JP3383615B2 - Copper alloy for electronic materials and manufacturing method thereof - Google Patents

Copper alloy for electronic materials and manufacturing method thereof

Info

Publication number
JP3383615B2
JP3383615B2 JP22198799A JP22198799A JP3383615B2 JP 3383615 B2 JP3383615 B2 JP 3383615B2 JP 22198799 A JP22198799 A JP 22198799A JP 22198799 A JP22198799 A JP 22198799A JP 3383615 B2 JP3383615 B2 JP 3383615B2
Authority
JP
Japan
Prior art keywords
mass
inclusions
size
strength
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22198799A
Other languages
Japanese (ja)
Other versions
JP2001049369A (en
Inventor
哲生 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16775312&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3383615(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP22198799A priority Critical patent/JP3383615B2/en
Publication of JP2001049369A publication Critical patent/JP2001049369A/en
Application granted granted Critical
Publication of JP3383615B2 publication Critical patent/JP3383615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、強度、導電性に優
れさらには良好な曲げ加工性、エッチング性及びめっき
性を有する電子材料用銅合金及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for electronic materials, which has excellent strength and conductivity, and further has good bending workability, etching property and plating property, and a method for producing the same.

【0002】[0002]

【従来の技術】リードフレーム、端子、コネクター等に
使用される電子材料用銅合金には、製品の基本特性とし
て高い強度及び高い電気伝導性又は熱伝導性を両立させ
ることが要求される。さらに近年の電子部品の小型化、
高集積化が一層要求されることから、これに対応してリ
ードフレーム、端子、コネクターにおいては、リード数
等の増加、狭ピッチ化が進んでいる。さらには部品形状
の複雑化及び組立て・実装における信頼性向上の要求か
ら、使用される材料には機械的強度と電気伝導性が優れ
ている他に、曲げ加工や繰り返し曲げに強いこと、エッ
チング性及びめっき性が良好であることが要求される。
2. Description of the Related Art Copper alloys for electronic materials used for lead frames, terminals, connectors, etc. are required to have both high strength and high electrical or thermal conductivity as basic characteristics of products. Furthermore, miniaturization of electronic parts in recent years,
Since higher integration is further required, lead frames, terminals, and connectors are correspondingly increasing in the number of leads and narrowing the pitch. Furthermore, due to the complexity of parts shape and the demand for improved reliability in assembly and mounting, the materials used are not only excellent in mechanical strength and electrical conductivity, but also resistant to bending and repeated bending, and have good etching properties. And good plating property is required.

【0003】高強度及び高導電性の観点から、近年電子
材料用銅合金としては従来のりん青銅、黄銅等に代表さ
れる固溶強化型銅合金に代わり、時効硬化型の銅合金の
使用量が増加している。時効硬化型銅合金は溶体化処理
された過飽和固溶体を時効処理することにより、微細な
析出物が均一に分散して、合金の強度が高くなると同時
に、銅中の固溶元素量が減少し電気伝導性が向上する。
従って強度、ばね性などの機械的性質に優れ、しかも電
気伝導性、熱伝導性が良好な材料として使用される。こ
こで析出元素としては活性元素が多い。更に合金の特性
を改良する目的で活性金属を更に添加する場合もある。
From the viewpoint of high strength and high conductivity, in recent years, as the copper alloy for electronic materials, the amount of age hardening type copper alloy used in place of the solid solution strengthening type copper alloy represented by the conventional phosphor bronze, brass and the like. Is increasing. Age-hardening type copper alloy is a solution-treated supersaturated solid solution, and by aging treatment, fine precipitates are dispersed uniformly and the strength of the alloy is increased. The conductivity is improved.
Therefore, it is used as a material which is excellent in mechanical properties such as strength and spring property, and is also excellent in electrical conductivity and thermal conductivity. Here, there are many active elements as precipitation elements. Further, an active metal may be further added for the purpose of improving the properties of the alloy.

【0004】時効硬化型銅合金のうち、Cu−Ni−S
i系銅合金は高強度と高導電率とを併せ持つ代表的な銅
合金であり、電子機器用材料として実用化されている。
この銅合金は、銅マトリックス中に微細なNi−Si系
金属間化合物粒子が析出することにより強度と導電率が
上昇する。
Among age hardening type copper alloys, Cu-Ni-S
The i-based copper alloy is a typical copper alloy having both high strength and high conductivity, and has been put to practical use as a material for electronic devices.
This copper alloy has increased strength and conductivity due to the deposition of fine Ni-Si-based intermetallic compound particles in the copper matrix.

【0005】[0005]

【発明が解決しようとする課題】Cu−Ni−Si系合
金は、銅マトリックス中に微細なNi−Si系金属間化
合物粒子が析出することにより強度と導電率が上昇する
が、反面強度の向上に寄与しない粗大な晶出物がマトリ
ックス中に残存し易く、またSiが活性で、酸化物等が
発生し易いため、マトリックス中にこれら晶出物、酸化
物等の比較的大きな粒子が介在した組織となり易い。こ
れらの粗大な粒子が存在すると、エッチング時のスマッ
トの発生量が増える。そしてエッチング後のリードの端
面に突起として残存すると、リードが狭ピッチの場合、
めっき加工する際突起部に異常電着し、短絡等電気的障
害が発生することがある。また、めっきを行なった際の
めっき剥がれ、めっき脹れ、染み、突起(つぶ)の発生
という問題を引き起こす可能性もある。また更には、曲
げ加工を行なった際にクラック発生の起点となり製品の
加工性を低下させる要因となる。
The Cu-Ni-Si alloy has a high strength and a high electric conductivity due to the precipitation of fine Ni-Si intermetallic compound particles in the copper matrix, but the strength is improved. Coarse crystallized substances that do not contribute to the oxidization are likely to remain in the matrix, and since Si is active and oxides are easily generated, relatively large particles such as these crystallized substances and oxides are present in the matrix. It is easy to become an organization. The presence of these coarse particles increases the amount of smut generated during etching. Then, when the lead is left as a protrusion on the end surface of the lead after etching, when the lead has a narrow pitch,
Abnormal electrodeposition may occur on the protrusions during plating, resulting in electrical failure such as a short circuit. Further, there is a possibility that problems such as peeling of the plating, swelling of the plating, stains, and generation of protrusions (squash) may occur during plating. Furthermore, when bending is performed, it becomes a starting point of crack generation, which becomes a factor of reducing the workability of the product.

【0006】本発明は上述した問題解決のためになされ
たもので、十分な強度及び電気伝導度を有しつつ、さら
に曲げ加工性、エッチング性及びめっき性に優れた電子
材料用銅合金を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and provides a copper alloy for electronic materials which has sufficient strength and electric conductivity, and is further excellent in bending workability, etching property and plating property. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するため
に本発明者らは、析出型銅合金に関する研究を重ねたと
ころ、Cu−Ni−Si系合金の成分調整を行った上
で、必要に応じMg、Zn、Sn、Fe、Ti、Zr、
Cr、Al、P、Mn、Ag、Beを含有させると共
に、製造条件を制御・選定してマトリックス中の析出
物、晶出物、酸化物等の介在物の分布の制御を行うこと
により、電子材料用銅合金として好適な素材を提供でき
ることを見出した。
In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive research on precipitation-type copper alloys and found that they are necessary after adjusting the composition of Cu-Ni-Si alloys. Depending on Mg, Zn, Sn, Fe, Ti, Zr,
By containing Cr, Al, P, Mn, Ag, and Be and controlling / selecting the manufacturing conditions to control the distribution of precipitates, crystallized substances, inclusions such as oxides in the matrix, It has been found that a material suitable as a copper alloy for materials can be provided.

【0008】本発明は、上記知見を基にして完成された
もので、(1)1.0〜4.8mass%のNi及び
0.2〜1.4mass%のSiを含有し、残部がCu
及び不可避的不純物からなり、そして介在物の大きさが
10μm以下であり、且つ5〜10μmの大きさの介在
物個数が圧延方向に平行な断面で50個/mm未満で
あることを特徴とする強度及び導電性の優れた電子材料
用銅合金。及び(2)1.0〜4.8mass%のNi
及び0.2〜1.4mass%のSiを含有し、且つS
iに対するNiの含有量(mass%)比が2〜8にな
るように調整し、残部がCu及び不可避的不純物からな
り、そして介在物の大きさが10μm以下であり、且つ
5〜10μmの大きさの介在物個数が圧延方向に平行な
断面で50個/mm未満であることを特徴とする強度
及び導電性の優れた電子材料用銅合金。及び(3)1.
0〜4.8mass%のNi及び0.2〜1.4mas
s%のSiを含有し、さらにMg、Zn、Sn、Fe、
Ti、Zr、Cr、Al、P、Mn、Ag又はBeのう
ち1種以上を総量で0.005〜2.0mass%含有
し、残部がCu及び不可避的不純物からなり、そして介
在物の大きさが10μm以下であり、且つ5〜10μm
の大きさの介在物個数が圧延方向に平行な断面で50個
/mm未満であることを特徴とする強度及び導電性の
優れた電子材料用銅合金。及び(4)1.0〜4.8m
ass%のNi及び0.2〜1.4mass%のSi、
さらにMg、Zn、Sn、Fe、Ti、Zr、Cr、A
l、P、Mn、Ag又はBeのうち1種以上を総量で
0.005〜2.0mass%含有し、且つSiに対す
るNiの含有量(mass%)比が2〜8になるように
調整し、残部がCu及び不可避的不純物からなり、そし
て介在物の大きさが10μm以下であり、且つ5〜10
μmの大きさの介在物個数が圧延方向に平行な断面で5
0個/mm未満であることを特徴とする強度及び導電
性の優れた電子材料用銅合金。及び(5)鋳塊を800
℃以上900℃未満の温度で1時間以上加熱した後、熱
間圧延終了温度を650℃以上で熱間圧延を行い、その
後熱処理と圧延を行った素材に対し、材料温度が300
〜650℃の温度で1〜10時間の時効処理を行うこと
を特徴とする(1)から(4)のうちいずれかに記載し
た電子材料用銅合金の製造方法。であり、リードフレー
ム、端子、コネクター用として十分な強度と電気伝導性
を兼備せしめ、さらには曲げ加工性、エッチング性、め
っき性も良好な銅合金及びその製造方法に関する。
The present invention has been completed based on the above findings, and (1) contains 1.0 to 4.8 mass% Ni and 0.2 to 1.4 mass% Si, and the balance Cu.
And inevitable impurities, the size of inclusions is 10 μm or less, and the number of inclusions having a size of 5 to 10 μm is less than 50 / mm 2 in a cross section parallel to the rolling direction. A copper alloy for electronic materials with excellent strength and conductivity. And (2) 1.0 to 4.8 mass% Ni
And 0.2 to 1.4 mass% of Si, and S
The content (mass%) of Ni with respect to i is adjusted to be 2 to 8, the balance is Cu and inevitable impurities, and the size of inclusions is 10 μm or less and the size is 5 to 10 μm. A copper alloy for electronic materials having excellent strength and conductivity, wherein the number of inclusions is less than 50 / mm 2 in a cross section parallel to the rolling direction. And (3) 1.
0-4.8 mass% Ni and 0.2-1.4mass
containing s% Si, and further containing Mg, Zn, Sn, Fe,
The total content of one or more of Ti, Zr, Cr, Al, P, Mn, Ag or Be is 0.005 to 2.0 mass%, the balance is Cu and inevitable impurities, and the size of inclusions. Is 10 μm or less, and 5 to 10 μm
The number of inclusions having a size of less than 50 / mm 2 in a cross section parallel to the rolling direction is a copper alloy for electronic materials having excellent strength and conductivity. And (4) 1.0 to 4.8 m
ass% Ni and 0.2-1.4 mass% Si,
Furthermore, Mg, Zn, Sn, Fe, Ti, Zr, Cr, A
1 or more of 1, P, Mn, Ag or Be is contained in a total amount of 0.005 to 2.0 mass% and adjusted so that the content ratio of Ni to Si (mass%) is 2 to 8. The balance consists of Cu and unavoidable impurities, and the size of inclusions is 10 μm or less, and 5 to 10
The number of inclusions with a size of μm is 5 in the cross section parallel to the rolling direction.
A copper alloy for electronic materials excellent in strength and conductivity, characterized in that it is less than 0 pieces / mm 2 . And (5) 800 ingots
After heating for 1 hour or more at a temperature of ℃ or more and less than 900 ° C, hot rolling is performed at a hot rolling end temperature of 650 ° C or more, and then the heat treatment and rolling are performed.
The method for producing a copper alloy for electronic materials according to any one of (1) to (4) , characterized in that the aging treatment is performed at a temperature of ˜650 ° C. for 1 to 10 hours. The present invention relates to a copper alloy having sufficient strength and electrical conductivity for a lead frame, a terminal and a connector, as well as good bending workability, etching property and plating property, and a manufacturing method thereof.

【0009】[0009]

【発明の実施の形態】本発明において、「介在物」とは、
鋳造時の凝固過程に生じる一般に粗大である晶出物並び
に溶解時の溶湯内での反応により生じる酸化物、硫化物
等、更には、鋳造時の凝固過程以降、すなわち凝固後の
冷却過程、熱間圧延後、溶体化処理後の冷却過程及び時
効処理時に固相のマトリックス中に析出反応で生じる析
出物であり、本銅合金のSEM観察によりマトリックス
中に観察される粗大な粒子を包括するものである。「介
在物の大きさ」は、介在物をSEM観察下でその介在物
を含む最小円の直径をいう。「介在物の個数」とは、材
料の圧延方向に平行な断面においてエッチング後SEM
観察により多数箇所で実際に数えた単位平方mm当たり
の介在物個数である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, "inclusion" means
Crystallized substances that are generally coarse during the solidification process during casting and oxides, sulfides, etc. generated by the reaction in the molten metal during melting, as well as after the solidification process during casting, that is, the cooling process after solidification, heat Precipitates generated by precipitation reaction in the solid phase matrix during the cooling process after solution rolling and after solution heat treatment and during aging treatment, and include coarse particles observed in the matrix by SEM observation of the present copper alloy Is. "Size of inclusion" means the diameter of the smallest circle including the inclusion under SEM observation of the inclusion. “Number of inclusions” means SEM after etching in a cross section parallel to the rolling direction of the material.
It is the number of inclusions per unit square mm actually counted at many points by observation.

【0010】次に本発明において銅合金の組成範囲なら
びに介在物寸法を前記の如くに限定した理由をその作用
とともに説明する。 (1)Ni及びSi Ni及びSiは、時効処理を行うことによりNiとSi
が相互に微細にNiSiを主とした金属間化合物の析
出粒子を形成し、合金の強度を著しく増加させる一方、
電気伝導度も高く維持する。ただしNi含有量が1ma
ss%未満又はSi含有量が0.2mass%未満の場
合は、他方の成分を添加しても所望とする強度が得られ
ず、またNi含有量が4.8mass%を超え又はSi
含有量が1.4mass%を超える場合は、十分な強度
が得られるものの所望とする電気伝導性が低くなってし
まい、さらには強度の向上に寄与しない粗大なNi−S
i系粒子(晶出物及び析出物)が母相に生成し、曲げ加
工性、エッチング性及びめっき性の低下を招く。従っ
て、Niの含有量を1.0〜4.8mass%、Siの
含有量を0.2〜1.4mass%と定めた。また、時
効処理後の電気伝導性をより高めるためには、合金中の
NiとSiの含有量比を、金属間化合物であるNi
iのNiとSiの含有量比に近づけることが望ましい。
良好な電気伝導性を得るためのSiに対するNiの含有
量(mass%)比(Ni含有量/Si含有量)は2〜
8であり、4が最も好ましい。
[0010] Then why the composition range and inclusion size of Oite copper alloy in the present invention is limited to as of the will be described together with its operation. (1) Ni and Si Ni and Si are Ni and Si by aging treatment.
Form fine particles of intermetallic compounds mainly composed of Ni 2 Si and minutely increase the strength of the alloy.
Maintain high electrical conductivity. However, the Ni content is 1 ma
When the content is less than ss% or the Si content is less than 0.2 mass%, the desired strength cannot be obtained even when the other component is added, and the Ni content exceeds 4.8 mass% or Si.
If the content exceeds 1.4 mass% , a sufficient strength is obtained, but the desired electrical conductivity is lowered, and further, a coarse Ni—S that does not contribute to the improvement of strength is obtained.
i-type particles (crystallized substances and precipitates) are generated in the mother phase, which causes deterioration of bending workability, etching property and plating property. Thus, defining the content of Ni from 1.0 to 4.8 mass%, the content of Si and 0.2 to 1.4 mass%. Further, in order to further increase the electrical conductivity after the aging treatment, the content ratio of Ni and Si in the alloy is set to Ni 2 S which is an intermetallic compound.
It is desirable to approach the content ratio of Ni and Si of i.
The content ratio of Ni to Si ( mass% ) (Ni content / Si content) for obtaining good electric conductivity is 2 to
8, with 4 being most preferred.

【0011】 (2)Mg、Zn、Sn、Fe、Ti、Zr、Cr、A
l、P、Mn、Ag又はBe Mg、Zn、Sn、Fe、Ti、Zr、Cr、Al、
P、Mn、Ag又はBeには、Cu−Ni−Si系銅合
金の強度及び耐熱性を改善する作用がある。また、これ
らの中でZnには、半田接合部の耐熱性を改善する効果
もあり、Feには組織を微細化する効果もある。さら
に、Mg、Ti、Zr、Al及びMnは熱間圧延性を改
善する効果も有する。この理由は、これらの元素が硫黄
との親和性が強いため硫黄と化合物を形成し、熱間圧延
割れの原因となるインゴット粒界への硫黄の偏析を軽減
するためである。Mg、Zn、Sn、Fe、Ti、Z
r、Cr、Al、P、Mn、Ag又はBeの含有量が総
量で0.005mass%未満であると上記の効果は得
られず、一方総含有量が2.0mass%を超えると電
気伝導性が著しく低下する。そこで、これらの含有量を
総量で0.005〜2.0mass%と定める。
(2) Mg, Zn, Sn, Fe, Ti, Zr, Cr, A
1, P, Mn, Ag or Be Mg, Zn, Sn, Fe, Ti, Zr, Cr, Al,
P, Mn, Ag or Be has an effect of improving the strength and heat resistance of the Cu-Ni-Si based copper alloy. Further, among these, Zn also has an effect of improving heat resistance of the solder joint portion, and Fe also has an effect of refining the structure. Further, Mg, Ti, Zr, Al and Mn also have an effect of improving hot rolling property. The reason for this is that these elements have a strong affinity for sulfur and form a compound with sulfur, thereby reducing the segregation of sulfur at the ingot grain boundaries, which causes hot rolling cracks. Mg, Zn, Sn, Fe, Ti, Z
If the total content of r, Cr, Al, P, Mn, Ag, or Be is less than 0.005 mass% , the above effect is not obtained, while if the total content exceeds 2.0 mass% , electricity is not generated. The conductivity is significantly reduced. Therefore, the total content of these is set to 0.005 to 2.0 mass% .

【0012】(3)介在物 この合金系ではマトリックス中に介在物の粒子が存在す
ることがある。この合金に必要な強度を得るための析出
物は微細であり、0.5μmを超える粗大な析出物、晶
出物等の介在物は強度に寄与しないばかりか、特に大き
さが10μmを超える粗大なものは曲げ加工性、エッチ
ング性、めっき性を著しく低下させる。このような不具
合を起こさないためには、この粗大な介在物の大きさの
上限を10μmとする必要がある。また本発明者は、介
在物の分布と曲げ加工性、エッチング性、めっき性との
相関を調査し、5〜10μmの粗大な介在物であって
も、圧延方向に平行な断面において50個/mm2未満
であれば、これらの特性を損なうことがないことを見出
した。
(3) Inclusions In this alloy system, particles of inclusions may be present in the matrix. Precipitates for obtaining the strength required for this alloy are fine, and coarse precipitates exceeding 0.5 μm and inclusions such as crystallized substances do not contribute to the strength, and especially the size exceeds 10 μm. Such a material remarkably deteriorates bending workability, etching property and plating property. In order to prevent such a problem, it is necessary to set the upper limit of the size of the coarse inclusions to 10 μm. Further, the present inventor investigated the correlation between the distribution of inclusions and bending workability, etching property, and plating property, and even with coarse inclusions of 5 to 10 μm, 50 / It has been found that if it is less than mm 2 , these characteristics are not impaired.

【0013】次に、この合金を得るための製造方法につ
いて説明する。 通常鋳塊の製造は、半連続鋳造法で行
なわれる。半連続鋳造における鋳造時の凝固過程におい
てNi−Si系の粗大な晶出物及び析出物が生成するこ
とがある。これら粗大な介在物は800℃以上の温度で
1時間以上加熱後に熱間圧延を行ない、終了温度を65
0℃以上とすることにより、マトリックス中に固溶され
る。しかし加熱温度が900℃以上になると大量のスケ
ールの発生、熱間圧延時の割れの発生といった問題が生
じるため、加熱温度は800℃以上900℃未満とする
のが良い。
Next, a manufacturing method for obtaining this alloy will be described. Usually, the ingot is manufactured by a semi-continuous casting method. In the solidification process during casting in semi-continuous casting, coarse Ni—Si-based crystallized substances and precipitates may be formed. These coarse inclusions are heated at a temperature of 800 ° C. or higher for 1 hour or more and then hot-rolled to a finish temperature of 65 ° C.
By setting the temperature to 0 ° C. or higher, solid solution occurs in the matrix. However, when the heating temperature is 900 ° C. or higher, a large amount of scale is generated and cracks are generated during hot rolling. Therefore, the heating temperature is preferably 800 ° C. or higher and lower than 900 ° C.

【0014】時効処理で高強度の材料を得るため、時効
処理の前に溶体化処理を行うことも可能であり、溶体化
処理温度が高い方がNi、Siのマトリックス中への固
溶量が増加し、時効処理時にマトリックス中からNi−
Si系の金属間化合物が微細に析出し、より強度を向上
させる。この効果を得るために溶体化処理温度は、75
0℃以上、好ましくは800℃以上900℃未満とする
のが望ましい。なお、本発明の銅合金は900℃であれ
ば、Ni、Siがマトリックス中に十分固溶されるが、
900℃以上の温度では、溶体化処理時に材料表面の酸
化が激しく、酸化層を除去するための、酸洗工程の負荷
が大きくなるため900℃未満の処理温度が推奨され
る。
In order to obtain a high-strength material by the aging treatment, it is possible to perform the solution treatment before the aging treatment, and the higher the solution treatment temperature is, the more solid solution amount of Ni and Si is in the matrix. Ni-from the matrix during aging treatment
Si-based intermetallic compounds are finely precipitated to further improve the strength. In order to obtain this effect, the solution treatment temperature is 75
It is desirable that the temperature is 0 ° C. or higher, preferably 800 ° C. or higher and lower than 900 ° C. In the copper alloy of the present invention, at 900 ° C., Ni and Si are sufficiently dissolved in the matrix,
At a temperature of 900 ° C. or higher, the surface of the material is heavily oxidized during the solution treatment, and the load of the pickling step for removing the oxide layer increases, so a treatment temperature of less than 900 ° C. is recommended.

【0015】また、時効処理後の強度を向上させるた
め、時効処理前に冷間圧延を行うが、その加工度は高い
程より高い強度が得られる。その加工度は本発明の銅合
金に要求される強度、加工性に応じて適宜選択される。
Further, in order to improve the strength after the aging treatment, cold rolling is performed before the aging treatment, and the higher the workability, the higher the strength obtained. The workability is appropriately selected according to the strength and workability required for the copper alloy of the present invention.

【0016】時効処理は所望の強度及び電気伝導性を得
るために行うが、時効処理温度は300〜650℃にす
る必要がある。300℃未満では時効処理に時間がかか
り経済的でなく、650℃を越えるとNi−Si粒子は
粗大化し、更に700℃を超えるとNi及びSiが固溶
してしまい、強度及び電気伝導性が向上しないためであ
る。300〜650℃の範囲で時効処理する際、時効処
理時間は、1〜10時間であれば十分な強度、電気伝導
性が得られる。なお、本発明の銅合金において、更に強
度を向上させるため、時効処理後に冷間圧延し、その後
熱処理(歪取り焼鈍)を行うことも可能である。
The aging treatment is carried out in order to obtain the desired strength and electrical conductivity, but the aging treatment temperature must be 300 to 650 ° C. If the temperature is lower than 300 ° C, the aging treatment takes time, which is not economical. If the temperature exceeds 650 ° C, the Ni-Si particles are coarsened. This is because it does not improve. When performing the aging treatment in the range of 300 to 650 ° C., sufficient strength and electrical conductivity can be obtained if the aging treatment time is 1 to 10 hours. In order to further improve the strength of the copper alloy of the present invention, it is possible to perform cold rolling after the aging treatment and then perform heat treatment (strain relief annealing).

【0017】[0017]

【実施例】高周波溶解炉にて表1に示す各種成分組成の
銅合金を溶製し、厚さ20mmのインゴットに鋳造し
た。次に、このインゴットを表1に記載した温度で厚さ
8mmまで各温度条件で熱間圧延を行い、表面のスケー
ル除去のため面削を施した後、冷間圧延により厚さ2m
mの板とした。その後、750℃以上900℃未満の温
度で10分間の溶体化処理を行った後、0.5mmまで
冷間圧延した。そして400〜600℃の各組成で最高
の温度が得られる温度で各5時間の時効処理を行い、そ
の後、さらに高強度が得られるよう、冷間圧延で厚さ
0.15mmの板とし、最後に500〜550℃で30
秒〜10分の歪取り焼鈍を適宜施した。
Example Copper alloys having various composition shown in Table 1 were melted in a high frequency melting furnace and cast into an ingot having a thickness of 20 mm. Next, this ingot was hot-rolled at a temperature shown in Table 1 up to a thickness of 8 mm under each temperature condition, chamfered to remove surface scale, and then cold-rolled to a thickness of 2 m.
m plate. After that, solution treatment was performed at a temperature of 750 ° C. or higher and lower than 900 ° C. for 10 minutes, and then cold rolling was performed to 0.5 mm. Then, aging treatment is performed for 5 hours at a temperature at which the highest temperature is obtained in each composition of 400 to 600 ° C., and thereafter, a plate having a thickness of 0.15 mm is cold-rolled so that higher strength can be obtained. At 500-550 ° C for 30
Strain relief annealing was appropriately performed for 10 seconds.

【0018】[0018]

【表1】 [Table 1]

【0019】このようにして得られた各合金につき諸特
性の評価を行った。強度については引張試験機において
引張強さを測定した。電気伝導性は導電率(%IAC
S)により評価した。 繰り返し曲げ性は「曲げ半径/
板厚=1」で曲げ軸が圧延方向に平行方向の片側90度
繰り返し曲げ試験を行ない、往復を1回と数える方法で
破断するまでの回数を数えて評価した。なお繰り返し曲
げ性の評価基準は、曲げ回数3回以上を○とし、3回未満
を×とした。エッチング性は、試料の圧延方向に直角な
断面を塩化第二鉄水溶液により10μmエッチング後、
3次元座標測定装置によりエッチング面を観察し、素地
に対し5μm以上の介在物の突起が観察された場合を×
とし、観察されなかった場合を○とした。めっき性は、
試料表面に厚さ5μmの銀めっきを施した後、銀めっき
表面を観察し大きさが10μm以上の銀のつぶが観察さ
れた場合を×、観察されなかった場合を○とした。介在
物個数は、材料の圧延方向に平行な断面をエッチング後
SEMで観察し、多数箇所において実際に数えた単位平
方mm当たりの大きさ5〜10μmの介在物個数であ
る。
Various properties of the alloys thus obtained were evaluated. Regarding the strength, the tensile strength was measured with a tensile tester. Electrical conductivity is conductivity (% IAC
It was evaluated by S). Repeatable bendability is "bend radius /
With a plate thickness of 1 ", the bending axis was repeatedly bent 90 degrees on one side in a direction parallel to the rolling direction, and the number of times until break was counted was evaluated by the method of counting the number of reciprocations as one. In addition, the evaluation criteria of the repetitive bendability were evaluated as ◯ when the number of bending was 3 or more, and as × when less than 3 times. The etching property is that the cross section perpendicular to the rolling direction of the sample is etched by 10 μm with an aqueous ferric chloride solution,
When the etching surface is observed with a three-dimensional coordinate measuring device and protrusions of inclusions of 5 μm or more are observed with respect to the substrate, x
And the case where it was not observed was marked with ◯. Platability is
After silver plating having a thickness of 5 μm was applied to the surface of the sample, the surface of the silver plating was observed and the case where a crush of silver having a size of 10 μm or more was observed was marked with x, and the case where it was not observed was marked with ◯. The number of inclusions is the number of inclusions having a size of 5 to 10 μm per unit square mm, which was actually counted at a large number of locations by observing a cross section parallel to the rolling direction of the material with an SEM after etching.

【0020】表1からわかるように、本発明は優れた、
強度、導電率、繰り返し曲げ性、エッチング性及び銀め
っき性を有している。一方、比較合金のNo.1〜N
o.5は、本発明と一部の組成が異なるもの、熱間圧延
前の加熱温度が800℃未満のもの、熱間圧延終了温度
が650℃未満のものであるが、本発明合金と比較する
と、比較合金No.1はNiが低いために強度及び導電
率が劣る。比較合金No.2はNi、Siとも低いため
に強度が劣る。比較合金No.3、4はSiが高いため
に導電率が劣る。比較合金No.5は本発明の許容範囲
を超えて副成分を含有するため導電率が劣る。
As can be seen from Table 1, the present invention is excellent,
It has strength, conductivity, repetitive bendability, etching property, and silver plating property. On the other hand, the comparative alloy No. 1 to N
o. No. 5 is different from the present invention in a part of the composition, the heating temperature before hot rolling is less than 800 ° C., and the hot rolling end temperature is less than 650 ° C. However, when compared with the alloy of the present invention, Comparative alloy No. No. 1 is low in Ni and therefore inferior in strength and conductivity. Comparative alloy No. No. 2 is inferior in strength because both Ni and Si are low. Comparative alloy No. Since 3 and 4 have a high Si content, the conductivity is poor. Comparative alloy No. Sample No. 5 contains subcomponents exceeding the allowable range of the present invention, and thus has poor electrical conductivity.

【0021】さらに比較例No.1、3、4、6、7、
8は介在物個数が多いために繰り返し曲げ性、エッチン
グ性、銀めっき性とも劣る。特に比較例No.6、7、
8は、それぞれ実施例No.1、9と同一組成であるが
熱間圧延前の加熱温度、熱間圧延終了温度が低いため
に、鋳造時に生成した粗大な晶出物、析出物が熱間圧延
前の加熱、熱間圧延にて固溶しなかった結果として介在
物個数が増加した例である。なお銀めっきにより発生し
た銀つぶの生成原因調査のため、銀めっき剥離後銀つぶ
直下の表面を観察した結果、粗大なNi−Si系介在物
が確認された。
Further, in Comparative Example No. 1, 3, 4, 6, 7,
Since No. 8 has a large number of inclusions, it is inferior in repeated bending property, etching property and silver plating property. Especially in Comparative Example No. 6, 7,
No. 8 is the example No. Although the composition is the same as that of Nos. 1 and 9, since the heating temperature before hot rolling and the end temperature of hot rolling are low, coarse crystallized substances and precipitates generated during casting are heated before hot rolling, hot rolling. This is an example in which the number of inclusions increased as a result of not forming a solid solution. In order to investigate the cause of generation of silver lumps generated by silver plating, the surface immediately below the silver lumps was observed after the silver plating was peeled off, and as a result, coarse Ni—Si-based inclusions were confirmed.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、優
れた強度と電気伝導性を有し、さらには繰り返し曲げ
性、エッチング性及びめっき性にも優れた銅合金が得ら
れ、リードフレーム、端子、コネクター等電子材料用銅
合金として好適である。
As described above, according to the present invention, it is possible to obtain a copper alloy having excellent strength and electrical conductivity, as well as excellent repetitive bendability, etching property and plating property. Suitable as a copper alloy for electronic materials such as terminals, connectors.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 691 C22F 1/00 691B 691C ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI C22F 1/00 691 C22F 1/00 691B 691C

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1.0〜4.8mass%のNi及び0.
2〜1.4mass%のSiを含有し、残部がCu及び
不可避的不純物からなり、そして介在物の大きさが10
μm以下であり、且つ5〜10μmの大きさの介在物個
数が圧延方向に平行な断面で50個/mm未満である
ことを特徴とする強度及び導電性の優れた電子材料用銅
合金。
1. Ni to 1.0 to 4.8 mass% and 0.
2 to 1.4 mass% of Si, the balance of Cu and inevitable impurities, and the size of inclusions is 10
A copper alloy for electronic materials excellent in strength and conductivity, characterized in that the number of inclusions having a size of 5 μm or less and having a size of 5 to 10 μm is less than 50 / mm 2 in a cross section parallel to the rolling direction.
【請求項2】1.0〜4.8mass%のNi及び0.
2〜1.4mass%のSiを含有し、且つSiに対す
るNiの含有量(mass%)比が2〜8になるように
調整し、残部がCu及び不可避的不純物からなり、そし
て介在物の大きさが10μm以下であり、且つ5〜10
μmの大きさの介在物個数が圧延方向に平行な断面で5
0個/mm未満であることを特徴とする強度及び導電
性の優れた電子材料用銅合金。
2. Ni to 1.0 to 4.8 mass% and 0.
The content of Si is 2 to 1.4 mass%, and the content ratio of Ni to Si (mass%) is adjusted to 2 to 8 with the balance being Cu and inevitable impurities, and the size of inclusions. Is 10 μm or less, and 5 to 10
The number of inclusions with a size of μm is 5 in the cross section parallel to the rolling direction.
A copper alloy for electronic materials, which is excellent in strength and conductivity, characterized in that it is less than 0 pieces / mm 2 .
【請求項3】1.0〜4.8mass%のNi及び0.
2〜1.4mass%のSiを含有し、さらにMg、Z
n、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、
Ag又はBeのうち1種以上を総量で0.005〜2.
0mass%含有し、残部がCu及び不可避的不純物か
らなり、そして介在物の大きさが10μm以下であり、
且つ5〜10μmの大きさの介在物個数が圧延方向に平
行な断面で50個/mm未満であることを特徴とする
強度及び導電性の優れた電子材料用銅合金。
3. Ni of 1.0 to 4.8 mass% and 0.
2 to 1.4 mass% of Si is contained, and further Mg, Z
n, Sn, Fe, Ti, Zr, Cr, Al, P, Mn,
The total amount of one or more of Ag and Be is 0.005-2.
0 mass%, the balance is Cu and inevitable impurities, and the size of inclusions is 10 μm or less,
Further, the number of inclusions having a size of 5 to 10 μm is less than 50 / mm 2 in a cross section parallel to the rolling direction, and a copper alloy for electronic materials having excellent strength and conductivity.
【請求項4】1.0〜4.8mass%のNi及び0.
2〜1.4mass%のSi、さらにMg、Zn、S
n、Fe、Ti、Zr、Cr、Al、P、Mn、Ag又
はBeのうち1種以上を総量で0.005〜2.0ma
ss%含有し、且つSiに対するNiの含有量(mas
s%)比が2〜8になるように調整し、残部がCu及び
不可避的不純物からなり、そして介在物の大きさが10
μm以下であり、且つ5〜10μmの大きさの介在物個
数が圧延方向に平行な断面で50個/mm未満である
ことを特徴とする強度及び導電性の優れた電子材料用銅
合金。
4. Ni- of 1.0 to 4.8 mass% and 0.
2 to 1.4 mass% of Si, and further Mg, Zn, S
0.005 to 2.0 ma in total of one or more of n, Fe, Ti, Zr, Cr, Al, P, Mn, Ag or Be.
ss% content and Ni content relative to Si (mas
s%) is adjusted to be 2 to 8, the balance is Cu and inevitable impurities, and the size of inclusions is 10
A copper alloy for electronic materials excellent in strength and conductivity, characterized in that the number of inclusions having a size of 5 μm or less and having a size of 5 to 10 μm is less than 50 / mm 2 in a cross section parallel to the rolling direction.
【請求項5】鋳塊を800℃以上900℃未満の温度で
1時間以上加熱した後、熱間圧延終了温度を650℃以
上で熱間圧延を行い、その後熱処理と圧延を行った素材
に対し、材料温度が300〜650℃の温度で1〜10
時間の時効処理を行うことを特徴とする請求項1〜4
うちいずれかに記載した電子材料用銅合金の製造方法。
5. A material obtained by heating an ingot at a temperature of 800 ° C. or higher and lower than 900 ° C. for 1 hour or longer, and then hot rolling at a hot rolling end temperature of 650 ° C. or higher, and then performing heat treatment and rolling. , 1 to 10 at material temperature of 300 to 650 ℃
The aging process of time is performed, The claim 1 characterized by the above-mentioned.
A method for producing a copper alloy for electronic materials according to any one of the above.
JP22198799A 1999-08-05 1999-08-05 Copper alloy for electronic materials and manufacturing method thereof Expired - Lifetime JP3383615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22198799A JP3383615B2 (en) 1999-08-05 1999-08-05 Copper alloy for electronic materials and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22198799A JP3383615B2 (en) 1999-08-05 1999-08-05 Copper alloy for electronic materials and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001049369A JP2001049369A (en) 2001-02-20
JP3383615B2 true JP3383615B2 (en) 2003-03-04

Family

ID=16775312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22198799A Expired - Lifetime JP3383615B2 (en) 1999-08-05 1999-08-05 Copper alloy for electronic materials and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3383615B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423054B2 (en) * 2004-01-30 2010-03-03 日鉱金属株式会社 Material for electronic parts with excellent press punchability
JP4494258B2 (en) 2005-03-11 2010-06-30 三菱電機株式会社 Copper alloy and manufacturing method thereof
US7946022B2 (en) 2005-07-05 2011-05-24 The Furukawa Electric Co., Ltd. Copper alloy for electronic machinery and tools and method of producing the same
JP2007100136A (en) * 2005-09-30 2007-04-19 Nikko Kinzoku Kk Copper alloy for lead frame excellent in uniform plating property
KR101049655B1 (en) 2006-05-26 2011-07-14 가부시키가이샤 고베 세이코쇼 Copper alloy with high strength, high conductivity and bendability
JP4247922B2 (en) 2006-09-12 2009-04-02 古河電気工業株式会社 Copper alloy sheet for electrical and electronic equipment and method for producing the same
EP2194151B1 (en) 2007-09-28 2014-08-13 JX Nippon Mining & Metals Corporation Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
US20110123389A1 (en) 2008-09-30 2011-05-26 Jx Nippon Mining & Metals Corporation High Purity Copper and Method of Producing High Purity Copper Based on Electrolysis
EP3128039B1 (en) * 2008-09-30 2019-05-01 JX Nippon Mining & Metals Corp. High-purity copper sputtering target or high-purity copper alloy sputtering target
WO2011093114A1 (en) * 2010-01-26 2011-08-04 三菱マテリアル株式会社 Copper alloy with high strength and high electrical conductivity
WO2011142643A2 (en) * 2010-05-14 2011-11-17 한국기계연구원 Copper alloy, method for preparing same, and enhancing strength and electrical conductivity thereof
JP5657311B2 (en) * 2010-08-30 2015-01-21 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP5743165B2 (en) * 2010-12-13 2015-07-01 株式会社 東北テクノアーチ Copper alloy and method for producing copper alloy
KR101508451B1 (en) 2010-12-13 2015-04-07 니폰 세이센 가부시키가이샤 Copper alloy wire and copper alloy spring
JP5610643B2 (en) * 2012-03-28 2014-10-22 Jx日鉱日石金属株式会社 Cu-Ni-Si-based copper alloy strip and method for producing the same
JP6361194B2 (en) * 2014-03-14 2018-07-25 三菱マテリアル株式会社 Copper ingot, copper wire, and method for producing copper ingot
JP6472477B2 (en) 2017-03-30 2019-02-20 Jx金属株式会社 Cu-Ni-Si copper alloy strip
CN108823466B (en) * 2018-06-14 2020-10-13 北京科技大学 Multi-element composite precipitation strengthening type high-strength high-conductivity copper alloy and preparation method thereof
CN115261666B (en) * 2022-07-18 2023-03-31 江西省金叶有色新材料研究院 Lead-free high-strength high-conductivity beryllium bronze bar and manufacturing method and application thereof

Also Published As

Publication number Publication date
JP2001049369A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP3273613B2 (en) Method for producing copper alloy having high strength and conductivity
KR100968717B1 (en) ??-??-??-??-?? based copper alloy for electronic material and method for production thereof
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
KR20150126064A (en) Copper-cobalt-silicon alloy for electrode material
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JPH06207233A (en) Copper alloy for electronic and electrical equipment and its production
JPH0987814A (en) Production of copper alloy for electronic equipment
JP4175920B2 (en) High strength copper alloy
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
JP3733548B2 (en) Method for producing a copper-based alloy having excellent stress relaxation resistance
JP4224859B2 (en) Copper-based alloy with excellent stress relaxation resistance
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JP2000273561A (en) Copper base alloy for terminal and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3383615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term