JP6355671B2 - Cu-Ni-Si-based copper alloy strip and method for producing the same - Google Patents

Cu-Ni-Si-based copper alloy strip and method for producing the same Download PDF

Info

Publication number
JP6355671B2
JP6355671B2 JP2016070077A JP2016070077A JP6355671B2 JP 6355671 B2 JP6355671 B2 JP 6355671B2 JP 2016070077 A JP2016070077 A JP 2016070077A JP 2016070077 A JP2016070077 A JP 2016070077A JP 6355671 B2 JP6355671 B2 JP 6355671B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy strip
axis
heat treatment
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016070077A
Other languages
Japanese (ja)
Other versions
JP2017179511A (en
Inventor
知亮 ▲高▼橋
知亮 ▲高▼橋
宗彦 中妻
宗彦 中妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016070077A priority Critical patent/JP6355671B2/en
Priority to TW106104996A priority patent/TWI625403B/en
Priority to KR1020170029935A priority patent/KR101943191B1/en
Priority to CN201710206398.8A priority patent/CN107267805B/en
Publication of JP2017179511A publication Critical patent/JP2017179511A/en
Application granted granted Critical
Publication of JP6355671B2 publication Critical patent/JP6355671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Description

本発明は、電子材料などの電子部品の製造に好適に使用可能なCu−Ni−Si系銅合金条及びその製造方法に関する。   The present invention relates to a Cu-Ni-Si-based copper alloy strip that can be suitably used for manufacturing electronic parts such as electronic materials, and a method for manufacturing the same.

近年、ICパッケージの小型化に伴い、リードフレーム、電子機器の各種端子、コネクタなどの小型化、ひいては、多ピン化が要求されている。特に、QFN(quad flat non-leaded package)と称される、LSIパッケージのランドに電極パッドを配置し、リードピンを出さない構造が開発されており、多ピン化、狭ピッチ化がさらに要求される。これらリードフレーム等を多ピン化するにはエッチングによる微細加工が必要になるため、材料となる銅合金の強度を向上させると共に、エッチング性を向上させることが要求される。
そこで、介在物の個数を規制し、粗大な介在物によるエッチング性の低下を抑制した技術が提案されている(特許文献1)。
In recent years, along with the miniaturization of IC packages, miniaturization of lead frames, various terminals of electronic devices, connectors, and the like, and hence the increase in the number of pins has been demanded. In particular, a structure called QFN (quad flat non-leaded package), in which electrode pads are arranged on the land of an LSI package and lead pins are not output, has been developed. . In order to increase the number of pins of these lead frames and the like, fine processing by etching is required. Therefore, it is required to improve the strength of the copper alloy as a material and improve the etching property.
In view of this, a technique has been proposed in which the number of inclusions is regulated to prevent a decrease in etching property due to coarse inclusions (Patent Document 1).

特開2001−49369号公報JP 2001-49369 A

しかしながら、介在物の個数を規制するとエッチング不良は改善するが、銅合金の母材自身に生じる表面凹凸を改善することができない。そのため、エッチング後の表面に「アラビ」と呼ばれるガサツキが生じ、微細加工の妨げとなるという問題がある。又、特殊なエッチング液等を使用することで、エッチング後の表面凹凸を低減することは可能であるが、エッチング作業が煩雑になり、生産性の低下やコストアップを招くおそれがある。
すなわち、本発明は上記の課題を解決するためになされたものであり、強度を向上させると共に、エッチング後の表面凹凸を低減させたCu−Ni−Si系銅合金条及びその製造方法の提供を目的とする。
However, when the number of inclusions is restricted, the etching failure is improved, but the surface unevenness generated in the copper alloy base material itself cannot be improved. For this reason, there is a problem that roughness called “arabi” occurs on the surface after etching, which hinders fine processing. Further, it is possible to reduce the surface unevenness after etching by using a special etching solution or the like, but the etching work becomes complicated, which may lead to a decrease in productivity and an increase in cost.
That is, the present invention has been made to solve the above problems, and provides a Cu—Ni—Si based copper alloy strip having improved strength and reduced surface irregularities after etching, and a method for producing the same. Objective.

本発明者らは種々検討した結果、銅合金のあらゆる結晶方位の極密度がいずれも12以下であれば、各結晶方位によるエッチング速度の差が小さくなり、エッチング後の表面凹凸が低くなってエッチング性(例えばソフトエッチング性)が向上することを見出した。   As a result of various studies by the inventors, if the pole density of all crystal orientations of the copper alloy is all 12 or less, the difference in the etching rate due to each crystal orientation becomes small, and the surface unevenness after etching becomes low and the etching becomes low. It has been found that the property (for example, soft etching property) is improved.

すなわち、本発明のCu−Ni−Si系銅合金条はNi:1.5〜4.5質量%、Si:0.4〜1.1質量%を含有し、残部Cu及び不可避的不純物からなるCu−Ni−Si系銅合金条であって、導電率が30%IACS以上、引張強さが800MPa以上であり、結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、すべてのオイラー角における結晶方位の極密度が12以下である。   That is, the Cu—Ni—Si based copper alloy strip of the present invention contains Ni: 1.5 to 4.5 mass%, Si: 0.4 to 1.1 mass%, and consists of the balance Cu and inevitable impurities. A Cu—Ni—Si copper alloy strip having a conductivity of 30% IACS or more, a tensile strength of 800 MPa or more, and a direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material. When the rotation angle about the axis is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is φ2, after rotating the ND axis as the rotation axis by φ1, In order to make the ND axis and the z axis coincide with each other, it is rotated by Φ, and finally it is rotated by φ2 around the [001] axis, so that the ND, TD, RD of the material and the [001], [010], [100] of the crystal ] For Euler angles (φ1, Φ, φ2) Pole density of the crystal orientation in all Euler angle is 12 or less.

さらに、Mg、Fe、P、Mn、Co及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有することが好ましい。   Furthermore, it is preferable to contain 0.005-0.8 mass% of 1 or more types chosen from the group of Mg, Fe, P, Mn, Co, and Cr in total.

本発明のCu−Ni−Si系銅合金条の製造方法は、請求項1又は2記載のCu−Ni−Si系銅合金条の製造方法であって、Ni:1.5〜4.5質量%、Si:0.4〜1.1質量%を含有し、残部Cu及び不可避的不純物からなるCu−Ni−Si系銅合金条のインゴットを熱間圧延後に、溶体化処理、時効処理、材料温度220〜280℃、均熱時間が24時間以上の拡散熱処理をこの順で行い、さらに加工度40%以上で拡散熱処理後冷間圧延を行う。

The method for producing a Cu—Ni—Si based copper alloy strip according to the present invention is the method for producing a Cu—Ni—Si based copper alloy strip according to claim 1, wherein Ni: 1.5 to 4.5 mass. %, Si: 0.4 to 1.1% by mass, and after hot rolling a Cu—Ni—Si based copper alloy strip ingot consisting of the remainder Cu and inevitable impurities, solution treatment, aging treatment, material Diffusion heat treatment is performed in this order at a temperature of 220 to 280 ° C. and a soaking time of 24 hours or more , and cold rolling is performed after the diffusion heat treatment at a working degree of 40% or more.

本発明によれば、強度が高く、エッチング後の表面凹凸を低減させたCu−Ni−Si系銅合金条が得られる。   According to the present invention, it is possible to obtain a Cu—Ni—Si based copper alloy strip having high strength and reduced surface unevenness after etching.

オイラー角(φ1、Φ、φ2)を示す図である。It is a figure which shows Euler angles ((phi) 1, (phi), (phi) 2). 実施例4の結晶方位分布関数ODFを示す図である。FIG. 6 is a diagram showing a crystal orientation distribution function ODF of Example 4. 比較例18の結晶方位分布関数ODFを示す図である。14 is a diagram showing a crystal orientation distribution function ODF of Comparative Example 18. FIG. 図2、図3の19個のグラフのφ2を示す図である。It is a figure which shows (phi) 2 of 19 graphs of FIG. 2, FIG. 図2、図3の19個のグラフのΦ、φ1を示す図である。It is a figure which shows (PHI) and (phi) 1 of 19 graphs of FIG. 2, FIG.

以下、本発明の実施形態に係るCu−Ni−Si系銅合金条について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, the Cu—Ni—Si based copper alloy strip according to the embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

まず、銅合金条の組成の限定理由について説明する。
<Ni及びSi>
Ni及びSiは、時効処理を行うことによりNiとSiが微細なNiSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる。また、時効処理でのNiSiの析出に伴い、導電性が向上する。ただし、Ni濃度が1.5%未満の場合、またはSi濃度が0.4%未満の場合は、他方の成分を添加しても所望とする強度が得られない。また、Ni濃度が4.5%を超える場合、またはSi濃度が1.1%を超える場合は十分な強度が得られるものの、導電性が低くなり、更には強度の向上に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が母相中に生成し、曲げ加工性、エッチング性およびめっき性の低下を招く。よって、Niの含有量を1.5〜4.5%とし、Siの含有量を0.4〜1.1%とする。好ましくは、Niの含有量を1.6〜3.0%とし、Siの含有量を0.4〜0.7%とする。
First, the reasons for limiting the composition of the copper alloy strip will be described.
<Ni and Si>
Ni and Si form precipitation particles of intermetallic compounds mainly composed of Ni 2 Si in which Ni and Si are fine by performing an aging treatment, and remarkably increase the strength of the alloy. Further, the conductivity is improved with the precipitation of Ni 2 Si in the aging treatment. However, when the Ni concentration is less than 1.5% or the Si concentration is less than 0.4%, the desired strength cannot be obtained even if the other component is added. Further, when the Ni concentration exceeds 4.5%, or when the Si concentration exceeds 1.1%, sufficient strength can be obtained, but the conductivity becomes low, and further coarse Ni that does not contribute to the improvement of the strength. -Si-based particles (crystallized substances and precipitates) are generated in the matrix phase, and bending workability, etching properties and plating properties are reduced. Therefore, the Ni content is 1.5 to 4.5%, and the Si content is 0.4 to 1.1%. Preferably, the Ni content is 1.6 to 3.0%, and the Si content is 0.4 to 0.7%.

<その他の元素>
さらに、上記合金には、合金の強度、耐熱性、耐応力緩和性等を改善する目的で、更にMg,Fe,P,Mn,Co及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有することができる。これら元素の合計量が0.005質量%未満であると、上記効果が生じず、0.8質量%を超えると所望の特性は得られるものの、導電性や曲げ加工性が低下することがある。
<Other elements>
Furthermore, in the above alloy, for the purpose of improving the strength, heat resistance, stress relaxation resistance, etc. of the alloy, one or more selected from the group of Mg, Fe, P, Mn, Co and Cr is added in a total of 0.005 to 0.8. It can be contained by mass%. When the total amount of these elements is less than 0.005% by mass, the above effect does not occur, and when it exceeds 0.8% by mass, the desired properties can be obtained, but the conductivity and bending workability may be deteriorated.

<導電率と引張強さTS>
本発明の実施形態に係るCu−Ni−Si系銅合金条は、導電率が30%IACS以上、引張強さTSが800MPa以上である。
半導体素子の動作周波数の増大に伴い、通電による発熱が増大するので、銅合金条の導電率を30%IACS以上とする。
又、ワイヤボンディングする際のリードフレームの変形等を防止し、形状を維持するため、引張強さTSを800MPa以上とする。
<Conductivity and tensile strength TS>
The Cu—Ni—Si based copper alloy strip according to the embodiment of the present invention has a conductivity of 30% IACS or more and a tensile strength TS of 800 MPa or more.
As the operating frequency of the semiconductor element increases, heat generation due to energization increases, so the conductivity of the copper alloy strip is set to 30% IACS or higher.
Further, the tensile strength TS is set to 800 MPa or more in order to prevent deformation of the lead frame during wire bonding and to maintain the shape.

<各結晶方位の極密度>
本発明の実施形態に係るCu−Ni−Si系銅合金条は、結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、すべてのオイラー角(φ1,Φ,φ2のそれぞれは0〜90°)の結晶方位の極密度が12以下である。
<Polar density of each crystal orientation>
In the Cu—Ni—Si based copper alloy strip according to the embodiment of the present invention, the rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, and the ND direction is the axis. In order to make the ND axis and the z axis coincide with each other after the rotation angle is expressed as φ1 and the rotation angle about the [001] direction as φ2, the ND axis is rotated by φ1. By rotating only by φ2 around the [001] axis, and the Euler angle that is a set of angles at which the ND, TD, and RD of the material and the [001], [010], and [100] of the crystal coincide with each other. For (φ1, Φ, φ2), the pole density of crystal orientation of all Euler angles (each of φ1, Φ, φ2 is 0 to 90 °) is 12 or less.

ここで、オイラー角(φ1、Φ、φ2)は、図1に示すように、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組(φ1,Φ,φ2)をいう。オイラー角(φ1、Φ、φ2)は、図1に示すBunge方式で表される。又、「RD」は圧延方向、「ND」は圧延面に垂直な方向、「TD」は幅方向である。
本発明の実施形態に係るCu−Ni−Si系銅合金条のすべての結晶方位の極密度がいずれも12以下であれば、各結晶方位によるエッチング速度の差が小さくなり、エッチング後の表面凹凸が低くなってエッチング性が向上する。その結果、エッチング精度が向上して微細加工が可能となり、例えばリードフレーム等の多ピン化、狭ピッチ化を行うことができる。
Here, as shown in FIG. 1, the Euler angles (φ1, Φ, φ2) are rotated by φ1 with the ND axis as a rotation axis, and then rotated by Φ to match the ND axis and the z axis, Finally, a pair of angles (φ1, Φ, φ2) in which the ND, TD, RD of the material and the [001], [010], [100] of the crystal coincide with each other by rotating by φ2 around the [001] axis. Say. Euler angles (φ1, Φ, φ2) are represented by the Bunge method shown in FIG. “RD” is the rolling direction, “ND” is the direction perpendicular to the rolling surface, and “TD” is the width direction.
If the pole density of all the crystal orientations of the Cu—Ni—Si based copper alloy strip according to the embodiment of the present invention is all 12 or less, the difference in etching rate due to each crystal orientation becomes small, and the surface irregularities after etching Becomes lower and the etching property is improved. As a result, the etching accuracy is improved and fine processing is possible. For example, the number of pins such as a lead frame can be reduced and the pitch can be reduced.

一方、いずれかのオイラー角における結晶方位の極密度が12を超えると、その結晶方位のエッチング速度が他の方位のエッチング速度と大きく異なってしまい、エッチング後の表面凹凸が大きくなる。
結晶方位の極密度の下限は特に制限されないが、銅粉同様のランダム方位の極密度である1が下限値である。
すべての結晶方位の極密度をいずれも12以下に制御する方法としては、時効処理の後に「拡散熱処理及びその後の冷間圧延」を行うことが挙げられる。拡散熱処理及び拡散熱処理後冷間圧延については後述する。
On the other hand, if the pole density of the crystal orientation at any Euler angle exceeds 12, the etching rate of the crystal orientation is greatly different from the etching rate of other orientations, and the surface unevenness after etching becomes large.
The lower limit of the crystal orientation pole density is not particularly limited, but the lower limit is 1 which is the pole density of random orientation similar to copper powder.
As a method for controlling the pole density of all crystal orientations to 12 or less, “diffusion heat treatment and subsequent cold rolling” may be performed after the aging treatment. The diffusion heat treatment and the cold rolling after the diffusion heat treatment will be described later.

<Cu−Ni−Si系銅合金条の製造>
本発明の実施形態に係るCu−Ni−Si系銅合金条は、通常、インゴットを熱間圧延、冷間圧延、溶体化処理、時効処理、拡散熱処理、拡散熱処理後冷間圧延、歪取焼鈍の順で行って製造することができる。溶体化処理前の冷間圧延は必須ではなく、必要に応じて実施してもよい。また、溶体化処理後で時効処理前に冷間圧延を必要に応じて実施してもよい。上記各工程の間に、表面の酸化スケール除去のための研削、研磨、ショットブラスト、酸洗等を適宜行うことができる。
<Manufacture of Cu-Ni-Si-based copper alloy strip>
The Cu—Ni—Si based copper alloy strip according to the embodiment of the present invention is usually obtained by hot rolling an ingot, cold rolling, solution treatment, aging treatment, diffusion heat treatment, cold rolling after diffusion heat treatment, strain relief annealing. It can be manufactured in the order of. Cold rolling before solution treatment is not essential, and may be performed as necessary. Moreover, you may implement cold rolling as needed after solution treatment and before an aging treatment. Between the above steps, grinding, polishing, shot blasting, pickling and the like for removing oxide scale on the surface can be appropriately performed.

溶体化処理は、Ni−Si系化合物などのシリサイドをCu母地中に固溶させ、同時にCu母地を再結晶させる熱処理である。溶体化処理を、熱間圧延で兼ねることもできる。
時効処理は、溶体化処理で固溶させたシリサイドを、NiSiを主とした金属間化合物の微細粒子として析出させる。この時効処理で強度と導電率が上昇する。時効処理は、例えば375〜625℃、0.5〜50時間の条件で行うことができ、これにより強度を向上させことができる。
The solution treatment is a heat treatment in which a silicide such as a Ni—Si compound is dissolved in a Cu matrix and the Cu matrix is recrystallized at the same time. The solution treatment can also be performed by hot rolling.
In the aging treatment, silicide dissolved in the solution treatment is precipitated as fine particles of an intermetallic compound mainly composed of Ni 2 Si. This aging treatment increases strength and conductivity. The aging treatment can be performed, for example, under conditions of 375 to 625 ° C. and 0.5 to 50 hours, whereby the strength can be improved.

<拡散熱処理及び拡散熱処理後冷間圧延>
時効処理の後、拡散熱処理を行う。拡散熱処理は、例えば材料温度220〜280℃、均熱時間が24時間以上の条件で行うことができる。
時効処理では、上述のようにマトリクス(母材)中のNi,SiがNiSi等の金属間化合物として析出するが、析出粒子近傍のマトリクスのNi,Siが消費され、周囲に比べてNi,Siの濃度が低下する。つまり、析出粒子・マトリクス境界から周囲のマトリクスへ向けてNi,Siの濃度勾配が生じる。そして、マトリクス中にこのような濃度勾配が生じると、濃度(組成)の差が組織の差となって極密度が12より大きい方位が発生する。
そこで、低温加熱となる拡散熱処理を行うことで、マトリクス中の濃度勾配が低減して一様になるようにNi,Siが拡散し、圧延後の組織が一方向に集合しなくなる(極密度が低くなる)。
<Diffusion heat treatment and cold rolling after diffusion heat treatment>
After the aging treatment, diffusion heat treatment is performed. The diffusion heat treatment can be performed, for example, under conditions where the material temperature is 220 to 280 ° C. and the soaking time is 24 hours or more.
In the aging treatment, Ni and Si in the matrix (base material) are precipitated as an intermetallic compound such as Ni 2 Si as described above. However, Ni and Si in the matrix in the vicinity of the precipitated particles are consumed, and Ni is compared with the surroundings. , Si concentration decreases. That is, a concentration gradient of Ni and Si is generated from the precipitate particle / matrix boundary toward the surrounding matrix. When such a concentration gradient occurs in the matrix, a difference in concentration (composition) becomes a difference in structure, and an orientation having a pole density greater than 12 is generated.
Therefore, by performing diffusion heat treatment to be low-temperature heating, Ni and Si diffuse so that the concentration gradient in the matrix is reduced and uniform, and the structure after rolling does not collect in one direction (the extreme density is Lower).

拡散熱処理の温度が220℃未満、又はその時間が24時間未満の場合、拡散熱処理が不十分となり、母材(マトリックス)の濃度勾配が低減せず、組成が不均一となって極密度が12を超える結晶方位が生じてしまう。
拡散熱処理の温度が280℃を超える場合、拡散熱処理が過度となって、NiSiを主とした金属間化合物の析出が顕著になり、同様に母材(マトリックス)の組成が不均一になって結晶方位の極密度が12を超えてしまう。
なお、拡散熱処理の時間は24時間以上であれば良いが、24〜36時間が好ましい。
When the temperature of the diffusion heat treatment is less than 220 ° C. or the time is less than 24 hours, the diffusion heat treatment becomes insufficient, the concentration gradient of the base material (matrix) is not reduced, the composition becomes nonuniform, and the extreme density is 12 A crystal orientation exceeding 1 is generated.
When the temperature of the diffusion heat treatment exceeds 280 ° C., the diffusion heat treatment becomes excessive, the precipitation of intermetallic compounds mainly containing Ni 2 Si becomes remarkable, and the composition of the base material (matrix) becomes nonuniform as well. As a result, the polar density of the crystal orientation exceeds 12.
The diffusion heat treatment time may be 24 hours or longer, but is preferably 24 to 36 hours.

次に、拡散熱処理の後に冷間圧延(拡散熱処理後冷間圧延)を加工度40%以上で行う。上述の溶体化処理によって再結晶組織が残り、拡散熱処理を十分に行っても極密度が大きくなる原因となる。
そこで、拡散熱処理後に加工度40%以上の冷間圧延を行えば、溶体化処理によって生じた再結晶集合組織を加工によって消失することができる。又、上述のNiSi等の析出粒子は、圧延加工によって特定方位への集合が生じることを抑制する。これらの効果の兼ねあいにより、極密度が低減する。
拡散熱処理後冷間圧延の加工度が40%未満であると、溶体化によって残った再結晶組織を十分に消失させることが困難であり、極密度が12を超える結晶方位が生じてしまう。
Next, after the diffusion heat treatment, cold rolling (cold rolling after diffusion heat treatment) is performed at a workability of 40% or more. A recrystallized structure remains by the solution treatment described above, and even if the diffusion heat treatment is sufficiently performed, the extreme density is increased.
Therefore, if cold rolling with a workability of 40% or more is performed after the diffusion heat treatment, the recrystallized texture generated by the solution treatment can be eliminated by the processing. In addition, the above-described precipitated particles such as Ni 2 Si suppress the occurrence of aggregation in a specific direction by rolling. By combining these effects, the pole density is reduced.
If the degree of work of cold rolling after diffusion heat treatment is less than 40%, it is difficult to sufficiently eliminate the recrystallized structure remaining by solution treatment, and crystal orientation with a pole density exceeding 12 is generated.

拡散熱処理後冷間圧延の加工度は40〜90%が好ましい。加工度が90%を超えると、強加工によって特定の方位の極密度が大きくなり、析出粒子による特定方位の成長を抑制する効果を上回り、極密度が12を超える結晶方位が生じることがある。
拡散熱処理後冷間圧延の加工度は、拡散熱処理後冷間圧延の直前の材料厚みに対する、拡散熱処理後冷間圧延による厚みの変化率である。
本発明のCu−Ni−Si系銅合金条の厚みは特に限定されないが、例えば0.03〜0.6mmとすることができる。
The degree of cold rolling after diffusion heat treatment is preferably 40 to 90%. If the degree of work exceeds 90%, the extreme density of a specific orientation increases due to strong working, which exceeds the effect of suppressing the growth of the specific orientation by the precipitated particles, and a crystal orientation with a pole density exceeding 12 may occur.
The degree of workability of cold rolling after diffusion heat treatment is the rate of change in thickness due to cold rolling after diffusion heat treatment relative to the material thickness immediately before cold rolling after diffusion heat treatment.
The thickness of the Cu—Ni—Si based copper alloy strip of the present invention is not particularly limited, but may be 0.03 to 0.6 mm, for example.

各実施例及び各比較例の試料を、以下のように作製した。
電気銅を原料とし、大気溶解炉を用いて表1、表2に示す組成の銅合金を溶製し、厚さ20mm×幅60mmのインゴットに鋳造した。このインゴットを950℃で板厚10mmまで熱間圧延を行った。熱間圧延後、研削し、冷間圧延、溶体化処理をこの順に行った。
次に、表1、表2に示す条件で、時効処理及び拡散熱処理をこの順に行った。その後、表1、表2に示す加工度で拡散熱処理後冷間圧延を行い、100〜200℃で1〜30秒の歪取焼鈍を行って板厚0.126mmの試料を得た。
Samples of Examples and Comparative Examples were prepared as follows.
Using copper as a raw material, copper alloys having the compositions shown in Tables 1 and 2 were melted using an atmospheric melting furnace and cast into ingots having a thickness of 20 mm and a width of 60 mm. This ingot was hot-rolled at 950 ° C. to a plate thickness of 10 mm. After hot rolling, grinding, cold rolling, and solution treatment were performed in this order.
Next, an aging treatment and a diffusion heat treatment were performed in this order under the conditions shown in Tables 1 and 2. Thereafter, cold rolling was performed after the diffusion heat treatment at the processing levels shown in Tables 1 and 2, and a stress relief annealing was performed at 100 to 200 ° C. for 1 to 30 seconds to obtain a sample having a plate thickness of 0.126 mm.

<導電率(%IACS)>
得られた試料につき、JIS H0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
<Conductivity (% IACS)>
About the obtained sample, the electrical conductivity (% IACS) of 25 degreeC was measured by 4 terminal method based on JISH0505.

<引張強さ(TS)>
得られた試料につき、引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における引張強さ(TS)をそれぞれ測定した。まず、各試料から、引張方向が圧延方向になるように、プレス機を用いてJIS13B号試験片を作製した。引張試験の条件は、試験片幅12.7mm、室温(15〜35℃)、引張速度5mm/min、ゲージ長さ50mmとした。
<Tensile strength (TS)>
About the obtained sample, the tensile strength (TS) in a direction parallel to the rolling direction was measured by a tensile tester according to JIS-Z2241. First, from each sample, a JIS13B test piece was prepared using a press so that the tensile direction was the rolling direction. The conditions of the tensile test were a test piece width of 12.7 mm, a room temperature (15 to 35 ° C.), a tensile speed of 5 mm / min, and a gauge length of 50 mm.

<結晶方位の極密度>
得られた試料につき、X線回折法を用いて試料の表面の正極点測定を行った。X線回折装置は、株式会社リガク製RINT−2000を用い、Schulz反射法で測定を行った。測定条件は以下のとおりである。
X線源:コバルト、加速電圧:30kV、管電流:100mA、発散スリット:1°、発散縦制限スリット:1.2mm、散乱スリット:7mm、受光スリット:7mm
α角度ステップ:5°、β角度ステップ:5°、計数時間:2秒/ステップ
但し、反射法では、試料面に対するX線の入射角が浅くなると測定が困難になるため、実際に測定できる角度範囲は正極点図上で0°≦α≦75°、0°≦β≦360°(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸、β:前記回転軸に平行な軸)となる。
<Polar density of crystal orientation>
About the obtained sample, the positive electrode point measurement of the surface of the sample was performed using the X ray diffraction method. The X-ray diffractometer was measured by the Schulz reflection method using RINT-2000 manufactured by Rigaku Corporation. The measurement conditions are as follows.
X-ray source: cobalt, acceleration voltage: 30 kV, tube current: 100 mA, divergence slit: 1 °, divergence length limit slit: 1.2 mm, scattering slit: 7 mm, light receiving slit: 7 mm
α angle step: 5 °, β angle step: 5 °, counting time: 2 seconds / step However, in the reflection method, measurement becomes difficult when the X-ray incidence angle with respect to the sample surface becomes shallow. The ranges are 0 ° ≦ α ≦ 75 ° and 0 ° ≦ β ≦ 360 ° on the positive dot diagram (where α is an axis perpendicular to the rotational axis of the goniometer for diffraction defined in the Schulz method, β is parallel to the rotational axis) The right axis).

得られた測定結果を株式会社リガク製ソフトウェアPole Figure DataProcessingを用いて極点図化し、株式会社ノルム工学製の立方晶用結晶方位分布関数の解析プログラム(製品名:Standard ODF)により結晶方位分布関数ODF(Orientation Dsitribution Function)を求め、すべてのオイラー角における結晶方位の極密度を出力した。そして、それらの中から極密度の最大値を求めた。なお、オイラー角は5°刻みで上記ソフトウェアから出力される。
なお、完全にランダムな結晶方位を有する材料では、すべてのオイラー角における結晶方位の極密度が1となるので、この値に対して規格化した値が試料の極密度の数値である。
The obtained measurement results are converted into pole figures using the Pole Figure DataProcessing software manufactured by Rigaku Corporation, and the crystal orientation distribution function ODF is analyzed by a crystal orientation distribution function analysis program (product name: Standard ODF) for cubic crystals manufactured by Norm Engineering Co., Ltd. (Orientation Distration Function) was calculated, and the polar density of crystal orientation at all Euler angles was output. And the maximum value of pole density was calculated | required from them. The Euler angle is output from the above software in 5 ° increments.
In a material having a completely random crystal orientation, the pole density of the crystal orientation at all Euler angles is 1, and the value normalized with respect to this value is the numeric value of the pole density of the sample.

なお、図2、図3は、それぞれ後述する実施例4、比較例18の結晶方位分布関数ODFを示す。ここで、図2、図3は、右下の表示を除き、縦5つ、横4つの19個のグラフを合わせて一覧表示したものであり、各グラフのφ2(0〜90°:5°刻み)を図4に示す。又、図5に示すように、個々のグラフの縦軸がΦ、横軸がφ1であり、各グラフを示すボックスの上から下へ向かってΦ=0〜90°の値を採り、各グラフを示すボックスの左から右へ向かってΦ1=0〜90°の値を採る。   2 and 3 show the crystal orientation distribution function ODF of Example 4 and Comparative Example 18 described later, respectively. Here, FIG. 2 and FIG. 3 show a list of 19 graphs, 5 in the vertical direction and 4 in the horizontal direction, except for the display at the lower right, and φ2 (0 to 90 °: 5 °) of each graph. The step is shown in FIG. In addition, as shown in FIG. 5, the vertical axis of each graph is Φ and the horizontal axis is φ1, and the value of Φ = 0 to 90 ° is taken from the top to the bottom of the box indicating each graph. The value of Φ1 = 0 to 90 ° is taken from the left to the right of the box indicating.

<エッチング性>
得られた試料の両面につき、濃度47ボーメに調整した液温40℃の塩化第二鉄水溶液を1〜5分スプレーし、板厚が0.063mm(元の0.126mmの半分の厚み)になるように調整してエッチングした。コンフォーカル顕微鏡(レーザーテック社製、型番:HD100D)を用い、エッチング後表面を圧延平行方向に基準長さ0.8mm、評価長さ4mmとしてJIS B0601(2013)に準ずる算術平均粗さRaを測定した。
エッチング後の算術平均粗さRaが0.15μm未満であれば、エッチング後の凹凸が少なくエッチング性に優れる。
<Etching property>
Spray both sides of the obtained sample with an aqueous ferric chloride solution at a liquid temperature of 40 ° C. adjusted to a concentration of 47 baume for 1 to 5 minutes to a plate thickness of 0.063 mm (half the original 0.126 mm thickness). It adjusted so that it might become, and etched. Arithmetic average roughness Ra according to JIS B0601 (2013) was measured using a confocal microscope (manufactured by Lasertec Co., Ltd., model number: HD100D) with the etched surface having a reference length of 0.8 mm in the parallel direction of rolling and an evaluation length of 4 mm. .
When the arithmetic average roughness Ra after etching is less than 0.15 μm, there are few irregularities after etching and the etching property is excellent.

得られた結果を表1、表2に示す。   The obtained results are shown in Tables 1 and 2.

表1、表2から明らかなように、すべてのオイラー角における結晶方位の極密度が12以下である各実施例の場合、強度が高くてリード変形が少ないと共に、エッチング後の表面凹凸が低減された。   As is clear from Tables 1 and 2, in each example where the pole density of the crystal orientation at all Euler angles is 12 or less, the strength is high and the lead deformation is small, and the surface roughness after etching is reduced. It was.

一方、拡散熱処理を実施しなかった比較例1〜4の場合、結晶方位の極密度が12を超え、エッチングの表面凹凸が高くなった。なお、比較例3はNiの含有量が規定範囲未満であったため、引張強さが800MPa未満となった。又、比較例4はNi及びSiの含有量が規定範囲を超えたため、導電率が30%IACS未満となった。
拡散熱処理の温度が280℃を超えた比較例5〜9の場合、結晶方位の極密度が12を超え、エッチングの表面凹凸が高くなった。これは、拡散熱処理の温度が高いためにシリサイドの析出が顕著に生じ、マトリクス中のNi,Siに濃度勾配(組成の不均一)が生じたためと考えられる。なお、比較例9はNi及びSiの含有量が規定範囲を超えたため、導電率が30%IACS未満となった。
On the other hand, in Comparative Examples 1 to 4 in which the diffusion heat treatment was not performed, the pole density of the crystal orientation exceeded 12, and the etching surface unevenness increased. In Comparative Example 3, since the Ni content was less than the specified range, the tensile strength was less than 800 MPa. In Comparative Example 4, since the Ni and Si contents exceeded the specified range, the conductivity was less than 30% IACS.
In Comparative Examples 5 to 9 in which the temperature of the diffusion heat treatment exceeded 280 ° C., the pole density of the crystal orientation exceeded 12, and the etching surface unevenness increased. This is thought to be due to the fact that silicide precipitation was prominent due to the high temperature of the diffusion heat treatment, and a concentration gradient (non-uniform composition) occurred in Ni and Si in the matrix. In Comparative Example 9, since the Ni and Si contents exceeded the specified range, the conductivity was less than 30% IACS.

拡散熱処理の温度が220℃未満の比較例10,11の場合、及び拡散熱処理の時間が24時間未満の比較例12〜16の場合、結晶方位の極密度が12を超え、エッチングの表面凹凸が高くなった。なお、比較例15はNiの含有量が規定範囲未満であったため、引張強さが800MPa未満となった。又、比較例16はSiの含有量が規定範囲を超えたため、導電率が30%IACS未満となった。
拡散熱処理後冷間圧延の加工度が40%未満の比較例17〜21の場合も、結晶方位の極密度が12を超え、エッチングの表面凹凸が高くなった。なお、比較例20はSiの含有量が規定範囲未満であったため、引張強さが800MPa未満となった。又、比較例21はNi,Siの含有量が規定範囲を超えたため、導電率が30%IACS未満となった。
In Comparative Examples 10 and 11 in which the temperature of the diffusion heat treatment is less than 220 ° C. and in Comparative Examples 12 to 16 in which the time of the diffusion heat treatment is less than 24 hours, the pole density of the crystal orientation exceeds 12, and the etching surface irregularities It became high. In Comparative Example 15, since the Ni content was less than the specified range, the tensile strength was less than 800 MPa. In Comparative Example 16, since the Si content exceeded the specified range, the conductivity was less than 30% IACS.
Also in Comparative Examples 17 to 21 in which the degree of cold rolling after diffusion heat treatment was less than 40%, the pole density of the crystal orientation exceeded 12, and the etching surface unevenness increased. In Comparative Example 20, since the Si content was less than the specified range, the tensile strength was less than 800 MPa. In Comparative Example 21, since the Ni and Si contents exceeded the specified range, the conductivity was less than 30% IACS.

Claims (3)

Ni:1.5〜4.5質量%、Si:0.4〜1.1質量%を含有し、残部Cu及び不可避的不純物からなるCu−Ni−Si系銅合金条であって、
導電率が30%IACS以上、引張強さが800MPa以上であり、
結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、
ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、すべてのオイラー角における結晶方位の極密度が12以下であるCu−Ni−Si系銅合金条。
It is a Cu—Ni—Si based copper alloy strip containing Ni: 1.5 to 4.5% by mass, Si: 0.4 to 1.1% by mass, the balance being Cu and inevitable impurities,
Conductivity is 30% IACS or more, tensile strength is 800 MPa or more,
The rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is When written as φ2,
After rotating by φ1 with the ND axis as the rotation axis, it is rotated by φ to match the ND axis and the z axis, and finally rotated by φ2 around the [001] axis, so that the materials ND, TD, RD And Euler angles (φ1, Φ, φ2), which are pairs of angles where [001], [010], and [100] of the crystal coincide with each other, Cu polarities of crystal orientations at all Euler angles are 12 or less. -Ni-Si type copper alloy strip.
さらに、Mg、Fe、P、Mn、Co及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有する請求項1記載のCu−Ni−Si系銅合金条。 The Cu-Ni-Si-based copper alloy strip according to claim 1, further comprising 0.005 to 0.8 mass% in total of at least one selected from the group consisting of Mg, Fe, P, Mn, Co and Cr. Ni:1.5〜4.5質量%、Si:0.4〜1.1質量%を含有し、残部Cu及び不可避的不純物からなるCu−Ni−Si系銅合金条のインゴットを熱間圧延後に、溶体化処理、時効処理、材料温度220〜280℃、均熱時間が24時間以上の拡散熱処理をこの順で行い、さらに加工度40%以上で拡散熱処理後冷間圧延を行う請求項1又は2記載のCu−Ni−Si系銅合金条の製造方法。 Hot rolling an ingot of Cu—Ni—Si based copper alloy strip containing Ni: 1.5 to 4.5 mass%, Si: 0.4 to 1.1 mass%, and remaining Cu and inevitable impurities after solution treatment, aging treatment, claim material temperature 220 to 280 ° C., the soaking time perform diffusion heat treatment of 24 hours or more in this order, for further diffusion heat treatment after cold rolling at a working ratio of 40% or more 1 Or the manufacturing method of Cu-Ni-Si type | system | group copper alloy strip | line of 2 description .
JP2016070077A 2016-03-31 2016-03-31 Cu-Ni-Si-based copper alloy strip and method for producing the same Active JP6355671B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016070077A JP6355671B2 (en) 2016-03-31 2016-03-31 Cu-Ni-Si-based copper alloy strip and method for producing the same
TW106104996A TWI625403B (en) 2016-03-31 2017-02-16 Cu-Ni-Si series copper alloy bar and manufacturing method thereof
KR1020170029935A KR101943191B1 (en) 2016-03-31 2017-03-09 Cu-ni-si-based copper alloy strip and method of manufacturing the same
CN201710206398.8A CN107267805B (en) 2016-03-31 2017-03-31 Cu-Ni-Si series copper alloy strip and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070077A JP6355671B2 (en) 2016-03-31 2016-03-31 Cu-Ni-Si-based copper alloy strip and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017179511A JP2017179511A (en) 2017-10-05
JP6355671B2 true JP6355671B2 (en) 2018-07-11

Family

ID=60005545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070077A Active JP6355671B2 (en) 2016-03-31 2016-03-31 Cu-Ni-Si-based copper alloy strip and method for producing the same

Country Status (4)

Country Link
JP (1) JP6355671B2 (en)
KR (1) KR101943191B1 (en)
CN (1) CN107267805B (en)
TW (1) TWI625403B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472477B2 (en) * 2017-03-30 2019-02-20 Jx金属株式会社 Cu-Ni-Si copper alloy strip
WO2019138971A1 (en) * 2018-01-10 2019-07-18 古河電気工業株式会社 Insulated wire
CN108220670B (en) * 2018-01-11 2020-01-21 中北大学 Casting-rolling method and casting-rolling equipment for Cu-Ni-Si-Mg alloy plate strip

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702543A (en) * 1992-12-21 1997-12-30 Palumbo; Gino Thermomechanical processing of metallic materials
JP4068626B2 (en) * 2005-03-31 2008-03-26 日鉱金属株式会社 Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
JP5028657B2 (en) * 2006-07-10 2012-09-19 Dowaメタルテック株式会社 High-strength copper alloy sheet with little anisotropy and method for producing the same
JP5261691B2 (en) * 2008-10-30 2013-08-14 Dowaメタルテック株式会社 Copper-base alloy with excellent press punchability and method for producing the same
JP5476149B2 (en) * 2010-02-10 2014-04-23 株式会社神戸製鋼所 Copper alloy with low strength anisotropy and excellent bending workability
TWI499067B (en) 2010-03-17 2015-09-01 Nippon Steel & Sumitomo Metal Corp Interconnects for metal tape and solar collectors
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
JP5610643B2 (en) 2012-03-28 2014-10-22 Jx日鉱日石金属株式会社 Cu-Ni-Si-based copper alloy strip and method for producing the same
JP6196512B2 (en) * 2012-09-28 2017-09-13 Jx金属株式会社 Copper alloy sheet with excellent heat dissipation and repeated bending workability
CN106460099B (en) * 2014-05-30 2020-03-17 古河电气工业株式会社 Copper alloy sheet material, connector made of copper alloy sheet material, and method for manufacturing copper alloy sheet material
CN106661673A (en) * 2014-07-09 2017-05-10 古河电气工业株式会社 Copper alloy sheet material, connector, and method for producing copper alloy sheet material

Also Published As

Publication number Publication date
KR20170113096A (en) 2017-10-12
KR101943191B1 (en) 2019-01-28
CN107267805A (en) 2017-10-20
CN107267805B (en) 2018-12-25
TWI625403B (en) 2018-06-01
TW201736612A (en) 2017-10-16
JP2017179511A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5448763B2 (en) Copper alloy material
JP6155405B2 (en) Copper alloy material and method for producing the same
JP6719316B2 (en) Copper alloy plate material for heat dissipation member and manufacturing method thereof
JP5610643B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
JP2012126934A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2013194246A (en) Cu-Cr-Sn-BASED COPPER ALLOY SHEET FOR LEAD FRAME WITH LITTLE RESIDUAL STRESS
JP2010007174A (en) Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP6355671B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
WO2018180941A1 (en) Cu-Ni-Si-BASED COPPER ALLOY STRIP
JP6246456B2 (en) Titanium copper
KR102349545B1 (en) Copper alloy wire rod and manufacturing method thereof
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP2013231224A (en) Copper alloy material for electric and electronic components having excellent bending processability
WO2019187767A1 (en) Insulating substrate and method for manufacturing same
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2016211077A (en) Titanium copper
JP2018070916A (en) Copper alloy
JP6762333B2 (en) Cu-Ni-Si based copper alloy strip
JP6309331B2 (en) Cu-Fe-P copper alloy sheet having excellent half-etching characteristics and method for producing the same
JP2013082968A (en) Copper alloy strip and method for producing the same
JP2017071812A (en) Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT
TW202332785A (en) Copper alloy for electronic material, and electronic component
JP2015203141A (en) Cu-Co-Si ALLOY AND PRODUCTION METHOD THEREOF

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180612

R150 Certificate of patent or registration of utility model

Ref document number: 6355671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250