JP5610643B2 - Cu-Ni-Si-based copper alloy strip and method for producing the same - Google Patents

Cu-Ni-Si-based copper alloy strip and method for producing the same Download PDF

Info

Publication number
JP5610643B2
JP5610643B2 JP2012073173A JP2012073173A JP5610643B2 JP 5610643 B2 JP5610643 B2 JP 5610643B2 JP 2012073173 A JP2012073173 A JP 2012073173A JP 2012073173 A JP2012073173 A JP 2012073173A JP 5610643 B2 JP5610643 B2 JP 5610643B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
rolling
alloy strip
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012073173A
Other languages
Japanese (ja)
Other versions
JP2013204079A (en
Inventor
明宏 柿谷
明宏 柿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012073173A priority Critical patent/JP5610643B2/en
Publication of JP2013204079A publication Critical patent/JP2013204079A/en
Application granted granted Critical
Publication of JP5610643B2 publication Critical patent/JP5610643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、電子材料などの電子部品の製造に好適に使用可能なCu−Ni−Si系銅合金条及びその製造方法に関する。   The present invention relates to a Cu-Ni-Si-based copper alloy strip that can be suitably used for manufacturing electronic parts such as electronic materials, and a method for manufacturing the same.

近年、リードフレーム、電子機器の各種端子、コネクタなどにおいて、リード数などの増加、狭ピッチ化が急速に進み、電子部品の高密度実装性、高信頼性が要求されている。高密度実装性および高信頼性の観点から、電子部品に用いられる材料においても、高強度および高導電性は勿論のこと、180°密着曲げやノッチング後の90°曲げなど、様々な厳しい曲げ加工に耐えられるような優れた曲げ加工性など、要求される特性は益々厳しくなってきている。その中でも、Cu−Ni−Si系銅合金条は、高強度、高導電率、高耐熱性および高耐応力緩和特性を兼ね備えた銅合金としてリードフレーム、電子機器の各種端子、コネクタなどの材料として実用化されている。   In recent years, lead frames, various terminals of electronic devices, connectors, and the like have rapidly increased in the number of leads and narrowed pitch, and high-density mounting and high reliability of electronic components are required. From the viewpoint of high-density mounting and high reliability, not only high strength and high conductivity, but also various severe bending processes such as 180 ° close contact bending and 90 ° bending after notching are used in materials used for electronic components. The required properties, such as excellent bendability that can withstand temperatures, are becoming increasingly severe. Among them, Cu-Ni-Si-based copper alloy strips are copper alloys that combine high strength, high electrical conductivity, high heat resistance, and high stress relaxation properties, as materials for lead frames, various terminals of electronic devices, connectors, etc. It has been put into practical use.

しかしながら、高強度と優れた曲げ加工性の兼備は難しいのが現状である。
特に、超小型化端子においては、ノッチング加工後に曲げを行う(箱曲げ)など厳しい曲げ加工が施されるため、ノッチ加工後の高曲げ性と高強度を併せ持つ銅合金条が要求されている。
However, at present, it is difficult to combine high strength and excellent bending workability.
In particular, ultra-miniaturized terminals are subjected to severe bending such as bending after notching (box bending), and therefore, a copper alloy strip having both high bendability and high strength after notching is required.

Cu−Ni−Si系銅合金条の曲げ加工性を改善する方策として、析出物を制御すること(例えば、特許文献1参照)、結晶粒の形態を制御すること(例えば、特許文献2参照)などが提案されている。一方、結晶方位を制御し曲げ加工性を改善することも提案されている(特許文献3、4)。   As measures for improving the bending workability of the Cu—Ni—Si based copper alloy strip, control of precipitates (for example, see Patent Document 1), control of crystal grain shape (for example, see Patent Document 2) Etc. have been proposed. On the other hand, it has also been proposed to improve the bending workability by controlling the crystal orientation (Patent Documents 3 and 4).

特開2001−49369号公報JP 2001-49369 A 特開2002−38228号公報JP 2002-38228 A 特開2000−80428号公報JP 2000-80428 A 特開2006−9108号公報JP 2006-9108 A

しかしながら、上記した特許文献1〜4記載の技術の場合、ノッチ加工後の曲げ加工性と強度が十分とはいえなかった。
However, in the case of the techniques described in Patent Documents 1 to 4, the bendability and strength after notching have not been sufficient.

すなわち、本発明は上記の課題を解決するためになされたものであり、ノッチ加工後の曲げ加工性と強度を共に向上させたCu−Ni−Si系銅合金条及びその製造方法の提供を目的とする。   That is, the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a Cu—Ni—Si based copper alloy strip having improved bending workability and strength after notching and a method for producing the same. And

本発明のCu−Ni−Si系銅合金条は、1.0〜4.5質量%のNiを含有し、Niの質量%に対し1/6〜1/4の割合でSiを含有し、残部が銅および不可避的不純物からなり、直径1.0〜3.0μmの第2相粒子を100〜500個/mm含有し、表面における{200}面からのX線回折強度をI{200}とし、{311}面からのX線回折強度をI{311}とし、{220}面からのX線回折強度をI{220}としたとき、1.0≦[I{311+I{200}/I{220}≦2.5を満たし、かつ、純銅粉末標準試料の(311)面からのX解回折強度をI{311}としたとき、1≦I{311}/I{311}≦2.5を満たし、曲げ性に優れている。 The Cu—Ni—Si based copper alloy strip of the present invention contains 1.0 to 4.5% by mass of Ni, contains Si at a ratio of 1/6 to ¼ with respect to the mass% of Ni, The balance is made of copper and inevitable impurities, contains 100 to 500 particles / mm 2 of second phase particles having a diameter of 1.0 to 3.0 μm, and the X-ray diffraction intensity from the {200} plane on the surface is I {200 }, When the X-ray diffraction intensity from the {311} plane is I {311} and the X-ray diffraction intensity from the {220} plane is I {220}, 1.0 ≦ [I {311 } + I { 200} ] / I {220} ≦ 2.5, and when the X-resolved diffraction intensity from the (311) plane of the pure copper powder standard sample is I 0 {311}, 1 ≦ I {311} / I 0 {311} ≦ 2.5 meets, that is excellent in bendability.

さらに、Zn及び/又はSnを合計で2.0質量%以下含有することが好ましい。
さらに、Mg、Fe、P、Mn、Co及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有することが好ましい。
切断法によって求めた結晶粒径が11μm以下であることが好ましい。
切断法によって求めた結晶粒径が8μm以下であることが好ましい。
Furthermore, it is preferable to contain 2.0 mass% or less of Zn and / or Sn in total.
Furthermore, it is preferable to contain 0.005-0.8 mass% of 1 or more types chosen from the group of Mg, Fe, P, Mn, Co, and Cr in total.
The crystal grain size determined by the cutting method is preferably 11 μm or less.
The crystal grain size determined by the cutting method is preferably 8 μm or less.

本発明のCu−Ni−Si系銅合金条の製造方法は、1.0〜4.5質量%のNiを含有し、Niの質量%に対し1/6〜1/4の割合でSiを含有し、残部が銅および不可避的不純物からなるCu−Ni−Si系銅合金のインゴットを終了温度700〜800℃で熱間圧延後に、開始温度300〜450℃で終了温度310〜349℃、かつ総加工度60%以上で1パス当りの加工度を10〜25%とする温間圧延を行い、その後に少なくとも溶体化処理と時効処理とをこの順で行う。 The method for producing a Cu—Ni—Si based copper alloy strip of the present invention contains 1.0 to 4.5% by mass of Ni, and Si is added at a ratio of 1/6 to 1/4 with respect to the mass% of Ni. A Cu—Ni—Si based copper alloy ingot containing copper and inevitable impurities, and after hot rolling at an end temperature of 700 to 800 ° C., an end temperature of 310 to 349 ° C., an end temperature of 310 to 349 ° C. , and Warm rolling is performed with a total processing degree of 60% or more and a processing degree per pass of 10 to 25%, and then at least solution treatment and aging treatment are performed in this order.

本発明によれば、強度が高く、圧延平行方向(GW方向)の曲げ性が向上しつつ、圧延直角方向(BW方向)の曲げ性を劣化させないCu−Ni−Si系銅合金条が得られる。   According to the present invention, it is possible to obtain a Cu—Ni—Si-based copper alloy strip that has high strength, improves the bendability in the rolling parallel direction (GW direction), and does not deteriorate the bendability in the direction perpendicular to the rolling direction (BW direction). .

ノッチ加工後のW曲げ加工性の試験方法を示す図である。It is a figure which shows the test method of W bending workability after a notch process. ノッチ加工後のW曲げ加工性の試験方法を示す別の図である。It is another figure which shows the test method of W bending workability after notch processing. 実施例5のノッチ加工後の曲げ部の断面(試験片の端から1mm)写真(図3(a))、及びその表面の写真(図3(b))を示す図である。It is a figure which shows the cross section (1 mm from the end of a test piece) photograph (FIG.3 (a)) of the bending part after the notch process of Example 5, and the surface photograph (FIG.3 (b)). 比較例2のノッチ加工後の曲げ部の断面(試験片の端から1mm)写真(図4(a))、及びその表面の写真(図4(b))を示す図である。It is a figure which shows the cross section (1 mm from the edge of a test piece) photograph (FIG. 4 (a)) of the bending part after the notch process of the comparative example 2, and the surface photograph (FIG.4 (b)). 比較例2(図5(a))、実施例2(図5(b))の圧延平行断面のSEM像を示す図である。It is a figure which shows the SEM image of the rolling parallel cross section of the comparative example 2 (FIG. 5 (a)) and Example 2 (FIG.5 (b)).

以下、本発明の実施形態に係るCu−Ni−Si系銅合金条について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, the Cu—Ni—Si based copper alloy strip according to the embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

まず、銅合金条の組成の限定理由について説明する。
<Ni及びSi>
Ni及びSiは、時効処理を行うことによりNiとSiが微細なNiSiを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる。また、時効処理でのNiSiの析出に伴い、導電性が向上する。ただし、Ni濃度が1.0%未満の場合、またはSi濃度が0.17(Ni%の1/6)%未満の場合は、他方の成分を添加しても所望とする強度が得られない。また、Ni濃度が4.5%を超える場合、またはSi濃度が1.2(Ni%の1/4)%を超える場合は十分な強度が得られるものの、導電性が低くなり、更には強度の向上に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が母相中に生成し、曲げ加工性、エッチング性およびめっき性の低下を招く。よって、Niの含有量を1.0〜4.5質量%とする。好ましくは、Niの含有量を1.0〜3.5質量%とする。
Siの含有量をNiの質量%に対し1/6〜1/4の割合とする。Siの含有量をNiの質量%に対し上記した割合とすれば、析出硬化後の強度と導電率を共に向上させることができる。Siの含有量をNiの質量%に対し1/6未満とすると強度も導電率も低くなり、1/4を超えると強度は高くなるが導電率が低下する。
First, the reasons for limiting the composition of the copper alloy strip will be described.
<Ni and Si>
Ni and Si form precipitation particles of intermetallic compounds mainly composed of Ni 2 Si in which Ni and Si are fine by performing an aging treatment, and remarkably increase the strength of the alloy. Further, the conductivity is improved with the precipitation of Ni 2 Si in the aging treatment. However, when the Ni concentration is less than 1.0% or the Si concentration is less than 0.17 (1/6 of Ni%), the desired strength cannot be obtained even if the other component is added. . Also, when the Ni concentration exceeds 4.5%, or when the Si concentration exceeds 1.2 (1/4 of Ni%), sufficient strength can be obtained, but the conductivity is lowered, and further the strength Coarse Ni—Si-based particles (crystallized substances and precipitates) that do not contribute to the improvement of the yield are generated in the matrix phase, leading to a decrease in bending workability, etching property and plating property. Therefore, the Ni content is 1.0 to 4.5 mass%. Preferably, the Ni content is 1.0 to 3.5% by mass.
The content of Si is set to a ratio of 1/6 to 1/4 with respect to mass% of Ni. If the Si content is the above-described ratio with respect to Ni mass%, both the strength after precipitation hardening and the electrical conductivity can be improved. When the Si content is less than 1/6 with respect to the mass% of Ni, both strength and conductivity are lowered, and when it exceeds 1/4, the strength is increased but the conductivity is lowered.

<Zn及びSn>
さらに、Zn及び/又はSnを合計で2.0質量%以下含有することが好ましい。
Zn及びSnは、Cu−Ni−Si系銅合金条の強度及び耐熱性を改善する。また、Znは、半田接合の耐熱性を改善する効果もある。ZnとSnの合計含有量が2.0%を越えると導電性が著しく低下することがある。ZnとSnの合計含有量の下限は特に規制されないが、0.1%程度とすると好ましい。
<Zn and Sn>
Furthermore, it is preferable to contain 2.0 mass% or less of Zn and / or Sn in total.
Zn and Sn improve the strength and heat resistance of the Cu—Ni—Si based copper alloy strip. Zn also has the effect of improving the heat resistance of the solder joint. If the total content of Zn and Sn exceeds 2.0%, the conductivity may be significantly reduced. The lower limit of the total content of Zn and Sn is not particularly limited, but is preferably about 0.1%.

<その他の元素>
さらに、上記合金には、合金の強度、耐熱性、耐応力緩和性等を改善する目的で、更にMg,Fe,P,Mn,Co及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有することができる。これら元素の合計量が0.005質量%未満であると、上記効果が生じず、0.8質量%を超えると所望の特性は得られるものの、導電性や曲げ加工性が低下することがある。
<Other elements>
Furthermore, in the above alloy, for the purpose of improving the strength, heat resistance, stress relaxation resistance, etc. of the alloy, one or more selected from the group of Mg, Fe, P, Mn, Co and Cr is added in a total of 0.005 to 0.8. It can be contained by mass%. When the total amount of these elements is less than 0.005% by mass, the above effect does not occur, and when it exceeds 0.8% by mass, the desired properties can be obtained, but the conductivity and bending workability may be deteriorated.

<集合組織>
次に、銅合金条の集合組織の規定について説明する。本発明者らは、Cu−Ni−Si系銅合金条を種々の条件で製造したときの各結晶面の集積度および結晶粒形態と、曲げ加工性および曲げ異方性の関係を調査、解析した結果、以下の知見を得た。
つまり、{311}面の割合を少なくし、{200}面及び{220}面の割合を多くすると、圧延平行方向(GW方向)の曲げ性が向上する。一方で、(311)面の割合が少なくなりすぎるとBW方向の曲げ性が悪化する。
従って、銅合金条表面における{200}面からのX線回折強度をI{200}とし、{311}面からのX線回折強度をI{311}とし、{220}面からのX線回折強度をI{220}としたとき、
1.0≦[I{311]+I{200}}/I{220}≦2.5を満たし、
かつ、純銅粉末の(311)面からのX解回折強度をI{311}としたとき、
1≦I{311}/I{311}≦2.5
を満たすように集合組織を制御する。
<Group organization>
Next, the rules for the texture of the copper alloy strip will be described. The present inventors investigated and analyzed the relationship between the degree of integration and crystal grain morphology of each crystal plane, bending workability and bending anisotropy when Cu—Ni—Si based copper alloy strips were produced under various conditions. As a result, the following knowledge was obtained.
That is, if the ratio of the {311} plane is decreased and the ratio of the {200} plane and the {220} plane is increased, the bendability in the rolling parallel direction (GW direction) is improved. On the other hand, if the ratio of the (311) plane is too small, the bendability in the BW direction is deteriorated.
Therefore, the X-ray diffraction intensity from the {200} plane on the copper alloy strip surface is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction from the {220} plane When the strength is I {220},
1.0 ≦ [I {311] + I {200}} / I {220} ≦ 2.5 is satisfied,
And, when the X-resolved diffraction intensity from the (311) plane of the pure copper powder is I 0 {311},
1 ≦ I {311} / I 0 {311} ≦ 2.5
Control the texture to satisfy

[I{311]+I{200}}/I{220}≦が2.5を超え、I{311}/I{311}が2.5を超えると、{311}面の割合が多くなり、圧延平行方向(GW方向)の曲げ性が向上しない。
又、I{311}/I{311}が1.0未満であると、圧延直角方向(BW方向)の曲げ性が向上しない。
When [I {311] + I {200}} / I {220} ≦ exceeds 2.5 and I {311} / I 0 {311} exceeds 2.5, the ratio of the {311} plane increases. The bendability in the rolling parallel direction (GW direction) is not improved.
Further, if I {311} / I 0 {311} is less than 1.0, the bendability in the direction perpendicular to the rolling direction (BW direction) is not improved.

ここで、曲げ肌とは、日本伸銅協会(JBMA)技術標準のT307:1999に規定される「銅および銅合金薄板条の曲げ加工性評価方法」に基づく評価である。曲げ肌は、この規定により、試料について曲げ角度90°のW曲げを行い、山となる曲げ加工部を観察し、A:しわ無し、B:しわ小、C:しわ大、D:割れ小、E:割れ大、の5段階で曲げ肌の程度を評価する。一般に、同一組成の材料であれば結晶粒径が小さい方が曲げ肌は良好となり,結晶粒径が大きいほど曲げ肌は悪くなる(評価Eに近付く)。通常、評価D、Eの試料は実用に適さない。   Here, the bending skin is an evaluation based on the “method for evaluating the bending workability of copper and copper alloy strips” defined in the technical standard T307: 1999 of the Japan Copper and Brass Association (JBMA). According to this rule, the bent skin is subjected to W-bending with a bending angle of 90 ° on the sample, and the bent processed portion that becomes a mountain is observed. E: The degree of bending skin is evaluated in 5 stages of large cracks. In general, if the material has the same composition, the smaller the crystal grain size, the better the bending skin, and the larger the crystal grain size, the worse the bending skin (approaches evaluation E). Usually, samples of evaluation D and E are not suitable for practical use.

<第2相粒子>
合金中に、直径1.0〜3.0μmの第2相粒子を100〜500個/mm含有する。合金の強度向上に寄与するといわれる直径数nm〜数十nm程度の微細な析出物、及び鋳造時に晶出した直径3μm以上の粗大な晶出物は、最終的な集合組織に殆ど寄与しない。一方、後述する温間圧延時に析出した第2相粒子は集合組織に影響を及ぼし、温間圧延の条件を下記のように規定すると、直径1.0〜3.0μmの第2相粒子が100〜500個/mm含有されることになる。また、温間圧延時に析出した第2相粒子は時効処理時に優先的に成長するため、最終的には直径1.0〜3.0μmに成長する。
<Second phase particle>
The alloy contains 100 to 500 particles / mm 2 of second phase particles having a diameter of 1.0 to 3.0 μm. Fine precipitates having a diameter of several nanometers to several tens of nanometers, which are said to contribute to improving the strength of the alloy, and coarse crystals having a diameter of 3 μm or more crystallized during casting hardly contribute to the final texture. On the other hand, the second phase particles precipitated during warm rolling described later affect the texture. When the conditions of the warm rolling are defined as follows, the second phase particles having a diameter of 1.0 to 3.0 μm are 100. ˜500 pieces / mm 2 will be contained. Moreover, since the second phase particles precipitated during the warm rolling preferentially grow during the aging treatment, they finally grow to a diameter of 1.0 to 3.0 μm.

第2相粒子は、圧延平行断面をFE-SEM(電界放射型走査電子顕微鏡)で観察し、そのSEM像を2値化する。そして、画像解析ソフトウェアにて、明るい粒状の各領域毎の縦と横の長さを測定した。第2相粒子を円形と仮定し、各領域毎の上記縦と横の長さを平均した長さを第2相粒子の(円の)直径とみなした。
そして、SEM像の視野中の直径1.0〜3.0μmの第2相粒子の個数を上記画像解析ソフトウェアにて計数した。
The second phase particles are observed with a FE-SEM (Field Emission Scanning Electron Microscope) in the rolling parallel section, and the SEM image is binarized. Then, the vertical and horizontal lengths of each bright granular area were measured with image analysis software. The second phase particles were assumed to be circular, and the length obtained by averaging the vertical and horizontal lengths for each region was regarded as the (circle) diameter of the second phase particles.
The number of second phase particles having a diameter of 1.0 to 3.0 μm in the field of view of the SEM image was counted with the image analysis software.

通常、Cu−Ni−Si系銅合金条は、熱間圧延、冷間圧延、溶体化処理を行い、必要に応じて冷間圧延した後、さらに時効処理をこの順で行って製造される。時効処理後、必要に応じて仕上圧延および歪取り焼鈍をすることもある。しかしながら、この方法では、銅合金条の集合組織を上記範囲に制御することが困難であると共に、圧延平行方向(GW方向)の曲げ性が劣化する。
そこで本発明者らが検討した結果、熱間圧延後に開始温度300〜450℃で終了温度300℃以上、かつ総加工度60%以上で1パス当りの加工度を10〜25%とする温間圧延を行うことにより、動的再結晶後に不均一組織が形成されると共に、扁平したNi−Si系粒子(以下、断りが無い限りNi−Si系析出物を「第2相粒子」と表す)がマトリクス中に分散し、その後の溶体化処理を経て、再結晶時の集合組織が変化する。そのため、{311}面の割合を少なくし、{220}面の割合を多くし、集合組織を上記範囲に制御できる。さらに、GWの曲げ性(箱曲げおよび密着曲げ)が向上する一方で、BWの曲げ性が悪化せず、車載用途やリレー用途として十分使用できる。
Usually, a Cu-Ni-Si-based copper alloy strip is manufactured by performing hot rolling, cold rolling, and solution treatment, performing cold rolling as necessary, and further performing an aging treatment in this order. After the aging treatment, finish rolling and strain relief annealing may be performed as necessary. However, in this method, it is difficult to control the texture of the copper alloy strips within the above range, and the bendability in the rolling parallel direction (GW direction) deteriorates.
Therefore, as a result of the study by the present inventors, the hot temperature after the hot rolling is 300 to 450 ° C., the end temperature is 300 ° C. or more, and the total workability is 60% or more and the work degree per pass is 10 to 25%. By rolling, a heterogeneous structure is formed after dynamic recrystallization, and flat Ni—Si based particles (hereinafter, Ni—Si based precipitates are represented as “second phase particles” unless otherwise specified). Is dispersed in the matrix, and after the solution treatment, the texture at the time of recrystallization changes. Therefore, the ratio of the {311} plane can be reduced, the ratio of the {220} plane can be increased, and the texture can be controlled within the above range. Furthermore, while the bendability of GW (box bend and contact bend) is improved, the bendability of BW is not deteriorated, and it can be sufficiently used for in-vehicle applications and relay applications.

ここで、温間圧延の開始温度が450℃を超えると、動的再結晶で得られる組織が不均一になり過ぎ、上記した集合組織が得られない。一方、温間圧延の開始温度又は終了温度が300℃未満の場合、拡散速度が遅くなるため所望の第2相粒子が得られない。
又、温間圧延の総加工度が60%未満の場合、集合組織が十分に発達せず、最終的に上記した集合組織が得られない。
温間圧延時の1パス当りの加工度が10%未満の場合、歪速度が遅いため析出が促進されず、上記した集合組織が得られない。一方、1パス当りの加工度が25%を超えると、動的再結晶で得られる組織が完全に不均一になるため、上記した集合組織が得られない。
温間圧延の時間は3分以上とするとよい。
Here, when the start temperature of warm rolling exceeds 450 ° C., the structure obtained by dynamic recrystallization becomes too uneven, and the above-described texture cannot be obtained. On the other hand, when the start temperature or end temperature of warm rolling is less than 300 ° C., the desired second phase particles cannot be obtained because the diffusion rate is slow.
Further, when the total degree of warm rolling is less than 60%, the texture does not develop sufficiently, and the above-mentioned texture cannot be obtained finally.
When the degree of processing per pass during warm rolling is less than 10%, the strain rate is slow, so that precipitation is not promoted and the above-described texture cannot be obtained. On the other hand, if the degree of processing per pass exceeds 25%, the structure obtained by dynamic recrystallization becomes completely non-uniform, and thus the above-described texture cannot be obtained.
The warm rolling time is preferably 3 minutes or more.

熱間圧延の終了温度を700〜800℃とすることが好ましい。熱間圧延の終了温度が700℃未満であると、第2相粒子が析出して熱間圧延時に割れが生じる場合がある。一方、熱間圧延の終了温度が800℃を超えると、その後の温間圧延時に析出する第2相粒子の核が生成されず、集合組織を上記範囲に制御できずに曲げ改善の効果が少ない場合がある。
又、熱間圧延を終了した後、冷却速度10〜30℃/secで400〜450℃に冷却し、温間圧延に移行するとよい。
又、溶体化処理の温度を700〜800℃とし、冷間圧延の総加工度を85〜99%とするのが好ましい。又、時効処理は、例えば400〜500℃の温度で10〜30時間程度とすることができる。又、時効処理後に仕上げ圧延してもよく、仕上げ圧延の加工度を0〜30%とするとよい。仕上げ圧延の加工度が30%を超えると、曲げ性が悪化する場合がある。さらに、仕上げ圧延後に歪取焼鈍をしてもよい。
なお、温間圧延後の冷間圧延は必ずしも必要ではなく、温間圧延のみで溶体化処理前に最終板厚まで圧延してもよい。
本発明のCu−Ni−Si系銅合金条の厚みは特に限定されないが、例えば0.03〜0.6mmとすることができる。
The end temperature of hot rolling is preferably 700 to 800 ° C. If the end temperature of hot rolling is less than 700 ° C., second phase particles may precipitate and cracks may occur during hot rolling. On the other hand, if the end temperature of the hot rolling exceeds 800 ° C., the nuclei of the second phase particles that precipitate during the subsequent hot rolling are not generated, and the texture cannot be controlled within the above range and the effect of bending improvement is small. There is a case.
Moreover, after finishing hot rolling, it is good to cool to 400-450 degreeC with the cooling rate of 10-30 degree-C / sec, and to transfer to warm rolling.
The solution treatment temperature is preferably 700 to 800 ° C., and the total degree of cold rolling is preferably 85 to 99%. The aging treatment can be performed at a temperature of 400 to 500 ° C. for about 10 to 30 hours, for example. Moreover, you may finish-roll after an aging treatment, and it is good to set the processing degree of finish rolling to 0 to 30%. If the degree of finish rolling exceeds 30%, the bendability may deteriorate. Further, strain relief annealing may be performed after finish rolling.
Note that the cold rolling after the warm rolling is not necessarily required, and the rolling may be performed only to the warm rolling to the final plate thickness before the solution treatment.
The thickness of the Cu—Ni—Si based copper alloy strip of the present invention is not particularly limited, but may be 0.03 to 0.6 mm, for example.

各実施例及び各比較例の試料を、以下のように作製した。
電気銅を原料とし、大気溶解炉を用いて表1、表2に示す組成の銅合金を溶製し、厚さ20mm×幅60mmのインゴットに鋳造した。このインゴットを950℃で板厚10mmまで熱間圧延を行った。熱間圧延の開始温度及び終了温度を各表に示す。熱間圧延後、すぐに400〜450℃まで散水による水冷を20〜30秒行った。冷却速度は温度を測定しながら、散水量を調整して制御した。水冷による冷却温度(熱間圧延後で温間圧延前)を表1に示す。
その後、温間圧延を3〜4分かけて6〜8パスで行い、各表に示す板厚まで減少させた。温間圧延の開始温度、終了温度、総加工度、及び1パスあたりの加工度を表1,2に示す。温間圧延機はワークロールもヒーターで温めながら圧延を行った。
温間圧延後、加工度75.8〜98.7%の冷間圧延、表1に示す温度で5分間の溶体化処理、及び時効処理(450℃で15時間)をこの順に行った。その後、加工度20%で最終仕上げ圧延を行い、表2の板厚の試料を得た。
なお、各比較例については、温間圧延後、加工度93.5〜96.2%の冷間圧延を行ったこと以外は、各実施例と同様にして表2の板厚の試料を得た。


Samples of Examples and Comparative Examples were prepared as follows.
Using copper as a raw material, copper alloys having the compositions shown in Tables 1 and 2 were melted using an atmospheric melting furnace and cast into ingots having a thickness of 20 mm and a width of 60 mm. This ingot was hot-rolled at 950 ° C. to a plate thickness of 10 mm. The start temperature and end temperature of hot rolling are shown in each table. Immediately after the hot rolling, water cooling by watering was performed at 400 to 450 ° C. for 20 to 30 seconds. The cooling rate was controlled by adjusting the sprinkling amount while measuring the temperature. Table 1 shows the cooling temperature by water cooling (after hot rolling and before warm rolling).
Then, warm rolling was performed by 6-8 passes over 3-4 minutes, and it reduced to the board thickness shown to each table | surface. Tables 1 and 2 show the start temperature, end temperature, total working degree, and working degree per pass of warm rolling. The warm rolling mill rolled while heating the work roll with a heater.
After the warm rolling, cold rolling at a working degree of 75.8 to 98.7 %, solution treatment for 5 minutes at the temperature shown in Table 1, and aging treatment (450 ° C. for 15 hours) were performed in this order. Thereafter, final finish rolling was performed at a working degree of 20%, and samples having the thicknesses shown in Table 2 were obtained.
In addition, about each comparative example, the sample of the plate | board thickness of Table 2 was obtained similarly to each Example except having performed cold rolling with a workability of 93.5-96.2 % after warm rolling.


<X線回折強度>
得られた試料の表面の{200}、{311}、{220}面のX線回折強度Iをそれぞれ測定した。測定は、リガク製RINT2500を使用し、X線照射条件はCo管球を使用し、管電圧25KV、管電流20mAとした。同様にして、純銅粉末標準試料の{200}、{311}、面のX線回折強度Iをそれぞれ測定した。
<引張強さ(TS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における引張強さ(TS)をそれぞれ測定した。
<0.2%耐力(YS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における0.2%耐力(YS)をそれぞれ測定した。
<X-ray diffraction intensity>
The X-ray diffraction intensity I of the {200}, {311}, and {220} planes of the surface of the obtained sample was measured. For the measurement, RINT 2500 made by Rigaku was used, the X-ray irradiation conditions were a Co tube, tube voltage 25 KV, tube current 20 mA. Similarly, {200} of the pure copper powder standard sample, {311}, the X-ray diffraction intensity I 0 of the surface were measured.
<Tensile strength (TS)>
The tensile strength (TS) in a direction parallel to the rolling direction was measured by a tensile tester according to JIS-Z2241.
<0.2% yield strength (YS)>
The 0.2% proof stress (YS) in the direction parallel to the rolling direction was measured by a tensile tester in accordance with JIS-Z2241.

<ノッチ加工後のW曲げ加工性>
図1に示すように、幅10mm×長さ30mmの短冊状の試験片2を作製し、その片面2aに、深さが板厚の1/2〜1/10になるように調整し、かつ断面が台形状のノッチ4を一筋入れた。試験片採取方向はGWとした。上記した台形状の突起7aを有する金型7を、基台6上の試験片2に押し付け、BW方向に伸びるようにノッチ4を入れた。突起7aは、図2に示すように、断面の底辺が0.16mm、試験片2側となる上辺が0.1mmの先細りの等脚台形をなし、先細りとなる2つの斜辺のなす角が90度である。又、底辺と上辺との距離が30μmであり、上辺から底辺までの深さが試験片2に陥入してノッチ4となる。
次に、JIS-H3130のW曲げ試験に用いる下型12の頂部12aにノッチ4が対向するように試験片2を下型12に配置した。この状態で上型10を下型12に押し付けてW曲げ試験を行った。このとき、ノッチ4に対向する試験片2の反対面の山となる曲げ加工部5の外観を目視観察し、日本伸銅協会(JBMA)技術標準のT307:1999に規定される「銅および銅合金薄板条の曲げ加工性評価方法」に基づき、曲げ肌を評価した。曲げ肌は、この規定により、A:しわ無し、B:しわ小、C:しわ大、D:割れ小、E:割れ大、の5段階で曲げ肌の程度を評価した。評価A,B、Cの試料であれば実用上問題ない。
<W-bending workability after notching>
As shown in FIG. 1, a strip-shaped test piece 2 having a width of 10 mm and a length of 30 mm is prepared, and the depth is adjusted to 1/2 to 1/10 of the plate thickness on one side 2a. A notch 4 having a trapezoidal cross section was made. The specimen collection direction was GW. The mold 7 having the trapezoidal protrusion 7a described above was pressed against the test piece 2 on the base 6, and a notch 4 was formed so as to extend in the BW direction. As shown in FIG. 2, the protrusion 7a has a tapered isosceles trapezoidal shape in which the bottom of the cross section is 0.16 mm and the upper side on the side of the test piece 2 is 0.1 mm, and the angle formed by the two oblique sides to be tapered is 90 degrees. is there. Further, the distance between the bottom side and the top side is 30 μm, and the depth from the top side to the bottom side is recessed into the test piece 2 to form the notch 4.
Next, the test piece 2 was arranged on the lower die 12 so that the notch 4 faces the top portion 12a of the lower die 12 used in the JIS-H3130 W bending test. In this state, the upper mold 10 was pressed against the lower mold 12 to perform a W bending test. At this time, the external appearance of the bent portion 5 which is a crest of the opposite surface of the test piece 2 facing the notch 4 is visually observed, and “copper and copper” defined in the Japan Copper and Brass Association (JBMA) technical standard T307: 1999. The bending skin was evaluated on the basis of “bending workability evaluation method of alloy sheet strip”. Based on this rule, the bending skin was evaluated in five stages: A: no wrinkle, B: small wrinkle, C: large wrinkle, D: small crack, E: large crack. If it is a sample of evaluation A, B, C, there is no problem in practice.

<W曲げ加工性>
幅10mm×長さ30mmの短冊状の試験片を作製し、W曲げ試験(JIS-H3130)によって行った。試験片採取方向は、GWおよびBWとし、割れの発生しない最小曲げ半径MBR(Minimum Bend Radius)と板厚tの比MBR/tにて評価した。
<導電率(%IACS)及び結晶粒径>
得られた試料の導電率(%IACS)を4端子法により測定し、試料表面の結晶粒径(GS)をJIS-H0501に規定する切断法によって求めた。
<W bending workability>
A strip-shaped test piece having a width of 10 mm and a length of 30 mm was prepared and subjected to a W bending test (JIS-H3130). Specimen sampling directions were GW and BW, and evaluation was performed based on a ratio MBR / t of a minimum bend radius MBR (Minimum Bend Radius) where a crack does not occur and a sheet thickness t.
<Conductivity (% IACS) and crystal grain size>
The conductivity (% IACS) of the obtained sample was measured by the 4-terminal method, and the crystal grain size (GS) on the sample surface was determined by the cutting method specified in JIS-H0501.

<直径1.0〜3.0μmの第2相粒子の個数>
第2相粒子の個数は以下のようにして測定した。まず、試料の圧延平行断面を鏡面研磨した後、47°ボーメの塩化第二鉄溶液中に揺動しながら2分間浸漬し、エッチングを行った。その後すぐに純水の流水中で水洗し、純水により超音波洗浄を2分程度行った。
超音波洗浄後の試料の圧延平行断面像をFE-SEM(電界放射型走査電子顕微鏡、OXFORD製の型番XL30SFEG)で以下の条件で撮影した。
FE-SEMの設定 撮影倍率:750倍、加速電圧:15 kV、スポットサイズ:4.0、検出器:TLD、コントラスト:35.0、輝度:45.0
<Number of second phase particles having a diameter of 1.0 to 3.0 μm>
The number of second phase particles was measured as follows. First, the rolled parallel section of the sample was mirror-polished and then immersed in a 47 ° Baume ferric chloride solution for 2 minutes while being rocked to perform etching. Immediately after that, it was washed with running pure water and ultrasonically washed with pure water for about 2 minutes.
A rolled parallel cross-sectional image of the sample after ultrasonic cleaning was taken with a FE-SEM (field emission scanning electron microscope, model number XL30SFEG manufactured by OXFORD) under the following conditions.
FE-SEM settings Magnification: 750 times, acceleration voltage: 15 kV, spot size: 4.0, detector: TLD, contrast: 35.0, brightness: 45.0

そして、上記SEM像につき、画像解析ソフトウェア(EDAX(エネルギー分散型X線分析装置)に付属のEDX粒子/相分析ソフトウェア)にて、以下の条件で明るい粒状の各領域毎の縦と横の長さを測定した。第2相粒子を円形と仮定し、各領域毎の上記縦と横の長さを平均した長さを第2相粒子の(円の)直径とみなした。
EDX粒子/相分析ソフトウェアの設定 フィールドサイズ:1024ピクセル×800 ピクセル、Strips(取り込み時の画像分割数):10、Thresholds(グレースケールのしきい値):Max :255(固定) Min:130前後
For the SEM image, the image analysis software (EDX particle / phase analysis software attached to EDX (energy dispersive X-ray analyzer)) uses vertical and horizontal lengths for each bright granular area under the following conditions. Was measured. The second phase particles were assumed to be circular, and the length obtained by averaging the vertical and horizontal lengths for each region was regarded as the (circle) diameter of the second phase particles.
EDX particle / phase analysis software settings Field size: 1024 pixels x 800 pixels, Strips (number of image divisions during capture): 10, Thresholds (greyscale threshold): Max: 255 (fixed) Min: Around 130

そして、SEM像の視野中の直径1.0〜3.0μmの第2相粒子の個数を上記画像解析ソフトウェアにて計数した。   The number of second phase particles having a diameter of 1.0 to 3.0 μm in the field of view of the SEM image was counted with the image analysis software.

なお、図5は、それぞれ後述する比較例2(図5(a))、実施例2(図5(b))の圧延平行断面のSEM像を示す。SEM像において、明るい粒状の領域が第2相粒子である。   FIG. 5 shows SEM images of the rolling parallel sections of Comparative Example 2 (FIG. 5A) and Example 2 (FIG. 5B), which will be described later. In the SEM image, bright granular regions are second phase particles.

得られた結果を表1、表2に示す。   The obtained results are shown in Tables 1 and 2.

表1、表2から明らかなように、直径1.0〜3.0μmの第2相粒子を100〜500個/mm含有し、1.0≦[I{311]+I{200}}/I{220}≦2.5を満たし、かつ、1≦I{311}/I{311}≦2.5である各実施例の場合、強度とGW方向のノッチ加工後のW曲げ加工性が共に向上した。 As apparent from Tables 1 and 2, 100 to 500 particles / mm 2 of second phase particles having a diameter of 1.0 to 3.0 μm are contained, and 1.0 ≦ [I {311] + I {200}} / In each example satisfying I {220} ≦ 2.5 and 1 ≦ I {311} / I 0 {311} ≦ 2.5, the strength and the W bending workability after notching in the GW direction Both improved.

一方、温間圧延の開始温度が450℃を超えた比較例1の場合、直径1.0〜3.0μmの第2相粒子が100個/mm未満に低減し、温間圧延で完全な再結晶が生じた。このため、[I{311]+I{200}}/I{220}が2.5を超え、I{311}/I{311}が2.5を超えたため、GW方向のノッチ加工後のW曲げ加工性が劣化した。
温間圧延の開始温度が300℃未満である比較例2の場合、直径1.0〜3.0μmの第2相粒子が100個/mm未満に低減し、[I{311]+I{200}}/I{220}が2.5を超え、I{311}/I{311}が2.5を超えたため、GW方向のノッチ加工後のW曲げ加工性が劣化した。
On the other hand, in the case of Comparative Example 1 in which the start temperature of the warm rolling exceeds 450 ° C., the second phase particles having a diameter of 1.0 to 3.0 μm are reduced to less than 100 particles / mm 2 , and the warm rolling is complete. Recrystallization occurred. For this reason, [I {311] + I {200}} / I {220} exceeds 2.5 and I {311} / I 0 {311} exceeds 2.5. W bending workability deteriorated.
In the case of Comparative Example 2 in which the start temperature of warm rolling is less than 300 ° C., the second phase particles having a diameter of 1.0 to 3.0 μm are reduced to less than 100 particles / mm 2 , and [I {311] + I {200 }} / I {220} exceeded 2.5 and I {311} / I 0 {311} exceeded 2.5, so that the W bending workability after notching in the GW direction deteriorated.

温間圧延の終了温度が300℃未満である比較例3の場合も、直径1.0〜3.0μmの第2相粒子が100個/mm未満に低減し、[I{311]+I{200}}/I{220}が2.5を超え、I{311}/I{311}が2.5を超えたため、GW方向のノッチ加工後のW曲げ加工性が劣化した。
温間圧延時の1パス当りの加工度が25%を超えた比較例4の場合、温間圧延で大きな歪が導入されたために再結晶が生じた。このため、[I{311]+I{200}}/I{220}が2.5を超え、I{311}/I{311}が2.5を超えたため、GW方向のノッチ加工後のW曲げ加工性が劣化した。
温間圧延時の総加工度が60%未満である比較例5の場合、温間圧延で集合組織が十分に変化しなかった。このため、[I{311]+I{200}}/I{220}が2.5を超え、I{311}/I{311}が2.5を超えたため、GW方向のノッチ加工後のW曲げ加工性が劣化した。
In the case of Comparative Example 3 where the end temperature of warm rolling is less than 300 ° C., the second phase particles having a diameter of 1.0 to 3.0 μm are reduced to less than 100 particles / mm 2 , and [I {311] + I { Since 200}} / I {220} exceeded 2.5 and I {311} / I 0 {311} exceeded 2.5, W bending workability after notching in the GW direction deteriorated.
In the case of Comparative Example 4 in which the degree of processing per pass during warm rolling exceeded 25%, recrystallization occurred because a large strain was introduced during warm rolling. For this reason, [I {311] + I {200}} / I {220} exceeds 2.5 and I {311} / I 0 {311} exceeds 2.5. W bending workability deteriorated.
In the case of Comparative Example 5 in which the total degree of work during warm rolling was less than 60%, the texture did not change sufficiently during warm rolling. For this reason, [I {311] + I {200}} / I {220} exceeds 2.5 and I {311} / I 0 {311} exceeds 2.5. W bending workability deteriorated.

なお、参考例1〜4は、熱間圧延後に水冷せず、さらに温間圧延を行わずに加工度93.7〜96.2%の冷間圧延、表1に示す温度で5分間の溶体化処理、及び時効処理(450℃で15時間)をこの順に行った。その後、加工度20%で最終仕上げ圧延を行い、厚さ0.15mmの試料を得た。
参考例1〜4の場合、温間圧延を行わなかったので、直径1.0〜3.0μmの第2相粒子が100個/mm未満に低減し、[I{311]+I{200}}/I{220}が2.5を超え、I{311}/I{311}が2.5を超えたため、GW方向のノッチ加工後のW曲げ加工性が劣化した。
なお、溶体化処理温度を他の参考例より低く(650℃)した参考例4の場合、GW方向のノッチ加工後のW曲げ加工性が良好となったが、実施例に比べて強度に劣った。
Reference Examples 1 to 4 were not cold-cooled after hot rolling, further cold-rolled with a working degree of 93.7 to 96.2% without performing warm rolling, solution treatment for 5 minutes at the temperatures shown in Table 1, and An aging treatment (at 450 ° C. for 15 hours) was performed in this order. Thereafter, final finish rolling was performed at a workability of 20% to obtain a sample having a thickness of 0.15 mm.
In the case of Reference Examples 1 to 4, since warm rolling was not performed, the second phase particles having a diameter of 1.0 to 3.0 μm were reduced to less than 100 particles / mm 2 , and [I {311] + I {200} } / I {220} exceeded 2.5 and I {311} / I 0 {311} exceeded 2.5, so that the W bending workability after notching in the GW direction deteriorated.
In the case of Reference Example 4 in which the solution treatment temperature was lower than that of other Reference Examples (650 ° C.), the W bending workability after notching in the GW direction was good, but the strength was inferior to the Examples. It was.

なお、図3は、実施例5のノッチ加工後の曲げ部の断面(試験片の端から1mm)写真(図3(a))、及びその表面の写真(図3(b))を示す。又、図4は、比較例2のノッチ加工後の曲げ部の断面(試験片の端から1mm)写真(図4(a))、及びその表面の写真(図4(b))を示す。   In addition, FIG. 3 shows the cross section (1 mm from the end of a test piece) photograph (FIG. 3 (a)) of the bending part after the notch process of Example 5, and the surface photograph (FIG.3 (b)). 4 shows a cross-section (1 mm from the end of the test piece) of the bent part after notching in Comparative Example 2 (FIG. 4A) and a photograph of the surface (FIG. 4B).

2 試験片
4 ノッチ
12 下型
12a 下型の頂部
5 曲げ加工部
2 Test piece 4 Notch 12 Lower mold 12a Top part of lower mold 5 Bending part

Claims (6)

1.0〜4.5質量%のNiを含有し、Niの質量%に対し1/6〜1/4の割合でSiを含有し、残部が銅および不可避的不純物からなり、
直径1.0〜3.0μmの第2相粒子を100〜500個/mm含有し、
表面における{200}面からのX線回折強度をI{200}とし、{311}面からのX線回折強度をI{311}とし、{220}面からのX線回折強度をI{220}としたとき、
1.0≦[I{311+I{200}/I{220}≦2.5を満たし、
かつ、純銅粉末標準試料の(311)面からのX解回折強度をI{311}としたとき、
1≦I{311}/I{311}≦2.5
を満たし、曲げ性に優れたCu−Ni−Si系銅合金条。
1.0 to 4.5 mass% of Ni is contained, Si is contained at a ratio of 1/6 to 1/4 with respect to the mass% of Ni, and the balance is made of copper and inevitable impurities,
Containing 100 to 500 particles / mm 2 of second phase particles having a diameter of 1.0 to 3.0 μm,
The X-ray diffraction intensity from the {200} plane on the surface is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I {220 }
1.0 ≦ [I {311 } + I {200} ] / I {220} ≦ 2.5 is satisfied,
And when the X-resolved diffraction intensity from the (311) plane of the pure copper powder standard sample is I 0 {311},
1 ≦ I {311} / I 0 {311} ≦ 2.5
It meets the excellent Cu-Ni-Si-based copper alloy strips in bendability.
さらに、Zn及び/又はSnを合計で2.0質量%以下含有する請求項1記載のCu−Ni−Si系銅合金条。 Furthermore, the Cu-Ni-Si-type copper alloy strip | line of Claim 1 which contains Zn and / or Sn in total 2.0 mass% or less. さらに、Mg、Fe、P、Mn、Co及びCrの群から選ばれる一種以上を合計で0.005〜0.8質量%含有する請求項1又は2記載のCu−Ni−Si系銅合金条。 The Cu-Ni-Si-based copper alloy strip according to claim 1 or 2, further comprising 0.005 to 0.8 mass% in total of at least one selected from the group consisting of Mg, Fe, P, Mn, Co and Cr. . 切断法によって求めた結晶粒径が11μm以下である請求項1〜3のいずれか記載のCu−Ni−Si系銅合金条。 The Cu-Ni-Si-based copper alloy strip according to any one of claims 1 to 3, wherein a crystal grain size determined by a cutting method is 11 µm or less. 切断法によって求めた結晶粒径が8μm以下である請求項4記載のCu−Ni−Si系銅合金条。 The Cu-Ni-Si-based copper alloy strip according to claim 4, wherein the crystal grain size determined by a cutting method is 8 µm or less. 1.0〜4.5質量%のNiを含有し、Niの質量%に対し1/6〜1/4の割合でSiを含有し、残部が銅および不可避的不純物からなるCu−Ni−Si系銅合金のインゴットを終了温度700〜800℃で熱間圧延後に、開始温度300〜450℃で終了温度310〜349℃、かつ総加工度60%以上で1パス当りの加工度を10〜25%とする温間圧延を行い、その後に少なくとも溶体化処理と時効処理とをこの順で行うCu−Ni−Si系銅合金条の製造方法。 Cu-Ni-Si containing 1.0 to 4.5% by mass of Ni, containing Si at a ratio of 1/6 to 1/4 with respect to the mass% of Ni, the balance being copper and inevitable impurities After hot rolling a copper alloy ingot at an end temperature of 700 to 800 ° C., an end temperature of 310 to 349 ° C. at an end temperature of 300 to 450 ° C. %, And then at least a solution treatment and an aging treatment are carried out in this order.
JP2012073173A 2012-03-28 2012-03-28 Cu-Ni-Si-based copper alloy strip and method for producing the same Active JP5610643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073173A JP5610643B2 (en) 2012-03-28 2012-03-28 Cu-Ni-Si-based copper alloy strip and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073173A JP5610643B2 (en) 2012-03-28 2012-03-28 Cu-Ni-Si-based copper alloy strip and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013204079A JP2013204079A (en) 2013-10-07
JP5610643B2 true JP5610643B2 (en) 2014-10-22

Family

ID=49523511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073173A Active JP5610643B2 (en) 2012-03-28 2012-03-28 Cu-Ni-Si-based copper alloy strip and method for producing the same

Country Status (1)

Country Link
JP (1) JP5610643B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5983589B2 (en) * 2013-12-11 2016-08-31 三菱マテリアル株式会社 Rolled copper alloy for electronic and electrical equipment, electronic and electrical equipment parts and terminals
US11319615B2 (en) 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
WO2017170699A1 (en) 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP6385382B2 (en) * 2016-03-31 2018-09-05 Jx金属株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP6355671B2 (en) 2016-03-31 2018-07-11 Jx金属株式会社 Cu-Ni-Si-based copper alloy strip and method for producing the same
JP6440760B2 (en) * 2017-03-21 2018-12-19 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working
WO2019189558A1 (en) 2018-03-30 2019-10-03 三菱マテリアル株式会社 Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP6780187B2 (en) 2018-03-30 2020-11-04 三菱マテリアル株式会社 Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and busbars
JP2020158817A (en) 2019-03-26 2020-10-01 Jx金属株式会社 Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080428A (en) * 1998-08-31 2000-03-21 Kobe Steel Ltd Copper alloy sheet excellent in bendability
JP3383615B2 (en) * 1999-08-05 2003-03-04 日鉱金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP3520034B2 (en) * 2000-07-25 2004-04-19 古河電気工業株式会社 Copper alloy materials for electronic and electrical equipment parts
JP4166196B2 (en) * 2004-06-28 2008-10-15 日鉱金属株式会社 Cu-Ni-Si copper alloy strip with excellent bending workability
US10311991B2 (en) * 2009-01-09 2019-06-04 Mitsubishi Shindoh Co., Ltd. High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same
EP2508635B1 (en) * 2009-12-02 2017-08-23 Furukawa Electric Co., Ltd. Copper alloy sheet and process for producing same

Also Published As

Publication number Publication date
JP2013204079A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5610643B2 (en) Cu-Ni-Si-based copper alloy strip and method for producing the same
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
TWI547572B (en) Copper alloy for electronic device, method of manufacturing copper alloy for electronic device, wrought material made of copper alloy for electronic device, and component for electronic device
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5448763B2 (en) Copper alloy material
JP5525247B2 (en) Copper alloy with high strength and excellent bending workability
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
KR20120104553A (en) Copper alloy sheet material having low young&#39;s modulus and method for producing same
WO2013018228A1 (en) Copper alloy
JP6155405B2 (en) Copper alloy material and method for producing the same
JP5503791B2 (en) Copper alloy sheet and manufacturing method thereof
JP2008095185A (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2009263784A (en) Cu-Ni-Si BASE ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL
JP2009242895A (en) High-strength copper alloy of excellent bending processability
TW201202445A (en) Cu-ni-si alloy with excellent bendability
TWI582249B (en) Copper alloy sheet and method of manufacturing the same
JP2013194246A (en) Cu-Cr-Sn-BASED COPPER ALLOY SHEET FOR LEAD FRAME WITH LITTLE RESIDUAL STRESS
WO2019176838A1 (en) Copper alloy sheet, method for manufacturing same, electrical/electronic device heat radiation component, and sealed case
JP2008075152A (en) Copper alloy having high strength, high electroconductivity and superior bendability
JP2008075151A (en) Copper alloy having high strength, high electroconductivity and superior bendability
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP4166197B2 (en) Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
JP2013231224A (en) Copper alloy material for electric and electronic components having excellent bending processability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131218

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5610643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250