JP2001032029A - Copper alloy excellent in stress relaxation resistance, and its manufacture - Google Patents

Copper alloy excellent in stress relaxation resistance, and its manufacture

Info

Publication number
JP2001032029A
JP2001032029A JP2000083099A JP2000083099A JP2001032029A JP 2001032029 A JP2001032029 A JP 2001032029A JP 2000083099 A JP2000083099 A JP 2000083099A JP 2000083099 A JP2000083099 A JP 2000083099A JP 2001032029 A JP2001032029 A JP 2001032029A
Authority
JP
Japan
Prior art keywords
less
copper alloy
stress relaxation
relaxation resistance
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000083099A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
元久 宮藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000083099A priority Critical patent/JP2001032029A/en
Priority to FR0006462A priority patent/FR2793810B1/en
Publication of JP2001032029A publication Critical patent/JP2001032029A/en
Priority to US10/227,216 priority patent/US20030047259A1/en
Priority to US10/407,233 priority patent/US20030196736A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a copper alloy material excellent in stress relaxation resistance and equivalent or superior to phosphor bronze in balance between tensile strength and elongation, peeling of Sn plating, whisker formation in Sn plating layer, stress corrosion cracking sensitivity, etc. SOLUTION: The copper alloy material has a composition consisting of 3-<4% Sn, 0.5-1.0% Ni, 0.05-5.0% Zn, and the balance copper with inevitable impurities, and further, the total content of substances unentered into solid solution, such as precipitates, is regulated to <=0.02%. This material can be manufactured by carrying out, in the course of cold rolling, heat treatment consisting of holding at 550-700 deg.C for 5 sec to 5 min and successive cooling at >=5 deg.C/sec cooling rate down to ordinary temperature, performing cold rolling to the desired size, and then subjecting the sheet to stabilizing annealing at 325 to 450 deg.C for 5 sec to 180 min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気・電子機器用
ばね、スイッチ、コネクタ、ダイアフラム、ソケット、
ベロー、ヒューズクリップ、摺動片、軸受、ブッシュ、
自動車シートベルト用ばね、ワッシャなど(以上、板又
は条から加工される)、ブルドン管、フレキシブルメタ
ルホース、ホース型ベロー、スリーブベアリングなど
(以上、管から加工される)、さらにコイルばねなど
(線・棒から加工される)の用途に用いられる、耐応力
緩和特性を必要とする銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spring, a switch, a connector, a diaphragm, a socket, and the like for electric and electronic equipment.
Bellows, fuse clips, sliding pieces, bearings, bushes,
Automotive seat belt springs, washers, etc. (above, processed from plates or strips), bourdon tubes, flexible metal hoses, hose-type bellows, sleeve bearings, etc. (above, processed from tubes), coil springs, etc. (wires) -It is a copper alloy that requires stress relaxation resistance and is used for applications (processed from a rod).

【0002】[0002]

【従来の技術】民生及び産業向けの電気・電子機器用ば
ね、スイッチ、コネクタなど、ブルドン管、さらにはコ
イルばねなどの用途に、それぞれ板・条、管及び線・棒
状のりん青銅が主として使用されてきた。そして、近
年、例えば電子・電気機器用のコネクタは、機器本体の
小型化及び軽量化に伴い、高密度化、小型化、薄板化、
さらには狭ピッチが進められ、より高い信頼性が要求さ
れるようになっている。
2. Description of the Related Art Phosphor bronze in the form of plates, strips, pipes, and wires and rods is mainly used for bourdon tubes, coil springs, etc. for springs, switches, connectors, etc. for electric and electronic equipment for consumer and industrial use. It has been. In recent years, for example, connectors for electronic and electrical devices have become denser, smaller, thinner, with smaller and lighter devices.
Furthermore, the narrow pitch has been advanced, and higher reliability has been required.

【0003】ところが、りん青銅は強度が優れている
が、応力が付加された状態で140℃を超える温度で保
持すると変形する(耐応力緩和特性が劣る)という問題
がある。また、りん青銅では錫又は金めっきを行う場
合、Ni下地めっきを行うのが一般的となっているが、
Ni下地めっきを省いて直接錫めっきを行うと、錫が
剥離しやすく、錫層の表面に酸化銅が形成され黒変
し、接触抵抗が大となったり、はんだが濡れ難くなり、
錫のウイスカーが生じやすくなる等の問題がある。さ
らに、コネクタの小型化によってコネクタを構成する端
子の極間ピッチが狭くなることにより、水分が存在する
場合、マイグレーションによって電気的な短絡を生じや
すくなっている。りん青銅は銅と錫からなるため、裸材
及び錫めっき材ではマイグレーションが生じやすく、狭
ピッチ化が困難という問題もある。
[0003] Phosphor bronze is excellent in strength, but has a problem that it is deformed (insufficient in stress relaxation resistance) when it is maintained at a temperature exceeding 140 ° C. in a state where stress is applied. In addition, when tin or gold plating is performed on phosphor bronze, it is common practice to perform Ni base plating.
If the tin plating is performed directly without the Ni base plating, the tin is easily peeled off, copper oxide is formed on the surface of the tin layer and turns black, the contact resistance becomes large, and the solder becomes hard to wet,
There is a problem that tin whiskers are easily generated. In addition, when the pitch between the terminals of the connector is reduced due to the miniaturization of the connector, when moisture is present, an electrical short circuit is likely to occur due to migration. Since phosphor bronze is composed of copper and tin, there is also a problem that migration is likely to occur in bare materials and tin-plated materials, and it is difficult to reduce the pitch.

【0004】一方、特開昭61−127840号公報に
は、2%超えて10%以下のSn、0.001%超えて
0.4%以下のP、0.05%以上5%以下のZn、及
びNi、Co、Crのうち1種又は2種以上を0.01
乃至1%を含み、残部がCu及び不可避不純物からなる
高力高導電銅合金が記載されている。実施例を見ると冷
間圧延途中1.0mmtで500℃にて1時間の焼鈍を
行っているが、Ni、Co、Crのうち1種又は2種以
上を含有するため、この焼鈍でNi、Co、CrとPの
化合物の析出が発生する。すなわち、この発明の合金の
場合、Ni、Co、Crの燐化物を形成させることによ
って、りん青銅の引張強さと耐熱性向上及び導電率の向
上を図ったものである。特開昭63−38546号公報
にも上記と類似の合金について、PとNiの化合物が析
出することが記載されている。
On the other hand, Japanese Patent Application Laid-Open No. 61-127840 discloses Sn of more than 2% to 10%, P of 0.001% to 0.4%, and Zn of 0.05% to 5%. , And one or two or more of Ni, Co, and Cr
A high-strength, high-conductivity copper alloy containing about 1% to about 1%, with the balance being Cu and inevitable impurities. According to the examples, the steel sheet was annealed at 500 ° C. for 1 hour at 1.0 mmt during cold rolling. However, since one or more kinds of Ni, Co, and Cr are contained, Ni, Precipitation of Co, Cr and P compounds occurs. That is, in the case of the alloy of the present invention, the tensile strength, heat resistance and conductivity of phosphor bronze are improved by forming phosphides of Ni, Co and Cr. JP-A-63-38546 also discloses that a compound of P and Ni precipitates for an alloy similar to the above.

【0005】また、特開平3−10035号公報にもS
n:2.5〜9%、P:0.03〜0.35%、Ni:
0.1〜1.0%、Zn:1.0〜5.0%、残部本質
的にCuよりなる電気・電子部品用銅合金が記載されて
いるが、Pは必須であり、構成元素のNiとのりん化物
が生成している。この合金においては、応力緩和率の試
験温度が120℃であり、1999年現在では、140
℃を超える温度での優れた応力緩和特性の要求が出てき
ており、当該合金では対応し難くなっている。
[0005] In addition, Japanese Patent Application Laid-Open Publication No.
n: 2.5 to 9%, P: 0.03 to 0.35%, Ni:
A copper alloy for electric / electronic parts consisting of 0.1 to 1.0%, Zn: 1.0 to 5.0% and the balance essentially consisting of Cu is described, but P is essential and the constituent elements Phosphorus with Ni is generated. In this alloy, the test temperature of the stress relaxation rate was 120 ° C., and as of 1999, it was 140 ° C.
There has been a demand for excellent stress relaxation properties at temperatures exceeding ℃, and it is difficult for such alloys to respond.

【0006】このように、りん青銅を用いた電気・電子
機器用コネクタでは、引張強さ・伸びバランス、Snめ
っきの剥離、Snめっき層のウイスカーの生成、140
℃を超える温度での応力緩和、さらにはSn含有量が多
いための地金価格などの多くの課題があり、これまで提
案された銅合金材料もこれらの全てを解決し得るもので
はない。また、応力腐食割れ感受性について、りん青銅
を超えるものは現れていない。
As described above, in a connector for electric and electronic equipment using phosphor bronze, tensile strength / elongation balance, peeling of Sn plating, generation of whiskers of Sn plating layer, 140
There are many problems such as stress relaxation at a temperature exceeding ° C., and furthermore, the metal price due to the high Sn content, and the copper alloy materials proposed so far cannot solve all of them. Further, with respect to the susceptibility to stress corrosion cracking, no material exceeding phosphor bronze appears.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の目的
は、特に140℃を超える温度での耐応力緩和特性に優
れ、さらに引張強さ・伸びバランス、Snめっきの剥
離、Snめっき層のウイスカーの生成、地金価格、応力
腐食割れ感受性についても、りん青銅と同等又は優れる
銅合金材料を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an excellent stress relaxation property especially at a temperature exceeding 140 ° C., a tensile strength / elongation balance, peeling of Sn plating, and whisker of Sn plating layer. Another object of the present invention is to provide a copper alloy material which is equivalent to or superior to phosphor bronze with respect to the formation of copper, metal price, and susceptibility to stress corrosion cracking.

【0008】[0008]

【課題を解決するための手段】本発明に係る銅合金は、
基本組成をCu−Sn−Ni−Znとし、Sn:3%以
上4%未満、Ni:0.5%以上1.0%以下、Zn:
0.05%以上5.0%以下を含有し、残部が銅及び不
可避不純物からなる。本発明に係る銅合金が脱酸剤を含
む場合、P、B、Mg、Caの中から選択された1種又
は2種以上の元素が、それぞれP:0.001%以上
0.03%未満、B:0.0001%以上0.02%以
下、Mg:0.0001%以上0.05%以下、Ca:
0.0001%以上0.01%以下、総量で0.000
1%以上0.1%以下の範囲内となるように規制する。
DISCLOSURE OF THE INVENTION The copper alloy according to the present invention comprises:
The basic composition is Cu-Sn-Ni-Zn, Sn: 3% or more and less than 4%, Ni: 0.5% or more and 1.0% or less, Zn:
It contains not less than 0.05% and not more than 5.0%, with the balance being copper and unavoidable impurities. When the copper alloy according to the present invention contains a deoxidizing agent, one or more elements selected from P, B, Mg, and Ca are each P: 0.001% or more and less than 0.03%. , B: 0.0001% to 0.02%, Mg: 0.0001% to 0.05%, Ca:
0.0001% or more and 0.01% or less, 0.000 in total amount
It is regulated to be in the range of 1% or more and 0.1% or less.

【0009】上記銅合金における不可避不純物として、
原料(Cu地金、回転屑)からの混入が避け難いAg、
Pb、Fe、Si、Mn、S及び溶湯調整時の不可避の
ガス体であるOとHを、Ag:0.1%以下、Pb:
0.01%以下、Fe:0.05%以下、Si0.05
%以下、Mn:0.1%以下、かつ以上の元素を総量で
0.3%以下、S:20ppm以下、O:30ppm以
下、H:2ppm以下に規制する。さらに、上記銅合金
は、Be、Al、Ti、Cr、Co、Zr、Sb及びI
nの元素群から選択された1種又は2種以上の元素を総
量で0.1%以下含むことができる。
As inevitable impurities in the above copper alloy,
Ag, which is inevitable to be mixed from raw materials (Cu
Pb, Fe, Si, Mn, S and O and H which are unavoidable gas bodies at the time of adjusting the molten metal were changed to Ag: 0.1% or less, Pb:
0.01% or less, Fe: 0.05% or less, Si0.05
%, Mn: 0.1% or less, and the above elements in a total amount of 0.3% or less, S: 20 ppm or less, O: 30 ppm or less, and H: 2 ppm or less. Further, the above copper alloy is composed of Be, Al, Ti, Cr, Co, Zr, Sb and Ib.
One or more elements selected from the group of n elements can be contained in a total amount of 0.1% or less.

【0010】ところで、前記文献に開示されている銅合
金においては、いずれもNiなどの燐化物を母相に析出
させる構成となっているため、応力緩和率の向上には限
界がある。本発明者の研究によれば、最近のより高い応
力緩和特性の要求に応えるには、析出強化によらず、む
しろ固溶又はスピノーダル分解を利用した方が有利であ
ることが分かった。本発明に係る銅合金において、組成
及び製造プロセスによっては析出物等の未固溶物が含ま
れ得るが、その含有量が0.02%を超えると固溶強化
又はスピノーダル分解による強化の機構が失われるた
め、含有量は0.02%以下とする。また、平均結晶粒
径は曲げ加工性の観点から1〜15μmに規制すること
が望ましい。さらに、本発明に係る銅合金の製造方法
は、冷間加工途中に550〜700℃の温度範囲で5秒
間以上5分間以内保持し、続いて5℃/秒以上の冷却速
度で常温まで冷却する熱処理を行い、次いで目標の寸法
に冷間加工した後、325〜450℃の温度範囲で5秒
間以上180分以内の条件で安定化焼鈍を行うことを特
徴とする。
Incidentally, the copper alloys disclosed in the above-mentioned documents all have a structure in which a phosphide such as Ni is precipitated in a mother phase, so that there is a limit in improving the stress relaxation rate. According to the study of the present inventor, it has been found that it is more advantageous to utilize solid solution or spinodal decomposition rather than precipitation strengthening in order to meet the recent demand for higher stress relaxation properties. In the copper alloy according to the present invention, an unsolid solution such as a precipitate may be contained depending on the composition and the production process. However, when the content exceeds 0.02%, the mechanism of solid solution strengthening or strengthening by spinodal decomposition is not achieved. Since it is lost, the content is set to 0.02% or less. The average crystal grain size is desirably regulated to 1 to 15 μm from the viewpoint of bending workability. Further, in the method for producing a copper alloy according to the present invention, the copper alloy is kept at a temperature in the range of 550 to 700 ° C. for 5 seconds or more and 5 minutes during cold working, and then cooled to room temperature at a cooling rate of 5 ° C./second or more. It is characterized by performing heat treatment, then cold working to a target size, and then performing stabilization annealing in a temperature range of 325 to 450 ° C. for 5 seconds to 180 minutes.

【0011】[0011]

【発明の実施の形態】Cuに3%以上4%未満のSn及
び0.5%以上1.0%以下のNiを共添し、例えば熱
間加工及び冷間加工後、上記の熱処理を行い、次いで仕
上げ冷間加工及び安定化焼鈍を実施することにより、6
%Snを含むりん青銅と同等の引張強さを備える銅合金
が調整でき、また、この銅合金は応力が付加された状態
で150℃で1000hr保持されても、応力緩和率が
30%以下と小さく変形し難くなる。ここで、Cu中に
含まれるSnが3%以上4%未満で、Niが0.5%未
満では、目標とする引張強さ・伸びバランス及び良好な
応力緩和特性が得難くなり、Niが1%を超えると強度
・伸びバランス向上への寄与は少なく、導電率が低下す
る。また、Cu中に含まれるNiが0.5%以上1.0
%以下で、Snが3%未満の場合、引張強さ・伸びバラ
ンスが得難くなり、Snが4%以上の場合、引張強さ・
伸びバランスは向上するが、導電率が低下する。そし
て、この銅合金ではSn+Ni含有量が5%未満であ
り、6%りん青銅の規格JIS−H3110−C519
1のSn含有量の規格5.5〜7.0%の下限5.5%
よりも少ない値に抑えられており、地合わせ価格がC5
191よりも安価となり経済性にも優れている。
BEST MODE FOR CARRYING OUT THE INVENTION Sn of 3% or more and less than 4% and Ni of 0.5% or more and 1.0% or less are co-added to Cu. For example, after hot working and cold working, the above heat treatment is performed. , Followed by finish cold working and stabilized annealing
A copper alloy having a tensile strength equivalent to that of phosphor bronze containing% Sn can be adjusted, and this copper alloy has a stress relaxation rate of 30% or less even when the copper alloy is held at 150 ° C. for 1000 hours with a stress applied. Small and difficult to deform. Here, if Sn contained in Cu is 3% or more and less than 4% and Ni is less than 0.5%, it becomes difficult to obtain the target tensile strength / elongation balance and good stress relaxation properties, and Ni becomes 1%. %, The contribution to improving the balance between strength and elongation is small, and the electrical conductivity is reduced. Further, Ni contained in Cu is 0.5% or more and 1.0% or more.
%, Sn is less than 3%, it is difficult to obtain a balance between tensile strength and elongation.
The elongation balance is improved, but the conductivity is reduced. The Sn + Ni content of this copper alloy is less than 5%, and the standard JIS-H3110-C519 for 6% phosphor bronze is used.
Lower limit 5.5% of specification 5.5-7.0% of Sn content of No. 1
Value is lower than that of C5
It is cheaper and more economical than 191.

【0012】上述の化学成分の銅合金にZnを0.05
%以上5%以下添加することにより、りん青銅のように
Ni下地めっきを行う必要はなく、直接又は0.1μm
以下の厚さ(フラッシュ)のCu下地めっきを行った上
で、錫めっきを行うことが可能となり、また、Sn層の
剥離、Sn表面の加熱による黒変、電気Snめっき層上
でのウイスカーの生成等が抑制される。さらに、Znを
前述の範囲で含有するとマイグレーションが抑制され
る。Zn含有量が0.05%未満では以上の効果は少な
くなり、5%を超えると銅合金特有の応力腐食割れを生
じやすくなる。また、Znは脱酸効果をも有し、P、
B、Mg、Caなどの脱酸剤を添加することなく、ある
いは前記脱酸剤の添加量を少なくしても健全な鋳塊を造
塊できるが、含有量が0.05%未満であるとその効果
が十分でない。従って、Zn含有量を0.05〜5%と
する。
[0012] The copper alloy having the above-mentioned chemical composition contains 0.05% of Zn.
% To 5% or less, there is no need to perform Ni underplating unlike phosphor bronze,
It is possible to perform tin plating after performing a Cu base plating of the following thickness (flash), peeling of the Sn layer, blackening due to heating of the Sn surface, and whisker formation on the electric Sn plating layer. Generation and the like are suppressed. Further, when Zn is contained in the above-described range, migration is suppressed. When the Zn content is less than 0.05%, the above effects are reduced. When the Zn content is more than 5%, stress corrosion cracking peculiar to the copper alloy is liable to occur. Zn also has a deoxidizing effect, and P,
A sound ingot can be formed without adding a deoxidizing agent such as B, Mg, or Ca, or even with a small amount of the deoxidizing agent, but if the content is less than 0.05%. The effect is not enough. Therefore, the Zn content is set to 0.05 to 5%.

【0013】P、B、Mg、Caは溶湯の脱酸及び脱硫
(Ca)作用を有する。 Sn:3.0%以上4%未満、Ni:0.5%以上1.
0%以下、Zn:0.05%以上5%以下含有する銅合
金を大気中で溶解する場合、溶湯の脱酸を行う必要があ
るときには、P:0.001%以上0.03%未満、
B:0.0001%以上0.02%以下、Mg:0.0
001%以上0.05%以下、Ca:0.0001%以
上0.01%以下からなる元素群から選択された1種又
は2種以上の元素を総量で0.0001%以上0.1%
以下添加して脱酸を行ってもよい。 P:0.001%以上、B:0.001%以上(CaB
で加えてもよい)、Mg:0.0001%以上、Ca:
0.0001%以上の1種又は2種以上が総量で0.0
001%以上残存しない場合は脱酸効果が十分でない場
合があり、鋳塊に酸化物の巻き込みなどの欠陥が発生す
ることがある。2種以上添加する場合は、Pと他の元素
を添加することが望ましい。しかし、P、B、Mg及び
Caがそれぞれ0.03%以上、及び0.05%、0.
1%、0.01%を超え、又は総量で0.1%を超えて
添加されると、鋳肌が悪くなったり、最終製品での導電
率が低下する。また、Niの燐化物などの析出物が形成
されやすくなる。なお、Cは溶湯の酸化防止の木炭及び
鋳造時のフラックスから混入し、特にNi、Fe及びC
oが含まれる場合にCが混入しやすい。Cが0.005
%を超えて含有されると鋳塊の熱間加工性が劣化するの
で、0.005%以下に制限すべきである。
P, B, Mg, and Ca have a deoxidizing and desulfurizing (Ca) action of the molten metal. Sn: 3.0% or more and less than 4%, Ni: 0.5% or more.
When a copper alloy containing 0% or less and Zn: 0.05% or more and 5% or less is melted in the air, and when it is necessary to deoxidize the molten metal, P: 0.001% or more and less than 0.03%;
B: 0.0001% or more and 0.02% or less, Mg: 0.0
One or more elements selected from the element group consisting of 001% or more and 0.05% or less and Ca: 0.0001% or more and 0.01% or less are 0.0001% or more and 0.1% or more in total.
Deoxidation may be performed by adding the following. P: 0.001% or more, B: 0.001% or more (CaB
, Mg: 0.0001% or more, Ca:
One or more of 0.0001% or more is 0.0% in total.
If 001% or more does not remain, the deoxidizing effect may not be sufficient, and defects such as entrapment of oxides may occur in the ingot. When adding two or more kinds, it is desirable to add P and other elements. However, P, B, Mg, and Ca are not less than 0.03% and 0.05%, respectively.
If it is added in an amount exceeding 1%, 0.01%, or more than 0.1% in total, the casting surface is deteriorated and the conductivity of the final product is reduced. Further, precipitates such as phosphide of Ni are easily formed. C is mixed from charcoal for preventing oxidation of molten metal and flux at the time of casting, and particularly, Ni, Fe and C are mixed.
When o is contained, C is easily mixed. C is 0.005
%, The hot workability of the ingot deteriorates, so the content should be limited to 0.005% or less.

【0014】Ag、PbはCu原料から混入し、Fe、
Si、Mnは工場内外の回転屑から混入する。このうち
Agは上記銅合金に含有されると導電率の低下なしで引
張強さの向上に寄与するが、単位重量あたりの価格が高
いため上限を0.1%とする。PbもCu原料から必然
的に含有されるが、多く含むと熱間加工性が低下するの
で上限を0.01%とする。Fe、Si及びMnは混入
すると引張強さ向上の割合に対して導電率が低下するた
め、上限をそれぞれ0.05%、0.05%及び0.1
%とする。これらの元素は引張強さ、導電率及び価格の
面から1種又は2種以上の総量で0.3%を上限とす
る。
Ag and Pb are mixed from a Cu raw material, and Fe,
Si and Mn are mixed in from inside and outside the factory. Of these, Ag, when contained in the above-mentioned copper alloy, contributes to an improvement in tensile strength without a decrease in electrical conductivity. However, since the price per unit weight is high, the upper limit is made 0.1%. Pb is inevitably contained from the Cu raw material, but if it is contained too much, the hot workability decreases, so the upper limit is made 0.01%. When Fe, Si and Mn are mixed, the electrical conductivity is reduced with respect to the ratio of improvement in tensile strength, so the upper limits are 0.05%, 0.05% and 0.1%, respectively.
%. From the viewpoints of tensile strength, electrical conductivity and price, one or more of these elements have a total upper limit of 0.3%.

【0015】Sは炉材、Cu原料、回転屑、酸化防止の
ための木炭、鋳造時のフラックスなどから混入する。2
0ppmを超えて含まれると、鋳塊を熱間加工する際に
割れが生ずる。また、大気中で溶解する場合、OとHが
溶湯中に吸収されるが、木炭被覆下でOは所定量のP、
B、Mg及びCaの投入で、Hは脱酸後のArあるいは
ガスの吹き込みで除去できる。O:30ppm、
H:2ppmのいずれかより多くなると得られた鋳塊が
健全でなくなる。これらは共に少ないほど鋳塊が健全に
なる。さらに、上記銅合金にBe、Al、Ti、Co、
Zr、Sb及びInの元素群から選択された1種又は2
種以上の元素が総量で0.1%以下含まれても、機械的
性質、応力緩和特性、錫の密着性、錫の耐ウイスカー性
及び導電率が損なわれることはない。
S is mixed in from furnace materials, Cu raw materials, turning chips, charcoal for preventing oxidation, flux during casting, and the like. 2
If the content exceeds 0 ppm, cracks occur during hot working of the ingot. Also, when dissolved in the atmosphere, O and H are absorbed in the molten metal, but under charcoal coating, O contains a predetermined amount of P,
By adding B, Mg and Ca, H can be removed by blowing Ar or N 2 gas after deoxidation. O: 30 ppm,
H: If more than 2 ppm, the obtained ingot becomes unsound. The smaller these are, the more the ingot becomes sound. Further, Be, Al, Ti, Co,
One or two selected from the group consisting of Zr, Sb and In
Even if the total amount of the elements is 0.1% or less, the mechanical properties, stress relaxation properties, tin adhesion, whisker resistance and conductivity of tin are not impaired.

【0016】上記銅合金において、最終製品(製造工程
終了後の銅合金板・条、管、線・棒)に析出物及び晶出
物が0.02%を超えて存在すると、1種のスピノーダ
ル分解利用の強化機構でなくなり、引張強さ・伸びバラ
ンス及び応力緩和特性等の優れた特性が失われる。ま
た、最終の安定化焼鈍の直前に行われた連続炉、ソルト
バス浸漬等による熱処理後の平均結晶粒径が1〜15μ
mを外れると、すなわち、1μm未満では曲げ加工性が
低下し、15μmを超えると粒界が弱くなり曲げ加工性
が低下すると共に曲げ部の肌荒れが激しくなる。
In the above-mentioned copper alloy, when a precipitate and a crystallized substance are present in a final product (a copper alloy plate / strip, a pipe, a wire / rod after completion of the production process) in an amount exceeding 0.02%, one kind of spinodal It is no longer a mechanism for strengthening the use of decomposition, and excellent properties such as tensile strength / elongation balance and stress relaxation properties are lost. In addition, the average crystal grain size after heat treatment by a continuous furnace, salt bath immersion, or the like performed immediately before final stabilization annealing is 1 to 15 μm.
If m is exceeded, that is, if it is less than 1 μm, the bendability decreases, and if it exceeds 15 μm, the grain boundary is weakened, the bendability is reduced, and the roughness of the bent portion becomes severe.

【0017】本発明の銅合金においては、Ni及びSn
は、固溶強化あるいはスピノーダル分解による変調構造
による強化によって、強度及び耐応力緩和特性の向上が
可能となっている。これらの機構によって強度向上を図
るには、冷間加工途中に行う熱処理において、析出及び
スピノーダル分解を可能な限り抑止した過飽和固溶体と
し、さらに冷間加工を加えた後、熱処理を行う製造工程
を取る必要がある。具体的には、前述の組成の銅合金を
冷間加工途中においてNi及びSnが過飽和固溶状態と
なる550〜700℃の温度範囲で5秒間以上5分間以
内保持し、続いて5℃/秒以上の冷却速度で常温まで冷
却し、さらに所定の減面率の冷間加工を行う。その後、
325〜450℃の温度範囲で5秒間以上180分以内
の条件で安定化焼鈍を行うと、冷間加工後の引張強さの
低下が少ない割りに、伸びが大幅に向上する。結果とし
て引張強さ・伸びバランスが向上し、耐応力緩和特性が
向上する。
In the copper alloy of the present invention, Ni and Sn
The strength and stress relaxation resistance can be improved by solid solution strengthening or strengthening by a modulation structure by spinodal decomposition. In order to improve the strength by these mechanisms, in the heat treatment performed during the cold working, a supersaturated solid solution in which precipitation and spinodal decomposition are suppressed as much as possible, and after performing the cold working, a manufacturing process of performing the heat treatment is performed. There is a need. Specifically, the copper alloy having the above-described composition is maintained in a temperature range of 550 to 700 ° C. in which Ni and Sn are in a supersaturated solid solution state during cold working for 5 seconds to 5 minutes, and then 5 ° C./second At the above-mentioned cooling rate, it is cooled to room temperature, and further cold-worked at a predetermined area reduction rate. afterwards,
When the stabilized annealing is performed in the temperature range of 325 to 450 ° C. for 5 seconds or more and 180 minutes or less, the elongation is greatly improved in spite of a small decrease in tensile strength after cold working. As a result, the balance between tensile strength and elongation is improved, and the stress relaxation resistance is improved.

【0018】以下に、冷間加工途中の熱処理(焼鈍)条
件について説明する。この熱処理温度が700℃を越え
ると、加熱時間を5秒未満としても結晶粒径が15μm
を越えてしまい、その後の冷間加工及び安定化焼鈍を所
定の条件で行ってもコネクター等に必須である曲げ加工
性が低下してしまう。一方、熱処理温度が550℃未満
になると、5分間を越えて加熱しても再結晶粒径が小さ
く、その後の冷間加工及び熱処理を所定の条件で行って
も、結晶粒径が1μmを下回ることがあり、曲げ加工性
が低下してしまう。そして、Ni及びSnのスピノーダ
ル分解が起こり、またP、Bを含む場合はNi等の燐化
物又は/及び硼化物などの析出量が多くなる。なお、本
発明の銅合金においては、冷延後325〜450℃の温
度範囲に所定時間以上加熱することによって、強度及び
耐応力緩和特性の向上に有効な変調構造(スピノーダル
分解による)を発達させることができる。一方、550
℃近傍(550℃未満)の比較的高温で起こるスピノー
ダル分解では前記の特性を付与することが難しいばかり
でなく、その後冷延及び熱処理を行っても変調構造が十
分に発達せず、目的とする特性が得られなくなる。
Hereinafter, the heat treatment (annealing) conditions during the cold working will be described. When the heat treatment temperature exceeds 700 ° C., the crystal grain size is 15 μm even if the heating time is less than 5 seconds.
Therefore, even if the subsequent cold working and stabilizing annealing are performed under predetermined conditions, the bending workability essential for a connector or the like is reduced. On the other hand, when the heat treatment temperature is lower than 550 ° C., the recrystallized grain size is small even when heating is performed for more than 5 minutes, and the crystal grain size is less than 1 μm even if the subsequent cold working and heat treatment are performed under predetermined conditions. In some cases, bending workability is reduced. Then, spinodal decomposition of Ni and Sn occurs, and when P and B are contained, the amount of phosphide and / or boride such as Ni increases. In the copper alloy of the present invention, a modulated structure (by spinodal decomposition) effective for improving strength and stress relaxation resistance is developed by heating to a temperature range of 325 to 450 ° C. for a predetermined time or more after cold rolling. be able to. On the other hand, 550
In spinodal decomposition which occurs at a relatively high temperature of around 0 ° C. (less than 550 ° C.), not only is it difficult to impart the above-mentioned properties, but even if cold rolling and heat treatment are performed, the modulation structure does not sufficiently develop. Characteristics cannot be obtained.

【0019】その加熱時間が5分を越えると、加熱温度
が700℃以下でも結晶粒径が15μmを越え、前記の
曲げ加工性低下の問題が発生する。また、加熱温度が5
50℃以上でもP、Bを含む場合は析出量が多くなり析
出物などの未固溶物の総含有量が0.02%を越えてし
まい、目的とする特定が得られない。さらにNi及びS
nのスピノーダル分解が起きるようになる。一方、加熱
時間が5秒未満では、550〜700℃で加熱しても形
成される再結晶粒径が小さく、その後の冷間加工及び熱
処理を所定の条件で行っても曲げ加工性が低下してしま
う。
If the heating time exceeds 5 minutes, the crystal grain size exceeds 15 μm even at a heating temperature of 700 ° C. or less, and the above-mentioned problem of deterioration in bending workability occurs. When the heating temperature is 5
When P and B are contained even at 50 ° C. or higher, the amount of precipitation increases, and the total content of undissolved substances such as precipitates exceeds 0.02%, so that the target specification cannot be obtained. Further Ni and S
Spinodal decomposition of n occurs. On the other hand, when the heating time is less than 5 seconds, the recrystallized grain size formed even when heated at 550 to 700 ° C. is small, and the bending workability is reduced even if the subsequent cold working and heat treatment are performed under predetermined conditions. Would.

【0020】前記加熱温度範囲からの冷却速度が5℃/
秒未満の場合は、冷却中の析出が発生し、析出物などの
未固溶物の総含有量が0.02%を越えてしまい、目的
とする特性が得られない。また、Ni及びSnのスピノ
ーダル分解が起きるようになる。以上述べた理由から、
冷間加工途中の熱処理条件として、550〜700℃の
温度範囲で5秒間以上5分間以内保持し、続いて5℃/
秒以上の冷却速度で常温まで冷却するものとする。
The cooling rate from the heating temperature range is 5 ° C. /
If the time is less than seconds, precipitation occurs during cooling, and the total content of undissolved substances such as precipitates exceeds 0.02%, so that desired properties cannot be obtained. In addition, spinodal decomposition of Ni and Sn occurs. For the reasons mentioned above,
As a heat treatment condition during the cold working, the temperature is maintained in a temperature range of 550 to 700 ° C. for 5 seconds or more and within 5 minutes.
It shall be cooled to room temperature at a cooling rate of at least seconds.

【0021】前記の熱処理を行った後、所定の減面加工
率(5〜95%程度)で冷間加工を行い、続いて安定化
焼鈍を行う。以下に安定化焼鈍の条件について説明す
る。安定化焼鈍は、冷間加工材の伸び、ばね限界値の回
復及び耐応力緩和特性の向上を主目的としてなされる。
加熱温度が325℃未満では5秒〜180分間加熱して
も前記目的が達成できないため、また450℃を越える
と析出が発生しやすく、耐応力緩和特性を却って低下さ
せてしまうため、325〜450℃とする。その加熱時
間が5秒未満では325〜450℃に加熱しても、前記
目的が達成できない。また加熱時間が180分を越える
と、析出が起こりやすく、やはり前記目的が達成できな
い。以上述べた理由から、安定化焼鈍の条件は、325
〜450℃の温度範囲で5秒以上、180分間以内とす
る。
After performing the heat treatment, cold working is performed at a predetermined area reduction rate (about 5 to 95%), followed by stabilizing annealing. The conditions for the stabilization annealing will be described below. Stabilization annealing is performed mainly for the purpose of elongation of a cold-worked material, recovery of a spring limit value, and improvement of stress relaxation resistance.
If the heating temperature is lower than 325 ° C., the above-mentioned object cannot be achieved by heating for 5 seconds to 180 minutes. If the heating temperature is higher than 450 ° C., precipitation is likely to occur, and the stress relaxation resistance is rather deteriorated. ° C. If the heating time is less than 5 seconds, the above object cannot be achieved even if the heating is performed at 325 to 450 ° C. On the other hand, if the heating time exceeds 180 minutes, precipitation is likely to occur, and the above-mentioned object cannot be achieved. For the reasons described above, the conditions for stabilizing annealing are 325
Within a temperature range of 450 ° C. to 5 seconds or more and 180 minutes or less.

【0022】冷間加工途中の熱処理は、熱処理中の析出
を抑制するために、雰囲気を非酸化性又は還元性とした
連続熱処理ラインで行うことが望ましい。安定化焼鈍は
連続焼鈍又はバッチ焼鈍のいずれを用いてもよい。ま
た、これらの熱処理後において酸洗、研磨などは通常の
方法で可能である。さらに、安定化焼鈍前にテンション
レベラーによる歪矯正を行ったり、安定化焼鈍の代わり
に又は安定化焼鈍後にテンションアニーリングを行って
も、本発明の耐応力緩和特性に優れた銅合金を製造可能
である。
The heat treatment during the cold working is desirably performed in a continuous heat treatment line in which the atmosphere is non-oxidizing or reducing in order to suppress precipitation during the heat treatment. As the stabilizing annealing, either continuous annealing or batch annealing may be used. After these heat treatments, pickling, polishing and the like can be performed by a usual method. Furthermore, even if the strain is corrected by a tension leveler before the stabilization annealing or the tension annealing is performed instead of the stabilization annealing or after the stabilization annealing, it is possible to produce a copper alloy having excellent stress relaxation resistance of the present invention. is there.

【0023】従来材である6%Snのりん青銅C519
1は、板厚0.15〜0.25mmで引張強さ:650
N/mm、耐力:640N/mm、伸び:14%、
曲げ加工性:W曲げR=0といずれも良好であるが、応
力緩和率は150℃で1000hr経過後は60%と大
であり、140℃でも応力緩和率は30%で、140℃
が温度上限である。また、6%りん青銅の導電率は14
%IACS程度と比較的に低い。一方、本発明では、応
力緩和率:150℃で30%以下、導電率:17%IA
CS以上で6%りん青銅より優れ、引張強さ・伸びバラ
ンスが6%りん青銅と同等(引張強さ×伸び:9000
N/mm・%以上)であり、6%りん青銅よりも安価
な銅合金を得ることができる。また、はんだ及びSnめ
っきの密着性、応力腐食割れ感受性等についても6%り
ん青銅と同等か、より優れた特性を有する銅合金を得る
ことができる。
Conventional material of phosphor bronze of 6% Sn C519
1 is a plate thickness of 0.15 to 0.25 mm and a tensile strength of 650.
N / mm 2, yield strength: 640 N / mm 2, elongation: 14%,
Bending workability: W bending R = 0, which is good, but the stress relaxation rate is as large as 60% after a lapse of 1000 hours at 150 ° C, and even at 140 ° C, the stress relaxation rate is 30% and 140 ° C.
Is the upper temperature limit. The conductivity of 6% phosphor bronze is 14%.
% IACS is relatively low. On the other hand, in the present invention, stress relaxation rate: 30% or less at 150 ° C., conductivity: 17% IA
It is superior to 6% phosphor bronze at CS or higher, and has the same tensile strength and elongation balance as 6% phosphor bronze (tensile strength x elongation: 9000)
N / mm 2 ·% or more), and a copper alloy less expensive than 6% phosphor bronze can be obtained. Further, it is possible to obtain a copper alloy having the same or better properties as the 6% phosphor bronze in the adhesion between solder and Sn plating, the sensitivity to stress corrosion cracking, and the like.

【0024】以下、本発明を実施例により具体的に説明
する。 (実施例1)表1に示す各種成分組成(No.1〜1
5)の鋳塊を電気銅、電線を原料として、電気炉で大気
中木炭被覆下で黒鉛ルツボで溶解、鋳造した。鋳塊の寸
法は厚さ50mm×幅80mm×長さ190mmで、そ
の表裏面を面削後、800℃で加熱した後、厚さ10m
mまで熱間圧延した。これを800℃で30分加熱後水
中急冷し、表面を面削して厚さ9.8mmとした。この
板材を途中で焼鈍を加えることなく冷間圧延して厚さ
0.50mmとし、これをソルトバス中600℃で30
秒保持後、水中急冷した。その後厚さ0.25mmまで
冷間圧延し、425℃で30秒間ソルトバスにて保持し
た後、水中急冷して、銅合金板材を調整した。また、比
較合金No.16の6%りん青銅C5191は横鋳で製
造し、均一化処理後冷間圧延と焼鈍を繰り返して厚さ
0.25mmの板材とし、ソルトバスにて350℃で3
0秒保持して調整した。
Hereinafter, the present invention will be described specifically with reference to examples. (Example 1) Various component compositions (Nos. 1 to 1) shown in Table 1
The ingot of 5) was melted and cast in a graphite crucible under an atmosphere of charcoal in an electric furnace using electrolytic copper and electric wires as raw materials. The dimensions of the ingot were 50 mm in thickness × 80 mm in width × 190 mm in length.
m. This was heated at 800 ° C. for 30 minutes, quenched in water, and the surface was chamfered to a thickness of 9.8 mm. This sheet material was cold-rolled to a thickness of 0.50 mm without being subjected to annealing in the middle, and was placed in a salt bath at 600 ° C. for 30 minutes.
After holding for 2 seconds, it was quenched in water. Thereafter, the sheet was cold-rolled to a thickness of 0.25 mm, held in a salt bath at 425 ° C. for 30 seconds, and quenched in water to prepare a copper alloy sheet. In addition, the comparative alloy No. 16 6% phosphor bronze C5191 is manufactured by horizontal casting, cold rolling and annealing are repeated after homogenizing treatment to obtain a 0.25 mm thick plate, and the plate material is heated at 350 ° C. in a salt bath at 350 ° C.
The adjustment was carried out by holding for 0 second.

【0025】[0025]

【表1】 [Table 1]

【0026】上記銅合金板材について、下記要領で引張
強さ、耐力、伸びを測定するとともに、導電率、応力緩
和率、耐応力腐食割れ性及び錫の密着性、さらに未固溶
物質量を調べた。その結果を表2及び表3に示す。 引張強さ、耐力、伸び・・・・JIS5号試験片にて測定し
た。試料の長手方向を圧延方向と平行としたものを‖、
圧延方向と直角としたものは⊥で示した。 導電率・・・・JISH0505に準拠して測定した。 応力緩和試験・・・・0.25mmt×10mmw×80m
mlの試験片を片持ち梁式の試験治具に取り付け、最大
曲げ応力が常温で耐力の80%となるように曲げを与え
た後、150℃のオーブン内に保持し、試験片の変形を
1000hr経過後に常温にて測定し、初期応力に対す
る比率を算出した。応力緩和率が30%を超えるものを
×と評価した。
With respect to the above-mentioned copper alloy sheet material, the tensile strength, proof stress, and elongation were measured in the following manner, and the conductivity, stress relaxation rate, stress corrosion cracking resistance, tin adhesion, and the amount of undissolved material were examined. Was. The results are shown in Tables 2 and 3. Tensile strength, proof stress, elongation: Measured with JIS No. 5 test piece. When the longitudinal direction of the sample is parallel to the rolling direction,
Those perpendicular to the rolling direction are indicated by ⊥. Conductivity: Measured in accordance with JIS H0505. Stress relaxation test: 0.25mmt x 10mmw x 80m
ml of the test piece was attached to a cantilever type test jig, and subjected to bending so that the maximum bending stress became 80% of the proof stress at room temperature. Then, the test piece was held in a 150 ° C. oven to check the deformation of the test piece. After a lapse of 1000 hours, the temperature was measured at room temperature, and the ratio to the initial stress was calculated. Those having a stress relaxation rate exceeding 30% were evaluated as x.

【0027】耐応力腐食割れ性・・・・D、H、Thomp
son(Materials、Res.and Std
s.1(1961)、P108−111)氏の応力腐食
割れ試験方法に準拠して調べた。試験片寸法は0.25
mmt×12.7mmw×150mml(n=5)と
し、腐食媒は28%アンモニア水を等量の蒸留水で薄め
て2lとし、これを5lのデシケータ中に入れ、気相中
にループ状に拘束した試験片を入れ、35℃で保持して
10〜30時間経過後にループ状の拘束を外して試験片
の変形量、すなわちループ状試験片端部同士の距離が初
期の値の50%以下になる時間を測定した。比較合金N
o.16より早く50%以下になったものを×、遅かっ
たものを○と評価した。 錫の密着性・・・・光沢剤入りの硫酸錫浴を使用して銅合金
材に厚さ1μmの電気めっきを行い、その試験片を15
0℃のオーブン中で1000時間経過するまで保持した
後、試験片を取り出して半径1mmRの治具で180度
曲げ加工後、元の状態に戻し、曲げ部の錫の密着状況を
調査した。錫が剥離したものを×と評価し、剥離しなか
ったものを○と評価した。
Stress corrosion cracking resistance: D, H, Thomp
son (Materials, Res. and Std)
s. 1 (1961), P108-111). Specimen size is 0.25
mmt × 12.7 mmw × 150 mml (n = 5), 28% ammonia water was diluted with an equal volume of distilled water to make 2 l, and this was put into a 5 l desiccator and constrained in a loop in the gas phase. The test piece is put in, held at 35 ° C., and after a lapse of 10 to 30 hours, the loop-like restraint is removed, and the deformation amount of the test piece, that is, the distance between the loop-shaped test piece ends becomes 50% or less of the initial value. The time was measured. Comparative alloy N
o. Those that became 50% or less earlier than 16 were evaluated as x, and those that were late were evaluated as o. Tin adhesion: Electroplating of a 1 μm thick copper alloy material using a tin sulfate bath containing a brightener.
After holding in an oven at 0 ° C. for 1000 hours, the test piece was taken out, bent by 180 ° with a jig having a radius of 1 mmR, returned to the original state, and the state of adhesion of tin at the bent portion was investigated. Those from which tin was peeled were evaluated as x, and those which did not peel were evaluated as o.

【0028】未固溶物重量・・・・最終製品を硝酸3:水1
の溶液で溶解し、不溶解残渣としての沈澱物をろ紙(東
洋濾紙株式会社製、GS25)で補集し、蒸留水で洗浄
後、ろ紙を105℃で1時間恒温槽で乾燥し、常温で6
0分保持後の質量を測定した。沈澱物の補集前に測定し
ておいたろ紙質量を差し引いて未固溶物質量とし、得ら
れた未固溶物質量の元の試料質量に対する割合を計算し
た。なお、未固溶物の大半は析出物であり、析出物の寸
法は通常数10〜数100オングストローム程度である
が、溶解されて残渣として抽出された状態で凝集して存
在するため、ほとんどがろ紙の上部に補集される。
Unsolid solution weight: The final product is nitric acid 3: water 1
The precipitate as an insoluble residue was collected with a filter paper (manufactured by Toyo Roshi Kaisha Co., Ltd., GS25), washed with distilled water, dried at 105 ° C. for 1 hour in a thermostat, and then dried at room temperature. 6
The mass after holding for 0 minutes was measured. The mass of the filter paper measured before collection of the precipitate was subtracted to obtain the amount of undissolved material, and the ratio of the obtained amount of undissolved material to the original sample mass was calculated. Most of the unsolid solution is a precipitate, and the size of the precipitate is usually about several tens to several hundreds of angstroms, but most of the precipitate is dissolved and aggregated in a state extracted as a residue. Collected on top of filter paper.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】表2及び表3に示すように、引張強さ、耐
力、伸びについては、本発明合金No.1〜9はいずれ
も引張強さ620N/mm以上、耐力570N/mm
以上、伸び13%以上であり、圧延平行方向又は垂直
方向のいずれか又は双方で引張強さ×伸び:9000N
/mm・%以上となっている。また、圧延平行方向の
試験片の特性は比較合金No.16(C5191)と同
等で、圧延直角方向の特性はNo.16よりも優れてい
る。導電率については、本発明合金No.1〜9の板材
はいずれも17%IACSを満足し、比較合金No.1
6よりも優れる。応力緩和率については、本発明合金N
o.1〜9の板材は150℃で1000時間経過後も3
0%以下と小さく良好であるが、比較合金No.11〜
13はNi量が0.3又は0.4%と少ないため30%
を超えている。
As shown in Tables 2 and 3, the tensile strength, proof stress, and elongation of the alloy of the present invention were as follows. 1 to 9 all have a tensile strength of 620 N / mm 2 or more and a proof stress of 570 N / mm.
2 or more, elongation of 13% or more, tensile strength x elongation: 9000 N in either or both of the rolling parallel direction and the vertical direction
/ Mm 2 ·% or more. The properties of the test pieces in the direction parallel to the rolling direction were the same as those of Comparative Alloy No. No. 16 (C5191), and the characteristics in the direction perpendicular to the rolling direction are No. Better than 16. Regarding the electrical conductivity, the alloy No. 1 of the present invention was used. Each of the plate materials of Nos. 1 to 9 satisfies 17% IACS. 1
Better than 6. Regarding the stress relaxation rate, the alloy N of the present invention was used.
o. The plate materials of Nos. 1 to 9 remain 3 hours even after 1000 hours at 150 ° C.
0% or less, which is good. 11-
13 is 30% because the Ni content is as small as 0.3 or 0.4%.
Is over.

【0032】耐応力腐食割れ性の評価では、比較合金の
No.16が14〜20h経過中に全数(n=5)で割
れたが、本発明合金No.1〜9の板材はいずれもN
o.16よりも割れ時間は長く、寿命にすぐれている。
また、比較合金No.11とNo.14はZn量が5%
を超えるため、No.16よりも早い時期に割れを生
じ、比較合金No.15はZnが2%であるがPを0.
05%含有するため、No.16よりも短時間で割れを
生じた。錫の剥離については、本発明合金No.1〜9
の板材は150℃で1000時間経過後も錫の剥離を生
じないが、Znを含まない比較合金No.10とNo.
16は剥離を生じた。また、比較合金No.10は、S
を28ppm、Oを35ppmと多く含むため鋳塊にピ
ンホールが多く、No.11は水素含有量が2.5pp
mと多く、No.15はSを25ppm、Cを0.01
%と多く含むため熱間圧延中に耳部に小割れを生じ、熱
間加工性が良好でない。
In the evaluation of the stress corrosion cracking resistance, the comparative alloy No. No. 16 cracked in all (n = 5) during the lapse of 14 to 20 hours. 1 to 9 are all N
o. The cracking time is longer than that of 16, and the life is excellent.
In addition, the comparative alloy No. 11 and No. 14 is Zn content 5%
No. Cracking occurred earlier than the time of Comparative Alloy No. 16. In No. 15, Zn is 2%, but P is 0.1%.
No. 05%. Cracks occurred in a shorter time than 16. Regarding the peeling of tin, the alloy No. of the present invention was used. 1-9
No peeling of tin occurs after 1000 hours at 150 ° C., but the comparative alloy No. 10 and No.
No. 16 caused peeling. In addition, the comparative alloy No. 10 is S
No. 28 ppm and O 35 ppm, the ingot has many pinholes. 11 has a hydrogen content of 2.5 pp
m and many. 15 is S at 25 ppm and C at 0.01
%, Small cracks occur in the ears during hot rolling, resulting in poor hot workability.

【0033】(実施例2)表4に示す組成の2種の銅合
金(いずれも本発明合金)を、実施例1と同様のプロセ
スで造塊、熱間圧延、溶体化処理、冷間圧延を行い厚さ
0.50mmの板材とした。これを表5及び表6に示す
プロセスで加工し、引張強さ、耐力、伸び、応力緩和
率、析出物の重量について前記要領で、結晶粒径、W曲
げ加工性について下記要領で測定した。その結果を表5
及び表6にあわせて示す。 結晶粒径・・・・熱処理後(最終冷間圧延前)の平均結晶粒
径をJIS−H0501に規定する切断法に準拠して求
めた。 W曲げ加工性・・・・圧延方向又は圧延直角方向にとったJ
IS−Z2204の4号試験片を用い、JIS−H31
10に準拠し曲げ半径R=0でW曲げ試験を行った。
(Example 2) Two kinds of copper alloys (all of the alloys of the present invention) having the compositions shown in Table 4 were subjected to the same process as in Example 1 for ingot making, hot rolling, solution treatment, and cold rolling. Was performed to obtain a plate material having a thickness of 0.50 mm. This was processed by the processes shown in Tables 5 and 6, and the tensile strength, proof stress, elongation, stress relaxation rate, and the weight of the precipitate were measured as described above, and the crystal grain size and W bending workability were measured as described below. Table 5 shows the results.
And Table 6. Crystal grain size: The average crystal grain size after heat treatment (before final cold rolling) was determined in accordance with the cutting method specified in JIS-H0501. W bending workability: J in the rolling direction or the direction perpendicular to the rolling direction
Using the No. 4 test piece of IS-Z2204, JIS-H31
A W bending test was performed at a bending radius of R = 0 according to 10.

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】表5に示すように、本発明工程に従って6
00℃×30秒ソルトバス焼鈍後水中急冷した板材は、
結晶粒径が5μmと微細で、W曲げ加工性も良好である
が、比較工程に示すように750℃×30秒ソルトバス
中で焼鈍したものは、結晶粒が40μmと大きくなり、
機械的性質も低下し、曲げ加工性も劣っている。さら
に、525℃×60秒ソルトバス中で焼鈍したものは、
結晶粒径が小さく、伸び、曲げ性とも不良である。未固
溶物の発生量も多くなっている。また、表6に示すよう
に、本発明工程に従って製造した板材は応力緩和率が低
くなっているが、比較工程に示すように中間焼鈍後の冷
却速度を75℃/時間と遅くしたものは、析出物の量が
0.03%で応力緩和率が30%超える値となり、機械
的性質も低下している。
As shown in Table 5, according to the process of the present invention, 6
The sheet material quenched in water after salt bath annealing at 00 ° C for 30 seconds,
Although the crystal grain size is as fine as 5 μm and the W-bending workability is good, as shown in the comparison step, the one annealed in a salt bath at 750 ° C. for 30 seconds has a large crystal grain of 40 μm.
The mechanical properties are also reduced, and the bending workability is also poor. Furthermore, what was annealed in a salt bath at 525 ° C for 60 seconds,
The crystal grain size is small and elongation and bending properties are poor. The amount of unsolid solution generated is also increasing. Further, as shown in Table 6, although the sheet material manufactured according to the process of the present invention had a low stress relaxation rate, as shown in the comparative process, the cooling rate after the intermediate annealing was reduced to 75 ° C./hour. When the amount of the precipitate is 0.03%, the stress relaxation rate becomes a value exceeding 30%, and the mechanical properties are also reduced.

【0038】[0038]

【発明の効果】本発明による銅合金は応力緩和し難く、
電気・電子機器用ばね、スイッチ、コネクタ、ダイアフ
ラム、ソケット、ベロー、ヒューズクリップ、摺動片、
軸受、ブッシュ、自動車用シートベルト用ばね、ワッシ
ャなどの用途に適し、この特性は管又は線・棒でも発揮
される。また、本発明合金は基本組成をSn:3%以上
4%未満、Ni:0.5%以上1.0%以下、Zn:
0.05%以上5.0%以下とし、製造途中の焼鈍を5
50〜700℃×5秒〜5分間の短時間焼鈍(1回でよ
い)、及び最終での325〜475℃×5秒〜180分
間としたことにより、組成的にも加工工程的にもりん青
銅(C5191)よりも安く、短い工程で製造できるの
で、非常に経済的である。
The copper alloy according to the present invention is difficult to relieve stress,
Springs for electrical and electronic equipment, switches, connectors, diaphragms, sockets, bellows, fuse clips, sliding pieces,
Suitable for applications such as bearings, bushings, springs for automotive seat belts, washers, etc., this property is also exhibited in tubes or wires / rods. The alloy of the present invention has a basic composition of Sn: 3% to less than 4%, Ni: 0.5% to 1.0%, Zn:
0.05% or more and 5.0% or less;
By short-time annealing at 50 to 700 ° C for 5 seconds to 5 minutes (one time only) and final 325 to 475 ° C for 5 seconds to 180 minutes, phosphorus can be reduced both in composition and processing steps. Since it is cheaper than bronze (C5191) and can be manufactured in a short process, it is very economical.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/08 C22F 1/08 K // C22F 1/00 604 1/00 604 623 623 624 624 630 630F 631 631A 650 650Z 650A 661 661A 685 685Z 686 686B 691 691B 691C 692 692A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/08 C22F 1/08 K // C22F 1/00 604 1/00 604 623 623 624 624 630 630 630F 631 631A 650 650Z 650A 661 661A 685 685Z 686 686B 691 691B 691C 692 692A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Sn:3%(質量%、以下同じ)以上4
%未満、Ni:0.5%以上1.0%以下、Zn:0.
05%以上5.0%以下を含有し、残部が銅及び不可避
不純物からなり、かつ析出物等の未固溶物の総含有量が
0.02%以下であることを特徴とする耐応力緩和特性
に優れた銅合金。
1. Sn: 3% (% by mass, the same applies hereinafter) or more 4
%, Ni: 0.5% or more and 1.0% or less, Zn: 0.1% or less.
Stress relaxation, characterized by containing not less than 0.05% and not more than 5.0%, the balance being copper and inevitable impurities, and having a total content of undissolved substances such as precipitates of not more than 0.02%. Copper alloy with excellent properties.
【請求項2】 P:0.001%以上0.03%未満、
B:0.0001%以上0.02%以下、Mg:0.0
001%以上0.05%以下、Ca:0.0001%以
上0.01%以下からなる元素群から選択された1種又
は2種以上の元素を総量で0.0001%以上0.1%
以下含むことを特徴とする請求項1に記載された耐応力
緩和特性に優れた銅合金。
2. P: 0.001% or more and less than 0.03%,
B: 0.0001% or more and 0.02% or less, Mg: 0.0
One or more elements selected from the element group consisting of 001% or more and 0.05% or less and Ca: 0.0001% or more and 0.01% or less are 0.0001% or more and 0.1% or more in total.
The copper alloy excellent in stress relaxation resistance according to claim 1, comprising:
【請求項3】 Ag:0.1%以下、Pb:0.01%
以下、Fe:0.05%以下、Si0.05%以下、M
n:0.1%以下からなる元素群から選択された1種又
は2種以上の元素を総量で0.3%以下含むことを特徴
とする請求項1又は2に記載された耐応力緩和特性に優
れた銅合金。
3. Ag: 0.1% or less, Pb: 0.01%
Fe: 0.05% or less, Si 0.05% or less, M
The stress relaxation resistance characteristic according to claim 1 or 2, wherein one or more elements selected from the element group consisting of n: 0.1% or less are contained in a total amount of 0.3% or less. Excellent copper alloy.
【請求項4】 S:20ppm以下、O:30ppm以
下、かつH:2ppm以下としたことを特徴とする請求
項1〜3のいずれかに記載された耐応力緩和特性に優れ
た銅合金。
4. The copper alloy excellent in stress relaxation resistance according to claim 1, wherein S: 20 ppm or less, O: 30 ppm or less, and H: 2 ppm or less.
【請求項5】 Be、Al、Ti、Cr、Co、Zr、
Sb及びInの元素群から選択された1種又は2種以上
の元素を総量で0.1%以下含有することを特徴とする
請求項1〜4のいずれかに記載された耐応力緩和特性に
優れた銅合金。
5. Be, Al, Ti, Cr, Co, Zr,
The stress relaxation resistance characteristic according to any one of claims 1 to 4, wherein one or two or more elements selected from the element group of Sb and In are contained in a total amount of 0.1% or less. Excellent copper alloy.
【請求項6】 平均結晶粒径が1〜15μmであること
を特徴とする請求項1〜5のいずれかに記載された耐応
力緩和特性に優れた銅合金。
6. The copper alloy excellent in stress relaxation resistance according to claim 1, wherein the copper alloy has an average crystal grain size of 1 to 15 μm.
【請求項7】 室温における0.2%耐力値の80%に
相当する曲げ応力を負荷した状態で150℃において1
000時間保持後の応力緩和率が30%以下であること
を特徴とする請求項1〜6のいずれかに記載された耐応
力緩和特性に優れた銅合金。
7. At 150 ° C. under a load of a bending stress corresponding to 80% of the 0.2% proof stress at room temperature,
The copper alloy excellent in stress relaxation resistance according to any one of claims 1 to 6, wherein a stress relaxation rate after holding for 000 hours is 30% or less.
【請求項8】 請求項1〜7のいずれかに記載された銅
合金の製造方法において、冷間加工途中に550〜70
0℃の温度範囲で5秒間以上5分間以内保持し、続いて
5℃/秒以上の冷却速度で常温まで冷却する熱処理を行
い、次いで目標の寸法に冷間加工した後、325〜45
0℃の温度範囲で5秒間以上180分以内の条件で安定
化焼鈍を行うことを特徴とする耐応力緩和特性に優れた
銅合金の製造方法。
8. The method for producing a copper alloy according to claim 1, wherein the 550 to 70
After maintaining at a temperature range of 0 ° C. for 5 seconds or more and within 5 minutes, performing a heat treatment of cooling to room temperature at a cooling rate of 5 ° C./second or more, and then performing cold working to target dimensions,
A method for producing a copper alloy having excellent stress relaxation resistance, characterized in that stabilized annealing is performed in a temperature range of 0 ° C for 5 seconds to 180 minutes.
JP2000083099A 1999-05-20 2000-03-24 Copper alloy excellent in stress relaxation resistance, and its manufacture Pending JP2001032029A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000083099A JP2001032029A (en) 1999-05-20 2000-03-24 Copper alloy excellent in stress relaxation resistance, and its manufacture
FR0006462A FR2793810B1 (en) 1999-05-20 2000-05-19 COPPER ALLOY HAVING EXCELLENT STRESS RELAXATION RESISTANCE PROPERTY AND PROCESS FOR PRODUCING THE SAME
US10/227,216 US20030047259A1 (en) 1999-05-20 2002-08-26 Copper alloy with excellent stress relaxation resistance property and production method therefor
US10/407,233 US20030196736A1 (en) 1999-05-20 2003-04-07 Copper alloy with excellent stress relaxation resistance property and production method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-140849 1999-05-20
JP14084999 1999-05-20
JP2000083099A JP2001032029A (en) 1999-05-20 2000-03-24 Copper alloy excellent in stress relaxation resistance, and its manufacture

Publications (1)

Publication Number Publication Date
JP2001032029A true JP2001032029A (en) 2001-02-06

Family

ID=26473245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000083099A Pending JP2001032029A (en) 1999-05-20 2000-03-24 Copper alloy excellent in stress relaxation resistance, and its manufacture

Country Status (3)

Country Link
US (2) US20030047259A1 (en)
JP (1) JP2001032029A (en)
FR (1) FR2793810B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248355A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Titanium copper for electronic parts, and electronic parts using the same
JP2011519180A (en) * 2008-04-29 2011-06-30 イルジン カッパー ホイル カンパニー リミテッド Metal frame for electronic parts
CN103298960A (en) * 2010-10-29 2013-09-11 仕龙阀门公司 Low lead ingot
KR20160103534A (en) * 2015-02-24 2016-09-01 제이엑스금속주식회사 Sn-PLATED MATERIAL FOR ELECTRONIC COMPONENT
KR101838370B1 (en) 2015-02-24 2018-03-13 제이엑스금속주식회사 Tin-plated material for electronic part

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026188A (en) * 2003-07-03 2005-01-27 Koa Corp Current fuse and manufacturing method of current fuse
US20060086697A1 (en) * 2004-10-22 2006-04-27 Russell Nippert Welding electrode material and an electrode made of the material
AT501806B1 (en) * 2005-03-03 2007-04-15 Miba Gleitlager Gmbh BEARINGS
US7836929B2 (en) * 2005-09-01 2010-11-23 Bridgestone Americas Tire Operations, Llc Tire having a sidewall reinforcement
AT504088B1 (en) * 2006-09-01 2008-11-15 Miba Gleitlager Gmbh BEARINGS
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
US20130042949A1 (en) * 2011-08-17 2013-02-21 Hitachi Cable, Ltd. Method of manufacturing soft-dilute-copper-alloy-material
DE102013201720B4 (en) * 2013-02-01 2019-05-09 Ks Gleitlager Gmbh Metallic sliding bearing composite material with a metallic support layer
KR102333721B1 (en) * 2013-03-14 2021-12-01 마테리온 코포레이션 Ultra high strength copper-nickel-tin alloys
KR102297929B1 (en) * 2013-03-15 2021-09-06 마테리온 코포레이션 Uniform grain size in hot worked spinodal alloy
CN113388794B (en) * 2021-06-18 2022-07-15 宁波江丰电子材料股份有限公司 Method for improving edge cracking of aluminum target

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245753A (en) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd High strength copper alloy having high electric conductivity
JPS6250425A (en) * 1985-08-29 1987-03-05 Furukawa Electric Co Ltd:The Copper alloy for electronic appliance
JPH01198441A (en) * 1988-02-01 1989-08-10 Furukawa Electric Co Ltd:The Lead material for plastic-pin-grit-array
JPH0674466B2 (en) * 1988-05-11 1994-09-21 三井金属鉱業株式会社 Copper alloy for heat exchanger tanks, plates or tubes
JPH02205644A (en) * 1989-02-01 1990-08-15 Hitachi Cable Ltd High strength copper alloy for lead frame
JPH0310035A (en) * 1989-06-06 1991-01-17 Kobe Steel Ltd Copper alloy for electrical and electron ic parts
JPH0368733A (en) * 1989-08-08 1991-03-25 Nippon Mining Co Ltd Manufacture of copper alloy and copper alloy material for radiator plate
JPH0387326A (en) * 1989-08-30 1991-04-12 Nippon Mining Co Ltd Manufacture of copper alloy and copper alloy material for radiator plate
JPH03162536A (en) * 1989-11-22 1991-07-12 Nippon Mining Co Ltd High strength and high conductivity copper alloy having improved thermal peeling resistance in plating
DE4100908C2 (en) * 1991-01-15 1993-09-30 Hettstedt Walzwerk Ag mold material
JPH07331363A (en) * 1994-06-01 1995-12-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy
JPH09296238A (en) * 1996-04-28 1997-11-18 Nikko Kinzoku Kk Metallic substrate material for semiconductor packaging
US5820701A (en) * 1996-11-07 1998-10-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US5865910A (en) * 1996-11-07 1999-02-02 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248355A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Titanium copper for electronic parts, and electronic parts using the same
JP2011519180A (en) * 2008-04-29 2011-06-30 イルジン カッパー ホイル カンパニー リミテッド Metal frame for electronic parts
CN103298960A (en) * 2010-10-29 2013-09-11 仕龙阀门公司 Low lead ingot
KR20160103534A (en) * 2015-02-24 2016-09-01 제이엑스금속주식회사 Sn-PLATED MATERIAL FOR ELECTRONIC COMPONENT
KR101838370B1 (en) 2015-02-24 2018-03-13 제이엑스금속주식회사 Tin-plated material for electronic part
KR102043490B1 (en) 2015-02-24 2019-11-11 제이엑스금속주식회사 Sn-PLATED MATERIAL FOR ELECTRONIC COMPONENT

Also Published As

Publication number Publication date
FR2793810B1 (en) 2006-06-02
US20030196736A1 (en) 2003-10-23
FR2793810A1 (en) 2000-11-24
US20030047259A1 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
JP4143662B2 (en) Cu-Ni-Si alloy
JP4809602B2 (en) Copper alloy
US6749699B2 (en) Silver containing copper alloy
JP5475230B2 (en) Copper alloy for electronic materials
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP5818724B2 (en) Copper alloy material for electric and electronic parts, copper alloy material for plated electric and electronic parts
JP5619389B2 (en) Copper alloy material
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
KR20190077011A (en) Copper alloy sheet and manufacturing method thereof
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP2516622B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JP2672241B2 (en) Method for producing copper alloy material excellent in strength and bendability
JP2594250B2 (en) Copper base alloy for connector and method of manufacturing the same
JP7537643B2 (en) Copper alloy material and method for producing the same
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JP2000273561A (en) Copper base alloy for terminal and its production
JP2594249B2 (en) Copper base alloy for connector and method of manufacturing the same