JPH06235035A - High tensile strength and high conductivity copper alloy - Google Patents
High tensile strength and high conductivity copper alloyInfo
- Publication number
- JPH06235035A JPH06235035A JP35718592D JP35718592D JPH06235035A JP H06235035 A JPH06235035 A JP H06235035A JP 35718592 D JP35718592 D JP 35718592D JP 35718592 D JP35718592 D JP 35718592D JP H06235035 A JPH06235035 A JP H06235035A
- Authority
- JP
- Japan
- Prior art keywords
- less
- copper alloy
- alloy
- strength
- workability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、トランジスタや集積
回路(IC)等のような半導体機器のリ−ド材やコネク
タ−,端子,リレ−,スイッチ等の導電性ばね材として
好適な、高い強度,導電性等に加えて優れた打抜き加工
性,曲げ加工性を備えた銅合金に関するものである。BACKGROUND OF THE INVENTION The present invention is suitable as a lead material for semiconductor devices such as transistors and integrated circuits (ICs) and as a conductive spring material for connectors, terminals, relays and switches. The present invention relates to a copper alloy having excellent punching workability and bending workability in addition to strength and conductivity.
【0002】[0002]
【従来技術とその課題】従来、半導体機器のリ−ド材に
は、熱膨張係数が低く、素子及びセラミックスとの接着
性,封着性の良好な“コバ−ル(商標名:Fe-29wt%Ni-1
6wt%Co合金)”或いは“42合金”等といった高ニッケ
ル合金が好んで使われてきた。ところが、近年、半導体
回路の集積度向上に伴って消費電力の高いICが多く使
用されるようになってきたことや、封止材料として樹脂
が多く用いられるようになり、しかも素子とリ−ドフレ
−ムの接着にも改良が加えられたこと等の事情もあっ
て、半導体機器のリ−ド材に放熱性の良い銅基合金を使
用する傾向が目立つようになっている。2. Description of the Related Art Conventionally, as a lead material for semiconductor devices, "COVAL (trade name: Fe-29wt), which has a low coefficient of thermal expansion and good adhesiveness and sealing property with elements and ceramics. % Ni-1
High-nickel alloys such as “6 wt% Co alloy)” or “42 alloy” have been used favorably.In recent years, however, ICs with high power consumption have been widely used as the integration degree of semiconductor circuits has improved. As a result of the fact that resin has been widely used as a sealing material and that the adhesion between the element and the lead frame has also been improved, the lead material for semiconductor equipment has been improved. The tendency to use a copper-based alloy with good heat dissipation has become prominent.
【0003】ところで、材料の種類はともかく、このよ
うな半導体機器のリ−ド材には一般に次のような特性が
要求されている。 a) リ−ドは電気信号伝達部であると同時に、パッケ−
ジング工程中及び回路使用中に発生する熱を外部に放出
する機能を必要とするので、熱及び電気の伝導性に優れ
ること, b) 半導体素子保護の観点から“リ−ドとモ−ルドとの
密着性”が重要であるため、熱膨張係数がモ−ルド材と
近いこと, c) パッケ−ジング時に種々の加熱工程が加わるため、
耐熱性が良好であること, d) リ−ドは、リ−ド材を打抜き加工し、また曲げ加工
して作成されるものが殆どであるため、これらの加工性
が良好であること, e) リ−ドには表面に貴金属のめっきが施されるため、
これら貴金属とのめっき密着性が良好であること, f) パッケ−ジング後にも封止材の外に露出している所
謂“アウタ−・リ−ド部”に半田付けする場合が多いの
で、良好な半田付け性を示すこと, g) 機器の信頼性及び寿命の観点から耐食性が良好なこ
と, h) 価格が低廉であること。Regardless of the type of material, lead materials for such semiconductor devices are generally required to have the following characteristics. a) The lead is the electrical signal transmission part and at the same time the package.
Since it needs a function to release heat generated during the aging process and during circuit use to the outside, it has excellent heat and electrical conductivity. B) From the viewpoint of semiconductor device protection, "lead and mold "Adhesion" is important, so the coefficient of thermal expansion is close to that of the mold material. C) Various heating steps are added during packaging,
Good heat resistance, d) Most of the leads are made by punching and bending the lead material, so they have good workability, e ) Since the surface of the lead is plated with precious metal,
Good plating adhesion with these noble metals, f) Good because it is often soldered to the so-called "outer lead" that is exposed outside the encapsulant even after packaging. Good solderability, g) good corrosion resistance from the viewpoint of equipment reliability and life, and h) low price.
【0004】しかしながら、これら各種の要求特性に対
し、従来より使用されている無酸素銅,錫入り銅,りん
青銅,コバ−ル(商標名)及び42合金には何れも一長
一短があり、前記特性の全てを必ずしも満足し得るもの
ではなかった。特に、リ−ドの多ピン化,小型化の進展
に伴って形状の複雑化やピンの狭小化が進み、材料に一
層良好な打抜き性及び曲げ加工性が求められていること
を考慮すれば、上記従来材はこれらの点で十分な性能を
有しているとは言い難かった。However, with respect to these various required characteristics, oxygen-free copper, tin-containing copper, phosphor bronze, Kovar (trademark) and 42 alloy, which have been conventionally used, have advantages and disadvantages. Was not always satisfactory. In particular, considering that the shape is becoming more complicated and the pins are becoming narrower with the increase in the number of leads and the miniaturization of the leads, considering that the material is required to have better punchability and bendability. However, it was difficult to say that the above-mentioned conventional materials have sufficient performance in these points.
【0005】一方、同様に優れた導電性,耐食性,強
度,打抜き性,曲げ加工性等が要求されるところの電気
機器,計測機器,スイッチ或いはコネクタ−等に用いら
れるばね用材料としては、従来から比較的安価な "黄
銅" ,ばね特性の優れた“りん青銅”,ばね特性に加え
て耐食性にも優れた“洋白”といった銅合金が使用され
てきた。On the other hand, as a spring material used for electrical equipment, measuring equipment, switches, connectors, etc., which are required to have excellent conductivity, corrosion resistance, strength, punching property, bending workability, etc. Therefore, copper alloys such as "brass" which is relatively cheap, "phosphor bronze" which has excellent spring characteristics, and "white silver" which has excellent corrosion resistance in addition to spring characteristics have been used.
【0006】しかし、一層の高性能化が進む前記機器類
のばね材として上記銅合金を検討すると、黄銅は強度や
ばね特性の点で十分満足できるものではなく、また強度
及びばね特性に優れる洋白やりん青銅にしても部品の軽
薄短小化が進むにつれてより厳しい打抜き加工,曲げ加
工が施されるようになったことから、従来の材料ではこ
れら加工性面での不満が指摘されるようになってきた。
従って、より改善された打抜き加工性及び曲げ加工性を
示し、かつばね特性の優れた合金の出現が待たれてい
た。However, when the above-mentioned copper alloy is examined as a spring material for the above-mentioned devices which are further improved in performance, brass is not sufficiently satisfactory in terms of strength and spring characteristics, and it is excellent in strength and spring characteristics. Even with white and phosphor bronze, as the lightness, thinness and shortness of parts have progressed, more severe punching and bending processes have come to be performed, so it is pointed out that these conventional materials are dissatisfied in terms of workability. It's coming.
Therefore, the emergence of an alloy exhibiting improved punching workability and bending workability and having excellent spring properties has been awaited.
【0007】このようなことから、本発明の目的は、銅
系材料の優れた電気,熱の伝導性を生かすと同時に、半
導体機器のリ−ド材や導電性ばね材として十分に満足で
きる強度,ばね特性,耐食性,打抜き加工性並びに曲げ
加工性をも兼備した銅合金を実現することに置かれた。From the above, the object of the present invention is to make use of the excellent electrical and thermal conductivity of the copper-based material, and at the same time, to sufficiently satisfy the strength as a lead material or a conductive spring material for semiconductor devices. , The spring characteristics, corrosion resistance, punching workability and bending workability were also combined to realize a copper alloy.
【0008】[0008]
【課題を解決するための手段】そこで、本発明者等は上
記目的を達成すべく鋭意研究を重ねたところ、「優れた
強度,ばね特性及び耐食性等を備えるCu−Fe系合金の成
分調整を行った上で、これに適量のTi,Zr,Hf又はThを
含有させると、 半導体機器のリ−ド材や導電性ばね材と
しての必要特性に格別な悪影響を及ぼすことなく、 十分
とは言えなかった打抜き加工性や曲げ加工性が著しく向
上する」との新事実が明らかとなり、更には「このよう
な組成を有した銅合金の結晶粒度を特定の細かい領域に
調整するとその打抜き加工性や曲げ加工性が一層向上す
る」という知見も得ることができた。Therefore, the inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and found that "the composition of a Cu-Fe alloy having excellent strength, spring characteristics and corrosion resistance is adjusted. After that, if an appropriate amount of Ti, Zr, Hf, or Th is added to this, it does not have a particular adverse effect on the required characteristics as a lead material or conductive spring material for semiconductor devices, but it is sufficient. The new fact that "punching workability and bending workability, which were not available, are significantly improved" has been clarified, and further "if the grain size of the copper alloy having such a composition is adjusted to a specific fine region, the punching workability and the workability are improved. The knowledge that the bending workability is further improved was also obtained.
【0009】本発明は、上記知見事項等を基にして完成
されたものであり、「銅合金を、Fe:0.05%以上3%未
満(以降、 成分割合を表す%は重量%とする),Ti,Zr,
Hf又はThのうちの1種以上: 総量で0.0005%以上0.05%
未満を含有し、 必要によりMn,Sn,P,Si,Ni,Zn,C
r, B,Be,Co,Mg,Alのうちの1種以上:総量で0.01%
以上1%未満をも含むと共に残部がCu及び不可避的不純
物から成る成分組成とするか、 或いはこれに加えてその
平均結晶粒径を25μm未満に調整することにより、 半
導体機器のリ−ド材として十分満足できる優れた電気及
び熱の伝導性や、 導電性ばね材としても十分な強度,ば
ね特性,導電性,加工性を兼備せしめた点」に大きな特
徴を有している。The present invention has been completed on the basis of the above-mentioned findings and the like. "In a copper alloy, Fe: 0.05% or more and less than 3% (hereinafter,% representing a component ratio is% by weight), Ti, Zr,
One or more of Hf or Th: 0.0005% to 0.05% in total
Less than, if necessary, Mn, Sn, P, Si, Ni, Zn, C
One or more of r, B, Be, Co, Mg, Al: 0.01% in total
As a lead material for semiconductor devices, the composition should be such that the content is less than 1% and the balance is Cu and inevitable impurities, or in addition to this, the average crystal grain size is adjusted to less than 25 μm. It has excellent electrical and thermal conductivity that is fully satisfactory, and also has sufficient strength as an electrically conductive spring material, spring characteristics, electrical conductivity, and workability. "
【0010】次に、本発明において銅合金の成分組成,
平均結晶粒径を前記の如くに限定した理由を、その作用
と共に説明する。Fe量 Feには合金の強度を確保する作用があるが、その含有量
が0.05%未満であると他の成分の複合添加を伴っても所
望とする強度が得られず、一方、3%以上の割合でFeを
含有させると加工性が低下すると共に、導電性が著しく
低下することから、Fe含有量は「0.05%以上3%未満」
と定めた。Next, in the present invention, the component composition of the copper alloy,
The reason why the average grain size is limited as described above will be explained together with its action. Fe content Fe has the effect of ensuring the strength of the alloy, but if its content is less than 0.05%, the desired strength cannot be obtained even with the combined addition of other components, while at least 3% When Fe is contained in the proportion of, the workability is lowered and the conductivity is remarkably lowered. Therefore, the Fe content is "0.05% or more and less than 3%".
I decided.
【0011】Ti,Zr,Hf又はTh量 Ti,Zr,Hf,ThのIVa属元素には、微量添加により打抜
き加工性及び曲げ加工性を改善する等しい作用があるこ
とから、その1種又は2種以上の添加がなされる。な
お、上記元素がこれらの作用を発揮する機構は現在研究
中であるが、Ti,Zr,Hf又はThのうちの1種又は2種以
上の含有量が総量で0.0005%未満であると前記作用によ
る所望の効果が得られず、一方、その含有量が総量で0.
05%以上になると打抜き加工性及び曲げ加工性が逆に劣
化すると共に、導電性も低下することから、これら元素
の含有量は総量で「0.0005%以上0.05%未満」と定め
た。 Ti, Zr, Hf or Th amount Ti, Zr, Hf, and Th group IVa elements have the same action of improving punching workability and bending workability by adding a trace amount, and therefore, one or two of them is used. More than one seed is added. The mechanism by which the above-mentioned elements exert these actions is currently under study, but if the content of one or more of Ti, Zr, Hf or Th is less than 0.0005% in total, the above-mentioned action is obtained. The desired effect is not obtained, on the other hand, its content is 0.
If it exceeds 05%, the punching workability and bending workability are deteriorated, and the conductivity is also deteriorated. Therefore, the total content of these elements is defined as "0.0005% or more and less than 0.05%".
【0012】Mn,Sn,P,Si,Ni,Zn,Cr, B,Be,Co,Mg又はAl量 Mn,Sn,P,Si,Ni,Zn,Cr, B,Be,Co,Mg及びAlに
は、上記銅合金の強度並びに耐熱性を更に改善する等し
い作用があるので必要により1種又は2種以上の添加が
なされる。しかし、その含有量が総量で0.01%未満であ
ると前記作用による所望の効果が得られず、一方、総含
有量が1%以上になると導電率が著しく低下することか
ら、これら元素の含有量は総量で「0.01%以上1%未
満」と定めた。 Mn, Sn, P, Si, Ni, Zn, Cr, B, Be, Co, Mg or Al amount Mn, Sn, P, Si, Ni, Zn, Cr, B, Be, Co, Mg and Al Has the same effect of further improving the strength and heat resistance of the above copper alloy, so one or more kinds of them are added if necessary. However, if the total content is less than 0.01%, the desired effect due to the above-mentioned action cannot be obtained, while if the total content is 1% or more, the conductivity is remarkably reduced, so the content of these elements is Is defined as "0.01% or more and less than 1%" in total.
【0013】結晶粒径 本発明に係る銅合金では、その結晶粒の粗大化が打抜き
加工性及び曲げ加工性に少なからぬ悪影響を及ぼす。特
に、平均結晶粒径が25μm以上になると打抜き加工
性,曲げ加工性の劣化が顕著となる。従って、良好な打
抜き加工性及び曲げ加工性を確保するためには、平均結
晶粒径が25μm以上とならないように調整するのが良
い。[0013] In the crystal grain size of copper alloy according to the present invention, coarsening of the crystal grains exerts considerable adverse effect on punching processability and bending workability. In particular, when the average crystal grain size is 25 μm or more, the punching workability and bending workability are significantly deteriorated. Therefore, in order to secure good punching workability and bending workability, it is preferable to adjust so that the average crystal grain size does not exceed 25 μm.
【0014】上述のように、本発明に係る銅合金は、優
れた強度,ばね特性,電気伝導性,耐熱性等を具備する
と共に良好な打抜き加工性及び曲げ加工性を示し、しか
も半田付け性やめっき密着性にも優れるものであるが、
以下、実施例によって本発明をより具体的に説明する。As described above, the copper alloy according to the present invention has excellent strength, spring characteristics, electric conductivity, heat resistance, etc., and exhibits excellent punching workability and bending workability, and moreover, solderability. It also has excellent plating adhesion,
Hereinafter, the present invention will be described more specifically with reference to Examples.
【0015】[0015]
【実施例】電気銅を原料とし高周波溶解炉にて表1及び
表2に示される各種成分組成の銅合金を溶製し、厚さ:
30mm,幅:60mm,長さ:120mmなる寸法のインゴ
ットを得た。なお、溶解・鋳造は大気中で実施した。[Embodiment] Copper alloy having various component compositions shown in Tables 1 and 2 was melted in a high frequency melting furnace using electrolytic copper as a raw material, and thickness:
An ingot having a size of 30 mm, width: 60 mm, length: 120 mm was obtained. The melting / casting was performed in the atmosphere.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】次に、このインゴットに対し片面当り3mm
の面削を施して表面欠陥を機械的に除去し、800〜9
50℃の温度に2時間加熱保持した後、熱間圧延により
6mm厚の板材に仕上げた。続いて、これを500℃で1
時間焼鈍してから冷間圧延により 0.6mm厚の板とし、次
いで350〜600℃の温度で結晶粒径を調整した後、
更なる冷間圧延によって0.4 mm厚の板材を得た。そし
て、最後に300℃で1時間の歪取り焼鈍を施した。Next, 3 mm per side of this ingot
Surface removal is performed mechanically to remove surface defects, and 800 ~ 9
After heating and holding at a temperature of 50 ° C. for 2 hours, a plate material having a thickness of 6 mm was finished by hot rolling. Then, this is 1 at 500 ℃
After annealing for an hour and cold rolling to a plate with a thickness of 0.6 mm, and then adjusting the crystal grain size at a temperature of 350 to 600 ° C.,
By further cold rolling, a plate material having a thickness of 0.4 mm was obtained. Finally, strain relief annealing was performed at 300 ° C. for 1 hour.
【0019】このようにして得られた各板材につき平均
結晶粒径を調べると共に、諸特性の評価を行った。な
お、“強度”及び“伸び”の評価は引張試験により、ま
た“電気伝導性(放熱性)"の評価は導電率の(%IACS) 測
定によりそれぞれ実施した。The average crystal grain size of each plate material thus obtained was examined and various properties were evaluated. The "strength" and "elongation" were evaluated by a tensile test, and the "electrical conductivity (heat dissipation)" was evaluated by a conductivity (% IACS) measurement.
【0020】また、“打抜き加工性”の評価は打抜き加
工後のプレス破面を観察することで行い、破断面比率
{(破断面/板厚)×100}が20%以上のときを
「良好」、20%未満のときを 「不良」 と判定した。The "punching workability" is evaluated by observing the press fracture surface after punching, and when the fracture surface ratio {(fracture surface / plate thickness) × 100} is 20% or more.
“Good” and less than 20% were judged as “poor”.
【0021】“曲げ加工性”については、図1に示す如
く、10mm幅の試験片を圧延方向と直角に、そして内側
曲げ半径:0.4mm(=板厚)で片側に90°の曲げを繰り
返し行い、破断までの曲げ回数(往復で1回とする)を
測定した。試験はn=5で行い、その平均値で評価を行
った。Regarding the "bending workability", as shown in FIG. 1, a test piece having a width of 10 mm was bent at a right angle to the rolling direction, and an inner bending radius of 0.4 mm (= plate thickness) was repeatedly bent at 90 ° on one side. The measurement was performed and the number of times of bending until breakage (reciprocating once) was measured. The test was performed with n = 5, and the average value was used for evaluation.
【0022】これらの評価結果を、前記表1及び表2に
併せて示す。さて、表1及び表2に示される結果からも
明らかなように、本発明合金No.1〜No.23 は、何れも優
れた強度,伸び,導電性を有すると共に良好な打抜き加
工性及び曲げ加工性を示すことが分かる。The results of these evaluations are also shown in Tables 1 and 2 above. As is clear from the results shown in Tables 1 and 2, the alloys No. 1 to No. 23 of the present invention all have excellent strength, elongation and conductivity, and also have good punching workability and bending. It can be seen that it shows workability.
【0023】これに対して、比較合金No.24 は本発明合
金No.1と比べ、また比較合金No.25は本発明合金No.13
と比べ、更に比較合金No.26 は本発明合金No.15 と比
べ、そして比較合金No.27 は本発明合金No.11 と比べ
て、何れも同量のFe及びその他の成分を含有し結晶粒径
が同等であるにもかかわらず、Ti,Zr,Hf又はThを含有
していないため、打抜き加工性及び曲げ性が劣ってい
る。On the other hand, the comparative alloy No. 24 is compared with the alloy No. 1 of the present invention, and the comparative alloy No. 25 is the alloy No. 13 of the present invention.
Comparative alloy No. 26, compared with the present invention alloy No. 15, and comparative alloy No. 27, compared with the present invention alloy No. 11, both containing the same amount of Fe and other components Despite having the same grain size, it does not contain Ti, Zr, Hf, or Th, and therefore has poor punchability and bendability.
【0024】一方、比較合金No.29 は、Ti含有量が0.05
%以上と高い値であるため本発明合金No.1と比較して打
抜き加工性及び曲げ性が却って悪くなり、導電率も低く
なっている。また、比較合金No.30 では0.05%の以上の
Zrを含有するため、本発明合金No.2と比較して打抜き加
工性及び曲げ性が悪くなり、導電率も低くなっている。On the other hand, the comparative alloy No. 29 has a Ti content of 0.05.
%, The punching workability and bendability are rather poor, and the electrical conductivity is low, as compared with the alloy No. 1 of the present invention. In comparison alloy No. 30, 0.05% or more
Since Zr is contained, the punching workability and bendability are worse and the conductivity is lower than that of alloy No. 2 of the present invention.
【0025】そして、比較合金No.31 はFe含有量が少な
いために強度が低くなっており、また比較合金No.32 は
Fe含有量が多過ぎるので強度は高いが加工性が悪く、更
に導電率も著しく低下している。The comparative alloy No. 31 has a low strength because the Fe content is small, and the comparative alloy No. 32 has a low strength.
Since the Fe content is too high, the strength is high, but the workability is poor, and the electrical conductivity is significantly reduced.
【0026】ところで、合金No.28 は結晶粒の粗大化し
たものの例であるが、合金No.1と比較すれば明らかなよ
うに、結晶粒径がこのように大きいと打抜き加工性及び
曲げ加工性が悪くなることを確認できる。By the way, alloy No. 28 is an example in which the crystal grains are coarsened. As is clear from comparison with alloy No. 1, when the crystal grain size is such large, punching workability and bending work are possible. It can be confirmed that the sex becomes worse.
【0027】[0027]
【効果の総括】以上に説明した如く、この発明によれ
ば、半導体機器のリ−ド材及び導電性ばね材としての従
来合金で指摘された打抜き性及び曲げ加工性の難点を克
服し、前記材料の性能を大幅に向上する高力高導電性銅
合金を提供することが可能となるなど、産業上極めて有
用な効果がもたらされる。[Summary of Effects] As described above, according to the present invention, the problems of punchability and bendability pointed out in the conventional alloys as the lead material and the conductive spring material of the semiconductor device are overcome, and It is possible to provide a high-strength and high-conductivity copper alloy that significantly improves the performance of the material, and an extremely useful effect in industry is brought about.
【図1】90°繰り返し曲げ試験方法の説明図である。FIG. 1 is an explanatory view of a 90 ° cyclic bending test method.
Claims (4)
Ti,Zr,Hf又はThのうちの1種以上: 総量で0.0005%以
上0.05%未満を含むと共に、残部がCu及び不可避的不純
物から成ることを特徴とする高力高導電性銅合金。1. Fe: 0.05% or more and less than 3% by weight,
One or more of Ti, Zr, Hf, and Th: A high-strength and high-conductivity copper alloy containing 0.0005% or more and less than 0.05% in total and the balance being Cu and inevitable impurities.
Ti,Zr,Hf又はThのうちの1種以上: 総量で0.0005%以
上0.05%未満 Mn,Sn,P,Si,Ni,Zn,Cr, B,Be,Co,Mg,Alのう
ちの1種以上:総量で0.01%以上1%未満を含むと共
に、残部がCu及び不可避的不純物から成ることを特徴と
する高力高導電性銅合金。2. Fe: 0.05% or more and less than 3% by weight,
One or more of Ti, Zr, Hf or Th: Total amount of 0.0005% or more and less than 0.05% Mn, Sn, P, Si, Ni, Zn, Cr, B, Be, Co, Mg, Al One of Above: A high-strength and high-conductivity copper alloy containing 0.01% or more and less than 1% in total and the balance being Cu and unavoidable impurities.
Ti,Zr,Hf又はThのうちの1種以上: 総量で0.0005%以
上0.05%未満を含むと共に、残部がCu及び不可避的不純
物から成り、かつ平均結晶粒径が25μm未満であるこ
とを特徴とする高力高導電性銅合金。3. Fe: 0.05% or more and less than 3% by weight,
One or more of Ti, Zr, Hf, or Th: The total amount contains 0.0005% or more and less than 0.05%, the balance is Cu and inevitable impurities, and the average crystal grain size is less than 25 μm. High strength and high conductivity copper alloy.
Ti,Zr,Hf又はThのうちの1種以上: 総量で0.0005%以
上0.05%未満 Mn,Sn,P,Si,Ni,Zn,Cr, B,Be,Co,Mg,Alのう
ちの1種以上:総量で0.01%以上1%未満を含むと共
に、残部がCu及び不可避的不純物から成り、かつ平均結
晶粒径が25μm未満であることを特徴とする高力高導
電性銅合金。4. Fe: 0.05% or more and less than 3% by weight,
One or more of Ti, Zr, Hf or Th: Total amount of 0.0005% or more and less than 0.05% Mn, Sn, P, Si, Ni, Zn, Cr, B, Be, Co, Mg, Al One of Above: A high strength and high conductivity copper alloy containing a total amount of 0.01% or more and less than 1%, the balance being Cu and inevitable impurities, and having an average crystal grain size of less than 25 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35718592D JPH06235035A (en) | 1992-12-23 | 1992-12-23 | High tensile strength and high conductivity copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35718592D JPH06235035A (en) | 1992-12-23 | 1992-12-23 | High tensile strength and high conductivity copper alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06235035A true JPH06235035A (en) | 1994-08-23 |
Family
ID=18452829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35718592D Pending JPH06235035A (en) | 1992-12-23 | 1992-12-23 | High tensile strength and high conductivity copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06235035A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006112063A1 (en) * | 2005-04-15 | 2006-10-26 | Jfe Precision Corporation | Alloy material for dissipating heat from semiconductor device and method for production thereof |
WO2007007517A1 (en) | 2005-07-07 | 2007-01-18 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet |
WO2008041584A1 (en) | 2006-10-02 | 2008-04-10 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy plate for electrical and electronic components |
US8715431B2 (en) | 2004-08-17 | 2014-05-06 | Kobe Steel, Ltd. | Copper alloy plate for electric and electronic parts having bending workability |
-
1992
- 1992-12-23 JP JP35718592D patent/JPH06235035A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8715431B2 (en) | 2004-08-17 | 2014-05-06 | Kobe Steel, Ltd. | Copper alloy plate for electric and electronic parts having bending workability |
WO2006112063A1 (en) * | 2005-04-15 | 2006-10-26 | Jfe Precision Corporation | Alloy material for dissipating heat from semiconductor device and method for production thereof |
US7955448B2 (en) | 2005-04-15 | 2011-06-07 | Jfe Precision Corporation | Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy |
WO2007007517A1 (en) | 2005-07-07 | 2007-01-18 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet |
EP2439296A2 (en) | 2005-07-07 | 2012-04-11 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy having high strength and superior bending workability, and method for manufacturing copper alloy plates |
US9976208B2 (en) | 2005-07-07 | 2018-05-22 | Kobe Steel, Ltd. | Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet |
WO2008041584A1 (en) | 2006-10-02 | 2008-04-10 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy plate for electrical and electronic components |
US8063471B2 (en) | 2006-10-02 | 2011-11-22 | Kobe Steel, Ltd. | Copper alloy sheet for electric and electronic parts |
EP2388348A1 (en) | 2006-10-02 | 2011-11-23 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Copper alloy sheet for electric and electronic parts |
EP2388349A1 (en) | 2006-10-02 | 2011-11-23 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Copper alloy sheet for electric and electronic parts |
EP2388347A1 (en) | 2006-10-02 | 2011-11-23 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Copper alloy sheet for electric and electronic parts |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2670670B2 (en) | High strength and high conductivity copper alloy | |
US5021105A (en) | Copper alloy for electronic instruments | |
JPS63130739A (en) | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material | |
JPS60245754A (en) | High strength copper alloy having high electric conductivity | |
JPS60245753A (en) | High strength copper alloy having high electric conductivity | |
JPH0551671A (en) | High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property | |
JPH08957B2 (en) | Method for producing copper alloy having excellent heat-resistant peeling property with tin or tin alloy | |
JPS63143230A (en) | Precipitation strengthening high tensile copper alloy having high electrical conductivity | |
JPH07331363A (en) | High strength and high conductivity copper alloy | |
JPS63149345A (en) | High strength copper alloy having high electrical conductivity and improved heat resistance | |
JPH06172896A (en) | High-strength and high-conductivity copper alloy | |
JPH0551673A (en) | High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property | |
JPH06235035A (en) | High tensile strength and high conductivity copper alloy | |
JPH06184666A (en) | High strength and high electric conductivity copper alloy | |
JPH06184676A (en) | High strength and high electric conductivity copper alloy | |
JPH0551674A (en) | High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property | |
JPH02122039A (en) | High strength and high conductivity copper alloy having excellent adhesion of oxidized film | |
JPS61264144A (en) | High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder | |
JPH03162536A (en) | High strength and high conductivity copper alloy having improved thermal peeling resistance in plating | |
JPH01159337A (en) | High tensile and high electric conductive copper alloy | |
JPS63125631A (en) | High-tensile high-conductivity copper alloy | |
JP3391492B2 (en) | High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials | |
JPH06184674A (en) | High electric conductivity copper alloy | |
JPH0551670A (en) | High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property | |
JPH0551672A (en) | High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property |