JP5261691B2 - Copper-base alloy with excellent press punchability and method for producing the same - Google Patents

Copper-base alloy with excellent press punchability and method for producing the same Download PDF

Info

Publication number
JP5261691B2
JP5261691B2 JP2008280508A JP2008280508A JP5261691B2 JP 5261691 B2 JP5261691 B2 JP 5261691B2 JP 2008280508 A JP2008280508 A JP 2008280508A JP 2008280508 A JP2008280508 A JP 2008280508A JP 5261691 B2 JP5261691 B2 JP 5261691B2
Authority
JP
Japan
Prior art keywords
mass
ray diffraction
diffraction intensity
copper
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008280508A
Other languages
Japanese (ja)
Other versions
JP2009068114A (en
Inventor
浩一 畠山
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2008280508A priority Critical patent/JP5261691B2/en
Publication of JP2009068114A publication Critical patent/JP2009068114A/en
Application granted granted Critical
Publication of JP5261691B2 publication Critical patent/JP5261691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy for connectors, lead frames, switches, relays, etc., which is excellent in press-blanking property. <P>SOLUTION: The copper alloy is obtained by: performing homogenizing anneal of an ingot of the copper alloy composed of 0.01-30 wt.% of at least one element chosen from the group consisting of Sn, Ni, P, Zn, Si, Fe, Co, Mg, Ti, Cr, Zr and Al and the balance being Cu and unavoidable impurities; repeating cold rolling and annealing; and performing cold-rolling at a reduction ratio Z% satisfying the relation: Z&ge;100-10X-Y [wherein Z is the cold-rolling reduction ratio (%); X is the content of Sn (wt.%) among the elements; and Y is the total content of elements other than Sn (wt.%)] and subsequently performing low-temperature anneal at a temperature below the recrystallization temperature. The obtained copper alloy has an X-ray diffracted intensity ratio S<SB>ND</SB>at the surface being S<SB>ND</SB>&ge;10, provided that S<SB>ND</SB>is represented by the formula: S<SB>ND</SB>=Iä220}&divide;Iä200} [wherein Iä220} is the X-ray diffracted intensity at ä220}; and Iä200} is the X-ray diffracted intensity at ä200}], shows a good balance among conductivity, strength, spring characteristic, hardness, bendability, etc. and is excellent in press-blanking property. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明はプレス打ち抜き性に優れた銅基合金およびその製造方法に関するものであって、詳しくは民生用製品、例えば情報・通信用の狭ピッチコネクタの原板、半導体用リードフレームの原板および小型スイッチ、リレーの原板等を構成するプレス打ち抜き性に優れた銅基合金およびその製造方法に関するものである。   The present invention relates to a copper-based alloy having excellent punchability and a method for producing the same, and more specifically, a consumer product, for example, an information / communication narrow pitch connector master, a semiconductor lead frame master and a small switch, The present invention relates to a copper-based alloy excellent in press punching properties that constitutes a relay original plate and the like, and a method for producing the same.

家電製品、情報通信機器や自動車部品の高密度実装化に伴い、コネクタ、スイッチ、リレー等の小型化が進み、これらを構成する銅基合金材料も薄肉化、細線化する傾向にある。
これらの部品は、金型を用いた高速のプレスにより打ち抜き加工されることが多く、プレス加工の際、材料は金型のパンチによりせん断変形を生じた後に、刃先からのクラック発生によって、破断変形を生じて所定の形状に打ち抜かれる。
しかし、プレスのショット数が増すにつれて、金型パンチの刃先摩耗が進み、その結果として、刃先からのクラック発生が不均一になり、破断形状が乱れて、具体的にはせん断帯と破断帯の差が大きくなったり、大きなバリが発生したり、破断により生じた材料の大きなカスが発生して、所定の製品形状を保てなくなる。
従来、金型寿命を向上させる対策として、パンチの材質の向上、プレス潤滑油による潤滑性の改善や、各々の銅基合金に適したクリアランスの設定等により対応してきたが、画期的な改善は実現できなかった。
特開平5−279825号公報 特開昭63−266049号公報
With the high-density mounting of home appliances, information communication devices, and automobile parts, connectors, switches, relays, and the like have been miniaturized, and the copper-based alloy materials that make up these components tend to be thinner and thinner.
These parts are often stamped by a high-speed press using a mold, and during the pressing process, the material undergoes shear deformation by the punch of the mold, and then breaks and deforms due to the generation of cracks from the blade edge. Is punched into a predetermined shape.
However, as the number of shots in the press increases, wear of the edge of the die punch advances, and as a result, the generation of cracks from the edge becomes uneven, the fracture shape is disturbed, specifically the shear band and the fracture band. The difference becomes large, large burrs are generated, and large waste of material generated by fracture is generated, so that a predetermined product shape cannot be maintained.
Conventionally, measures to improve the mold life have been dealt with by improving the material of the punch, improving the lubricity by press lubricant, and setting the clearance suitable for each copper base alloy. Could not be realized.
JP-A-5-279825 JP 63-266049 A

上記のような従来の技術の問題点を解決すべく鋭意検討を行ったところ、金型を用いた高速プレス成形加工によって、所定の形状に打ち抜かれる狭ピッチコネクタ、半導体用リードフレームの材料では、ピン端子の薄板化・細幅化、具体的には、ピン自体の板厚0.10〜0.25mm、ピン幅0.10〜0.30mmの傾向にあり、従って、ピン端子の強度と曲げ性のバランスを維持した上で、プレス打ち抜き性に優れていることが、解決すべき特性上の重要な課題として浮上している。
本発明は、材料の結晶方位を制御することで、プレス打ち抜き性に優れた銅基合金およびその製造方法を提供するものである。
なお、ピン端子の強度は材料の0.2%耐力で代用でき、ピン端子の曲げ性はピン自体の板厚をtmm、ピン幅をWmmとしたときにW/t≦4の場合は一軸変形をすることから、引張試験で得られる伸びで代用できる。
As a result of intensive studies to solve the problems of the conventional technology as described above, in the material of the narrow pitch connector and semiconductor lead frame that are punched into a predetermined shape by high-speed press molding using a mold, Thinning and narrowing of pin terminals, specifically, the pin thickness tends to be 0.10 to 0.25 mm and the pin width is 0.10 to 0.30 mm. Therefore, the balance of pin terminal strength and bendability was maintained. Above, the excellent press punchability has emerged as an important problem in the characteristics to be solved.
The present invention provides a copper-based alloy having excellent press punchability by controlling the crystal orientation of the material and a method for producing the same.
The pin terminal strength can be substituted by 0.2% proof stress of the material, and the pin terminal bendability is uniaxially deformed when W / t ≦ 4 when the thickness of the pin itself is tmm and the pin width is Wmm. Therefore, the elongation obtained by the tensile test can be substituted.

本発明は、銅基合金材料について、特にND面(板材表面。以下ND面という)に着目してX線回折を行い、得られる結晶方位のうち、特定の方向の強度制御をすることで、プレス打ち抜き性を向上した銅基合金が得られるという知見の基でなされたものであり、具体的にはSn、Ni等の元素を所定量含有する銅基合金の鋳塊に対して、冷間圧延し次いで焼鈍する工程を経た後、銅以外の合金成分元素の含有量から計算される所定値以上の加工率で冷間圧延を行うことにより実現したものである。なお、X線回折強度とは、例えばX線回折法で測定される材料の結晶方位の積分強度を示すものである。   The present invention is a copper-based alloy material, particularly by performing X-ray diffraction focusing on the ND surface (plate material surface; hereinafter referred to as ND surface), and by controlling the strength in a specific direction among the obtained crystal orientations, It was made based on the knowledge that a copper-based alloy with improved press punchability can be obtained. Specifically, for a copper-based alloy ingot containing a predetermined amount of elements such as Sn and Ni, it is cold-worked. This is realized by performing cold rolling at a processing rate equal to or higher than a predetermined value calculated from the content of alloy component elements other than copper, after rolling and then annealing. Note that the X-ray diffraction intensity indicates the integrated intensity of the crystal orientation of the material measured by, for example, the X-ray diffraction method.

すなわち本発明は、0.5〜1.0質量%のSiと、0.3〜3.0質量%のSnと、0.4〜4.0質量%のNiと、0.03〜0.50質量%のZnを含有し、場合によってはさらに0.01〜0.10質量%のMgを含有し、残部がCuと不可避不純物からなり、表面のX線回折強度比S ND がS ND ≧10である[ただし、S ND =[I{220}+I{111}+I{311}]÷I{200}。I{220}は{220}のX線回折強度、I{111}は{111}のX線回折強度、I{311}は{311}のX線回折強度、I{200}は{200}のX線回折強度であって、I{111}とI{311}はI{220}の1/10を超えるとき。]ことを特徴とするプレス打ち抜き性に優れた銅基合金を提供するものである。
また、0.5〜1.0質量%のSiと、0.3〜3.0質量%のSnと、0.4〜4.0質量%のNiと、0.03〜1.00質量%のZnを含有し、残部がCuと不可避不純物からなる銅基合金の鋳塊、または、0.5〜1.0質量%のSiと、0.3〜3.0質量%のSnと、0.4〜4.0質量%のNiと、0.03〜0.50質量%のZnと、0.01〜0.10質量%のMgを含有し、残部がCuと不可避不純物からなる銅基合金の鋳塊に対し、冷間圧延し次いで焼鈍することからなる組み合わせ工程を少なくとも1回以上行った後、次式(1)を満たす加工率Zで冷間圧延し
Z≧100−10X−Y (1)
[ただし、Zは冷間圧延加工率(%)、XはSnの含有量(質量%)、YはSn、Cu、不可避不純物以外の元素の含有量(質量%)の総量である。]場合によっては次いで再結晶温度未満の低温焼鈍を行うことを特徴とする、銅基合金の製造方法を提供する。
前記組み合わせ工程を行うに先立って、前記鋳塊に対し、予め、均質化焼鈍、熱間圧延のうちから選ばれる少なくとも一方を行うことができる。
That is, the present invention relates to 0.5 to 1.0 mass% Si, 0.3 to 3.0 mass% Sn, 0.4 to 4.0 mass% Ni, and 0.03 to 0.0 mass%. 50% by mass of Zn, optionally further 0.01 to 0.10% by mass of Mg, the balance being made of Cu and inevitable impurities, and the surface X-ray diffraction intensity ratio S ND is S ND ≧ 10 where S ND = [I {220} + I {111} + I {311}] ÷ I {200}. I {220} is the X-ray diffraction intensity of {220}, I {111} is the X-ray diffraction intensity of {111}, I {311} is the X-ray diffraction intensity of {311}, and I {200} is {200} X-ray diffraction intensity when I {111} and I {311} exceed 1/10 of I {220}. The present invention provides a copper-based alloy having excellent press punching characteristics .
Moreover, 0.5-1.0 mass% Si, 0.3-3.0 mass% Sn, 0.4-4.0 mass% Ni, and 0.03-1.00 mass% Ingot of copper-based alloy containing the balance of Cu and inevitable impurities, or 0.5 to 1.0 mass% of Si, 0.3 to 3.0 mass% of Sn, 0 A copper group containing 0.4 to 4.0% by mass of Ni, 0.03 to 0.50% by mass of Zn, and 0.01 to 0.10% by mass of Mg with the balance being Cu and inevitable impurities The ingot of the alloy is subjected to a combination process consisting of cold rolling and then annealing at least once, and then cold rolling at a processing rate Z that satisfies the following formula (1).
Z ≧ 100−10X−Y (1)
[However, Z is the cold rolling ratio (%), X is the Sn content (mass%), Y is the total content (mass%) of elements other than Sn, Cu, and inevitable impurities. In some cases, the present invention provides a method for producing a copper-base alloy characterized by performing low-temperature annealing below the recrystallization temperature.
Prior to performing the combination step, at least one selected from homogenization annealing and hot rolling can be performed on the ingot in advance.

本発明はプレス打ち抜きに伴うパンチ刃先の摩耗が軽減され、プレス打ち抜き性が向上し、また、導電率、0.2%耐力、ばね性、硬度、曲げ性のバランスにも優れたコネクタ、スイッチ、リレー用等の銅基合金を得たものであり、近年の家電製品、情報通信機器や自動車用部品の高密度実装化に伴った材料の薄肉化、細線化と、プレスの金型寿命向上により、コストダウンを大幅に実現できる銅基合金を提供するものである。   The present invention reduces the wear of the punch edge due to press punching, improves press punchability, and has excellent balance of electrical conductivity, 0.2% proof stress, spring property, hardness and bendability, for connectors, switches and relays The copper base alloy has been obtained, and the cost has been reduced due to the thinning and thinning of the material and the improvement of the die life of the press due to the recent high-density mounting of home appliances, information communication equipment and automotive parts. The present invention provides a copper-based alloy that can realize a significant down.

以下に本発明の内容を具体的に説明する。
本発明は、銅基合金について、特に材料表面に着目してX線回折を行い、得られる結晶方位のうち、特定の方位の強度を制御することでプレス打ち抜き加工性を向上させるものである。
The contents of the present invention will be specifically described below.
The present invention improves the press punching workability by controlling X-ray diffraction of a copper-based alloy, particularly focusing on the material surface, and controlling the strength of a specific orientation among the obtained crystal orientations.

まず、プレス加工に際して、材料のせん断変形と、せん断変形の後にパンチ刃先からのクラック発生を均一にして破断変形を良好に成し得るためには、結晶方位をある一定の方位にそろえることが重要である。FCC(面心立方格子)の結晶構造を有するCu系の多結晶材料は、すべり面{111}とすべり方向<110>(ここで、{ }は等価な面を一括して表したもの、< >は等価な方向(方位)を一括して表したものである)の組み合わせ、即ち、12個のすべり系{111}<110>を有し、変形に際し1個以上のすべり系が活動する。プレスせん断変形の場合、パンチの抜き方向とのなす角が最も小さいすべり系が活動することになる。
今、板材表面をND面として、主な4種類の面、{110}面,{111}面,{311}面,{100}面に注目すると、プレスせん断変形に際してパンチの打ち抜き方向と一致する2個のすべり系を有する{110}面がプレス打ち抜き性の向上に最も効果があり、次いでパンチの打ち抜き方向とのなす角が比較的小さいすべり系を有する{111}面,{311}面、逆にパンチの打ち抜き方向に対して12個のすべり系のうち8個のすべり系のなす角が45°の{100}面が最もプレス打ち抜き性を劣化する。具体的には、パンチの刃先にかかる応力が大きく、刃先の摩耗が促進されること、破断変形時に発生する金属粉が多くなり、金型の間(パンチとダイの間)に付着することで刃先の摩耗を促進すること、この結果破断後の材料のバリ高さが大きくなる。
ここで、銅基合金のようにFCC(面心立方格子)の結晶構造を有する金属の場合、X線回折では{110}面、{111}面、{311}面、{100}面のX線回折強度(以下、回折強度という)は各々I{220}、I{111}、I{311}、I{200}として生じる。
First, in press working, it is important to align the crystal orientation to a certain orientation in order to achieve good fracture deformation by making the material shear deformation and crack generation from the punch blade edge uniform after shear deformation. It is. A Cu-based polycrystalline material having a crystal structure of FCC (face-centered cubic lattice) has a slip surface {111} and a slip direction <110> (where {} represents equivalent surfaces collectively, <> Is a combination of equivalent directions (orientations)), that is, 12 slip systems {111} <110>, and one or more slip systems are activated during deformation. In the case of press shear deformation, a slip system having the smallest angle with the punching direction is activated.
Now, with the surface of the plate as the ND surface, paying attention to the four main types of planes, {110} plane, {111} plane, {311} plane, and {100} plane, the punch punching direction coincides with the press shear deformation. The {110} plane having two slip systems is most effective in improving the press punchability, and then the {111} plane, {311} plane having a slip system having a relatively small angle with the punching direction of the punch, On the other hand, the {100} plane with an angle of 45 ° among the 8 slip systems out of 12 slip systems with respect to the punching direction of the punch deteriorates the press punchability most. Specifically, the stress applied to the cutting edge of the punch is large, the wear of the cutting edge is promoted, the metal powder generated at the time of breaking deformation increases, and adheres between the molds (between the punch and the die). Promoting the wear of the cutting edge, resulting in an increased burr height of the material after fracture.
Here, in the case of a metal having an FCC (face-centered cubic lattice) crystal structure such as a copper-based alloy, X of the {110} plane, {111} plane, {311} plane, and {100} plane is obtained by X-ray diffraction. Line diffraction intensities (hereinafter referred to as diffraction intensities) are generated as I {220}, I {111}, I {311}, and I {200}, respectively.

以上を考慮した上で、従来の問題を解決すべく鋭意研究した結果、{220}面の回折強度I{220}、{111}面の回折強度I{111}、{311}面の回折強度I{311}、{200}面の回折強度I{200}を測定し、
SND=I{220}÷I{200}
なるパラメーターSNDを導入し、これを指標に組織制御することでプレス打ち抜き性の向上を成し得た。すなわちSND≧10のときは、プレスで打ち抜いた端子の形状は良好であった。
一方、SND<10のときは、プレスのショット数が増すと、刃先の摩耗が進み、打ち抜いた端子の形状が悪くなった。
As a result of diligent research to solve the conventional problems in consideration of the above, the diffraction intensity I {220} of the {220} plane, the diffraction intensity I {111} of the {111} plane, and the diffraction intensity of the {311} plane Measure the diffraction intensity I {200} of I {311}, {200} plane,
S ND = I {220} ÷ I {200}
By introducing the parameter S ND and controlling the structure using this parameter, it was possible to improve press punchability. That is, when S ND ≧ 10, the shape of the terminal punched out by the press was good.
On the other hand, when S ND <10, as the number of press shots increased, wear of the cutting edge advanced and the shape of the punched terminal deteriorated.

なお、銅基合金の種類によって{311}面の回折強度I{311}が{220}面の回折強度I{220}の1/10を超えるとき、または{111}面の回折強度I{111}が{220}面の回折強度I{220}の1/10を超えるとき、または{111}面の回折強度I{111}と{311}面の回折強度I{311}が{220}面の回折強度I{220}の1/10を超えるときは、
SND=I{220}÷I{200}
を、それぞれ
SND=[I{220}+I{311}]÷I{200}
または、
SND=[I{220}+I{111}]÷I{200}
または、
SND=[I{220}+I{111}+I{311}]÷I{200}
で対応することが望ましい。
Depending on the type of copper-based alloy, the diffraction intensity I {311} of the {311} plane exceeds 1/10 of the diffraction intensity I {220} of the {220} plane, or the diffraction intensity I {111 of the {111} plane } Exceeds 1/10 of the diffraction intensity I {220} of the {220} plane, or the diffraction intensity I {111} of the {111} plane and the diffraction intensity I {311} of the {311} plane are {220} planes When it exceeds 1/10 of the diffraction intensity I {220} of
S ND = I {220} ÷ I {200}
Each
S ND = [I {220} + I {311}] ÷ I {200}
Or
S ND = [I {220} + I {111}] ÷ I {200}
Or
S ND = [I {220} + I {111} + I {311}] ÷ I {200}
It is desirable to deal with.

次に、本発明に係る銅基合金の成分組成範囲をSn、Ni、P、Zn、Si、Fe、Co、Mg、Ti、Cr、Zr、Alのうちから選ばれる少なくとも1種の元素を総量で0.01〜30wt%含有し、残部がCuと不可避不純物からなると規定したのは、材料の導電率、引張強さ、0.2%耐力、伸び及び曲げ性のバランスを維持し、さらにまたプレス打ち抜き性を向上させるためである。   Next, the total composition of at least one element selected from Sn, Ni, P, Zn, Si, Fe, Co, Mg, Ti, Cr, Zr, and Al is included in the component composition range of the copper-based alloy according to the present invention. The content of 0.01 to 30 wt%, with the balance consisting of Cu and inevitable impurities, maintains the balance of electrical conductivity, tensile strength, 0.2% proof stress, elongation and bendability of the material, and also provides press punchability. It is for improving.

Sn、Ni、P、Zn、Si、Fe、Co、Mg、Ti、Cr、Zr、Alのうちから選ばれる少なくとも1種の元素の含有量の総量が0.01wt%未満のときは、導電率が高くなるが、引張強さ、0.2%耐力、プレス打ち抜き性等の特性が得られにくい。また、圧延加工率を98%まで上げて引張強さと0.2%耐力を向上できるが、プレス打ち抜き性を大幅に向上できず、曲げ加工性が劣化する。一方、Sn、Ni、P、Zn、Si、Fe、Co、Mg、Ti、Cr、Zr、Alのうちから選ばれる少なくとも1種の元素の含有量の総量が30wt%を超えた時は、引張強さと0.2%耐力を向上できるが、導電率が低くなり、さらにまた曲げ加工性が劣化する。
従って、本発明に係る銅基合金の成分組成範囲をSn、Ni、P、Zn、Si、Fe、Co、Mg、Ti、Cr、Zr、Alのうちから選ばれる少なくとも1種の元素を総量で0.01〜30wt%含有し、残部がCuと不可避不純物からなる銅基合金と規定した。なお、本発明で規定した上記の元素以外にも、例えば、Ag、Au、Bi、In、Mn、La、Pb、Pd、Sb、Se、Te、Yの元素のうちから選ばれる少なくとも1種の元素を総量で2wt%以下であれば、本発明で規定した上記元素にさらに含有させるとプレス打ち抜き性を向上する役割を果たし、得られる効果を阻害しない。
次に、本発明で規定した主要添加元素について説明する。
When the total content of at least one element selected from Sn, Ni, P, Zn, Si, Fe, Co, Mg, Ti, Cr, Zr, and Al is less than 0.01 wt%, the conductivity is Although higher, it is difficult to obtain properties such as tensile strength, 0.2% proof stress and press punchability. In addition, the tensile strength and 0.2% proof stress can be improved by increasing the rolling rate to 98%, but the press punchability cannot be significantly improved, and the bending workability deteriorates. On the other hand, if the total content of at least one element selected from Sn, Ni, P, Zn, Si, Fe, Co, Mg, Ti, Cr, Zr, and Al exceeds 30 wt%, Strength and 0.2% yield strength can be improved, but the electrical conductivity is lowered, and the bending workability is further deteriorated.
Accordingly, the component composition range of the copper-based alloy according to the present invention is at least one element selected from Sn, Ni, P, Zn, Si, Fe, Co, Mg, Ti, Cr, Zr, and Al as a total amount. It was defined as a copper-based alloy containing 0.01 to 30 wt% with the balance being Cu and inevitable impurities. In addition to the above elements defined in the present invention, for example, at least one element selected from the elements of Ag, Au, Bi, In, Mn, La, Pb, Pd, Sb, Se, Te, and Y If the total amount of elements is 2 wt% or less, further inclusion in the above-mentioned elements defined in the present invention will play a role of improving press punchability and will not hinder the obtained effect.
Next, the main additive elements defined in the present invention will be described.

(1)Sn
Snはプレス打ち抜き性と強度、弾性を両立するために必須の元素である。
SnはCuマトリックス中に固溶することでプレス打ち抜き性を劣化する{200}面の集積度を大幅に低減でき、さらに加工熱処理との組み合わせで{220}面、{111}面、I{311}面の集積度を大幅に増やすことができ、その結果としてプレス打ち抜き性を向上できる。また同時に、強度、弾性をも向上できる。しかし、Sn含有量が0.01wt%未満ではその効果が充分に得られず、一方、Sn含有量が10wt%を超えると電気伝導性の低下が著しくなり、鋳造性や熱間加工性にも悪影響を及ぼす。また、Snは高価なために経済的にも不利になる。従って、Snの含有量は0.01〜10wt%とし、好ましくは0.3〜3.0wt%とする。
(1) Sn
Sn is an essential element for achieving both press punchability, strength and elasticity.
Sn can be dissolved in a Cu matrix to reduce press punchability and greatly reduce the degree of integration of {200} planes. Furthermore, in combination with thermomechanical treatment, {220} planes, {111} planes, I {311 } The integration degree of the surface can be greatly increased, and as a result, the press punchability can be improved. At the same time, strength and elasticity can be improved. However, if the Sn content is less than 0.01 wt%, the effect cannot be obtained sufficiently. On the other hand, if the Sn content exceeds 10 wt%, the electrical conductivity decreases significantly, and the castability and hot workability are also adversely affected. Effect. Moreover, since Sn is expensive, it becomes economically disadvantageous. Therefore, the Sn content is 0.01-10 wt%, preferably 0.3-3.0 wt%.

(2)Ni
NiはCuマトリックス中に固溶して強度、弾性、はんだ付け性を向上させ、さらにP、または場合によってSiと化合物を形成して分散析出することにより電気伝導性を向上させ、強度と弾性を向上させる。また、耐熱性および耐応力緩和特性の向上にも寄与する元素である。しかし、Niの含有量が0.01wt%未満では上記のような効果が充分得られず、一方、4.0wt%を超えるとPまたは場合によってSiとの共存下でも電気伝導性の低下が著しく、また経済的にも不利になる。従って、Niの含有量は0.01〜4.0wt%、好ましくは0.40〜3.0wt%とする。
(2) Ni
Ni dissolves in the Cu matrix to improve strength, elasticity, and solderability. Furthermore, P or, in some cases, forms a compound with Si to disperse and precipitate to improve electrical conductivity. Improve. It is also an element that contributes to the improvement of heat resistance and stress relaxation resistance. However, when the Ni content is less than 0.01 wt%, the above effects cannot be sufficiently obtained.On the other hand, when the Ni content exceeds 4.0 wt%, the electrical conductivity is significantly reduced even in the presence of P or Si. It becomes economically disadvantageous. Therefore, the Ni content is 0.01 to 4.0 wt%, preferably 0.40 to 3.0 wt%.

(3)P
Pは、溶解・鋳造時に溶湯の脱酸剤として作用するとともに、Niまたは場合によってFeまたはMgまたはCoと化合物を形成して分散析出することにより電気伝導性を向上させ、さらに強度と弾性を向上させる。しかし、P含有量が0.01wt%未満では上記のような効果が充分得られず、一方、0.20wt%を超えるとNiまたは場合によってFeまたはMgまたはCoの共存下でも電気伝導性の低下が著しく、はんだ耐候性が著しく劣化する。また、熱間加工性にも悪影響を及ぼす。従って、Pの含有量は0.01〜0.20wt%、好ましくは0.02〜0.10wt%とする。
(3) P
P acts as a deoxidizer for molten metal during melting and casting, and improves electrical conductivity by forming a compound with Ni or, optionally, Fe, Mg, or Co, and further improving strength and elasticity. Let However, if the P content is less than 0.01 wt%, the above effects cannot be sufficiently obtained.On the other hand, if it exceeds 0.20 wt%, the electrical conductivity is remarkably lowered even in the presence of Ni, or in some cases Fe, Mg, or Co. Solder weather resistance is significantly deteriorated. It also adversely affects hot workability. Therefore, the P content is 0.01 to 0.20 wt%, preferably 0.02 to 0.10 wt%.

(4)Zn
Znは、Cuマトリックス中に固溶して強度、弾性を向上させる効果があり、また、溶湯の脱酸効果を高めCuマトリックス中の溶質酸素元素を減少させる効果に加えてはんだ耐候性及び耐マイグレーション性を向上させる作用がある。しかし、0.01wt%未満では上記のような効果が得られず、一方、30wt%を超えると電気伝導性の低下するだけでなく、はんだ付け性が低下するとともに、他の元素と組み合わせても耐応力腐食割れ感受性が高くなり好ましくない。従って、Znの含有量は0.01〜30wt%、好ましくは0.01〜10wt%、さらに好ましくは0.03〜3.0wt%とする。
(4) Zn
Zn dissolves in the Cu matrix and has the effect of improving strength and elasticity. In addition to the effect of increasing the deoxidation effect of the molten metal and reducing the solute oxygen element in the Cu matrix, solder weather resistance and migration resistance Has the effect of improving the performance. However, if it is less than 0.01 wt%, the above effect cannot be obtained.On the other hand, if it exceeds 30 wt%, not only the electric conductivity is lowered, but also the solderability is lowered, and even when combined with other elements, it is resistant. Stress corrosion cracking susceptibility is increased, which is not preferable. Therefore, the Zn content is 0.01-30 wt%, preferably 0.01-10 wt%, more preferably 0.03-3.0 wt%.

(5)Si
Siは、Niと共存した状態でCuマトリックス中に析出して化合物を形成して導電率を大幅に低下することなく強度、弾性を向上させる効果がある。Siが0.01wt%未満では上記のような効果が得られず、一方、1.0wt%を超えると熱間加工性が著しく低下する。従って、Siの含有量は0.01〜1.0wt%とする。
(5) Si
Si precipitates in the Cu matrix in the state of coexisting with Ni to form a compound and has the effect of improving strength and elasticity without significantly reducing the conductivity. If Si is less than 0.01 wt%, the above effects cannot be obtained. On the other hand, if it exceeds 1.0 wt%, hot workability is remarkably lowered. Therefore, the Si content is set to 0.01 to 1.0 wt%.

(6)Fe、Co、Mg、Ti、Cr、Zr、Al
これらの元素は、Cuマトリックス中に固溶または析出して化合物を形成して強度、弾性、耐熱性を向上させ、さらにプレス打ち抜き性を向上させる効果がある。しかし0.01wt%未満では、上記のような効果が得られず、一方、3.0wt%を超えると電気伝導性の低下が著しく、また製造時の熱処理温度が高くなる等、経済的にも不利になる。従って、上記の少なくとも1種の元素の含有量を総量で0.01〜3.0wt%とする。
(6) Fe, Co, Mg, Ti, Cr, Zr, Al
These elements have the effect of forming a compound by solid solution or precipitation in the Cu matrix to improve the strength, elasticity and heat resistance, and further improve the press punchability. However, if it is less than 0.01 wt%, the above effects cannot be obtained.On the other hand, if it exceeds 3.0 wt%, the electrical conductivity is remarkably lowered, and the heat treatment temperature at the time of production is high, which is economically disadvantageous. Become. Therefore, the total content of the at least one element is 0.01 to 3.0 wt%.

(7)酸素
酸素を多量に含有するとFe、Mg、P等が酸化物を形成し、めっき信頼性を始めとした本発明に係る銅基合金の諸特性を劣化させる恐れがあるので、好ましくは酸素含有量を20ppm以下とする。
(7) Oxygen When a large amount of oxygen is contained, Fe, Mg, P, etc. may form oxides, which may deteriorate various characteristics of the copper-based alloy according to the present invention including plating reliability. The oxygen content is 20 ppm or less.

次に、本発明に係る銅基合金の熱処理を含む加工工程を上記の通りに限定した理由について説明する。
本発明の材料は、次のような工程を経て製造することができる。即ち、上記成分組成の銅基合金の鋳塊を冷間圧延と焼鈍を繰り返すことで所定の板厚にした後に、該元素の含有量に基づいて得られる所定値以上の加工率で、具体的には、(1)式を満たす冷間圧延加工率Z(%)の冷間圧延を行い、さらに再結晶温度未満の低温焼鈍を組み合わせて所望の板厚の材料とする。
Next, the reason why the processing steps including the heat treatment of the copper base alloy according to the present invention are limited as described above will be described.
The material of the present invention can be manufactured through the following steps. That is, after the ingot of the copper-based alloy having the above component composition is made into a predetermined plate thickness by repeating cold rolling and annealing, it is specifically processed at a processing rate equal to or higher than a predetermined value obtained based on the content of the element. In this case, cold rolling at a cold rolling processing rate Z (%) satisfying the expression (1) is performed, and a material having a desired plate thickness is obtained by combining low temperature annealing below the recrystallization temperature.

なお、鋳塊を冷間圧延する前に予め均質化焼鈍または熱間圧延をすることで鋳造時に生じたミクロ的あるいはマクロ的な溶質元素の偏析を除去して溶質元素分布の均質化を図る効果があり、特に熱間圧延をすることで鋳塊の結晶方位をランダムにでき、かつ結晶粒を均一微細にでき、さらに圧延加工率を大きくとれるため経済的にも有利である。従って、鋳塊を冷間圧延する前に均質化焼鈍、熱間圧延の少なくとも一方の工程を入れると良い。これら均質化焼鈍、熱間圧延は700℃〜900℃で30分〜2時間行うのが好ましい。
冷間圧延加工率 Z(%)≧100−10X−Y (1)
X:Sn含有量(wt%)
Y:Sn以外の該元素の含有量(wt%)
The effect of homogenizing the solute element distribution by removing the micro or macro segregation of solute elements that occurred during casting by pre-homogenizing annealing or hot rolling before cold rolling the ingot. In particular, by hot rolling, the crystal orientation of the ingot can be made random, the crystal grains can be made uniform and fine, and the rolling rate can be increased, which is economically advantageous. Therefore, at least one of homogenization annealing and hot rolling is preferably performed before cold rolling the ingot. These homogenization annealing and hot rolling are preferably performed at 700 ° C. to 900 ° C. for 30 minutes to 2 hours.
Cold rolling processing rate Z (%) ≧ 100−10X−Y (1)
X: Sn content (wt%)
Y: Content of the element other than Sn (wt%)

冷間圧延加工率Z(%)を(1)式のように定めたのは、各添加元素に対して(1)式を満足する圧延加工率で冷間圧延することにより、ND面においてプレス打ち抜き性を劣化する{200}面の集積度が大幅に減少し、同時に{220}面、{111}面、{311}面、特にプレス打ち抜き性を向上する{220}面の集積度が大幅に増加し、プレス打ち抜き性が向上した。この時のSNDはSND≧10を満足していた。さらに、引張強さ、0.2%耐力を向上でき、圧延加工率の増加とともに減少していた伸びを向上できた。また、冷間圧延後に再結晶温度未満の低温焼鈍を実施した場合、{200}面、{220}面、{111}面、{311}面の集積割合はほとんど変化せず、引張強さと0.2%耐力も維持できるため、圧延材と同様のプレス打ち抜き性を維持できる。さらに、低温焼鈍により伸び、即ち曲げ性が向上できる。
従って、(1)式を満たす冷間圧延加工率Z(%)の冷間圧延と再結晶温度未満の低温焼鈍を組み合わせることが最も望ましい。この時の低温焼鈍条件は、銅基合金の再結晶温度より50℃〜250℃低い温度で30分〜2時間行うのが好ましく、例えば、温度250℃〜350℃、30分〜1時間であり、この条件以外でも材料に同等の熱量を与えられる温度と時間の組み合わせであれば特性の発現が可能である。
The cold rolling processing rate Z (%) is determined as in the formula (1) because each additional element is pressed on the ND surface by cold rolling at a rolling processing rate that satisfies the formula (1). The degree of integration of {200} faces that degrade punchability is greatly reduced, while the degree of integration of {220} faces, {111} faces, {311} faces, especially {220} faces that improve press punchability The press punchability improved. At this time, S ND satisfied S ND ≧ 10. Furthermore, the tensile strength and 0.2% proof stress could be improved, and the elongation that had decreased with the increase of the rolling rate could be improved. Further, when low temperature annealing below the recrystallization temperature is performed after cold rolling, the accumulation ratio of {200} plane, {220} plane, {111} plane, {311} plane hardly changes, and the tensile strength is 0.2 Since% proof stress can be maintained, press punchability similar to that of rolled material can be maintained. Furthermore, elongation, that is, bendability can be improved by low-temperature annealing.
Therefore, it is most desirable to combine cold rolling with a cold rolling processing rate Z (%) satisfying the expression (1) and low-temperature annealing below the recrystallization temperature. The low-temperature annealing condition at this time is preferably 30 to 2 hours at a temperature lower by 50 ° C. to 250 ° C. than the recrystallization temperature of the copper-based alloy. For example, the temperature is 250 ° C. to 350 ° C., 30 minutes to 1 hour. Even under these conditions, the characteristics can be expressed as long as the combination of temperature and time can give the same amount of heat to the material.

一方、(1)式を満足しない圧延加工率では、{200}面の集積度がほとんど減少せず、{220}面の集積度があまり増加せず、プレス打ち抜き性も向上できなかった。この時のSNDはSND<10であった。さらに、(1)式を満足しない圧延加工率では、加工率の増加とともに引張強さ、0.2%耐力は向上したが、伸びが劣化し、その結果曲げ性が劣化した。また、冷間圧延後に再結晶温度未満の低温焼鈍を実施した場合、{200}面、{220}面、{111}面、{311}面の集積割合はほとんど変化せず、プレス打ち抜き性の向上は期待できない。さらに、曲げ加工性を向上しようとすると引張強さと0.2%耐力が劣化して両者のバランスを維持できなかった。 On the other hand, at the rolling processing rate not satisfying the formula (1), the {200} plane integration degree hardly decreased, the {220} plane integration degree did not increase much, and the press punchability could not be improved. The S ND at this time was S ND <10. Furthermore, at the rolling processing rate not satisfying the formula (1), the tensile strength and 0.2% proof stress improved with the increase of the processing rate, but the elongation deteriorated and as a result, the bendability deteriorated. In addition, when low temperature annealing below the recrystallization temperature is performed after cold rolling, the accumulation ratio of {200} plane, {220} plane, {111} plane, {311} plane is hardly changed, and the press punchability We cannot expect improvement. Furthermore, when trying to improve the bending workability, the tensile strength and 0.2% proof stress deteriorated, and the balance between the two could not be maintained.

上記現象の代表例として、図1にCu-1.0wt%Ni-0.90wt%Sn-0.05wt%Pの圧延加工率とND面における各結晶方位の集積度との関係を、図2にCu-1.0wt%Ni-0.90wt%Sn-0.05wt%Pの圧延加工率と引張強さ、0.2%耐力、伸びとの関係を示す。この時(1)式を満足する冷間圧延加工率はZ(%)≧89.95%である。図1より、Z(%)≧89.95%ではプレス打ち抜き性を劣化する{200}面の集積度が大幅に減少し、同時にプレス打ち抜き性を向上する{220}面の集積度が大幅に増加していることが分かる。この時のSNDは圧延加工率90%でSND=12、92.5%でSND=22であった。また、図2より、引張強さ、0.2%耐力を向上でき、さらに伸びを向上できたことは注目に値する結果である。 As a representative example of the above phenomenon, FIG. 1 shows the relationship between the rolling rate of Cu-1.0 wt% Ni-0.90 wt% Sn-0.05 wt% P and the degree of integration of each crystal orientation on the ND plane, and FIG. The relationship between the rolling rate of 1.0wt% Ni-0.90wt% Sn-0.05wt% P and the tensile strength, 0.2% proof stress, and elongation is shown. At this time, the cold rolling processing rate satisfying the expression (1) is Z (%) ≧ 89.95%. From Fig. 1, when Z (%) ≥ 89.95%, the integration of {200} faces that deteriorates press punchability is significantly reduced, and at the same time, the integration of {220} faces that improve press punchability is greatly increased. I understand that The S ND at this time was S ND = 22 in S ND = 12,92.5% 90% rolling ratio. From FIG. 2, it is worth noting that the tensile strength and 0.2% proof stress can be improved and the elongation can be further improved.

以下に本発明の実施例を記載する。   Examples of the present invention will be described below.

[実施例1]
表1にその化学成分値(wt%)を示す銅基合金No.1〜4、No.6〜9、No.11〜16をAr雰囲気で溶解し、縦型の連続鋳造機を用いて20×80×1000(mm)の鋳塊を鋳造し、得られた鋳塊を900℃で1時間の均質化熱処理を実施した。しかる後にNo.1〜4、No.6〜9、No.11〜16の板材を板厚20mmから6.0mmまで熱間圧延し、圧延後水急冷および酸洗を行った。得られた板厚6.0mmの板材を冷間圧延によって、No.1、7、8は板厚2.5mmまで、No.2、3、16は板厚2.0mmまで、No.4、6、15は板厚1.0mmまで、No.9は板厚3.5mmまで、No.11は板厚0.6mmまで、No.12は板厚0.5mmまで、No.13は板厚0.3mmまで、No.14は板厚0.23mmまで、各々圧延した。
一方、銅基合金No.5、10、17、18をAr雰囲気で溶解し、横型の連続鋳造機を用いて10×80×1000(mm)の鋳塊を鋳造し、得られた鋳塊を800℃で1時間の均質化熱処理を実施した。しかる後に冷間圧延、焼鈍、冷間圧延を繰り返して、No.5は板厚0.6mmまで、No.10は板厚0.3mmまで、No.17は板厚0.25mmまで、No.18は板厚0.24mmまで各々圧延した。
上記のようにして得られたNo.1〜18までの板材について550℃×1時間の熱処理を実施した。なお、熱処理後の板材の結晶粒径は5〜20μmであり、板材表面(ND面)についてX線回折を行いSNDを測定した結果、0.5≦SND<2.0であったことを付け加えておく。
ここで、X線回折強度の測定条件は以下の通りである。
管球:Cu、管電圧:40kV、管電流:30mA、サンプリング幅:0.020°、モノクロメーター使用、試料ホルダー:Al
なお、X線回折測定条件は、上記条件に限定されるものでなく、試料の種類によって適宜変更される。
[Example 1]
Copper base alloys Nos. 1 to 4, Nos. 6 to 9, and Nos. 11 to 16 whose chemical composition values (wt%) are shown in Table 1 are dissolved in an Ar atmosphere. A x80 x 1000 (mm) ingot was cast, and the resulting ingot was subjected to a homogenization heat treatment at 900 ° C for 1 hour. Thereafter, the plate materials No. 1 to 4, No. 6 to 9, and No. 11 to 16 were hot-rolled from a plate thickness of 20 mm to 6.0 mm, followed by water quenching and pickling after rolling. By cold rolling the obtained plate material with a thickness of 6.0 mm, No.1, 7, and 8 are up to 2.5 mm thick, No.2, 3, and 16 are up to 2.0 mm thick, No.4, 6, 15 Is up to 1.0mm, No.9 is up to 3.5mm, No.11 is up to 0.6mm, No.12 is up to 0.5mm, No.13 is up to 0.3mm, No.14 Each was rolled to a thickness of 0.23 mm.
On the other hand, copper base alloys No. 5, 10, 17, and 18 were melted in an Ar atmosphere, and a 10 × 80 × 1000 (mm) ingot was cast using a horizontal continuous casting machine. Homogenization heat treatment was performed at 800 ° C for 1 hour. After that, cold rolling, annealing, and cold rolling were repeated until No. 5 was up to 0.6 mm thick, No. 10 was up to 0.3 mm thick, No. 17 was up to 0.25 mm thick, No. 18 was the board Each was rolled to a thickness of 0.24 mm.
The plate materials No. 1 to 18 obtained as described above were heat-treated at 550 ° C. for 1 hour. The crystal grain size of the sheet material after the heat treatment is 5 to 20 [mu] m, the result of measuring the S ND subjected to X-ray diffraction analysis sheet surface (ND plane), which are made by those that were 0.5 ≦ S ND <2.0 .
Here, the measurement conditions of the X-ray diffraction intensity are as follows.
Tube: Cu, tube voltage: 40 kV, tube current: 30 mA, sampling width: 0.020 °, monochromator used, sample holder: Al
Note that the X-ray diffraction measurement conditions are not limited to the above conditions, and are appropriately changed depending on the type of the sample.

このようにして得られたNo.1〜18について冷間圧延を実施して、0.20mmの板厚に仕上げ、最後に、再結晶温度未満である300℃×30分の熱処理を実施して、評価用のサンプルとした。
このようにして得られたNo.1〜18のサンプルについて、まずSNDを測定し評価した。ついで、導電率、0.2%耐力、180°曲げ性、プレス打ち抜き性を評価した。導電率、0.2%耐力は、それぞれ、JIS H 0505、JIS Z 2241に準拠して測定し評価した。また、曲げ性は、180°曲げ試験(JIS H3110に準拠)にて、ピン幅0.50mmの試験片を圧延方向に平行な方向で打ち抜き、得られた試験片について内曲げ半径Rと板厚tの比をR/tとして、曲げ部表面に割れが発生しない最小のR/tで評価した。プレス打ち抜き性は、ピン幅0.50mmの端子形状の連続プレス加工を実施し、五万ショット打ち抜き後の材料の最大バリ高さをSEM観察にて測定し評価した。
Cold rolling was performed on No. 1 to 18 obtained in this way, finishing to a plate thickness of 0.20 mm, and finally, a heat treatment of 300 ° C. for 30 minutes that is less than the recrystallization temperature was performed, A sample for evaluation was used.
For a sample of No.1~18 obtained in this manner it was first measured S ND evaluation. Subsequently, the electrical conductivity, 0.2% proof stress, 180 ° bendability, and press punchability were evaluated. Electrical conductivity and 0.2% proof stress were measured and evaluated in accordance with JIS H 0505 and JIS Z 2241, respectively. The bendability is determined by a 180 ° bend test (based on JIS H3110). A test piece with a pin width of 0.50 mm is punched out in a direction parallel to the rolling direction. The ratio was R / t, and the evaluation was performed with the minimum R / t at which no cracks occurred on the surface of the bent portion. The press punchability was evaluated by measuring the maximum burr height of the material after punching 50,000 shots by SEM observation after carrying out continuous press processing of a pin shape with a pin width of 0.50 mm.

Figure 0005261691
Figure 0005261691

表1の結果から、次のことが明らかである。
No.1〜10の合金は、SND≧10を満足し冷間圧延加工率Z(%)≧100−10X−Yを満足しており、プレス打ち抜き後のバリ高さは10μm以下であり、プレス打ち抜き性に優れた銅基合金材料である。さらに、導電率、0.2%耐力、曲げ性のバランスに優れていた。
一方、実施冷間圧延加工率が理想冷間圧延加工率(Z(%)≧100−10X−Y)より低い比較例No.11〜18は、SND<10でありプレス打ち抜き後のバリ高さが10μmを超えていた。また、バリ高さが10μmに比較的近かったNo.15〜18のうち、No.15、16は導電率と0.2%耐力のバランスに優れていたものの、曲げ性が劣化しており、No.17、18は0.2%耐力と曲げ性のバランスに優れていたものの、導電率が15%IACS以下と低かった。
From the results in Table 1, the following is clear.
Alloy N O.1~10 is, S satisfies ND ≧ 10 cold rolling ratio Z (%) ≧ 100-10X-Y is satisfied, burr height after punching is at 10μm or less It is a copper-based alloy material excellent in press punchability. Furthermore, the balance of conductivity, 0.2% proof stress, and bendability was excellent.
On the other hand, Comparative Examples Nos. 11 to 18 in which the cold rolling reduction rate is lower than the ideal cold rolling reduction rate (Z (%) ≧ 100−10X−Y) are S ND <10 and the burr height after press punching Was over 10 μm. Moreover, among No.15-18, whose burr height was relatively close to 10 μm, No.15 and 16 were excellent in the balance between conductivity and 0.2% proof stress, but the bendability was deteriorated. 17 and 18 were excellent in the balance between 0.2% proof stress and bendability, but the conductivity was as low as 15% IACS or less.

[実施例2]
実施例1の表1中に示す合金No.1(板厚0.20mm)と市販のりん青銅合金(C5191 質別H、板厚0.20mm:6.5wt%Sn,0.2wt%P,残部Cu)及び銅基合金(C7025 質別H、板厚0.20mm:3.2wt%Ni,0.70wt%Si,0.15wt%Mg,残部Cu)について、導電率、0.2%耐力、ばね限界値、ビッカース硬さ、プレス加工性及び曲げ加工性を評価した。
導電率、0.2%耐力、ばね限界値、ビッカース硬さの測定は、各々、JIS H 0505,JIS Z 2241,JIS H 3130,JIS Z 2244に準拠して行った。プレス加工性は、実施例1と類似の方法でピン幅0.50mmの端子を連続で打ち抜き、材料のバリ高さが25μmを越えた段階でプレス加工を止めて、ここまでのショット数を最大ショット数として評価した。なお、このときのプレスのパンチ材質は超鋼、ダイの材質はダイス鋼であり、パンチとダイのクリアランスは8μm、プレスの回転数は250rpmであった。曲げ加工性は、180°曲げ試験(JIS H 3110に準拠)にて、ピン幅0.50mmの試験片を打ち抜き、得られた試験片について内曲げ半径Rと板厚tの比をR/tとして、曲げ部表面に割れが発生しない最小のR/tで評価した。結果を表2に示す。
[Example 2]
Table 1 shows to alloy in No.1 of Example 1 (thickness 0.20 mm) and a commercial phosphor bronze alloy (C5191 temper H, thickness 0.20mm: 6.5wt% Sn, 0.2wt% P, balance Cu ) And copper base alloy (C7025 grade H, thickness 0.20mm: 3.2wt% Ni, 0.70wt% Si, 0.15wt% Mg, balance Cu), conductivity, 0.2% proof stress, spring limit, Vickers hardness The press workability and bending workability were evaluated.
Measurements of electrical conductivity, 0.2% proof stress, spring limit value, and Vickers hardness were performed in accordance with JIS H 0505, JIS Z 2241, JIS H 3130, and JIS Z 2244, respectively. The press workability is the same as in Example 1. The terminal with a pin width of 0.50 mm is continuously punched, and the press work is stopped when the burr height of the material exceeds 25 μm. Rated as a number. At this time, the punch material of the press was super steel, the material of the die was die steel, the clearance between the punch and the die was 8 μm, and the rotational speed of the press was 250 rpm. For bending workability, a 180 ° bending test (conforming to JIS H 3110) was used to punch out a test piece with a pin width of 0.50 mm, and the ratio of the inner bending radius R to the thickness t of the obtained test piece was R / t. The evaluation was performed with the minimum R / t at which cracks did not occur on the surface of the bent part. The results are shown in Table 2.

Figure 0005261691
Figure 0005261691

表2に示す結果から、No.1の銅基合金は、従来の代表的なコネクタ、スイッチ、リレー用の銅基合金C5191,C7025と比較して、導電率、0.2%耐力、ばね限界値、ビッカース硬さ、プレス加工性及び曲げ加工性のバランスに優れ、特に挟ピッチコネクタ等に必要な90°方向の0.2%耐力、ばね限界値及び曲げ加工性を兼備していることが分かる。 From the results shown in Table 2, the No. 1 copper-based alloy has conductivity, 0.2% proof stress, spring limit value, compared with the conventional copper-based alloys C5191 and C7025 for typical connectors, switches and relays. It can be seen that it has an excellent balance of Vickers hardness, press workability, and bending workability, and has the 0.2% proof stress in the 90 ° direction, the spring limit value, and the bending workability that are particularly necessary for pinched pitch connectors.

冷間圧延加工率と方位密度及びSNDとの関係を示す図である。It is a figure which shows the relationship between a cold rolling processing rate, orientation density, and SND . 冷間圧延加工率と引張強さ、0.2%耐力及び伸びの関係を示す図である。It is a figure which shows the relationship between a cold rolling process rate, tensile strength, 0.2% yield strength, and elongation.

Claims (7)

0.5〜1.0質量%のSiと、0.33.0質量%のSnと、0.4〜4.0質量%のNiと、0.03〜1.00質量%のZnを含有し、残部がCuと不可避不純物からなり、表面のX線回折強度比SNDがSND≧10である[ただし、SND=[I{220}+I{111}+I{311}]÷I{200}。I{220}は{220}のX線回折強度、I{111}は{111}のX線回折強度、I{311}は{311}のX線回折強度、I{200}は{200}のX線回折強度であって、I{111}とI{311}はI{220}の1/10を超えるとき。]ことを特徴とするプレス打ち抜き性に優れた銅基合金。 0.5 to 1.0% by mass of Si, 0.3 to 3.0 % by mass of Sn, 0.4 to 4.0 % by mass of Ni, and 0.03 to 1.00% by mass of Zn The balance is made of Cu and inevitable impurities, and the surface X-ray diffraction intensity ratio S ND is S ND ≧ 10 [where S ND = [I {220} + I {111} + I {311}] ÷ I {200}. I {220} is the X-ray diffraction intensity of {220}, I {111} is the X-ray diffraction intensity of {111}, I {311} is the X-ray diffraction intensity of {311}, and I {200} is {200} X-ray diffraction intensity when I {111} and I {311} exceed 1/10 of I {220}. ] A copper-based alloy having excellent press punching characteristics. 0.5〜1.0質量%のSiと、0.33.0質量%のSnと、0.4〜4.0質量%のNiと、0.03〜0.50質量%のZnと、0.01〜0.10質量%のMgを含有し、残部がCuと不可避不純物からなり、表面のX線回折強度比SNDがSND≧10である[ただし、SND=[I{220}+I{111}+I{311}]÷I{200}。I{220}は{220}のX線回折強度、I{111}は{111}のX線回折強度、I{311}は{311}のX線回折強度、I{200}は{200}のX線回折強度であって、I{111}とI{311}はI{220}の1/10を超えるとき。]ことを特徴とするプレス打ち抜き性に優れた銅基合金。 0.5 to 1.0 mass% Si, 0.3 to 3.0 mass% Sn, 0.4 to 4.0 mass% Ni, and 0.03 to 0.50 mass% Zn And 0.01 to 0.10 % by mass of Mg, the balance is made of Cu and inevitable impurities, and the surface X-ray diffraction intensity ratio S ND is S ND ≧ 10 [where S ND = [I {220} + I {111} + I {311}] ÷ I {200}. I {220} is the X-ray diffraction intensity of {220}, I {111} is the X-ray diffraction intensity of {111}, I {311} is the X-ray diffraction intensity of {311}, and I {200} is {200} X-ray diffraction intensity when I {111} and I {311} exceed 1/10 of I {220}. ] A copper-based alloy having excellent press punching characteristics. 0.50〜0.70質量%のSiと、0.30〜0.52質量%のSnと、2.00〜3.20質量%のNiと、0.50〜1.00質量%のZnを含有し、残部がCuと不可避不純物からなり、表面のX線回折強度比SNDが12〜20である[ただし、SND=[I{220}+I{111}+I{311}]÷I{200}。I{220}は{220}のX線回折強度、I{111}は{111}のX線回折強度、I{311}は{311}のX線回折強度、I{200}は{200}のX線回折強度であって、I{111}とI{311}はI{220}の1/10を超えるとき。]ことを特徴とするプレス打ち抜き性に優れた銅基合金。 0.50 to 0.70% by mass of Si, 0.30 to 0.52% by mass of Sn, 2.00 to 3.20% by mass of Ni, and 0.50 to 1.00% by mass of Z n is contained, the balance is made of Cu and inevitable impurities, and the surface X-ray diffraction intensity ratio S ND is 12 to 20 [where S ND = [I {220} + I {111} + I {311}] ÷ I {200}. I {220} is the X-ray diffraction intensity of {220}, I {111} is the X-ray diffraction intensity of {111}, I {311} is the X-ray diffraction intensity of {311}, and I {200} is {200} X-ray diffraction intensity when I {111} and I {311} exceed 1/10 of I {220}. ] A copper-based alloy having excellent press punching characteristics. 0.50〜0.70質量%のSiと、0.30〜0.52質量%のSnと、2.00〜3.20質量%のNiと、0.50〜1.00質量%のZnと、0.01〜0.10質量%のMgを含有し、残部がCuと不可避不純物からなり、表面のX線回折強度比SNDが12〜20である[ただし、SND=[I{220}+I{111}+I{311}]÷I{200}。I{220}は{220}のX線回折強度、I{111}は{111}のX線回折強度、I{311}は{311}のX線回折強度、I{200}は{200}のX線回折強度であって、I{111}とI{311}はI{220}の1/10を超えるとき。]ことを特徴とするプレス打ち抜き性に優れた銅基合金。 0.50 to 0.70 mass% Si, 0.30 to 0.52 mass% Sn, 2.00 to 3.20 mass% Ni, and 0.50 to 1.00 mass% Zn And 0.01 to 0.10% by mass of Mg, the balance is made of Cu and inevitable impurities, and the surface X-ray diffraction intensity ratio S ND is 12 to 20 [where S ND = [I { 220} + I {111} + I {311}] ÷ I {200}. I {220} is the X-ray diffraction intensity of {220}, I {111} is the X-ray diffraction intensity of {111}, I {311} is the X-ray diffraction intensity of {311}, and I {200} is {200} X-ray diffraction intensity when I {111} and I {311} exceed 1/10 of I {220}. ] A copper-based alloy having excellent press punching characteristics. 0.5〜1.0質量%のSiと、0.33.0質量%のSnと、0.4〜4.0質量%のNiと、0.03〜1.00質量%のZnを含有し、残部がCuと不可避不純物からなる銅基合金の鋳塊、または、0.5〜1.0質量%のSiと、0.33.0質量%のSnと、0.4〜4.0質量%のNiと、0.03〜0.50質量%のZnと、0.01〜0.10質量%のMgを含有し、残部がCuと不可避不純物からなる銅基合金の鋳塊に対し、冷間圧延し次いで焼鈍することからなる組み合わせ工程を少なくとも1回以上行った後、次式(1)を満たす加工率Zで冷間圧延する
Z≧100−10X−Y (1)
[ただし、Zは冷間圧延加工率(%)、XはSnの含有量(質量%)、YはSn、Cu、不可避不純物以外の元素の含有量(質量%)の総量である。]ことを特徴とする、銅基合金の製造方法。
0.5 to 1.0% by mass of Si, 0.3 to 3.0 % by mass of Sn, 0.4 to 4.0 % by mass of Ni, and 0.03 to 1.00% by mass of Zn Ingot of copper-based alloy containing Cu and inevitable impurities, or 0.5 to 1.0% by mass of Si, 0.3 to 3.0 % by mass of Sn, 0.4 to 4.0 mass% of Ni, 0.03 to 0.50 mass% of Zn, and containing 0.01 to 0.10 mass% of Mg, the balance being copper base alloy consisting of Cu and unavoidable impurities After performing the combined process consisting of cold rolling and then annealing the ingot at least once, then cold rolling at a processing rate Z satisfying the following formula (1) Z ≧ 100−10X−Y (1 )
[However, Z is the cold rolling ratio (%), X is the Sn content (mass%), Y is the total content (mass%) of elements other than Sn, Cu, and inevitable impurities. ] A method for producing a copper-based alloy.
0.5〜1.0質量%のSiと、0.33.0質量%のSnと、0.4〜4.0質量%のNiと、0.03〜1.00質量%のZnを含有し、残部がCuと不可避不純物からなる銅基合金の鋳塊、または、0.5〜1.0質量%のSiと、0.33.0質量%のSnと、0.4〜4.0質量%のNiと、0.03〜0.50質量%のZnと、0.01〜0.10質量%のMgを含有し、残部がCuと不可避不純物からなる銅基合金の鋳塊に対し、冷間圧延し次いで焼鈍することからなる組み合わせ工程を少なくとも1回以上行った後、次式(1)を満たす加工率Zで冷間圧延し
Z≧100−10X−Y (1)
[ただし、Zは冷間圧延加工率(%)、XはSnの含有量(質量%)、YはSn、Cu、不可避不純物以外の元素の含有量(質量%)の総量である。]次いで再結晶温度未満の低温焼鈍を行うことを特徴とする、銅基合金の製造方法。
0.5 to 1.0% by mass of Si, 0.3 to 3.0 % by mass of Sn, 0.4 to 4.0 % by mass of Ni, and 0.03 to 1.00% by mass of Zn Ingot of copper-based alloy containing Cu and inevitable impurities, or 0.5 to 1.0% by mass of Si, 0.3 to 3.0 % by mass of Sn, 0.4 to 4.0 mass% of Ni, 0.03 to 0.50 mass% of Zn, and containing 0.01 to 0.10 mass% of Mg, the balance being copper base alloy consisting of Cu and unavoidable impurities The ingot is cold rolled and then annealed at least once, and then cold rolled at a processing rate Z that satisfies the following formula (1): Z ≧ 100−10X−Y (1 )
[However, Z is the cold rolling ratio (%), X is the Sn content (mass%), Y is the total content (mass%) of elements other than Sn, Cu, and inevitable impurities. Next, a method for producing a copper-base alloy, characterized by performing low-temperature annealing below the recrystallization temperature.
前記組み合わせ工程を行うに先立って、前記鋳塊に対し、予め、均質化焼鈍、熱間圧延のうちから選ばれる少なくとも一方を行う、請求項5または6に記載の方法。 The method according to claim 5 or 6 , wherein at least one selected from homogenization annealing and hot rolling is performed on the ingot in advance prior to performing the combination step.
JP2008280508A 2008-10-30 2008-10-30 Copper-base alloy with excellent press punchability and method for producing the same Expired - Lifetime JP5261691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280508A JP5261691B2 (en) 2008-10-30 2008-10-30 Copper-base alloy with excellent press punchability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280508A JP5261691B2 (en) 2008-10-30 2008-10-30 Copper-base alloy with excellent press punchability and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000383087A Division JP4729680B2 (en) 2000-12-18 2000-12-18 Copper-based alloy with excellent press punchability

Publications (2)

Publication Number Publication Date
JP2009068114A JP2009068114A (en) 2009-04-02
JP5261691B2 true JP5261691B2 (en) 2013-08-14

Family

ID=40604676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280508A Expired - Lifetime JP5261691B2 (en) 2008-10-30 2008-10-30 Copper-base alloy with excellent press punchability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5261691B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091911B2 (en) * 2013-01-29 2017-03-08 株式会社Shカッパープロダクツ Cu-Mn alloy sputtering target material, method for producing Cu-Mn alloy sputtering target material, and semiconductor element
CN107406915B (en) 2015-05-20 2019-07-05 古河电气工业株式会社 Copper alloy plate and its manufacturing method
JP6355671B2 (en) * 2016-03-31 2018-07-11 Jx金属株式会社 Cu-Ni-Si-based copper alloy strip and method for producing the same
CN106048300B (en) * 2016-06-21 2017-07-28 中色奥博特铜铝业有限公司 A kind of nickel brass band and preparation method thereof
JP7218270B2 (en) * 2019-10-18 2023-02-06 株式会社神戸製鋼所 Copper alloy rolled sheet and quality judgment method thereof
CN114293061B (en) * 2021-12-03 2022-06-24 中南大学 Cu-Fe-X alloy and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334157B2 (en) * 1992-03-30 2002-10-15 三菱伸銅株式会社 Copper alloy strip with less wear on stamping mold
JP4056175B2 (en) * 1999-05-13 2008-03-05 株式会社神戸製鋼所 Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability

Also Published As

Publication number Publication date
JP2009068114A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP4660735B2 (en) Method for producing copper-based alloy sheet
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP4441669B2 (en) Manufacturing method of copper alloy for connectors with excellent resistance to stress corrosion cracking
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP2004225093A (en) Copper-base alloy and manufacturing method therefor
JP5619389B2 (en) Copper alloy material
JP2011157630A (en) Copper alloy containing cobalt, nickel, and silicon
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP6311299B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP4177221B2 (en) Copper alloy for electronic equipment
JP2001152303A (en) Copper or copper-base alloy, excellent in press workability, and its manufacturing method
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
KR101537151B1 (en) Cu-Zn-Sn-Ca ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICE
JPH0987814A (en) Production of copper alloy for electronic equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5261691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term