JPH01198441A - Lead material for plastic-pin-grit-array - Google Patents

Lead material for plastic-pin-grit-array

Info

Publication number
JPH01198441A
JPH01198441A JP2158688A JP2158688A JPH01198441A JP H01198441 A JPH01198441 A JP H01198441A JP 2158688 A JP2158688 A JP 2158688A JP 2158688 A JP2158688 A JP 2158688A JP H01198441 A JPH01198441 A JP H01198441A
Authority
JP
Japan
Prior art keywords
lead material
less
ppm
concentration
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2158688A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Toru Tanigawa
徹 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FURUKWA SPECIAL METAL COATED CO Ltd
Furukawa Electric Co Ltd
Original Assignee
FURUKWA SPECIAL METAL COATED CO Ltd
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FURUKWA SPECIAL METAL COATED CO Ltd, Furukawa Electric Co Ltd filed Critical FURUKWA SPECIAL METAL COATED CO Ltd
Priority to JP2158688A priority Critical patent/JPH01198441A/en
Publication of JPH01198441A publication Critical patent/JPH01198441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the title lead material having excellent strength, heat conductivity (electric conductivity), solderability, etc., which is constituted of specific amounts of Ti, Ni and Sn and specific amounts of one or more kinds among Zn, Mn, Mg and Cr and the balance consisting of Cu with inevitable impurities. CONSTITUTION:The above lead material is constituted of the compsn. contg., by weight, 0.01-0.6% T, 0.1-4.0% Ni and 0.1-4.0% Sn as well as 0.001-5.0% total of one or more kinds in the range of 0.05-5.0% Zn, 0.01-1.0% Mn, 0.001-0.5% Mg and 0.001-0.4% Cr and the balance consisting of Cu with inevitable impurities. In the above inevitable impurities, P concn. is preferably regulated to <=100ppm, S concn. to <=10ppm and O2 concn. to <=20ppm. The lead material has excellent strength, electric conductivity and flexibility, particularly has excellent resistance to deterioration of solder bonding strength and soldering wettability of presoldering and is useful as the lead material for the plastics, pins, grits and arrays of a semiconductor element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強度、熱伝導性(導電性)、半田付は性等が優
れ、低コストで高密度実装を可能にするプラスチック・
ピン・グリッド・アレイ(以下PPGAと略記)用リー
ド材に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a plastic material that has excellent strength, thermal conductivity (electrical conductivity), solderability, etc., and enables high-density mounting at low cost.
This invention relates to a lead material for pin grid array (hereinafter abbreviated as PPGA).

〔従来の技術及び発明が解決しようとする課題〕従来、
ピン・グリッド・アレイ(以下PGAと略記)としては
、セラミックタイプのものが主流をなしており、これに
用いられるリード材には、リードピンとセラミックのろ
う接待の温度(800℃前後)において柔かくなりにく
い42合金(Fe−Ni42wt%)等が用いられてい
る。
[Problems to be solved by conventional techniques and inventions] Conventionally,
Ceramic type pin grid arrays (hereinafter abbreviated as PGA) are mainstream, and the lead material used for this has a material that becomes soft at the temperature (around 800°C) when the lead pins and ceramic are soldered together. 42 alloy (Fe-Ni 42wt%), etc., which is difficult to use, is used.

しかしながら昨今の軽薄短小化や低コスト化等の要求に
より、プラスチックタイプのPGA。
However, due to recent demands for lighter, thinner, shorter, and lower costs, plastic-type PGAs are becoming more popular.

即ちPPGAが開発された。このPPGAはリードピン
との接合法とて圧入タイプのものが大部分であり、圧入
部(通常Cuメツキ)とり一ドピンとの熱膨張が信頼性
の面で大きな要素を占めている。また高集積化が進むに
つれ、半導体素子の熱発生量が増加し、誤作動等の信頼
性の低下を招くため、熱放散性しいては熱伝導性(導電
性)に優れたリードピンの要求も高まっている。更には
り一ドピンと基板との接合における半田付けにおいても
、予備半田付はリードピンの半田濡れ性が良好であるこ
とが必要となっている。
That is, PPGA was developed. Most of these PPGAs are bonded to lead pins by press-fitting, and thermal expansion between the press-fitting part (usually Cu plating) and the lead pins is a major factor in reliability. In addition, as the degree of integration increases, the amount of heat generated by semiconductor devices increases, leading to malfunctions and lower reliability, so lead pins with excellent heat dissipation and thermal conductivity (electrical conductivity) are required. It's increasing. Furthermore, in the soldering process for joining the lead pin and the board, it is necessary that the solder wettability of the lead pin be good during preliminary soldering.

このような要求に対し、現在リードピンとして一般に用
いられている42合金や6〜8wt%りん青銅では、放
熱性が低く、また熱膨張が大きく異なったり、コストが
高かったり、′満足すべきものではなかった。
In response to these demands, the 42 alloy and 6 to 8 wt% phosphor bronze that are currently commonly used for lead pins have low heat dissipation properties, large differences in thermal expansion, high cost, and are not satisfactory. Ta.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、PPGA用リード
材として、強度、熱伝導性(導電性)、半田付は性等に
優れ、かつ低コストであるプラスチック・ピン・グリッ
ド・アレイ用リード材を開発したものである。
In view of this, as a result of various studies, the present invention has been developed as a lead material for plastic pin grid arrays that has excellent strength, thermal conductivity (electrical conductivity), solderability, etc., and is low cost as a lead material for PPGA. was developed.

即ち本発明リード材の一つは、T i 0.01〜0.
5wt%(以下wt%を%と略記)、Ni0.1〜4.
0%、 3n0.1〜4.0%を含み、Zn0.05〜
5.0%、 Mn0.01〜1.0%、 Mg0.OO
l 〜0.5%、 Cr0.001〜0.4%の範囲内
で何れか1種又は2種以上を合計0.001〜5.0%
含み、残部Cuと不可避的不純物からなることを特徴と
するもので、望ましくは不可避的不純物中、211度を
1100pp以下、S濃度を10ppm以下、α濃度を
20pl)m以下とする。
That is, one of the lead materials of the present invention has a T i of 0.01 to 0.
5wt% (hereinafter wt% is abbreviated as %), Ni0.1-4.
0%, 3n0.1~4.0%, Zn0.05~
5.0%, Mn0.01-1.0%, Mg0. OO
l ~ 0.5%, Cr 0.001 ~ 0.4% within the range of any one or two or more types in a total of 0.001 ~ 5.0%
Among the unavoidable impurities, desirably, the 211°C concentration is 1100 pp or less, the S concentration is 10 ppm or less, and the α concentration is 20 pl)m or less.

また本発明リード材の他の一つは、Ti0.01〜0.
6%、 N i 0.1〜4.0%、 Sn0.1〜4
.0%を含み、Z no、05〜5.0%、 Mn0.
01〜1.0%、 Ml、001〜0.5%、 (:、
 ro、GOl 〜0.4%の範囲内で何れか1種又は
2種以上を合計0.001〜5.0%含み、更にV、F
e、Co。
Another lead material of the present invention is Ti0.01-0.
6%, Ni 0.1-4.0%, Sn0.1-4
.. 0%, Z no, 05-5.0%, Mn0.
01~1.0%, Ml, 001~0.5%, (:,
Contains any one or more of 0.001 to 5.0% in total within the range of ro, GOl to 0.4%, and further contains V, F
e, Co.

Aj!、Si、Zr、Cdを0.005〜1.0%の範
囲内で、Ag、Y、(3e、sb、Te、I n。
Aj! , Si, Zr, Cd within the range of 0.005 to 1.0%, Ag, Y, (3e, sb, Te, In.

希土類元素(RE)をo、 001〜0.2%の範囲内
で何れか1種又は2梗以上を合計0.001〜1.0%
含み、残部Cuと不可避的不純物からなることを特徴と
するもので、望ましくは不可避的不純物中、P濃度を1
100pp以下、S濃度をi oppm以下、02m度
を20ppm以下とする。
Rare earth elements (RE) o, 0.001 to 1.0% of any one or more of 2 or more within the range of 0.001 to 0.2%
The P concentration is preferably 1 in the unavoidable impurities.
100 ppm or less, the S concentration is i oppm or less, and the 02m degree is 20 ppm or less.

〔作 用〕[For production]

先ず本発明に係るPPGA用リード材の含有成分とその
限定理由を説明する。
First, the components contained in the PPGA lead material according to the present invention and the reasons for their limitations will be explained.

TiはNi、5i或いはNt、3r、 Cuと共に金属
間化合物を合金マトリックス中に微細に分布せしめ、強
度や導電性の向上はもとより屈曲性を向上し、予備半田
付けされたピンの半田濡れ性の経時劣化を抑制し、生産
性と信頼性を向上する。しかしてTi含有量を0.01
〜0.6%と限定したのは、下限未満では効果がなく、
上限を越えると潮流れを損ない、酸化生成物の発生によ
り、鋳造性を著しく低下させると共に、熱間加工性を大
きく劣化し、割れが生じやすく生産性を阻害するためで
ある。
Ti, along with Ni, 5i, Nt, 3r, and Cu, finely distributes intermetallic compounds in the alloy matrix, improving not only strength and conductivity but also flexibility, and improving the solder wettability of pre-soldered pins. Suppress aging deterioration and improve productivity and reliability. However, the Ti content was reduced to 0.01
The reason for limiting it to ~0.6% is that it is ineffective below the lower limit.
This is because if the upper limit is exceeded, flow is impaired and oxidation products are generated, which significantly reduces castability, greatly deteriorates hot workability, and tends to cause cracks, which inhibits productivity.

Ni、SnはT1と共に化合物を形成し、前記特性を向
上させる働きをすると共に、合金マトリックス中に固溶
して強度や屈曲性を向上する。しかしてNi含有優を0
.1〜4.0%、3n含有量を0.1〜4.0%と限定
したのは、下限未満では効果がなく、上限を越えると導
電率を大きく低下させると共に、半田接合性の経時劣化
を起し、信頼性を著しく損なうためである。
Ni and Sn form a compound together with T1 and work to improve the above characteristics, and also dissolve in solid solution in the alloy matrix to improve strength and flexibility. However, the Ni content is 0.
.. The reason for limiting the 3n content to 0.1 to 4.0% is that below the lower limit, there is no effect, and when it exceeds the upper limit, the conductivity will decrease significantly and the solder bondability will deteriorate over time. This is because it can cause problems and significantly impair reliability.

Zn、Mn、ML Cr (以下へ元素群と略す)から
なる群は、半田接合界面の経時劣化を抑制し、健全な半
田接合性をもたらすと同時に、予備ハンダ付けされたピ
ンの半田濡れ性の経時劣化を抑制する働きを示し、半導
体素子の製造性、信頼性、コスト面において大きく寄与
する。
The group consisting of Zn, Mn, and ML Cr (hereinafter abbreviated as element group) suppresses deterioration of the solder joint interface over time and provides sound solder joint properties, while also improving the solder wettability of pre-soldered pins. It works to suppress deterioration over time and greatly contributes to the manufacturability, reliability, and cost of semiconductor devices.

しかしてその含有量をzno、05〜5.0%,Mn0
.01〜1.0%、 MgO0001〜0.5%、Or
0.001〜0.4%の範囲内で何れか1種又は2種以
上を合計0.001〜5.0%と限定したのは、何れも
下限未満では効果がなく、上限を越えると導電率を低下
し、鋳造性や熱間加工性の劣化を招くためである。
However, its content is zno, 05~5.0%, Mn0
.. 01~1.0%, MgO0001~0.5%, Or
The reason why any one or more types within the range of 0.001 to 0.4% is limited to a total of 0.001 to 5.0% is that below the lower limit, there is no effect, and when the upper limit is exceeded, the conductivity is reduced. This is because it lowers the casting rate and causes deterioration of castability and hot workability.

またV、Fe、Co、A1.S i、Zr。Also V, Fe, Co, A1. Si, Zr.

Cd、A9.’Y、Ge、Sb、Pb、Te。Cd, A9. 'Y, Ge, Sb, Pb, Te.

■n、’RE(以下B元素群と略す)からなる群は結晶
粒の粗大化を抑制し、強度を向上させる働きを示す。し
かしてその含有量をV、Fe。
■The group consisting of n,'RE (hereinafter abbreviated as B element group) functions to suppress coarsening of crystal grains and improve strength. However, its content is V, Fe.

C0.A1.Si、Zr、Cdを0.005〜1.0%
の範囲内で、Ag、Y、Ge、Sb、Pb。
C0. A1. 0.005-1.0% Si, Zr, Cd
Within the range of Ag, Y, Ge, Sb, Pb.

Te、In、REを0.001〜0.2%の範囲内で何
れか1種又は2種以上を合計0.001〜1.0%と限
定したのは、何れも下限未満では効果がなく、上限を越
えると導電率を大きく損ない、屈曲性も低下せしめ、更
には鋳造性や熱間加工性等の製造性をも低下せしめてし
まうためである。
The reason why any one or more of Te, In, and RE is limited to a total of 0.001 to 1.0% within the range of 0.001 to 0.2% is that none of them is effective below the lower limit. This is because, if the upper limit is exceeded, the electrical conductivity will be significantly impaired, the flexibility will also be reduced, and furthermore, the manufacturability such as castability and hot workability will be reduced.

更に不純物中のPI度を1100pp以下と限定したの
は、Pは鋳造時の脱酸剤として作用するも、その濃度が
100ppmを越えると合金の構成元素とP化合物を形
成し、半田付は性や強度等の機械的特性を損なうためで
ある。またS濃度を10ppm以下と限定したのは、S
は結晶粒界に濃化しやすく、そのために粒界強度が低下
し、熱間加工時に割れの起点となり、製造性を害する。
Furthermore, the PI level in the impurities was limited to 1100 pp or less because P acts as a deoxidizing agent during casting, but if its concentration exceeds 100 ppm, it forms a P compound with the constituent elements of the alloy, making soldering difficult. This is because mechanical properties such as strength and strength are impaired. In addition, the S concentration was limited to 10 ppm or less because S
tends to concentrate at grain boundaries, which reduces grain boundary strength and becomes a starting point for cracks during hot working, impairing manufacturability.

しかして10ppm以下であれば上記のようなことは見
られず、熱間加工性を害することがないためである。ま
た022Iii!度を20ppm以下と限定したのは、
T:等の構成元素の酸化を抑制し、酸化物による伸線性
、屈曲性の低下並びに半田濡れ性の劣化を防ぐためであ
り、OzH度が20ppm以下であれば満足すべき特性
を得ることができる。
However, if the content is 10 ppm or less, the above problem will not occur and hot workability will not be impaired. 022Iii again! The reason why the concentration was limited to 20 ppm or less was because
This is to suppress the oxidation of constituent elements such as T: and prevent deterioration of wire drawability, flexibility, and solder wettability due to oxides, and satisfactory characteristics can be obtained if the OzH degree is 20 ppm or less. can.

〔実施例〕〔Example〕

高周波溶解炉を用い、不活性雰囲気中において、第1表
に示す成分組成のリード材を溶解鋳造し、これを熱間加
工により直径8mの線に加工した後、冷間加工と焼鈍を
繰返し、最終的に加工度90%の直径0.5mのリード
材とし、これを供試材として引張強さ、伸び、導電率、
屈曲性、半田接合強度、経時劣化、予備半田付は後の半
田濡れ性を測定した。その結果を第2表に示す。
Using a high-frequency melting furnace, in an inert atmosphere, a lead material having the composition shown in Table 1 is melted and cast, and after processing it into a wire with a diameter of 8 m by hot working, cold working and annealing are repeated. Finally, a lead material with a diameter of 0.5 m with a processing degree of 90% was made, and this was used as a test material with tensile strength, elongation, electrical conductivity,
Flexibility, solder joint strength, deterioration over time, and solder wettability after preliminary soldering were measured. The results are shown in Table 2.

尚屈曲性については、90”繰り返し曲げを行ない、破
断までの回数を求めた。半田接合強度は純銅板に供試材
を垂直に、60/40共晶半田を用いて半田付けした後
、150℃で500時間の加速試験を行ない、その時の
破断荷重を示した。
Regarding the flexibility, bending was repeated 90" and the number of times until breakage was determined. The solder joint strength was determined by soldering the test material perpendicularly to a pure copper plate using 60/40 eutectic solder. An accelerated test was conducted at ℃ for 500 hours, and the breaking load at that time is shown.

また半田濡れ性については、供試材に6.0/40共晶
半田を半田付けした後、150℃で150時間時効処理
したものの半田濡れ時間をメニュコグラフ法で測定し、
半田濡れ時間が10秒以上のものをX印、5〜10秒の
ものをΔ印、5秒以下のものをO印で示した。
Regarding solder wettability, after soldering 6.0/40 eutectic solder to the test material, the solder wetting time was measured using the menucograph method after aging treatment at 150 ° C. for 150 hours.
Those with solder wetting time of 10 seconds or more are marked with an X, those with a solder wetting time of 5 to 10 seconds are marked with a Δ, and those with a solder wetting time of 5 seconds or less are marked with an O.

第2表 第1表及び第2表から明らかなように、本発明リード材
Nα1〜21は何れも従来リード材Nα30゜31と比
較し、導電性、半田接合性、半田濡れ性の経時劣化が優
れていることが判る。
Table 2 As is clear from Tables 1 and 2, the lead materials Nα1 to 21 of the present invention all exhibit less deterioration over time in conductivity, solder bondability, and solder wettability than the conventional lead materials Nα30°31. It turns out to be excellent.

これに対し、TiやNiの含有量の多い比較リード材N
α22、B元素群の多過ぎ、る比較合金Nα26ヤS量
の多い比較リード材NQZBでは健全な鋳塊が得られず
、熱間加工時に割れを生じたりして満足すべき供試材が
得られなかった。更にTi、Ni、3n含有量の少ない
比較リード材Nα23では、良好な導電性や半田付は性
を有するも、強度や屈曲性や半田濡れ性が逆に低下する
In contrast, comparative lead material N with a high content of Ti and Ni
With the comparison lead material NQZB, which has too much α22, B element group and a large amount of Nα26 and S, it was not possible to obtain a sound ingot, and cracks occurred during hot working, resulting in unsatisfactory test materials. I couldn't. Furthermore, the comparative lead material Nα23, which has a small content of Ti, Ni, and 3n, has good conductivity and soldering properties, but the strength, flexibility, and solder wettability are deteriorated.

更にへ元素群を含まない比較リード材Nα25では半田
接合性が大きく劣り、PIの多い比較リード相順27及
び02量の多い比較リード材では共に強度、屈曲性、半
田付は性が低下していることが判る。
Furthermore, the comparative lead material Nα25, which does not contain the hemielement group, has significantly inferior solderability, and the comparative lead material Nα25, which contains a large amount of PI, and the comparative lead material, which contains a large amount of 02, both have poor strength, flexibility, and solderability. I know that there is.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、強度、導電率。 Thus, according to the present invention, strength, electrical conductivity.

屈曲性に優れ、特に半田接合強度の劣化や予備半田後の
半田濡れ性に優れ、半導体素子のPPGA用リード材と
して有用であり、特にPPGAの小型化、高集積化を可
能にする等、工業上顕著な効果を奏するものである。
It has excellent flexibility and is particularly good at preventing deterioration of solder joint strength and solder wettability after preliminary soldering, making it useful as a lead material for PPGA of semiconductor devices. This has a remarkable effect.

Claims (4)

【特許請求の範囲】[Claims] (1)Ti0.01〜0.6wt%,Ni0.1〜4.
0wt%,Sn0.1〜4.0wt%を含み、Zn0.
05〜5.0wt%,Mn0.01〜1.0wt%,M
g0.001〜0.5wt%,Cr0.001〜0.4
wt%の範囲内で何れか1種又は2種以上を合計0.0
01〜5.0wt%含み、残部Cuと不可避的不純物か
らなるプラスチック・ピン・グリッド・アレイ用リード
材。
(1) Ti0.01-0.6wt%, Ni0.1-4.
0wt%, Sn0.1-4.0wt%, Zn0.
05-5.0wt%, Mn0.01-1.0wt%, M
g0.001~0.5wt%, Cr0.001~0.4
A total of 0.0 of any one or two or more types within the range of wt%
A lead material for plastic pin grid arrays containing 01 to 5.0 wt% and the remainder being Cu and unavoidable impurities.
(2)不可避的不純物中、P濃度を100ppm以下、
S濃度を10ppm以下、O_2濃度を20ppm以下
とする請求項1記載のプラスチック・ピン・グリッド・
アレイ用リード材。
(2) In the unavoidable impurities, the P concentration is 100 ppm or less,
The plastic pin grid according to claim 1, wherein the S concentration is 10 ppm or less and the O_2 concentration is 20 ppm or less.
Lead material for arrays.
(3)Ti0.01〜0.6wt%,Ni0.1〜4.
0wt%,Sn0.1〜4.0wt%を含み、Zn0.
05〜5.0wt%,Mn0.01〜1.0wt%,M
g0.001〜0.5wt%,Cr0.001〜0.4
wt%の範囲内で何れか1種又は2種以上を合計0.0
01〜5.0wt%含み、更にV,Fe,Co,Al,
Si,Zr,Cdを0.005〜1.0wt%の範囲内
で、Ag,Y,Ge,Sb,Te,In,希土類元素を
0.001〜0.2wt%の範囲内で何れか1種又は2
種以上を合計0.001〜1.0wt%含み、残部Cu
と不可避的不純物からなるプラスチック・ピン・グリッ
ド・アレイ用リード材。
(3) Ti0.01-0.6wt%, Ni0.1-4.
0wt%, Sn0.1-4.0wt%, Zn0.
05-5.0wt%, Mn0.01-1.0wt%, M
g0.001~0.5wt%, Cr0.001~0.4
A total of 0.0 of any one or two or more types within the range of wt%
Contains 01 to 5.0 wt%, and further contains V, Fe, Co, Al,
Any one of Si, Zr, and Cd within the range of 0.005 to 1.0 wt%, and Ag, Y, Ge, Sb, Te, In, and rare earth elements within the range of 0.001 to 0.2 wt%. or 2
Contains a total of 0.001 to 1.0 wt% of seeds or more, and the balance is Cu
Lead material for plastic pin grid arrays, which is made up of unavoidable impurities.
(4)不可避的不純物中、P濃度を100ppm以下、
S濃度を10ppm以下、O_2濃度を20ppm以下
とする請求項3記載のプラスチック・ピン・グリッド・
アレイ用リード材。
(4) In the unavoidable impurities, the P concentration is 100 ppm or less,
The plastic pin grid according to claim 3, wherein the S concentration is 10 ppm or less and the O_2 concentration is 20 ppm or less.
Lead material for arrays.
JP2158688A 1988-02-01 1988-02-01 Lead material for plastic-pin-grit-array Pending JPH01198441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2158688A JPH01198441A (en) 1988-02-01 1988-02-01 Lead material for plastic-pin-grit-array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158688A JPH01198441A (en) 1988-02-01 1988-02-01 Lead material for plastic-pin-grit-array

Publications (1)

Publication Number Publication Date
JPH01198441A true JPH01198441A (en) 1989-08-10

Family

ID=12059141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158688A Pending JPH01198441A (en) 1988-02-01 1988-02-01 Lead material for plastic-pin-grit-array

Country Status (1)

Country Link
JP (1) JPH01198441A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793810A1 (en) * 1999-05-20 2000-11-24 Kobe Steel Ltd New copper-tin-nickel-zinc alloy with excellent stress relaxation resistance, used for e.g. electrical springs, interrupters, connectors, diaphragms, fuses, sockets and automobile safety-belt springs
AU771253B2 (en) * 2000-10-03 2004-03-18 Ntt Docomo, Inc. Content providing method, providing facility, and user facility
CN106179715A (en) * 2016-06-24 2016-12-07 河南易成新能源股份有限公司 Crystal silicon wafer cutting edge material fine powder minimizing technology

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181250A (en) * 1984-02-28 1985-09-14 Mitsubishi Metal Corp Copper alloy for material of lead for semiconductor apparatus
JPS60184655A (en) * 1984-03-02 1985-09-20 Hitachi Metals Ltd High-strength copper alloy having high electric conductivity
JPS60262933A (en) * 1984-06-07 1985-12-26 ヴイーラント ウエルケ アクチユーエン ゲゼルシヤフト Alloy of copper, nickel, tin and titanium and manufacture
JPS6199647A (en) * 1984-10-20 1986-05-17 Kobe Steel Ltd Material for lead frame for semiconductor and its manufacture
JPS61272339A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Lead material for electronic parts excelled in repeated bendability and its production
JPS6250425A (en) * 1985-08-29 1987-03-05 Furukawa Electric Co Ltd:The Copper alloy for electronic appliance
JPS62133033A (en) * 1985-12-04 1987-06-16 Mitsubishi Metal Corp Cu alloy lead material for semiconductor device
JPS6314832A (en) * 1986-07-04 1988-01-22 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181250A (en) * 1984-02-28 1985-09-14 Mitsubishi Metal Corp Copper alloy for material of lead for semiconductor apparatus
JPS60184655A (en) * 1984-03-02 1985-09-20 Hitachi Metals Ltd High-strength copper alloy having high electric conductivity
JPS60262933A (en) * 1984-06-07 1985-12-26 ヴイーラント ウエルケ アクチユーエン ゲゼルシヤフト Alloy of copper, nickel, tin and titanium and manufacture
JPS6199647A (en) * 1984-10-20 1986-05-17 Kobe Steel Ltd Material for lead frame for semiconductor and its manufacture
JPS61272339A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Lead material for electronic parts excelled in repeated bendability and its production
JPS6250425A (en) * 1985-08-29 1987-03-05 Furukawa Electric Co Ltd:The Copper alloy for electronic appliance
JPS62133033A (en) * 1985-12-04 1987-06-16 Mitsubishi Metal Corp Cu alloy lead material for semiconductor device
JPS6314832A (en) * 1986-07-04 1988-01-22 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793810A1 (en) * 1999-05-20 2000-11-24 Kobe Steel Ltd New copper-tin-nickel-zinc alloy with excellent stress relaxation resistance, used for e.g. electrical springs, interrupters, connectors, diaphragms, fuses, sockets and automobile safety-belt springs
AU771253B2 (en) * 2000-10-03 2004-03-18 Ntt Docomo, Inc. Content providing method, providing facility, and user facility
CN106179715A (en) * 2016-06-24 2016-12-07 河南易成新能源股份有限公司 Crystal silicon wafer cutting edge material fine powder minimizing technology
CN106179715B (en) * 2016-06-24 2018-07-20 河南易成新能源股份有限公司 Crystal silicon wafer cutting edge material fine powder minimizing technology

Similar Documents

Publication Publication Date Title
JPS63149344A (en) High strength copper alloy having high electrical conductivity
JPH0471975B2 (en)
US4732733A (en) Copper-base alloys for leadframes
JPS63109130A (en) Copper alloy for electronic equipment
JPH0425338B2 (en)
JPH0674479B2 (en) Conductive rolled material for leadframes, connectors or switches
US5205878A (en) Copper-based electric and electronic parts having high strength and high electric conductivity
JPH0830234B2 (en) High strength and high conductivity copper alloy
JPS59170231A (en) High tension conductive copper alloy
JPH01198441A (en) Lead material for plastic-pin-grit-array
JPS6215622B2 (en)
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPS6267144A (en) Copper alloy for lead frame
JPH0440417B2 (en)
JPH0726167B2 (en) Au alloy extra fine wire for bonding wire of semiconductor device
JP3313006B2 (en) Copper alloy lead frame for bare bond
JPS6365748B2 (en)
JP2504956B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JPH01198439A (en) Lead material for plastic-pin-grid-array ic
JPH02197013A (en) Cable conductor with high bending strength
JPS6311418B2 (en)
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS63949B2 (en)