JPH0219432A - High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material - Google Patents

High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material

Info

Publication number
JPH0219432A
JPH0219432A JP16771688A JP16771688A JPH0219432A JP H0219432 A JPH0219432 A JP H0219432A JP 16771688 A JP16771688 A JP 16771688A JP 16771688 A JP16771688 A JP 16771688A JP H0219432 A JPH0219432 A JP H0219432A
Authority
JP
Japan
Prior art keywords
copper alloy
strength
properties
conductive spring
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16771688A
Other languages
Japanese (ja)
Inventor
Tamio Toe
東江 民夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP16771688A priority Critical patent/JPH0219432A/en
Publication of JPH0219432A publication Critical patent/JPH0219432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce the title high-strength and high-conductivity copper alloy improved in bendability, etc., by specifying the weight ratio between Mn and P contents and grain size, respectively, in a copper alloy containing specific percentages of Mn and P. CONSTITUTION:A copper alloy which has a composition consisting of, by weight, 0.5-4.0% Mn, 0.05-1.0% P, and the balance Cu with inevitable impurities and satisfying P/Mn=0.1-0.5 by weight ratio and in which grain size is regulated to <=0.020mm is prepared. At this time, the contents of O and S among the impurities are regulated to <=0.0020% and <=0.0015%, respectively. By this method, the copper alloy improved in bendability, solderability, plating suitability, and etching characteristic can be obtained. This copper alloy is useful as semiconductor equipment lead material or conductive spring material.

Description

【発明の詳細な説明】 〔目 的〕 本発明は、トランジスタや集積回路(IC)などの半導
体機器のリード材、コネクター、端子、リレー、スイッ
チ等の導電性ばね材に適する銅合金に関するものである
[Detailed Description of the Invention] [Object] The present invention relates to a copper alloy suitable for lead materials for semiconductor devices such as transistors and integrated circuits (ICs), and conductive spring materials for connectors, terminals, relays, switches, etc. be.

〔従来技術及び問題点〕[Prior art and problems]

従来、半導体機器のリード材としては、熱膨張係数が低
く、素子及びセラミックとの接着及び封着性の良好なコ
パール(Fa、−29Ni−16Co) 、 42合金
(Fe−42Ni)などの高ニッケル合金が好んで使わ
れてきた。しかし、近年、半導体回路の集積度の向上に
伴い消費電力の高いICが多くなってきたことと、封止
材料として樹脂が多く使用され、かつ素子とリードフレ
ームの接着も改良が加えられたことにより、使用される
リード材も放熱性のよい銅基合金が使われるようになっ
てきた。
Conventionally, high nickel materials such as copal (Fa, -29Ni-16Co) and 42 alloy (Fe-42Ni) have been used as lead materials for semiconductor devices because of their low coefficient of thermal expansion and good adhesion and sealing properties with elements and ceramics. Alloys have been preferred. However, in recent years, as the degree of integration of semiconductor circuits has improved, the number of ICs with high power consumption has increased, resins have been increasingly used as sealing materials, and improvements have been made to the bonding between elements and lead frames. As a result, copper-based alloys with good heat dissipation properties have come to be used as lead materials.

一般に半導体機器のリード材としては以下のような特性
が要求されている。
Generally, lead materials for semiconductor devices are required to have the following properties.

(1)  リードが電気信号伝達部であるとともに、パ
ッケージング工程中及び回路使用中に発生する熱を外部
に放出する機能を併せ持つことを要求される為、優れた
熱及び電気伝導性を示すもの。
(1) Leads must exhibit excellent thermal and electrical conductivity, as they are required to act as an electrical signal transmission part and also have the function of discharging heat generated during the packaging process and circuit use to the outside. .

(2)  リードとモールドとの密着性が半導体素子保
護の観点から重要であるため、リード材とモールド材の
熱膨張係数が近いこと。
(2) Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material should be similar.

(3)パッケージング時の種々の加熱工程が加わる為、
耐熱性が良好であること。
(3) Due to the addition of various heating processes during packaging,
Good heat resistance.

(4)  リードはリード材を抜き打ち加工し、又曲げ
加工して作製されるものがほとんどである為、これらの
加工性が良好なこと。
(4) Most leads are manufactured by punching or bending lead material, so the workability of these materials should be good.

(5)  リードは表面に貴金属のメツキを行う為、こ
れら貴金属とのメツキ密着性が良好であること。
(5) The surface of the lead is plated with precious metals, so the plating adhesion to these precious metals must be good.

(6)パッケージング後に封止材の外に露出している、
いわゆるアウター・リード部に半田付けするものが多い
ので良好な半田付は性を示すこと。
(6) exposed outside the sealing material after packaging;
Many items are soldered to the so-called outer leads, so good soldering is a sign of good soldering.

(7)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(7) Good corrosion resistance from the standpoint of equipment reliability and lifespan.

(8)価格が紙庫であること。(8) The price must be paper storage.

これら各種の要求特性に対し、従来から使用されている
合金は一長一短があり、満足すべきものは見い出されて
いない。
Alloys conventionally used have advantages and disadvantages with respect to these various required characteristics, and no one has been found that satisfies these requirements.

又、従来、電気機器用ばね、計測器用ばね、スイッチ、
コネクター等に用いられるばね用材料としては、安価な
黄銅、優れたばね特性及び耐食性を有する洋白、あるい
は優れたばね特性を有するりん青銅が使用されていた。
In addition, conventional springs for electrical equipment, springs for measuring instruments, switches,
As materials for springs used in connectors and the like, inexpensive brass, nickel silver, which has excellent spring properties and corrosion resistance, or phosphor bronze, which has excellent spring properties, have been used.

しかし、黄銅は強度、ばね特性が劣っており、又強度、
ばね特性の優れた洋白、りん青銅も洋白は18wt%の
Ni、りん青銅は8wt%のSnを含むため、原料の面
及び製造上熱間加工性が悪い等の加工上の制約も加わり
高価な合金であった。さらには電気機器用等に用いられ
る場合、電気伝導度が低いという欠点を有していた。従
って、導電性が良好であり、ばね特性に優れた安価な合
金の現出が待たれていた。
However, brass has inferior strength and spring characteristics;
Nickel silver and phosphor bronze, both of which have excellent spring properties, contain 18 wt% Ni and 8 wt% Sn, so there are also processing constraints such as poor hot workability in terms of raw materials and manufacturing. It was an expensive alloy. Furthermore, when used for electrical equipment, etc., it has a drawback of low electrical conductivity. Therefore, the emergence of an inexpensive alloy with good electrical conductivity and excellent spring properties has been awaited.

〔発明の構成〕[Structure of the invention]

本発明はかかる点に鑑みなされたもので、特にCu −
M n −P系合金を改良し、半導体機器のリード材及
び導電性ばね材として好適な諸特性を有する銅合金を提
供しようとするものである。
The present invention was made in view of this point, and in particular Cu-
The present invention aims to improve Mn-P alloys and provide copper alloys having various properties suitable for use as lead materials and conductive spring materials for semiconductor devices.

すなわち、Cu −M n −P系合金は優れた強度と
導電性を示し、半導体機器リード材としても導電性はね
材としても優れた銅合金といえるが、折り曲げ性、半田
付は性、めっき、性、エツチング性については十分満足
できるものではなく改良の必要があった。
In other words, the Cu-Mn-P alloy exhibits excellent strength and conductivity, and can be said to be an excellent copper alloy as both a semiconductor device lead material and a conductive spring material. , properties, and etching properties were not fully satisfactory and needed improvement.

本発明者らは、これらの特性低下要因を種々検討したと
ころ、合金の結晶粒の粗大化やMnの酸化物や硫化物が
その原因であることがわかり、結晶粒度を調整すること
により折り曲げ性の改善をはかり、さらに、合金中の0
.Sの含有量を限定することにより、特性の改善がはか
れることを見い出したものである。
The present inventors investigated various causes of deterioration of these properties and found that the causes were coarsening of crystal grains of the alloy and oxides and sulfides of Mn. In addition, we aim to improve 0 in the alloy.
.. It has been discovered that the properties can be improved by limiting the S content.

すなわち、本発明は、M n 0 、5〜4 、 Ow
 t%、P  0.05〜1.0wt%を含み、かつ、
MnとPの重量比がP/Mnで0.1〜0.5で、残部
Cu及び不可避的不純物からなり、結晶粒度が0.02
0mm以下であることを特徴とする半導体機器リード材
又は導電性ばね材用高力高導電鋼合金及びMn0.5〜
4.0wt%、P  O,05〜1.0wt%を含み、
かつMnとPの重量比がP/Mnで0゜1〜0.5で、
残部Cuおよび不可避的不純物よりなり、該不純物のう
ち、0の含有量が0.0020wt%以下であり、結晶
粒度が0.020nn以下であることを特徴とする半導
体機器リード材又は導電性ばね材用高力高導電鋼合金並
びにMn0.5〜4.0wt%、P  O,05〜1.
0wt%を含み、かつMnとPの重量比がP/Mn″1
’0.1〜0.5で、残部Cu及び不可避的不純物から
なり、該不純物のうち、Sの含有量がO,OO1’5w
t%以下であり、結晶粒度が0.020m以下であるこ
とを特徴とする半導体機器リード材又は導電性ばね材用
高力高導電銅合金に関するものであり。
That is, the present invention provides M n 0 , 5-4, Ow
t%, P 0.05 to 1.0 wt%, and
The weight ratio of Mn and P is P/Mn of 0.1 to 0.5, the balance consists of Cu and inevitable impurities, and the crystal grain size is 0.02.
High-strength, high-conductivity steel alloy for semiconductor device lead material or conductive spring material, characterized by having a thickness of 0 mm or less, and Mn of 0.5 to 0.5
4.0 wt%, including P O, 05 to 1.0 wt%,
and the weight ratio of Mn and P is P/Mn of 0°1 to 0.5,
A semiconductor device lead material or a conductive spring material, characterized in that the remainder is Cu and unavoidable impurities, the content of 0 among the impurities is 0.0020 wt% or less, and the crystal grain size is 0.020 nn or less. High-strength, high-conductivity steel alloy and Mn0.5-4.0wt%, PO,05-1.
0wt%, and the weight ratio of Mn and P is P/Mn''1
'0.1 to 0.5, the balance consists of Cu and unavoidable impurities, and among these impurities, the S content is O, OO1'5w
The present invention relates to a high-strength, high-conductivity copper alloy for use in semiconductor device lead materials or conductive spring materials, which is characterized by having a grain size of 0.020 m or less and a crystal grain size of 0.020 m or less.

半導体機器リード材又は導電性ばね材として優れた強度
、電気及び熱伝導性、耐熱性、ばね特性を有するばかり
でなく、このような用途の中で折り曲げ性が要求される
場合、特にその折り曲げ性。
Not only does it have excellent strength, electrical and thermal conductivity, heat resistance, and spring properties as a semiconductor device lead material or conductive spring material, but it also has excellent bendability, especially when bendability is required in such applications. .

半田付は性、めっき性、エツチング性をも改良したこと
を特徴とするものである。
It is characterized by improved soldering properties, plating properties, and etching properties.

〔発明の詳細な説明〕[Detailed description of the invention]

次に本発明合金を構成する合金成分の限定理由を説明す
る。
Next, the reason for limiting the alloy components constituting the alloy of the present invention will be explained.

MnはCu中にPと共添し、溶体化処理後時効処理を行
うことにより、M n 、 P 等の金属間化合物とし
て析出し、導電率を低下させずに強度を向上させるため
であるが、M n ’jt 0 、5〜4 、 Ow 
t%添加する理由は、0.5wt%未満では強度の向上
は認められず、4.0wt%を超えると導電性および加
工性が低下するためである。
This is because Mn is co-added with P in Cu and is precipitated as intermetallic compounds such as M n and P by performing aging treatment after solution treatment to improve strength without reducing conductivity. , M n'jt 0 , 5~4 , Ow
The reason for adding t% is that if it is less than 0.5 wt%, no improvement in strength will be observed, and if it exceeds 4.0 wt%, the conductivity and workability will decrease.

Pも同様にMnと共添し、金属間化合物とじてを向上さ
せる元素であるが、Pを0.05〜1.0wt%添加す
る理由は、0.05wt%未満では強度の向上は認めら
れず、1.0wt%を超えると導電性および加工性が低
下するためである。
P is also co-added with Mn and is an element that improves the strength of intermetallic compounds, but the reason for adding 0.05 to 1.0 wt% of P is that if it is less than 0.05 wt%, no improvement in strength is observed. First, if it exceeds 1.0 wt%, conductivity and workability will decrease.

MnとPの重量比をP/Mnで0.1〜0.5とする理
由は、0.1未満では強度向上が認められず、0.5を
超えると金属間化合物として析出しないPが多くなり、
導電性および加工性が低下するためである。
The reason why the weight ratio of Mn and P is set to 0.1 to 0.5 in terms of P/Mn is that if it is less than 0.1, no improvement in strength will be observed, and if it exceeds 0.5, a large amount of P will not precipitate as an intermetallic compound. Become,
This is because conductivity and workability decrease.

結晶粒度を0.O20nm以下とする理由は、結晶粒度
が0.O20nmを超えると折り曲げ性が著しく悪くな
るためである。
The grain size is 0. The reason for setting the O20 nm or less is that the crystal grain size is 0. This is because if the thickness exceeds 020 nm, the bending properties will deteriorate significantly.

O含有量を0.0020wt%以下とする理由は、Oが
存在するとMnは酸素と結合しやすく、容易に酸化物と
なり、いわゆる介在物となって鋼中に存在するようにな
るが、O含有量が0.0020wt%を超えると介在物
が多数生成され、折り曲げ性、半田付は性、めっき性、
エツチング性が著しく低下するためである。
The reason why the O content is set to 0.0020 wt% or less is that when O exists, Mn easily combines with oxygen, easily becomes an oxide, and becomes so-called inclusions that exist in steel. If the amount exceeds 0.0020 wt%, many inclusions will be generated, which will affect bendability, solderability, plating properties,
This is because the etching properties are significantly reduced.

S含有量をO,0015wt%以下とする理由は、Sが
存在すると、Mnは非常にSと結合しやすく、容易に硫
化物になり鋼中に存在するようになるが、S含有量がO
,0015wt%を超えると硫化物が多数生成され、折
り曲げ性、半田付は性、めっき性、エツチング性が著し
く低下するためである。
The reason why the S content is set to 0,0015 wt% or less is that when S exists, Mn is very easy to combine with S, easily becoming a sulfide and existing in steel.
This is because if the amount exceeds .0015 wt%, a large amount of sulfide is produced, and bending properties, soldering properties, plating properties, and etching properties are significantly reduced.

以下に本発明材料を実施例をもって説明する。The material of the present invention will be explained below with reference to Examples.

〔実施例〕〔Example〕

第1表に示される本発明合金に係る各種成分組成のイン
ゴットを電気銅あるいは無酸素銅を原料として、高周波
溶解炉で大気、不活性又は還元性雰囲気中で溶解鋳造し
た。電気銅を使用する場合は、還元性雰囲気中で溶解し
酸素含有量を低下させることが推奨される。Sについて
は本発明合金用としてS含有量0.0015wt%以下
の銅原料を用いた。
Ingots having various compositions of the alloy of the present invention shown in Table 1 were melted and cast using electrolytic copper or oxygen-free copper as a raw material in a high-frequency melting furnace in air, an inert atmosphere, or a reducing atmosphere. If electrolytic copper is used, it is recommended to dissolve it in a reducing atmosphere to reduce the oxygen content. Regarding S, a copper raw material with an S content of 0.0015 wt% or less was used for the alloy of the present invention.

次に、これを800℃で熱間圧延して厚さ6■の板とし
た後、800”CX 1時間の溶体化処理を行い1固剤
を行って冷間圧延で厚さ1.5mmとした。これを70
0℃〜800℃で1分〜30分間熱処理して結晶粒度を
調整し、冷間圧延で厚さ0.3anとした。これを35
0℃で2時間熱処理し、供試材とした。
Next, this was hot-rolled at 800°C to form a plate with a thickness of 6 cm, and then solution treated at 800"CX for 1 hour, with 1 solid agent applied, and then cold-rolled to a thickness of 1.5 mm. I made this 70
The grain size was adjusted by heat treatment at 0° C. to 800° C. for 1 minute to 30 minutes, and then cold rolled to a thickness of 0.3 an. This is 35
It was heat-treated at 0°C for 2 hours to obtain a test material.

リード材及びばね材としての評価項目として、強度、伸
びを引張試験により評価し、ばね性をKb値により評価
した。電気伝導性(放熱性)は導電率(%IAC5)に
よって示した。折り曲げ性は曲げR0.3■の折り曲げ
治具を用い、90°往復曲げを行い、破断までの回数を
測定した。
As evaluation items for lead materials and spring materials, strength and elongation were evaluated by a tensile test, and springiness was evaluated by Kb value. Electrical conductivity (heat dissipation) was shown by electrical conductivity (%IAC5). The bendability was determined by using a bending jig with a bending radius of 0.3 mm, performing 90° reciprocating bending, and measuring the number of times until breakage.

半田付は性は、垂直式浸漬法で230±5℃の半田浴(
すず60%、鉛40%)に5秒間浸漬し、半田のぬれの
状態を目視wA察することにより評価した。メツキ密着
性は試料に厚さ3μのAgメツキを施し、450℃にて
5分間加熱し、表面に発生するフクレの有無を目視観察
することにより評価した。これらの結果を比較合金とと
もに第1表に示した。
Soldering is done using the vertical immersion method in a solder bath at 230±5℃ (
The solder was immersed in 60% tin, 40% lead for 5 seconds, and the wetting state of the solder was evaluated by visually observing wA. Plating adhesion was evaluated by applying Ag plating to a thickness of 3 μm on a sample, heating it at 450° C. for 5 minutes, and visually observing the presence or absence of blisters occurring on the surface. These results are shown in Table 1 along with comparative alloys.

この表から本発明の合金は折り曲げ性、半田付は性、め
っき性が著しく改善されて、高力高導電鋼合金として優
れた特性を有することが明らかである。
From this table, it is clear that the alloy of the present invention has significantly improved bending properties, soldering properties, and plating properties, and has excellent properties as a high-strength, high-conductivity steel alloy.

〔効 果〕〔effect〕

本発明合金はCu −M n −P系合金の時効処理前
の溶体化処理あるいは中間焼鈍により結晶粒度を調整し
、かつ不純物としての0、Sを限定することにより、折
り曲げ性、半田付は性、めっき性。
The alloy of the present invention has improved bendability and solderability by adjusting the crystal grain size by solution treatment or intermediate annealing before the aging treatment of the Cu-Mn-P alloy, and by limiting O and S as impurities. , plating properties.

エツチング性が著しく改善することができた。今日、望
まれている半導体機器のリード材及び導電性ばね材とし
て好適な材料である。
Etching properties were significantly improved. It is a suitable material for lead materials and conductive spring materials for semiconductor devices, which are desired today.

以下余白Margin below

Claims (3)

【特許請求の範囲】[Claims] (1)Mn0.5〜4.0wt%、P0.05〜1.0
wt%を含み、かつ、MnとPの重量比がP/Mnで0
.1〜0.5で、残部Cu及び不可避的不純物からなり
、結晶粒度が0.020mm以下であることを特徴とす
る半導体機器リード材又は導電性ばね材用高力高導電銅
合金。
(1) Mn0.5-4.0wt%, P0.05-1.0
wt%, and the weight ratio of Mn and P is 0 as P/Mn.
.. 1 to 0.5, the balance being Cu and unavoidable impurities, and having a crystal grain size of 0.020 mm or less.
(2)Mn0.5〜4.0wt%、P0.05〜1.0
wt%を含み、かつMnとPの重量比がP/Mnで0.
1〜0.5で、残部Cuおよび不可避的不純物よりなり
、該不純物のうち、Oの含有量が0.0020wt%以
下であり、結晶粒度が0.020mm以下であることを
特徴とする半導体機器リード材又は導電性ばね材用高力
高導電銅合金。
(2) Mn0.5-4.0wt%, P0.05-1.0
wt%, and the weight ratio of Mn and P is P/Mn of 0.
1 to 0.5, the balance is Cu and unavoidable impurities, and among the impurities, the content of O is 0.0020 wt% or less, and the crystal grain size is 0.020 mm or less. High-strength, high-conductivity copper alloy for lead material or conductive spring material.
(3)Mn0.5〜4.0wt%、P0.05〜1.0
wt%を含み、かつMnとPの重量比がP/Mnで0.
1〜0.5で、残部Cu及び不可避的不純物からなり、
該不純物のうち、sの含有量が0.0015wt%以下
であり、結晶粒度が0.020mm以下であることを特
徴とする半導体機器リード材又は導電性ばね材用高力高
導電銅合金。
(3) Mn0.5-4.0wt%, P0.05-1.0
wt%, and the weight ratio of Mn and P is P/Mn of 0.
1 to 0.5, the balance consisting of Cu and inevitable impurities,
A high-strength, high-conductivity copper alloy for semiconductor device lead material or conductive spring material, characterized in that the content of s among the impurities is 0.0015 wt% or less and the crystal grain size is 0.020 mm or less.
JP16771688A 1988-07-07 1988-07-07 High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material Pending JPH0219432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16771688A JPH0219432A (en) 1988-07-07 1988-07-07 High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16771688A JPH0219432A (en) 1988-07-07 1988-07-07 High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material

Publications (1)

Publication Number Publication Date
JPH0219432A true JPH0219432A (en) 1990-01-23

Family

ID=15854871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16771688A Pending JPH0219432A (en) 1988-07-07 1988-07-07 High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material

Country Status (1)

Country Link
JP (1) JPH0219432A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783611B2 (en) * 2001-03-13 2004-08-31 Mitsubishi Materials Corporation Phosphorized copper anode for electroplating
JP2007212237A (en) * 2006-02-08 2007-08-23 Ntn Corp Device and method for detecting ball deficiency existence of constant velocity universal coupling
WO2016071498A1 (en) * 2014-11-06 2016-05-12 Hirschmann Car Communication Gmbh Contact pin made of copper wire
JP2017036467A (en) * 2015-08-07 2017-02-16 株式会社Uacj Copper alloy tube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783611B2 (en) * 2001-03-13 2004-08-31 Mitsubishi Materials Corporation Phosphorized copper anode for electroplating
KR100815141B1 (en) * 2001-03-13 2008-03-19 미츠비시 마테리알 가부시키가이샤 Phosphorized copper anode for electroplating
JP2007212237A (en) * 2006-02-08 2007-08-23 Ntn Corp Device and method for detecting ball deficiency existence of constant velocity universal coupling
WO2016071498A1 (en) * 2014-11-06 2016-05-12 Hirschmann Car Communication Gmbh Contact pin made of copper wire
CN107078443A (en) * 2014-11-06 2017-08-18 赫希曼汽车通讯有限公司 Pin is connected by copper is thread
JP2017036467A (en) * 2015-08-07 2017-02-16 株式会社Uacj Copper alloy tube

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH07331363A (en) High strength and high conductivity copper alloy
JPS61127840A (en) Copper alloy having high strength and electric conductivity
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPS6267144A (en) Copper alloy for lead frame
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS6338547A (en) High strength conductive copper alloy
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPS63125631A (en) High-tensile high-conductivity copper alloy
JPH03162536A (en) High strength and high conductivity copper alloy having improved thermal peeling resistance in plating
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPS63109132A (en) High-strength conductive copper alloy and its production
JPH06184676A (en) High strength and high electric conductivity copper alloy
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPH06235035A (en) High tensile strength and high conductivity copper alloy
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH0225532A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH06192768A (en) High electric conductivity copper alloy
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials