulcrum -A test piece was installed so that the distance l (mm) between stress acting points satisfied the relationship of l = √ (3 Etδ / (2σ B )), and the maximum bending stress σ B was set to 500 (MPa). The number of times N was measured when ruptured. The number of measurements was 4 times, the average value of N was determined, and the fatigue life of each specimen was taken.
These measurement results are shown in Table 2.

Figure 0005192536
Figure 0005192536

表1及び表2の結果より、本発明のCu−Ni−Si系銅合金は、各種電子部品の素材として所定形状にて長時間に亘り高温及び高振動環境下での使用に耐え得る優れた深絞り加工性及び耐疲労特性を有することがわかる。   From the results of Tables 1 and 2, the Cu-Ni-Si-based copper alloy of the present invention is excellent in that it can withstand use under high temperature and high vibration environment for a long time in a predetermined shape as a material of various electronic components. It can be seen that it has deep drawability and fatigue resistance.

以上、本発明の実施形態の製造方法について説明したが、本発明はこの記載に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   As mentioned above, although the manufacturing method of embodiment of this invention was demonstrated, this invention is not limited to this description, A various change can be added in the range which does not deviate from the meaning of this invention.

Claims (3)

1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、更にSnを0.2〜0.8質量%、Znを0.3〜1.5質量%含有し、Mgを0.001〜0.2質量%含有し、残部がCu及び不可避的不純物からなり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したGoss方位密度が2.0〜6.0%であり、KAMの平均値が0.9〜1.5°であり、結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が60〜70%であることを特徴とする深絞り加工性及び耐疲労特性に優れたCu−Ni−Si系銅合金板。 1.0 to 3.0% by mass of Ni, Si containing 1/6 to 1/4 of the concentration by mass of Ni, and Sn of 0.2 to 0.8% by mass, Scanning electron microscope with 0.3 to 1.5% by mass of Zn, 0.001 to 0.2% by mass of Mg, the balance consisting of Cu and inevitable impurities, with backscattered electron diffraction image system The Goss orientation density measured by EBSD method is 2.0 to 6.0%, the average value of KAM is 0.9 to 1.5 °, and it is special with respect to the total grain boundary length L of the grain boundary. A Cu—Ni—Si-based copper alloy sheet excellent in deep drawing workability and fatigue resistance, wherein the ratio (Lσ / L) of the total special grain boundary length Lσ of grain boundaries is 60 to 70%. 更にFe:0.007〜0.25質量%、P:0.001〜0.2質量%、C:0.0001〜0.001質量%、Cr及びZr:0.001〜0.3質量%1種又は2種以上を含有することを特徴とする請求項1に記載のCu−Ni−Si系銅合金板。 Furthermore, Fe: 0.007 to 0.25 mass%, P: 0.001 to 0.2 mass%, C: 0.0001 to 0.001 mass%, Cr and Zr : 0.001 to 0.3 mass% The Cu-Ni-Si-based copper alloy plate according to claim 1, comprising one or more of the following. 請求項1に記載の銅合金板の製造方法であって、熱間圧延、冷間圧延、溶体化処理、時効化処理、酸洗処理、最終冷間圧延、低温焼鈍をこの順序で含む工程で銅合金板を製造するに際して、溶体化処理直前の冷間圧延時の加工率を50〜60%にて実施し、酸洗処理時の研磨にて機械研磨及び化学研磨を実施し、最終冷間圧延時の加工率を3〜20%にて実施するとともに、前記機械研磨を表面粒度が#320〜#600の研磨ロールで実施し、前記化学研磨を硫酸5〜20質量%及び過酸化水素1〜10質量%を含有する液温30〜70℃の処理液中にて10〜30秒間浸漬して実施することを特徴とする深絞り加工性及び耐疲労特性に優れたCu−Ni−Si系銅合金板の製造方法。 It is a manufacturing method of the copper alloy plate of Claim 1, Comprising: In the process which includes hot rolling, cold rolling, solution treatment, aging treatment, pickling processing, final cold rolling, and low temperature annealing in this order When producing a copper alloy sheet, the processing rate during cold rolling immediately before the solution treatment is performed at 50 to 60%, mechanical polishing and chemical polishing are performed during polishing during the pickling process, and the final cold The processing rate during rolling is 3 to 20% , the mechanical polishing is performed with a polishing roll having a surface particle size of # 320 to # 600, and the chemical polishing is 5 to 20% by mass of sulfuric acid and hydrogen peroxide 1 Cu-Ni-Si system excellent in deep drawing workability and fatigue resistance, characterized by being immersed for 10 to 30 seconds in a treatment liquid containing 10 to 10% by mass of a liquid temperature of 30 to 70 ° C A method for producing a copper alloy sheet.
JP2010275536A 2010-12-10 2010-12-10 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same Active JP5192536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010275536A JP5192536B2 (en) 2010-12-10 2010-12-10 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010275536A JP5192536B2 (en) 2010-12-10 2010-12-10 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012122114A JP2012122114A (en) 2012-06-28
JP5192536B2 true JP5192536B2 (en) 2013-05-08

Family

ID=46503872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010275536A Active JP5192536B2 (en) 2010-12-10 2010-12-10 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5192536B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626582B2 (en) * 2011-01-21 2014-11-19 三菱マテリアル株式会社 Phosphorus copper anode for electrolytic copper plating and electrolytic copper plating method using the same
JP5565506B1 (en) * 2013-07-03 2014-08-06 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6581755B2 (en) * 2013-08-09 2019-09-25 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
CN105829555B (en) 2013-12-27 2018-04-20 古河电气工业株式会社 The manufacture method of copper alloy plate, connector and copper alloy plate
WO2015099098A1 (en) 2013-12-27 2015-07-02 古河電気工業株式会社 Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP6680042B2 (en) * 2016-03-30 2020-04-15 三菱マテリアル株式会社 Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
JP6494681B2 (en) * 2017-03-27 2019-04-03 Jx金属株式会社 Copper alloy and electronic parts for electronic materials
CN110820003A (en) * 2019-11-23 2020-02-21 贵州航天南海科技有限责任公司 Cleaning and passivating process for special-shaped copper strip
WO2023033038A1 (en) * 2021-09-02 2023-03-09 三菱マテリアル株式会社 Terminal material having plating film and copper sheet for terminal material
WO2023106262A1 (en) * 2021-12-08 2023-06-15 古河電気工業株式会社 Copper alloy sheet material and method for manufacturing same, electronic component, and raising-processed article
JP7328472B1 (en) 2022-02-04 2023-08-16 古河電気工業株式会社 Copper alloy sheet materials and drawn parts made from copper alloy sheet materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039789A (en) * 2005-03-29 2007-02-15 Nikko Kinzoku Kk Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
JP4556841B2 (en) * 2005-10-27 2010-10-06 日立電線株式会社 High strength copper alloy material excellent in bending workability and manufacturing method thereof
JP4986499B2 (en) * 2006-04-26 2012-07-25 Jx日鉱日石金属株式会社 Method for producing Cu-Ni-Si alloy tin plating strip
JP4247922B2 (en) * 2006-09-12 2009-04-02 古河電気工業株式会社 Copper alloy sheet for electrical and electronic equipment and method for producing the same
JP4143662B2 (en) * 2006-09-25 2008-09-03 日鉱金属株式会社 Cu-Ni-Si alloy
JP4596493B2 (en) * 2008-03-31 2010-12-08 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy used for conductive spring material
JP5476149B2 (en) * 2010-02-10 2014-04-23 株式会社神戸製鋼所 Copper alloy with low strength anisotropy and excellent bending workability

Also Published As

Publication number Publication date
JP2012122114A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5192536B2 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same
JP4830048B1 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
JP4255330B2 (en) Cu-Ni-Si alloy member with excellent fatigue characteristics
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP5619389B2 (en) Copper alloy material
JP2011174127A (en) Cu-mg-p-based copper alloy bar stock and method for producing the same
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JPWO2002053790A1 (en) High-strength copper alloy excellent in bending workability, method for producing the same, and terminal / connector using the same
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP2007169764A (en) Copper alloy
JP2013104082A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
WO2012160726A1 (en) Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
JP5180283B2 (en) Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same
JP6345290B1 (en) Copper alloy strip with improved dimensional accuracy after press working
JP5030191B1 (en) Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and method for producing the same
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5684022B2 (en) Cu-Ni-Si based copper alloy sheet excellent in stress relaxation resistance, fatigue resistance after bending and spring characteristics, and method for producing the same
KR20160001634A (en) Copper alloy material, method for producing copper alloy material, lead frames and connectors
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

R150 Certificate of patent or registration of utility model

Ref document number: 5192536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250