JP6927844B2 - Copper alloy plate material and its manufacturing method - Google Patents

Copper alloy plate material and its manufacturing method Download PDF

Info

Publication number
JP6927844B2
JP6927844B2 JP2017202320A JP2017202320A JP6927844B2 JP 6927844 B2 JP6927844 B2 JP 6927844B2 JP 2017202320 A JP2017202320 A JP 2017202320A JP 2017202320 A JP2017202320 A JP 2017202320A JP 6927844 B2 JP6927844 B2 JP 6927844B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
alloy plate
plate material
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017202320A
Other languages
Japanese (ja)
Other versions
JP2018076588A (en
Inventor
直太 樋上
直太 樋上
貴宣 杉本
貴宣 杉本
智胤 青山
智胤 青山
宏人 成枝
宏人 成枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to DE112017004929.6T priority Critical patent/DE112017004929T8/en
Priority to CN201780066755.3A priority patent/CN109937267B/en
Priority to PCT/JP2017/038243 priority patent/WO2018079507A1/en
Priority to US16/345,298 priority patent/US11293084B2/en
Priority to KR1020197014859A priority patent/KR102385211B1/en
Priority to TW106136743A priority patent/TWI732964B/en
Publication of JP2018076588A publication Critical patent/JP2018076588A/en
Application granted granted Critical
Publication of JP6927844B2 publication Critical patent/JP6927844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Description

本発明は、銅合金板材およびその製造方法に関し、特に、コネクタ、リードフレーム、リレー、スイッチなどの電気電子部品に使用するCu−Zn−Sn系銅合金板材およびその製造方法に関する。 The present invention relates to a copper alloy plate material and a method for producing the same, and more particularly to a Cu—Zn—Sn-based copper alloy plate material used for electrical and electronic parts such as connectors, lead frames, relays, and switches, and a method for producing the same.

コネクタ、リードフレーム、リレー、スイッチなどの電気電子部品に使用される材料には、通電によるジュール熱の発生を抑制するために良好な導電性が要求されるとともに、電気電子機器の組立時や作動時に付与される応力に耐えることができる高い強度が要求されている。また、コネクタなどの電気電子部品は、一般に曲げ加工により成形されることから、優れた曲げ加工性も要求されている。さらに、コネクタなどの電気電子部品間の接触信頼性を確保するために、接触圧力が時間とともに低下する現象(応力緩和)に対する耐久性、すなわち、耐応力緩和特性に優れていることも要求されている。 Materials used for electrical and electronic components such as connectors, lead frames, relays, and switches are required to have good conductivity in order to suppress the generation of Joule heat due to energization, and when assembling and operating electrical and electronic equipment. High strength is required to withstand the stress sometimes applied. Further, since electrical and electronic parts such as connectors are generally formed by bending, excellent bending workability is also required. Furthermore, in order to ensure contact reliability between electrical and electronic components such as connectors, it is also required to have excellent durability against the phenomenon (stress relaxation) in which the contact pressure decreases with time, that is, excellent stress relaxation resistance characteristics. There is.

近年、コネクタなどの電気電子部品は、高集積化、小型化および軽量化が進む傾向にあり、それに伴って、素材である銅や銅合金の板材には、薄肉化の要求が高まっている。そのため、素材に要求される強度レベルは一層厳しくなっている。また、コネクタなどの電気電子部品の小型化や形状の複雑化に対応するために、曲げ加工品の形状や寸法精度を向上させることが求められている。また、近年、環境負荷の低減や、省資源・省エネルギー化が進む傾向にあり、それに伴って、素材である銅や銅合金の板材では、原料コストや製造コストの低減や、製品のリサイクル性などの要求がますます高まっている。 In recent years, electrical and electronic components such as connectors have tended to be highly integrated, downsized, and lightened, and along with this, there is an increasing demand for thinning of copper and copper alloy plates as raw materials. Therefore, the strength level required for the material is becoming more stringent. Further, in order to cope with the miniaturization and complicated shape of electrical and electronic parts such as connectors, it is required to improve the shape and dimensional accuracy of the bent product. In recent years, there has been a tendency to reduce the environmental load and save resources and energy. Along with this, copper and copper alloy plates, which are the raw materials, have reduced raw material costs and manufacturing costs, and have recyclability of products. The demand for is increasing.

しかし、板材の強度と導電性の間、強度と曲げ加工性の間、曲げ加工性と耐応力緩和特性の間には、それぞれトレードオフの関係があるので、従来、このようなコネクタなどの電気電子部品の板材として、用途に応じて、導電性、強度、曲げ加工性または耐応力緩和特性が良好で比較的コストの低い板材が適宜選択されて使用されている。 However, since there are trade-offs between the strength and conductivity of the plate material, between the strength and bendability, and between the bendability and stress relief characteristics, conventional electricity such as such connectors has been used. As the plate material for electronic parts, a plate material having good conductivity, strength, bending workability or stress relaxation resistance and relatively low cost is appropriately selected and used depending on the application.

また、従来、コネクタなどの電気電子部品用の汎用材料として、黄銅やりん青銅などが使用されている。りん青銅は、強度、耐食性、耐応力腐食割れ性および耐応力緩和特性のバランスが比較的に優れているが、例えば、りん青銅2種(C5191)の場合、熱間加工することができず、高価なSnを約6%含有し、コスト的にも不利である。 Further, conventionally, brass, phosphorus bronze and the like have been used as general-purpose materials for electrical and electronic parts such as connectors. Phosphor bronze has a relatively excellent balance of strength, corrosion resistance, stress corrosion cracking resistance and stress relaxation resistance, but for example, in the case of phosphor bronze type 2 (C5191), hot working cannot be performed. It contains about 6% of expensive Sn, which is disadvantageous in terms of cost.

一方、黄銅(Cu−Zn系銅合金)は、原料および製造コストが低く且つ製品のリサイクル性の優れた材料として、広範囲に使用されている。しかし、黄銅の強度は、りん青銅より低く、強度が最も高い黄銅の質別はEH(H06)であり、例えば、黄銅1種(C2600−SH)の板条製品では、一般に引張強さが550MPa程度であり、この引張強さはりん青銅2種の質別H(H04)の引張強さに相当する。また、黄銅1種(C2600−SH)の板条製品では、耐応力腐食割れ性も劣っている。 On the other hand, brass (Cu—Zn-based copper alloy) is widely used as a material having low raw materials and manufacturing costs and excellent recyclability of products. However, the strength of brass is lower than that of phosphor bronze, and the quality of brass having the highest strength is EH (H06). For example, in a strip product of brass type 1 (C2600-SH), the tensile strength is generally 550 MPa. This tensile strength corresponds to the tensile strength of the two types of phosphor bronze, H (H04). Further, the brass strip product of type 1 (C2600-SH) is also inferior in stress corrosion cracking resistance.

また、黄銅の強度を向上させるためには、仕上げ圧延率の増大(質別増大)が必要であり、それに伴って、圧延方向に対して垂直な方向の曲げ加工性(すなわち、曲げ軸が圧延方向に対して平行な方向である曲げ加工性)が著しく悪化してしまう。そのため、強度レベルが高い黄銅でも、コネクタなどの電気電子部品に加工できなくなる場合がある。例えば、黄銅1種の仕上げ圧延率を上げて引張強さを570MPaより高くすると、小型部品にプレス成形することが困難になる。 Further, in order to improve the strength of brass, it is necessary to increase the finish rolling ratio (increase in quality), and accordingly, the bending workability in the direction perpendicular to the rolling direction (that is, the bending axis is rolled). Bending workability in a direction parallel to the direction) is significantly deteriorated. Therefore, even brass having a high strength level may not be able to be processed into electrical and electronic parts such as connectors. For example, if the finish rolling ratio of brass type 1 is increased and the tensile strength is higher than 570 MPa, it becomes difficult to press-mold into small parts.

特に、CuとZnからなる単純な合金系の黄銅では、強度を維持しながら曲げ加工性を向上させることは容易ではない。そのため、黄銅に種々の元素を添加して強度レベルを引き上げる工夫がなされている。例えば、Sn、Si、Niなどの第3元素を添加したCu−Zn系銅合金が提案されている(例えば、特許文献1〜3参照)。 In particular, in a simple alloy-based brass composed of Cu and Zn, it is not easy to improve bending workability while maintaining strength. Therefore, various elements have been added to brass to raise the strength level. For example, Cu—Zn-based copper alloys to which a third element such as Sn, Si, and Ni have been added have been proposed (see, for example, Patent Documents 1 to 3).

特開2001−164328号公報(段落番号0013)Japanese Unexamined Patent Publication No. 2001-164328 (paragraph number 0013) 特開2002−88428号公報(段落番号0014)Japanese Unexamined Patent Publication No. 2002-88428 (paragraph number 0014) 特開2009−62610号公報(段落番号0019)Japanese Unexamined Patent Publication No. 2009-62610 (paragraph number 0019)

しかし、黄銅(Cu−Zn系銅合金)にSn、Si、Niなどを添加しても、曲げ加工性を十分に向上させることができない場合もある。 However, even if Sn, Si, Ni, or the like is added to brass (Cu—Zn-based copper alloy), the bending workability may not be sufficiently improved.

したがって、本発明は、このような従来の問題点に鑑み、高強度を維持しながら、曲げ加工性に優れ、且つ耐応力腐食割れ性に優れた安価な銅合金板材およびその製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, the present invention provides an inexpensive copper alloy plate material having excellent bending workability and stress corrosion cracking resistance while maintaining high strength, and a method for producing the same. The purpose is.

本発明者らは、上記課題を解決するために鋭意研究した結果、17〜32質量%のZnと0.1〜4.5質量%のSnと0.01〜2.0質量%のSiと0.01〜5.0質量%のNiを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造し、900℃〜400℃の温度域で熱間圧延を行った後に400℃〜300℃まで冷却速度1〜15℃/分で冷却し、次いで、冷間圧延を行った後に300〜800℃で再結晶焼鈍を行い、その後、300〜600℃で時効焼鈍を行うことにより、高強度を維持しながら、曲げ加工性に優れ、且つ耐応力腐食割れ性に優れた安価な銅合金板材を製造することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have found 17 to 32% by mass of Zn, 0.1 to 4.5% by mass of Sn, and 0.01 to 2.0% by mass of Si. A copper alloy raw material containing 0.01 to 5.0% by mass of Ni, the balance of which is Cu and an unavoidable impurity is melted and cast, and hot rolling is performed in a temperature range of 900 ° C. to 400 ° C. After that, it is cooled to 400 ° C. to 300 ° C. at a cooling rate of 1 to 15 ° C./min, then cold rolling is performed, then recrystallization annealing is performed at 300 to 800 ° C., and then aging annealing is performed at 300 to 600 ° C. By doing so, it has been found that an inexpensive copper alloy plate material having excellent bending workability and excellent stress-corrosion-cracking resistance can be produced while maintaining high strength, and the present invention has been completed.

すなわち、本発明による銅合金板材の製造方法は、17〜32質量%のZnと0.1〜4.5質量%のSnと0.01〜2.0質量%のSiと0.01〜5.0質量%のNiを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造し、900℃〜400℃の温度域で熱間圧延を行った後に400℃〜300℃まで冷却速度1〜15℃/分で冷却し、次いで、冷間圧延を行った後に300〜800℃で再結晶焼鈍を行い、その後、300〜600℃で時効焼鈍を行うことにより、銅合金板材を製造することを特徴とする。 That is, the method for producing a copper alloy plate according to the present invention is 17 to 32% by mass of Zn, 0.1 to 4.5% by mass of Sn, 0.01 to 2.0% by mass of Si, and 0.01 to 5%. A copper alloy raw material containing 0.0% by mass of Ni, the balance of which is Cu and an unavoidable impurity is melted and cast, and after hot rolling in a temperature range of 900 ° C to 400 ° C, 400 ° C to Copper is cooled to 300 ° C. at a cooling rate of 1 to 15 ° C./min, followed by cold rolling, recrystallization annealing at 300 to 800 ° C., and then aging annealing at 300 to 600 ° C. It is characterized by producing an alloy plate material.

この銅合金板材の製造方法において、時効焼鈍を行った後に、仕上げ冷間圧延を行い、その後に450℃以下の温度で低温焼鈍を行うのが好ましい。あるいは、再結晶焼鈍を行った後、時効焼鈍を行う前に、冷間圧延を行ってもよい。また、銅合金の原料が、Fe、Co、Cr、Mg、Al、B、P、Zr、Ti、Mn、Au、Ag、Pb、CdおよびBeからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有してもよい。 In this method for producing a copper alloy plate material, it is preferable to perform aging annealing, then finish cold rolling, and then low-temperature annealing at a temperature of 450 ° C. or lower. Alternatively, cold rolling may be performed after recrystallization annealing and before aging annealing. Further, the raw material of the copper alloy is a total of one or more elements selected from the group consisting of Fe, Co, Cr, Mg, Al, B, P, Zr, Ti, Mn, Au, Ag, Pb, Cd and Be. It may have a composition further contained in the range of 3% by mass or less.

また、本発明による銅合金板材は、17〜32質量%のZnと0.1〜4.5質量%のSnと0.01〜2.0質量%のSiと0.01〜5.0質量%のNiを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、0.2%耐力の80%に当たる曲げ応力を加えた銅合金板材を、3%のアンモニア水を入れたデシケ−タ内に保持して、銅合金板材に割れが観察されるまでの時間が、黄銅1種(C2600−SH)の板材と比べて10倍以上であることを特徴とする。この銅合金板材において、表面の単位面積当たりの粒径1μm以上の粗大な析出物の数が15000個/mm以下であるのが好ましい。 Further, the copper alloy plate material according to the present invention contains 17 to 32% by mass of Zn, 0.1 to 4.5% by mass of Sn, 0.01 to 2.0% by mass of Si, and 0.01 to 5.0% by mass. A copper alloy plate containing% Ni and having a composition in which the balance is Cu and unavoidable impurities. It is characterized in that the time until cracks are observed in the copper alloy plate material while being held in the data is 10 times or more that of the copper type 1 (C2600-SH) plate material. In this copper alloy plate material, the number of coarse precipitates having a particle size of 1 μm or more per unit area of the surface is preferably 15,000 / mm 2 or less.

また、本発明による銅合金板材は、17〜32質量%のZnと0.1〜4.5質量%のSnと0.01〜2.0質量%のSiと0.01〜5.0質量%のNiを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、表面の単位面積当たりの粒径1μm以上の粗大な析出物の数が15000個/mm以下であることを特徴とする。 Further, the copper alloy plate material according to the present invention contains 17 to 32% by mass of Zn, 0.1 to 4.5% by mass of Sn, 0.01 to 2.0% by mass of Si, and 0.01 to 5.0% by mass. A copper alloy plate material containing% Ni and having a composition in which the balance is Cu and an unavoidable impurity is characterized in that the number of coarse precipitates having a particle size of 1 μm or more per unit area of the surface is 15,000 / mm 2 or less. do.

上記の銅合金板材において、引張強さが550MPa以上であるのが好ましく、0.2%耐力が500MPa以上であるのが好ましい。また、導電率が10%IACS以上であるのが好ましい。また、銅合金板材が、Fe、Co、Cr、Mg、Al、B、P、Zr、Ti、Mn、Au、Ag、Pb、CdおよびBeからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有してもよい。また、銅合金板材の表面の平均結晶粒径が10μm以下であるのが好ましい。 In the above copper alloy plate material, the tensile strength is preferably 550 MPa or more, and the 0.2% proof stress is preferably 500 MPa or more. Further, the conductivity is preferably 10% IACS or more. Further, the copper alloy plate material contains a total of 3 or more elements selected from the group consisting of Fe, Co, Cr, Mg, Al, B, P, Zr, Ti, Mn, Au, Ag, Pb, Cd and Be. It may have a composition further contained in the range of mass% or less. Further, it is preferable that the average crystal grain size on the surface of the copper alloy plate material is 10 μm or less.

さらに、本発明によるコネクタ端子は、上記の銅合金板材を材料として用いたことを特徴とする。 Further, the connector terminal according to the present invention is characterized in that the above-mentioned copper alloy plate material is used as a material.

本発明によれば、高強度を維持しながら、曲げ加工性に優れ、且つ耐応力腐食割れ性に優れた安価な銅合金板材を製造することができる。 According to the present invention, it is possible to produce an inexpensive copper alloy plate material having excellent bending workability and stress corrosion cracking resistance while maintaining high strength.

本発明による銅合金板材の製造方法の実施の形態は、17〜32質量%のZnと0.1〜4.5質量%のSnと0.01〜2.0質量%のSiと0.01〜5.0質量%のNiを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造する溶解・鋳造工程と、この溶解・鋳造工程の後に900℃〜400℃の温度域で熱間圧延を行った後に400℃〜300℃まで冷却速度1〜15℃/分で冷却する熱間圧延工程と、この熱間圧延工程の後に冷間圧延を行う冷間圧延工程と、この冷間圧延工程の後に300〜800℃で再結晶焼鈍を行う再結晶焼鈍工程と、この再結晶焼鈍工程の後に300〜600℃で焼鈍を行う時効焼鈍工程と、必要に応じて、この時効焼鈍工程の後に、仕上げ冷間圧延を行う仕上げ冷間圧延工程と、この仕上げ冷間圧延工程の後に450℃以下の温度で低温焼鈍を行う低温焼鈍工程とを備えている。以下、これらの工程について詳細に説明する。なお、熱間圧延後には、必要に応じて面削を行い、各熱処理後には、必要に応じて酸洗、研磨、脱脂を行ってもよい。 Embodiments of the method for producing a copper alloy plate material according to the present invention include 17 to 32% by mass of Zn, 0.1 to 4.5% by mass of Sn, 0.01 to 2.0% by mass of Si, and 0.01. A melting / casting step of melting and casting a raw material of a copper alloy containing ~ 5.0% by mass of Ni and having a composition in which the balance is Cu and an unavoidable impurity, and 900 ° C. to 400 ° C. after this melting / casting step. A hot rolling process in which hot rolling is performed in the above temperature range and then cooled to 400 ° C. to 300 ° C. at a cooling rate of 1 to 15 ° C./min, and a cold rolling process in which cold rolling is performed after this hot rolling process. After this cold rolling step, a recrystallizing ablation step of performing recrystallization annealing at 300 to 800 ° C., a aging annealing step of performing ablation at 300 to 600 ° C. after this recrystallizing ablation step, and, if necessary, After this aging annealing step, a finish cold rolling step of performing finish cold rolling and a low temperature quenching step of performing low temperature annealing at a temperature of 450 ° C. or lower are provided after this finish cold rolling step. Hereinafter, these steps will be described in detail. After hot rolling, surface milling may be performed as necessary, and after each heat treatment, pickling, polishing, and degreasing may be performed as necessary.

(溶解・鋳造工程)
一般的な黄銅の溶製方法と同様の方法により、銅合金の原料を溶解した後、連続鋳造や半連続鋳造などにより鋳片を製造する。なお、原料を溶解する際の雰囲気は、大気雰囲気で十分である。
(Melting / casting process)
After melting the raw material of the copper alloy by the same method as the general brass melting method, slabs are manufactured by continuous casting or semi-continuous casting. The atmosphere at which the raw materials are dissolved is sufficient.

(熱間圧延工程)
通常、Cu−Zn系銅合金の熱間圧延は、650℃以上または700℃以上の高温域で圧延し、圧延中および圧延パス間の再結晶により、鋳造組織の破壊および材料の軟化のために行われる。しかし、900℃を超える高温で圧延を行うと、合金成分の偏析部分など、融点が低下している部分で割れを生じるおそれがあるので好ましくない。そのため、900℃〜400℃で熱間圧延を行った後に室温まで冷却する際に、400℃〜300℃までの平均冷却速度を1〜15℃/分とする。
(Hot rolling process)
Usually, hot rolling of Cu-Zn-based copper alloy is performed in a high temperature range of 650 ° C or higher or 700 ° C or higher, and recrystallization during rolling and between rolling passes causes destruction of the cast structure and softening of the material. Will be done. However, rolling at a high temperature exceeding 900 ° C. is not preferable because cracks may occur in a portion where the melting point is lowered, such as a segregated portion of the alloy component. Therefore, when cooling to room temperature after hot rolling at 900 ° C. to 400 ° C., the average cooling rate from 400 ° C. to 300 ° C. is set to 1 to 15 ° C./min.

(冷間圧延工程)
この冷間圧延工程では、加工率を50%以上にするのが好ましく、80%以上にするのがさらに好ましく、90%以上にするのが最も好ましい。なお、この冷間圧延は、300〜650℃で行う中間焼鈍を挟んで繰り返し行ってもよい。
(Cold rolling process)
In this cold rolling step, the processing ratio is preferably 50% or more, more preferably 80% or more, and most preferably 90% or more. This cold rolling may be repeated with an intermediate annealing performed at 300 to 650 ° C. in between.

(再結晶焼鈍工程)
この再結晶焼鈍工程では、300〜800℃で焼鈍を行う。また、この中間焼鈍工程では、焼鈍後の平均結晶粒径が10μm以下(好ましくは9μm以下)になるように300〜800℃における保持時間および到達温度を設定して、熱処理を行うのが好ましい。なお、この焼鈍による再結晶粒の粒径は、焼鈍前の冷間圧延の加工率や化学組成によって変動するが、各々の合金について予め実験により焼鈍ヒートパターンと平均結晶粒径との関係を求めておけば、300〜800℃で保持時間および到達温度を設定することができる。具体的には、本発明による銅合金板材の化学組成では、300〜800℃(好ましくは450〜800℃、さらに好ましくは500〜800℃、最も好ましくは575〜800℃)で数秒〜数時間保持する加熱条件において適正な条件を設定することができる。
(Recrystallization annealing process)
In this recrystallization annealing step, annealing is performed at 300 to 800 ° C. Further, in this intermediate annealing step, it is preferable to perform heat treatment by setting the holding time and the ultimate temperature at 300 to 800 ° C. so that the average crystal grain size after annealing is 10 μm or less (preferably 9 μm or less). The grain size of the recrystallized grains by this annealing varies depending on the processing rate and chemical composition of cold rolling before annealing, but the relationship between the annealing heat pattern and the average crystal grain size was determined in advance by experiments for each alloy. Then, the holding time and the ultimate temperature can be set at 300 to 800 ° C. Specifically, in the chemical composition of the copper alloy plate material according to the present invention, it is held at 300 to 800 ° C. (preferably 450 to 800 ° C., more preferably 500 to 800 ° C., most preferably 575 to 800 ° C.) for several seconds to several hours. Appropriate conditions can be set for the heating conditions to be applied.

(時効焼鈍工程)
この時効焼鈍工程では、300〜600℃(好ましくは350〜550℃)で焼鈍を行う。この時効焼鈍温度は、再結晶焼鈍温度より低い温度であるのが好ましい。なお、再結晶焼鈍を行った後、時効焼鈍を行う前に、冷間圧延を行ってもよく、この場合、仕上げ冷間圧延と低温焼鈍を行わなくてもよい。
(Aging annealing process)
In this aging annealing step, annealing is performed at 300 to 600 ° C. (preferably 350 to 550 ° C.). The aging annealing temperature is preferably a temperature lower than the recrystallization annealing temperature. Cold rolling may be performed after recrystallization annealing and before aging annealing. In this case, finish cold rolling and low-temperature annealing may not be performed.

(仕上げ冷間圧延工程)
仕上げ冷間圧延は、強度レベルを向上させるために行われる。仕上げ冷間圧延の加工率が低過ぎると強度が低くなるが、仕上げ冷間圧延の加工率が高過ぎると、強度と曲げ加工性の両方を向上させた結晶配向を実現することができなくなる。そのため、この仕上げ冷間工程では、加工率を1〜40%にするのが好ましく、3〜35%にするのがさらに好ましい。
(Finishing cold rolling process)
Finish cold rolling is performed to improve the strength level. If the processing rate of the finish cold rolling is too low, the strength will be low, but if the processing rate of the finish cold rolling is too high, it will not be possible to realize crystal orientation with improved both strength and bending workability. Therefore, in this finish cold step, the processing rate is preferably 1 to 40%, more preferably 3 to 35%.

(低温焼鈍工程)
仕上げ冷間圧延後には、銅合金板材の残留応力の低減による耐応力腐食割れ特性や曲げ加工性を向上させ、空孔やすべり面上の転位の低減による耐応力緩和特性を向上させるために、低温焼鈍を行ってもよい。この低温焼鈍により、強度、耐応力腐食割れ特性、曲げ加工性および耐応力緩和特性を同時に向上させることができ、また、導電率を上昇させることができる。この加熱温度が高過ぎると、短時間で軟化し、バッチ式でも連続式でも特性のバラツキが生じ易くなる。そのため、この低温焼鈍工程では、450℃以下(好ましくは300〜450℃)の温度で焼鈍を行う。
(Low temperature annealing process)
After finish cold rolling, in order to improve stress corrosion cracking resistance and bending workability by reducing residual stress of copper alloy plate material, and to improve stress relaxation resistance by reducing dislocations on pores and slip surfaces. Low temperature annealing may be performed. By this low temperature annealing, strength, stress corrosion cracking resistance, bending workability and stress relaxation resistance can be improved at the same time, and conductivity can be increased. If this heating temperature is too high, it will soften in a short time, and the characteristics will easily vary regardless of whether it is a batch type or a continuous type. Therefore, in this low-temperature annealing step, annealing is performed at a temperature of 450 ° C. or lower (preferably 300 to 450 ° C.).

上述した銅合金板材の製造方法の実施の形態によって、本発明による銅合金板材の実施の形態を製造することができる。 The embodiment of the copper alloy plate material according to the present invention can be produced by the embodiment of the method for producing a copper alloy plate material described above.

本発明による銅合金板材の実施の形態は、17〜32質量%のZnと0.1〜4.5質量%のSnと0.01〜2.0質量%のSiと0.01〜5.0質量%のNiを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、0.2%耐力の80%に当たる曲げ応力を加えた銅合金板材を、3質量%のアンモニア水を入れたデシケ−タ内に25℃で保持して、銅合金板材に割れが観察されるまでの時間が、黄銅1種(C2600−SH)の板材と比べて10倍以上である。 Embodiments of the copper alloy plate material according to the present invention include 17 to 32% by mass of Zn, 0.1 to 4.5% by mass of Sn, 0.01 to 2.0% by mass of Si, and 0.01 to 5. In a copper alloy plate material containing 0% by mass of Ni and having a composition in which the balance is Cu and unavoidable impurities, a copper alloy plate material to which a bending stress corresponding to 80% of 0.2% withstand strength is applied is mixed with 3% by mass of aqueous ammonia. It is held at 25 ° C. in the placed desiccator, and the time until cracks are observed in the copper alloy plate material is 10 times or more that of the brass type 1 (C2600-SH) plate material.

本発明による銅合金板材の実施の形態は、CuとZnを含むCu−Zn系合金にSnとSiとNiが添加されたCu−Zn−Sn−Si−Ni合金からなる板材である。 An embodiment of the copper alloy plate material according to the present invention is a plate material made of a Cu—Zn—Sn—Si—Ni alloy in which Sn, Si and Ni are added to a Cu—Zn-based alloy containing Cu and Zn.

Znは、銅合金板材の強度やばね性を向上させる効果を有する。ZnはCuより安価であるため、Znを多量に添加するのが好ましい。しかし、Zn含有量が32質量%を超えると、β相の生成により、銅合金板材の冷間加工性が著しく低下するとともに、耐応力腐食割れ性も低下し、また、湿気や加熱によるめっき性やはんだ付け性も低下する。一方、Zn含有量が17質量%より少ないと、銅合金板材の0.2%耐力や引張強さなどの強度やばね性が不足し、ヤング率が大きくなり、また、銅合金板材の溶解時の水素ガス吸蔵量が多くなり、インゴットのブロ−ホ−ルが発生し易くなり、さらに、安価なZnの量が少なくて経済的にも不利になる。したがって、Zn含有量は、17〜32質量%であるのが好ましく、18〜31質量%であるのがさらに好ましい。 Zn has the effect of improving the strength and springiness of the copper alloy plate material. Since Zn is cheaper than Cu, it is preferable to add a large amount of Zn. However, when the Zn content exceeds 32% by mass, the formation of the β phase significantly reduces the cold workability of the copper alloy plate, the stress corrosion cracking resistance, and the plating property due to moisture and heating. And solderability also deteriorates. On the other hand, if the Zn content is less than 17% by mass, the strength and springiness such as 0.2% strength and tensile strength of the copper alloy plate material are insufficient, the Young's modulus becomes large, and when the copper alloy plate material is melted. The amount of hydrogen gas occluded is large, the alloy is likely to be alloyed, and the amount of inexpensive Zn is small, which is economically disadvantageous. Therefore, the Zn content is preferably 17 to 32% by mass, more preferably 18 to 31% by mass.

Snは、銅合金板材の強度、耐応力緩和特性および耐応力腐食割れ特性を向上させる効果を有する。SnめっきなどのSnで表面処理した材料を再利用するためにも、銅合金板材がSnを含有するのが好ましい。しかし、Sn含有量が4.5質量%を超えると、銅合金板材の導電率が急激に低下し、また、Znとの共存下で粒界偏析が激しくなり、熱間加工性が著しく低下する。一方、Sn含有量が0.1質量%より少ないと、銅合金板材の機械的特性を向上させる効果が少なくなり、また、Snめっきなどを施したプレス屑などを原料として利用し難くなる。したがって、銅合金板材がSnを含有する場合には、Sn含有量は、0.1〜4.5質量%であるのが好ましく、0.2〜2.5質量%であるのがさらに好ましい。 Sn has the effect of improving the strength, stress relaxation resistance and stress corrosion cracking resistance of the copper alloy plate material. It is preferable that the copper alloy plate contains Sn in order to reuse the material surface-treated with Sn such as Sn plating. However, when the Sn content exceeds 4.5% by mass, the conductivity of the copper alloy plate material drops sharply, and the grain boundary segregation becomes severe in the coexistence with Zn, and the hot workability is remarkably lowered. .. On the other hand, if the Sn content is less than 0.1% by mass, the effect of improving the mechanical properties of the copper alloy plate material is reduced, and it becomes difficult to use press scraps or the like subjected to Sn plating as a raw material. Therefore, when the copper alloy plate contains Sn, the Sn content is preferably 0.1 to 4.5% by mass, more preferably 0.2 to 2.5% by mass.

Siは、少量でも銅合金板材の耐応力腐食割れ性を向上させる効果がある。この効果を十分に得るためには、Si含有量は、0.01質量%以上であるのが好ましい。しかし、Si含有量が2.0質量%を超えると、導電性が低下し易く、また、Siは酸化し易い元素であり、鋳造性を低下させ易いので、Si含有量は多過ぎない方がよい。したがって、銅合金板材がSiを含有する場合には、Si含有量は、0.01〜2.0質量%であるのが好ましく、0.1〜1.5質量%であるのがさらに好ましい。また、SiはNiと化合物を形成して分散析出することにより、銅合金板材の導電率、強度、ばね限界値、耐応力緩和特性を向上させる。 Even a small amount of Si has the effect of improving the stress corrosion cracking resistance of the copper alloy plate material. In order to obtain this effect sufficiently, the Si content is preferably 0.01% by mass or more. However, if the Si content exceeds 2.0% by mass, the conductivity is likely to decrease, and Si is an element that is easily oxidized and the castability is easily reduced. Therefore, the Si content should not be too high. good. Therefore, when the copper alloy plate contains Si, the Si content is preferably 0.01 to 2.0% by mass, more preferably 0.1 to 1.5% by mass. Further, Si forms a compound with Ni and is dispersed and precipitated to improve the conductivity, strength, spring limit value, and stress relaxation resistance of the copper alloy plate material.

Niは、銅合金板材の固溶強化効果と耐応力緩和特性を向上させる効果を有し、特に、Niの亜鉛当量はマイナス値であり、β相の生成を抑制することにより、量産時の特性のバラツキを抑制する効果がある。これらの効果を十分に発揮させるためには、Ni含有量が0.01質量%以上であるのが好ましい。一方、Ni含有量が5.0質量%を超えると、導電率が著しく低下してしまう。したがって、銅合金板材がNiを含有する場合には、Ni含有量は、0.01〜5.0質量%であるのが好ましく、0.1〜4.5質量%であるのがさらに好ましい。 Ni has the effect of strengthening the solid solution of the copper alloy plate and improving the stress relaxation resistance. In particular, the zinc equivalent of Ni is a negative value, and by suppressing the formation of β phase, the characteristics at the time of mass production. It has the effect of suppressing the variation of. In order to fully exert these effects, the Ni content is preferably 0.01% by mass or more. On the other hand, if the Ni content exceeds 5.0% by mass, the conductivity will be significantly reduced. Therefore, when the copper alloy plate contains Ni, the Ni content is preferably 0.01 to 5.0% by mass, more preferably 0.1 to 4.5% by mass.

また、銅合金板材は、Fe、Co、Cr、Mg、Al、B、P、Zr、Ti、Mn、Au、Ag、Pb、CdおよびBeからなる群から選ばれる1種以上の元素を合計3質量%以下(好ましくは1質量%以下、さらに好ましくは0.5質量%以下)の範囲でさらに含む組成を有してもよい。 Further, the copper alloy plate material contains a total of 3 or more elements selected from the group consisting of Fe, Co, Cr, Mg, Al, B, P, Zr, Ti, Mn, Au, Ag, Pb, Cd and Be. It may have a composition further contained in the range of mass% or less (preferably 1% by mass or less, more preferably 0.5% by mass or less).

銅合金板材の平均結晶粒径は、小さいほど曲げ加工性の向上に有利であるため、10μm以下であるのが好ましく、1〜9μm以下であるのがさらに好ましく、2〜8μmであるのがさらに好ましい。 The smaller the average crystal grain size of the copper alloy plate is, the more advantageous it is in improving the bending workability. Therefore, it is preferably 10 μm or less, more preferably 1 to 9 μm or less, and further preferably 2 to 8 μm. preferable.

銅合金板材の引張強さは、コネクタなどの電気電子部品を小型化および薄肉化するために、550MPa以上であるのが好ましく、600MPa以上であるのがさらに好ましく、640以上であるのが最も好ましい。また、銅合金板材の0.2%耐力は、500MPa以上であるのが好ましく、550MPa以上であるのがさらに好ましく、580MPa以上であるのが最も好ましい。 The tensile strength of the copper alloy plate material is preferably 550 MPa or more, more preferably 600 MPa or more, and most preferably 640 MPa or more in order to reduce the size and thickness of electrical and electronic parts such as connectors. .. The 0.2% proof stress of the copper alloy plate material is preferably 500 MPa or more, more preferably 550 MPa or more, and most preferably 580 MPa or more.

銅合金板材の導電率は、コネクタなどの電気電子部品の高集積化に伴って通電によるジュ−ル熱の発生を抑えるために、10%IACS以上であるのが好ましく、15%IACS以上であるのがさらに好ましい。 The conductivity of the copper alloy plate material is preferably 10% IACS or more, preferably 15% IACS or more, in order to suppress the generation of jule heat due to energization due to the high integration of electrical and electronic parts such as connectors. Is even more preferable.

銅合金板材の耐応力腐食割れ性の評価として、銅合金板材から切り出した試験片に0.2%耐力の80%に当たる曲げ応力を加え、この試験片を3質量%のアンモニア水を入れたデシケ−タ内に25℃で保持し、1時間毎に取り出した試験片について、光学顕微鏡により100倍の倍率で割れを観察したときに、割れが観察されるまでの時間が、50時間以上であるのが好ましく、60時間以上であるのがさらに好ましい。また、この時間が、市販の黄銅1種(C2600−SH)の板材と比べて、10倍以上であるのが好ましく、12倍以上であるのがさらに好ましい。 To evaluate the stress corrosion cracking resistance of copper alloy plates, a bending stress equivalent to 80% of 0.2% proof stress was applied to a test piece cut out from a copper alloy plate, and this test piece was filled with 3% by mass of ammonia water. When the test piece kept in the alloy at 25 ° C. and taken out every hour was observed to crack at a magnification of 100 times with an optical microscope, the time until the crack was observed was 50 hours or more. Is preferable, and 60 hours or more is more preferable. Further, this time is preferably 10 times or more, more preferably 12 times or more, as compared with a commercially available brass type 1 (C2600-SH) plate material.

また、銅合金板材の曲げ加工性の評価として、銅合金板材から長手方向がTD(圧延方向および板厚方向に対して垂直な方向)になるように切り出した曲げ加工試験片を使用して、LD(圧延方向)を曲げ軸にして90°W曲げ試験を行った場合に、90°W曲げ試験における最小曲げ半径Rと板厚tの比R/tが、1.0以下であるのが好ましく、0.7以下であるのがさらに好ましく、0.6以下であるのが最も好ましい。 Further, as an evaluation of the bending workability of the copper alloy plate material, a bending processing test piece cut out from the copper alloy plate material so that the longitudinal direction is TD (direction perpendicular to the rolling direction and the plate thickness direction) is used. When the 90 ° W bending test is performed with the LD (rolling direction) as the bending axis, the ratio R / t of the minimum bending radius R and the plate thickness t in the 90 ° W bending test is 1.0 or less. It is preferably 0.7 or less, more preferably 0.6 or less, and most preferably 0.6 or less.

また、銅合金板材の表面の単位面積当たりの(粒径1μm以上の)粗大な析出物の数が15000個/mm以下であるのが好ましく、12000個/mm以下であるのがさらに好ましい。このようにNiやSiの粗大な析出物の形成を抑えて、NiやSiを微細に析出させれば、高強度を維持しながら、曲げ加工性に優れ、且つ耐応力腐食割れ性に優れた銅合金板材を製造することができる。 Further, the number of coarse precipitates (particle size of 1 μm or more) per unit area of the surface of the copper alloy plate material is preferably 15,000 pieces / mm 2 or less, and more preferably 12,000 pieces / mm 2 or less. By suppressing the formation of coarse precipitates of Ni and Si and finely depositing Ni and Si in this way, the bending workability is excellent and the stress corrosion cracking resistance is excellent while maintaining high strength. A copper alloy plate material can be manufactured.

以下、本発明による銅合金板材およびその製造方法の実施例について詳細に説明する。 Hereinafter, examples of the copper alloy plate material and the method for producing the same according to the present invention will be described in detail.

[実施例1〜16、比較例1〜8]
19.7質量%のZnと0.77質量%のSnと1.05質量%のSiと3.85質量%のNiを含み、残部がCuからなる銅合金(実施例1)、20.9質量%のZnと0.79質量%のSnと0.95質量%のSiと2.81質量%のNiを含み、残部がCuからなる銅合金(実施例2)、20.5質量%のZnと0.71質量%のSnと0.98質量%のSiと1.24質量%のNiを含み、残部がCuからなる銅合金(実施例3)、22.1質量%のZnと0.79質量%のSnと0.47質量%のSiと2.63質量%のNiを含み、残部がCuからなる銅合金(実施例4)、19.9質量%のZnと0.76質量%のSnと0.46質量%のSiと1.67質量%のNiを含み、残部がCuからなる銅合金(実施例5)、20.2質量%のZnと0.77質量%のSnと0.46質量%のSiと0.96質量%のNiを含み、残部がCuからなる銅合金(実施例6)、19.8質量%のZnと0.75質量%のSnと0.49質量%のSiと0.45質量%のNiを含み、残部がCuからなる銅合金(実施例7)、19.8質量%のZnと0.25質量%のSnと1.01質量%のSiと3.82質量%のNiを含み、残部がCuからなる銅合金(実施例8)、21.1質量%のZnと2.08質量%のSnと0.50質量%のSiと1.89質量%のNiを含み、残部がCuからなる銅合金(実施例9)、30.1質量%のZnと0.75質量%のSnと0.50質量%のSiと1.78質量%のNiを含み、残部がCuからなる銅合金(実施例10)、20.0質量%のZnと0.77質量%のSnと1.00質量%のSiと3.75質量%のNiを含み、残部がCuからなる銅合金(実施例11)、20.1質量%のZnと0.72質量%のSnと1.00質量%のSiと3.91質量%のNiを含み、残部がCuからなる銅合金(実施例12)、22.0質量%のZnと0.77質量%のSnと0.49質量%のSiと2.00質量%のNiと0.15質量%のFeと0.08質量%のCoと0.07質量%のCrを含み、残部がCuからなる銅合金(実施例13)、23.2質量%のZnと0.78質量%のSnと0.50質量%のSiと2.01質量%のNiと0.08質量%のMgと0.08質量%のAlと0.10質量%のZrと0.10のTiを含み、残部がCuからなる銅合金(実施例14)、22.5質量%のZnと0.80質量%のSnと0.49質量%のSiと1.90質量%のNiと0.05質量%のBと0.05質量%のPと0.08質量%のMnと0.10質量%のBeを含み、残部がCuからなる銅合金(実施例15)、21.5質量%のZnと0.78質量%のSnと0.50質量%のSiと1.85質量%のNiと0.05質量%のAuと0.08質量%のAgと0.08質量%のPbと0.07質量%のCdを含み、残部がCuからなる銅合金(実施例16)、24.5質量%のZnと0.77質量%のSnを含み、残部がCuからなる銅合金(比較例1〜2)、24.5質量%のZnと0.77質量%のSnと0.50質量%のSiと1.99質量%のNiを含み、残部がCuからなる銅合金(比較例3〜4)、24.5質量%のZnと0.77質量%のSnと1.89質量%のNiと0.02質量%のPを含み、残部がCuからなる銅合金(比較例5)、24.0質量%のZnと0.77質量%のSnと1.97質量%のNiを含み、残部がCuからなる銅合金(比較例6)、19.8質量%のZnと0.75質量%のSnと0.49質量%のSiと0.45質量%のNiを含み、残部がCuからなる銅合金(比較例7〜8)をそれぞれ溶解して鋳造することにより得られた鋳塊から、それぞれ40mm×40mm×20mmの鋳片を切り出した。
[Examples 1 to 16, Comparative Examples 1 to 8]
A copper alloy containing 19.7% by mass Zn, 0.77% by mass Sn, 1.05% by mass Si, and 3.85% by mass Ni, with the balance being Cu (Example 1), 20.9. A copper alloy containing mass% Zn, 0.79 mass% Sn, 0.95 mass% Si, and 2.81 mass% Ni, with the balance being Cu (Example 2), 20.5 mass%. Copper alloy containing Zn, 0.71% by mass Sn, 0.98% by mass Si, 1.24% by mass Ni, and the balance being Cu (Example 3), 22.1% by mass Zn and 0 A copper alloy containing .79% by mass of Sn, 0.47% by mass of Si and 2.63% by mass of Ni, and the balance being Cu (Example 4), 19.9% by mass of Zn and 0.76% by mass. % Sn, 0.46% by mass Si and 1.67% by mass Ni, and the balance is Cu (Example 5) Copper alloy (Example 5), 20.2% by mass Zn and 0.77% by mass Sn A copper alloy containing 0.46% by mass of Si and 0.96% by mass of Ni, with the balance being Cu (Example 6), 19.8% by mass of Zn, 0.75% by mass of Sn, and 0. A copper alloy containing 49% by mass Si and 0.45% by mass Ni and the balance being Cu (Example 7), 19.8% by mass Zn, 0.25% by mass Sn and 1.01% by mass. (Example 8), a copper alloy containing 3.82% by mass of Ni and the balance of Cu, 21.1% by mass of Zn, 2.08% by mass of Sn, and 0.50% by mass of Si. Copper alloy containing 1.89% by mass of Ni and the balance being Cu (Example 9), 30.1% by mass Zn, 0.75% by mass Sn, 0.50% by mass Si and 1.78. A copper alloy containing mass% Ni and the balance being Cu (Example 10), 20.0 mass% Zn, 0.77 mass% Sn, 1.00 mass% Si, and 3.75 mass%. A copper alloy containing Ni and the balance being Cu (Example 11), containing 20.1% by mass Zn, 0.72% by mass Sn, 1.00% by mass Si, and 3.91% by mass Ni. , Copper alloy with Cu remaining (Example 12), 22.0% by mass Zn, 0.77% by mass Sn, 0.49% by mass Si, 2.00% by mass Ni and 0.15% by mass. % Fe, 0.08% by mass Co and 0.07% by mass Cr, and the balance is Cu (Example 13), 23.2% by mass Zn and 0.78% by mass Sn , 0.50% by mass Si, 2.01% by mass Ni, 0.08% by mass Mg, 0.08% by mass Al, 0.10% by mass Zr and 0.10% Ti, and the balance Is a copper alloy made of Cu (Example 1) 4) 22.5% by mass Zn, 0.80% by mass Sn, 0.49% by mass Si, 1.90% by mass Ni, 0.05% by mass B and 0.05% by mass P And 0.08% by mass of Mn and 0.10% by mass of Be, and the balance is Cu (Example 15), 21.5% by mass of Zn, 0.78% by mass of Sn, and 0. Contains 50% by mass Si, 1.85% by mass Ni, 0.05% by mass Au, 0.08% by mass Ag, 0.08% by mass Pb and 0.07% by mass Cd, with the balance remaining Copper alloy made of Cu (Example 16), a copper alloy containing 24.5% by mass of Zn and 0.77% by mass of Sn, and the balance being made of Cu (Comparative Examples 1 and 2), 24.5% by mass. A copper alloy containing Zn, 0.77% by mass Sn, 0.50% by mass Si, and 1.99% by mass Ni, with the balance being Cu (Comparative Examples 3 to 4), 24.5% by mass Zn. A copper alloy containing 0.77% by mass of Sn, 1.89% by mass of Ni and 0.02% by mass of P, and the balance being Cu (Comparative Example 5), 24.0% by mass of Zn and 0. A copper alloy containing 77% by mass of Sn and 1.97% by mass of Ni, with the balance being Cu (Comparative Example 6), 19.8% by mass of Zn, 0.75% by mass of Sn, and 0.49% by mass. 40 mm x 40 mm x 20 mm, respectively, from the ingots obtained by melting and casting copper alloys (Comparative Examples 7 to 8) containing Si and 0.45% by mass of Ni and the balance being Cu. The slab was cut out.

それぞれの鋳片を800℃で30分間加熱した後、800℃〜400℃の温度域で熱間圧延を行って厚さ10mmにし(加工率50%)、その後、400℃から室温まで冷却した。この冷却のうち、400℃と300℃の間の冷却は、実施例1〜12では、それぞれ平均冷却速度5℃/分(実施例1、3、4、6、7、9〜13、15、16、比較例5〜6)、10℃/分(実施例2)、2℃/分(実施例5、8、14)、20℃/分(比較例4、8)で行い、比較例1〜3および7では、水により急冷することによって行った。 After heating each slab at 800 ° C. for 30 minutes, it was hot-rolled in a temperature range of 800 ° C. to 400 ° C. to a thickness of 10 mm (processing rate 50%), and then cooled from 400 ° C. to room temperature. Of these cooling, the cooling between 400 ° C. and 300 ° C. was performed in Examples 1 to 12 at an average cooling rate of 5 ° C./min (Examples 1, 3, 4, 6, 7, 9 to 13, 15, respectively). 16, Comparative Examples 5 to 6), 10 ° C./min (Example 2), 2 ° C./min (Examples 5, 8, 14), 20 ° C./min (Comparative Examples 4, 8), and Comparative Example 1. In ~ 3 and 7, this was done by quenching with water.

次に、それぞれ厚さ0.26mm(実施例1、2、9、比較例3)、0.28mm(実施例3〜5、8、10、13〜16、比較例4)、0.4mm(実施例6〜7、比較例7〜8)、0.38mm(実施例11、比較例1、2、5、6)、0.30mm(実施例12)まで冷間圧延を行った。なお、比較例1、5および6では、それぞれ550℃、625℃、550℃で1時間保持する中間焼鈍を挟んで2回の冷間圧延を行った。 Next, the thickness is 0.26 mm (Examples 1, 2, 9, Comparative Example 3), 0.28 mm (Examples 3 to 5, 8, 10, 13 to 16, Comparative Example 4), 0.4 mm ( Cold rolling was performed to Examples 6 to 7, Comparative Examples 7 to 8), 0.38 mm (Example 11, Comparative Examples 1, 2, 5, 6) and 0.30 mm (Example 12). In Comparative Examples 1, 5 and 6, cold rolling was performed twice with intermediate annealing held at 550 ° C, 625 ° C and 550 ° C for 1 hour, respectively.

次に、それぞれ800℃で10分間(実施例1、11、12)、750℃で10分間(実施例2〜5、10、13〜16、比較例3〜4)、600℃で10分間(実施例6〜7、比較例7〜8)、700℃で30分間(実施例8、9)、550℃で30分間(比較例1、6)、525℃で30分間(比較例2)、600℃で30分間(比較例5)保持する中間焼鈍(再結晶焼鈍)を行った。その後、実施例6〜7および比較例7〜8では、厚さ0.25mmまで冷間圧延を行った。 Next, 800 ° C. for 10 minutes (Examples 1, 11, 12), 750 ° C. for 10 minutes (Examples 2 to 5, 10, 13 to 16, Comparative Examples 3 to 4), and 600 ° C. for 10 minutes (Examples 1 and 11 and 12). Examples 6-7, Comparative Examples 7-8), 700 ° C. for 30 minutes (Examples 8 and 9), 550 ° C. for 30 minutes (Comparative Examples 1 and 6), 525 ° C. for 30 minutes (Comparative Example 2), Intermediate annealing (recrystallization annealing) was performed by holding at 600 ° C. for 30 minutes (Comparative Example 5). Then, in Examples 6 to 7 and Comparative Examples 7 to 8, cold rolling was performed to a thickness of 0.25 mm.

次に、実施例1〜16と比較例3〜4および7〜8では、それぞれ425℃で3時間(実施例1〜5、10〜11、13〜16、比較例3〜4)、450℃で30分間(実施例6〜7、比較例7〜8)、500℃で3時間(実施例8)、350℃で3時間(実施例9)、550℃で3時間(実施例12)保持する時効焼鈍を行った。 Next, in Examples 1 to 16 and Comparative Examples 3 to 4 and 7 to 8, respectively, at 425 ° C. for 3 hours (Examples 1 to 5, 10 to 11, 13 to 16, Comparative Examples 3 to 4), 450 ° C. 30 minutes (Examples 6 to 7, Comparative Examples 7 to 8), 500 ° C. for 3 hours (Example 8), 350 ° C. for 3 hours (Example 9), 550 ° C. for 3 hours (Example 12) The aging annealing was performed.

次に、実施例1〜5、8〜16および比較例1〜6では、それぞれ加工率5%(実施例1、2、9、比較例3)、11%(実施例3〜5、8、10、13〜16、比較例4)、33%(実施例11、比較例1〜2、5〜6)、16%(実施例12)で仕上げ冷間圧延を行った後、それぞれ350℃で30分間(実施例1〜5、8〜16、比較例3〜5)、300℃で30分間(比較例1〜2、6)保持する低温焼鈍を行った。 Next, in Examples 1 to 5, 8 to 16 and Comparative Examples 1 to 6, the processing rates were 5% (Examples 1, 2, 9, Comparative Example 3) and 11% (Examples 3 to 5, 8, respectively. After performing finish cold rolling at 10, 13 to 16, Comparative Example 4), 33% (Example 11, Comparative Examples 1 to 2, 5 to 6) and 16% (Example 12), each at 350 ° C. Low temperature annealing was carried out for 30 minutes (Examples 1 to 5, 8 to 16, Comparative Examples 3 to 5) and holding at 300 ° C. for 30 minutes (Comparative Examples 1 to 2 and 6).

このようにして得られた実施例1〜16および比較例1〜8の銅合金板材から試料を採取し、結晶粒組織の平均結晶粒径、導電率、引張強さ、耐応力腐食割れ性、曲げ加工性を以下のように調べた。 Samples were taken from the copper alloy plates of Examples 1 to 16 and Comparative Examples 1 to 8 thus obtained, and the average crystal grain size, conductivity, tensile strength, stress corrosion cracking resistance, and stress corrosion cracking resistance of the crystal grain structure were obtained. The bending workability was investigated as follows.

結晶粒組織の平均結晶粒径は、銅合金板材の板面(圧延面)を研磨した後にエッチングし、その面を光学顕微鏡で観察して、JIS H0501の切断法により測定した。その結果、平均結晶粒径は、それぞれ5μm(実施例1、3〜5、7、12、比較例1〜2、7〜8)、4μm(実施例2、10、11、13〜16、比較例3〜6)、6μm(実施例6)、3μm(実施例8、9)であった。 The average crystal grain size of the crystal grain structure was measured by polishing the plate surface (rolled surface) of the copper alloy plate material and then etching the surface, observing the surface with an optical microscope, and measuring by the cutting method of JIS H0501. As a result, the average crystal grain size was 5 μm (Examples 1, 3 to 5, 7, 12, Comparative Examples 1 to 2, 7 to 8) and 4 μm (Examples 2, 10, 11, 13 to 16, comparative). Examples 3 to 6), 6 μm (Example 6), and 3 μm (Examples 8 and 9).

銅合金板材の導電率は、JIS H0505の導電率測定方法に従って測定した。その結果、導電率は、それぞれ21.7%IACS(実施例1)、20.6%IACS(実施例2)、16.4%IACS(実施例3)、23.9%IACS(実施例4)、23.6%IACS(実施例5)、20.6%IACS(実施例6)、19.5%IACS(実施例7)、27.9%IACS(実施例8)、18.5%IACS(実施例9)、19.2%IACS(実施例10)、22.0%IACS(実施例11)、21.7%IACS(実施例12)、23.4%IACS(実施例13)、23.5%IACS(実施例14)、24.0%IACS(実施例15)、22.1%IACS(実施例16)、25.3%IACS(比較例1)、24.8%IACS(比較例2)、19.5%IACS(比較例3)、21.6%IACS(比較例4)、18.2%IACS(比較例5)、16.2%IACS(比較例6)、19.5%IACS(比較例7)、19.5%IACS(比較例8)であった。 The conductivity of the copper alloy plate material was measured according to the conductivity measuring method of JIS H0505. As a result, the conductivity was 21.7% IACS (Example 1), 20.6% IACS (Example 2), 16.4% IACS (Example 3), and 23.9% IACS (Example 4). ), 23.6% IACS (Example 5), 20.6% IACS (Example 6), 19.5% IACS (Example 7), 27.9% IACS (Example 8), 18.5%. IACS (Example 9), 19.2% IACS (Example 10), 22.0% IACS (Example 11), 21.7% IACS (Example 12), 23.4% IACS (Example 13) , 23.5% IACS (Example 14), 24.0% IACS (Example 15), 22.1% IACS (Example 16), 25.3% IACS (Comparative Example 1), 24.8% IACS (Comparative Example 2), 19.5% IACS (Comparative Example 3), 21.6% IACS (Comparative Example 4), 18.2% IACS (Comparative Example 5), 16.2% IACS (Comparative Example 6), It was 19.5% IACS (Comparative Example 7) and 19.5% IACS (Comparative Example 8).

銅合金板材の機械的特性としての引張強さとして、銅合金板材のLD(圧延方向)の引張試験用の試験片(JIS Z2201の5号試験片)をそれぞれ3個ずつ採取し、それぞれの試験片についてJIS Z2241に準拠した引張試験を行い、平均値によってLDの0.2%耐力と引張強さを求めた。その結果、LDの0.2%耐力と引張強さは、それぞれ589MPaと677MPa(実施例1)、554MPaと637MPa(実施例2)、587MPaと652MPa(実施例3)、587MPaと676MPa(実施例4)、601MPaと664MPa(実施例5)、633MPaと682MPa(実施例6)、630MPaと680MPa(実施例7)、590MPaと655MPa(実施例8)、590MPaと685MPa(実施例9)、585MPaと644MPa(実施例10)、660MPaと735MPa(実施例11)、583MPaと677MPa(実施例12)、601MPaと651MPa(実施例13)、598MPaと655MPa(実施例14)、600MPaと653MPa(実施例15)、595MPaと658MPa(実施例16)、593MPaと659MPa(比較例1)、589MPaと660MPa(比較例2)、583MPaと650MPa(比較例3)、583MPaと650MPa(比較例4)、596MPaと652MPa(比較例5)、584MPaと642MPa(比較例6)、625MPaと675MPa(比較例7)、623MPaと678MPa(比較例8)であった。 As the tensile strength as a mechanical property of the copper alloy plate material, three test pieces (JIS Z2201 No. 5 test piece) for the LD (rolling direction) tensile test of the copper alloy plate material were collected and tested for each. A tensile test based on JIS Z2241 was performed on the piece, and 0.2% proof stress and tensile strength of LD were determined by the average value. As a result, the 0.2% proof stress and tensile strength of the LD were 589 MPa and 677 MPa (Example 1), 554 MPa and 637 MPa (Example 2), 587 MPa and 652 MPa (Example 3), and 587 MPa and 676 MPa (Example 1). 4), 601 MPa and 664 MPa (Example 5), 633 MPa and 682 MPa (Example 6), 630 MPa and 680 MPa (Example 7), 590 MPa and 655 MPa (Example 8), 590 MPa and 685 MPa (Example 9), 585 MPa. 644 MPa (Example 10), 660 MPa and 735 MPa (Example 11), 583 MPa and 677 MPa (Example 12), 601 MPa and 651 MPa (Example 13), 598 MPa and 655 MPa (Example 14), 600 MPa and 653 MPa (Example 15). ), 595 MPa and 658 MPa (Example 16), 593 MPa and 659 MPa (Comparative Example 1), 589 MPa and 660 MPa (Comparative Example 2), 583 MPa and 650 MPa (Comparative Example 3), 583 MPa and 650 MPa (Comparative Example 4), 596 MPa and 652 MPa. (Comparative Example 5), 584 MPa and 642 MPa (Comparative Example 6), 625 MPa and 675 MPa (Comparative Example 7), 623 MPa and 678 MPa (Comparative Example 8).

銅合金板材の耐応力腐食割れ性は、銅合金板材から採取した幅10mmの試験片を、その長手方向中央部の表面応力が0.2%耐力の80%の大きさになるようにアーチ状に曲げた状態で、3質量%のアンモニア水を入れたデシケ−タ内に25℃で保持し、1時間毎に取り出した幅10mmの試験片について、光学顕微鏡により100倍の倍率で割れを観察したところ、それぞれ75時間(実施例1)、76時間(実施例2)、89時間(実施例3)、64時間(実施例4)、67時間(実施例5)、80時間(実施例6)、75時間(実施例7)、75時間(実施例8)、128時間(実施例9)、87時間(実施例10)、65時間(実施例11)、66時間(実施例12)、75時間(実施例13)、74時間(実施例14)、72時間(実施例15)、75時間(実施例16)、24時間(比較例1)、25時間(比較例2)、39時間(比較例3)、37時間(比較例4)、30時間(比較例5)、25時間(比較例6)、30時間(比較例7)、24時間(比較例8)後に割れが観察され、市販の黄銅1種(C2600−SH)の板材と比べて、割れが観察されるまでの時間は、それぞれ15倍(実施例1)、15倍(実施例2)、18倍(実施例3)、13倍(実施例4)、13倍(実施例5)、16倍(実施例6)、15倍(実施例7)、15倍(実施例8)、26倍(実施例9)、17倍(実施例10)、13倍(実施例11)、13倍(実施例12)、15倍(実施例13)、15倍(実施例14)、14倍(実施例15)、15倍(実施例16)、5倍(比較例1)、5倍(比較例2)、8倍(比較例3)、7倍(比較例4)、6倍(比較例5)、5倍(比較例6)、6倍(比較例7)、5倍(比較例8)であった。 The stress corrosion cracking resistance of the copper alloy plate is arched so that the surface stress at the center of the longitudinal direction of the test piece with a width of 10 mm collected from the copper alloy plate is 0.2% and the surface stress is 80% of the yield strength. A test piece with a width of 10 mm, which was held at 25 ° C. in a desiccator containing 3% by mass of aqueous ammonia in a bent state and taken out every hour, was observed to crack at a magnification of 100 times with an optical microscope. As a result, 75 hours (Example 1), 76 hours (Example 2), 89 hours (Example 3), 64 hours (Example 4), 67 hours (Example 5), and 80 hours (Example 6), respectively. ), 75 hours (Example 7), 75 hours (Example 8), 128 hours (Example 9), 87 hours (Example 10), 65 hours (Example 11), 66 hours (Example 12), 75 hours (Example 13), 74 hours (Example 14), 72 hours (Example 15), 75 hours (Example 16), 24 hours (Comparative Example 1), 25 hours (Comparative Example 2), 39 hours Cracking was observed after 37 hours (Comparative Example 4), 30 hours (Comparative Example 5), 25 hours (Comparative Example 6), 30 hours (Comparative Example 7), and 24 hours (Comparative Example 8). Compared with the commercially available brass type 1 (C2600-SH) plate material, the time until cracking is observed is 15 times (Example 1), 15 times (Example 2), and 18 times (Example 3), respectively. ), 13 times (Example 4), 13 times (Example 5), 16 times (Example 6), 15 times (Example 7), 15 times (Example 8), 26 times (Example 9), 17 times (Example 10), 13 times (Example 11), 13 times (Example 12), 15 times (Example 13), 15 times (Example 14), 14 times (Example 15), 15 times (Example 16), 5 times (Comparative Example 1), 5 times (Comparative Example 2), 8 times (Comparative Example 3), 7 times (Comparative Example 4), 6 times (Comparative Example 5), 5 times (Comparison) Examples 6), 6 times (Comparative Example 7), and 5 times (Comparative Example 8).

銅合金板材の曲げ加工性を評価するために、銅合金板材から長手方向がTD(圧延方向および板厚方向に対して垂直な方向)になるように曲げ加工試験片(幅10mm)を切り出し、LD(圧延方向)を曲げ軸(BadWay曲げ(B.W.曲げ))にしてJIS H3110に準拠した90°W曲げ試験を行った。この試験後の試験片について、曲げ加工部の表面および断面を光学顕微鏡によって100倍の倍率で観察して、割れが発生しない最小曲げ半径Rを求め、この最小曲げ半径Rを銅合金板材の板厚tで除することによって、それぞれのR/t値を求めた。その結果、R/tは、それぞれ0.4(実施例1、2、6〜8)、0.6(実施例3〜5、9〜16)、0.8(比較例1〜8)であった。 In order to evaluate the bending workability of the copper alloy plate material, a bending test piece (width 10 mm) is cut out from the copper alloy plate material so that the longitudinal direction is TD (direction perpendicular to the rolling direction and the plate thickness direction). A 90 ° W bending test conforming to JIS H3110 was performed with the LD (rolling direction) as the bending axis (Bad Way bending (BW bending)). For the test piece after this test, the surface and cross section of the bent portion were observed with an optical microscope at a magnification of 100 times to obtain the minimum bending radius R at which cracks did not occur, and this minimum bending radius R was determined by the copper alloy plate. Each R / t value was obtained by dividing by the thickness t. As a result, R / t was 0.4 (Examples 1, 2, 6 to 8), 0.6 (Examples 3 to 5, 9 to 16), and 0.8 (Comparative Examples 1 to 8), respectively. there were.

また、実施例1〜16と比較例3〜4および7〜8の銅合金板材から試料を採取し、表面の(粒径(析出物を取り囲む最小円の直径)1μm以上の)粗大な析出物の(単位面積当たりの)数を調べた。この銅合金板材の表面の粗大な析出物の数は、銅合金板材から採取した試料をアノード、ステンレス板をカソードとして、20質量%のリン酸中において電圧15Vで30秒間通電して電解研磨を行った後、走査型電子顕微鏡を使用して、試料の表面の析出物の二次電子像を倍率3000倍で観察して、粗大な析出物を数えることによって求めた。その結果、銅合金板材の表面の粗大な析出物の数は、それぞれ7700個/mm(実施例1)、5000個/mm(実施例2)、2100個/mm(実施例3)、7800個/mm(実施例4)、8800個/mm(実施例5)、600個/mm(実施例6)、600個/mm(実施例7)、7500個/mm(実施例8)、7000個/mm(実施例9)、7600個/mm(実施例10)、7700個/mm(実施例11)、11000個/mm(実施例12)、7200個/mm(実施例13)、6900個/mm(実施例14)、8000個/mm(実施例15)、7800個/mm(実施例16)、20600個/mm(比較例3)、21000個/mm(比較例4)、16000個/mm(比較例7)および17800個/mm(比較例8)であった。 In addition, samples were taken from the copper alloy plates of Examples 1 to 16 and Comparative Examples 3 to 4 and 7 to 8, and coarse precipitates on the surface (particle size (diameter of the smallest circle surrounding the precipitate) of 1 μm or more). The number (per unit area) of was examined. The number of coarse precipitates on the surface of the copper alloy plate was electrolyzed by energizing a sample collected from the copper alloy plate as an anode and a stainless plate as a cathode at a voltage of 15 V for 30 seconds in 20% by mass of phosphoric acid. After that, using a scanning electron microscope, the secondary electron image of the precipitate on the surface of the sample was observed at a magnification of 3000 times, and the coarse precipitate was counted. As a result, the number of coarse deposits on the surface of the copper alloy plate was 7700 / mm 2 (Example 1), 5000 / mm 2 (Example 2), 2100 / mm 2 (Example 3), and 7800, respectively. Pieces / mm 2 (Example 4), 8800 pieces / mm 2 (Example 5), 600 pieces / mm 2 (Example 6), 600 pieces / mm 2 (Example 7), 7500 pieces / mm 2 (Implementation) Example 8), 7000 pieces / mm 2 (Example 9), 7600 pieces / mm 2 (Example 10), 7700 pieces / mm 2 (Example 11), 11000 pieces / mm 2 (Example 12), 7200 pieces / Mm 2 (Example 13), 6900 pieces / mm 2 (Example 14), 8000 pieces / mm 2 (Example 15), 7800 pieces / mm 2 (Example 16), 20600 pieces / mm 2 (Comparative example) 3) 21000 pieces / mm 2 (Comparative Example 4), 16000 pieces / mm 2 (Comparative Example 7) and 17800 pieces / mm 2 (Comparative Example 8).

これらの実施例および比較例の製造条件および特性を表1〜表3に示す。 The manufacturing conditions and characteristics of these Examples and Comparative Examples are shown in Tables 1 to 3.

Figure 0006927844
Figure 0006927844

Figure 0006927844
Figure 0006927844

Figure 0006927844
Figure 0006927844

Claims (13)

17〜32質量%のZnと0.1〜4.5質量%のSnと0.01〜2.0質量%のSiと0.01〜5.0質量%のNiを含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造し、900℃〜400℃の温度域で熱間圧延を行った後に400℃〜300℃まで冷却速度1〜15℃/分で冷却し、次いで、冷間圧延を行った後に300〜800℃で再結晶焼鈍を行い、その後、300〜600℃で時効焼鈍を行うことにより、銅合金板材を製造することを特徴とする、銅合金板材の製造方法。 Contains 17-32% by mass Zn, 0.1-4.5% by mass Sn, 0.01-2.0% by mass Si and 0.01-5.0% by mass of Ni, with the balance being Cu and A raw material of a copper alloy having a composition that is an unavoidable impurity is melted and cast, and after hot rolling in a temperature range of 900 ° C to 400 ° C, it is cooled to 400 ° C to 300 ° C at a cooling rate of 1 to 15 ° C / min. Then, after cold rolling, recrystallization annealing is performed at 300 to 800 ° C., and then aging annealing is performed at 300 to 600 ° C. to produce a copper alloy plate material. Method of manufacturing plate material. 前記時効焼鈍を行った後に、仕上げ冷間圧延を行い、その後に450℃以下の温度で低温焼鈍を行うことを特徴とする、請求項1に記載の銅合金板材の製造方法。 The method for producing a copper alloy plate material according to claim 1, wherein after the aging annealing, finish cold rolling is performed, and then low-temperature annealing is performed at a temperature of 450 ° C. or lower. 前記再結晶焼鈍を行った後、前記時効焼鈍を行う前に、冷間圧延を行うことを特徴とする、請求項1に記載の銅合金板材の製造方法。 The method for producing a copper alloy plate material according to claim 1, wherein cold rolling is performed after the recrystallization annealing and before the aging annealing. 前記銅合金の原料が、Fe、Co、Cr、Mg、Al、B、P、Zr、Ti、Mn、Au、Ag、Pb、CdおよびBeからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有することを特徴とする、請求項1乃至3のいずれかに記載の銅合金板材の製造方法。 A total of 3 elements selected from the group consisting of Fe, Co, Cr, Mg, Al, B, P, Zr, Ti, Mn, Au, Ag, Pb, Cd and Be as the raw material of the copper alloy. The method for producing a copper alloy plate material according to any one of claims 1 to 3, further comprising a composition in the range of mass% or less. 17〜32質量%のZnと0.1〜4.5質量%のSnと0.01〜2.0質量%のSiと0.01〜5.0質量%のNiを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、0.2%耐力の80%に当たる曲げ応力を加えた銅合金板材を、3質量%のアンモニア水を入れたデシケ−タ内に25℃で保持して、銅合金板材に割れが観察されるまでの時間が、黄銅1種(C2600−SH)の板材と比べて10倍以上であることを特徴とする、銅合金板材。 Contains 17-32% by mass Zn, 0.1-4.5% by mass Sn, 0.01-2.0% by mass Si and 0.01-5.0% by mass of Ni, with the balance being Cu and In a copper alloy plate having a composition that is an unavoidable impurity, a copper alloy plate to which a bending stress corresponding to 80% of 0.2% withstand strength is applied is held at 25 ° C. in a desiccator containing 3% by mass of ammonia water. The copper alloy plate material is characterized in that the time until cracks are observed in the copper alloy plate material is 10 times or more that of the brass type 1 (C2600-SH) plate material. 前記銅合金板材の表面の単位面積当たりの粒径1μm以上の粗大な析出物の数が15000個/mm以下であることを特徴とする、請求項5に記載の銅合金板材。 The copper alloy plate material according to claim 5, wherein the number of coarse precipitates having a particle size of 1 μm or more per unit area of the surface of the copper alloy plate material is 15,000 pieces / mm 2 or less. 17〜32質量%のZnと0.1〜4.5質量%のSnと0.01〜2.0質量%のSiと0.01〜5.0質量%のNiを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、表面の単位面積当たりの粒径1μm以上の粗大な析出物の数が15000個/mm以下であることを特徴とする、銅合金板材。 It contains 17-32% by mass Zn, 0.1-4.5% by mass Sn, 0.01-2.0% by mass Si and 0.01-5.0% by mass Ni, and the balance is Cu and A copper alloy plate having a composition that is an unavoidable impurity, wherein the number of coarse precipitates having a particle size of 1 μm or more per unit area of the surface is 15,000 / mm 2 or less. 前記銅合金板材の引張強さが550MPa以上であることを特徴とする、請求項5乃至7のいずれかに記載の銅合金板材。 The copper alloy plate material according to any one of claims 5 to 7, wherein the tensile strength of the copper alloy plate material is 550 MPa or more. 前記銅合金板材の0.2%耐力が500MPa以上であることを特徴とする、請求項5乃至8のいずれか6に記載の銅合金板材。 The copper alloy plate material according to any 6 of claims 5 to 8, wherein the 0.2% proof stress of the copper alloy plate material is 500 MPa or more. 前記銅合金板材の導電率が10%IACS以上であることを特徴とする、請求項5乃至9のいずれかに記載の銅合金板材。 The copper alloy plate material according to any one of claims 5 to 9, wherein the copper alloy plate material has a conductivity of 10% IACS or more. 前記銅合金板材が、Fe、Co、Cr、Mg、Al、B、P、Zr、Ti、Mn、Au、Ag、Pb、CdおよびBeからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有することを特徴とする、請求項5乃至10のいずれかに記載の銅合金板材。 The copper alloy plate material contains a total of 3 masses of one or more elements selected from the group consisting of Fe, Co, Cr, Mg, Al, B, P, Zr, Ti, Mn, Au, Ag, Pb, Cd and Be. The copper alloy plate material according to any one of claims 5 to 10, further comprising a composition in the range of% or less. 前記銅合金板材の表面の平均結晶粒径が10μm以下であることを特徴とする、請求項5乃至11のいずれかに記載の銅合金板材。 The copper alloy plate material according to any one of claims 5 to 11, wherein the average crystal grain size of the surface of the copper alloy plate material is 10 μm or less. 請求項5乃至12のいずれかに記載の銅合金板材を材料として用いたことを特徴とする、コネクタ端子。 A connector terminal using the copper alloy plate material according to any one of claims 5 to 12 as a material.
JP2017202320A 2016-10-28 2017-10-19 Copper alloy plate material and its manufacturing method Active JP6927844B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112017004929.6T DE112017004929T8 (en) 2016-10-28 2017-10-24 Sheet metal material of copper alloy and method for producing the same
CN201780066755.3A CN109937267B (en) 2016-10-28 2017-10-24 Copper alloy sheet and method for producing same
PCT/JP2017/038243 WO2018079507A1 (en) 2016-10-28 2017-10-24 Copper alloy sheet and method for manufacturing same
US16/345,298 US11293084B2 (en) 2016-10-28 2017-10-24 Sheet matertal of copper alloy and method for producing same
KR1020197014859A KR102385211B1 (en) 2016-10-28 2017-10-24 Copper alloy plate and manufacturing method thereof
TW106136743A TWI732964B (en) 2016-10-28 2017-10-25 Copper alloy plate and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016212103 2016-10-28
JP2016212103 2016-10-28

Publications (2)

Publication Number Publication Date
JP2018076588A JP2018076588A (en) 2018-05-17
JP6927844B2 true JP6927844B2 (en) 2021-09-01

Family

ID=62148863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017202320A Active JP6927844B2 (en) 2016-10-28 2017-10-19 Copper alloy plate material and its manufacturing method

Country Status (3)

Country Link
JP (1) JP6927844B2 (en)
DE (1) DE112017004929T8 (en)
TW (1) TWI732964B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904357A (en) * 2019-12-17 2020-03-24 贵溪华泰铜业有限公司 Method for processing special-shaped copper pipe
JPWO2022124280A1 (en) * 2020-12-11 2022-06-16
CN115233031B (en) * 2021-09-07 2022-12-30 大连理工大学 High-performance copper alloy and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5933848B2 (en) * 2013-09-26 2016-06-15 三菱伸銅株式会社 Discoloration-resistant copper alloy and copper alloy member
WO2015046470A1 (en) * 2013-09-26 2015-04-02 三菱伸銅株式会社 Copper alloy

Also Published As

Publication number Publication date
JP2018076588A (en) 2018-05-17
TWI732964B (en) 2021-07-11
TW201819644A (en) 2018-06-01
DE112017004929T8 (en) 2019-07-18
DE112017004929T5 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
EP2957646B1 (en) High-strength cu-ni-co-si base copper alloy sheet, process for producing same, and current-carrying component
WO2011104982A1 (en) Cu-mg-p-based copper alloy bar and method for producing same
JP5619389B2 (en) Copper alloy material
KR102385211B1 (en) Copper alloy plate and manufacturing method thereof
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
KR20050014758A (en) Cu-Ni-Si ALLOY HAVING EXCELLENT FATIGUE CHARACTERISTIC
US20180040389A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
JP6835638B2 (en) Copper alloy plate with excellent strength and conductivity
JP2005060773A (en) Special brass and method for increasing strength of the special brass
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP6749121B2 (en) Copper alloy plate with excellent strength and conductivity
CN111868276B (en) Copper alloy sheet and method for producing same
JP6858532B2 (en) Copper alloy plate material and its manufacturing method
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP6111028B2 (en) Corson alloy and manufacturing method thereof
EP1078995B1 (en) Copper alloy for electrical or electronic parts
JP4431741B2 (en) Method for producing copper alloy
JP7092524B2 (en) Copper alloy plate material and its manufacturing method
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP2001131657A (en) Copper alloy for electrical and electronic parts
JP6713074B1 (en) Copper alloy sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210805

R150 Certificate of patent or registration of utility model

Ref document number: 6927844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150