JPH0551672A - High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property - Google Patents

High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property

Info

Publication number
JPH0551672A
JPH0551672A JP23386491A JP23386491A JPH0551672A JP H0551672 A JPH0551672 A JP H0551672A JP 23386491 A JP23386491 A JP 23386491A JP 23386491 A JP23386491 A JP 23386491A JP H0551672 A JPH0551672 A JP H0551672A
Authority
JP
Japan
Prior art keywords
strength
bendability
stress relaxation
copper alloy
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23386491A
Other languages
Japanese (ja)
Inventor
Junji Miyake
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP23386491A priority Critical patent/JPH0551672A/en
Publication of JPH0551672A publication Critical patent/JPH0551672A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an inexpensive high-strength and high-conductivity copper alloy for electronic equipment excellent in characteristics, such as strength, electric conductivity, bendability, stress relaxation property, and solderability. CONSTITUTION:The high-strength and high-conductivity copper alloy for electronic equipment has a composition consisting of 0.01-4.0% Ti, 0.05-0.8% Cr, 0.05-0.4% Zr, 0.005-<0.05% Mg, or further containing one or >=2 kinds among 0.05-2.0% Zn and 0.01-1.0%, in total, of one or more elements among Sn, In, Mn, P, Ni, Si, and Fe, and the balance Cu with inevitable impurities and also has a structure where average crystalline grain size is regulated to 35-100mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体集積回路(I
C)のリ−ドフレ−ム材や、各種端子,コネクタ−リレ
−,スイッチ等における導電性ばね材として好適な電子
機器用銅合金に関するものである。
BACKGROUND OF THE INVENTION This invention relates to a semiconductor integrated circuit (I
The present invention relates to a lead frame material of C) and a copper alloy suitable for electronic equipment as a conductive spring material in various terminals, connector relays, switches and the like.

【0002】[0002]

【従来技術とその課題】従来、半導体機器のリ−ド材と
しては、熱膨張率が低く、半導体素子及びセラミックス
との接着性や封着性の良好なコバ−ル(Fe-29Ni-16Co)や
42合金(Fe-42Ni)等の高ニッケル合金が好んで使われ
てきた。しかし、近年、半導体回路の集積度が向上して
消費電力の高いICが多くなったことや、封止材料とし
て樹脂が多用されると同時に素子とリ−ドフレ−ムの接
着にも改良が加えられたことにより、使用されるリ−ド
材も放熱性の良好な“銅合金”が使われるようになって
きた。
2. Description of the Related Art Conventionally, as a lead material for semiconductor devices, a kovar (Fe-29Ni-16Co) having a low coefficient of thermal expansion and good adhesiveness and sealability with semiconductor elements and ceramics. High nickel alloys such as and 42 alloy (Fe-42Ni) have been used favorably. However, in recent years, the degree of integration of semiconductor circuits has increased and the number of ICs with high power consumption has increased, and resin has been frequently used as a sealing material, and at the same time, the adhesion between the element and the lead frame has been improved. As a result, the lead material used has also come to be a "copper alloy" with good heat dissipation.

【0003】ところで、半導体機器のリ−ド材には、一
般に次の特性が必要であるとされている。 a) リ−ドが電気信号伝達部であると同時に、パッケ−
ジング工程中及び回路使用中に発生する熱を外部に放出
する機能をも果たすことから、優れた熱及び電気の伝導
性を示すこと, b) 「半導体素子の保護」という観点からリ−ドとモ−
ルドとの密着性が重要であるが、そのためリ−ド材はモ
−ルド材に近い熱膨張係数を示すこと, c) パッケ−ジング時に種々の加熱工程を経るため、耐
熱性が良好であること, d) リ−ドの製造に際しリ−ド材には打ち抜き加工,曲
げ加工が施される場合が殆どであるため、これらの加工
性が良好であること, e) リ−ドとして使用するに際して表面に貴金属のメッ
キを施されるのが一般的であるが、そのため上記貴金属
メッキとの密着性が良好であること, f) パッケ−ジング後も封止材の外に露出する所謂“ア
ウタ−リ−ド部”に半田付けが施される場合が多いた
め、良好な半田付け性を示し、かつ長時間の使用によっ
ても半田の剥離現象が起きないこと, g) 機器の信頼性や寿命に大きく影響する耐食性が良好
であること, h) 価格が低廉であること。
By the way, it is generally said that the lead material of a semiconductor device is required to have the following characteristics. a) At the same time that the lead is the electrical signal transmission part,
Since it also has the function of releasing the heat generated during the aging process and during the use of the circuit to the outside, it exhibits excellent heat and electrical conductivity. B) It is a lead from the viewpoint of "protection of semiconductor elements". Mode
Adhesion with the solder is important, and therefore the lead material shows a thermal expansion coefficient close to that of the mold material.c) Good heat resistance because various heating processes are performed during packaging. D) In most cases, the lead material is punched and bent during the manufacture of the lead, so the workability of these is good, and e) it is used as a lead. At that time, the surface is generally plated with a noble metal. Therefore, the adhesion with the above-mentioned noble metal plating is good. F) The so-called "outer layer" that is exposed to the outside of the encapsulant even after packaging. -Since soldering is often applied to the "lead part", good solderability is exhibited, and the solder peeling phenomenon does not occur even after long-term use. G) Device reliability and life Corrosion resistance is good, which greatly affects It.

【0004】しかしながら、半導体機器のリ−ド材とし
て従来適用されていた合金は上記各種の要求特性に対し
一長一短を有しており、全てをバランス良く満足するも
のが見出されていないのが現状であった。
However, the alloys conventionally used as the lead material for semiconductor devices have advantages and disadvantages with respect to the various required characteristics described above, and it is the current situation that no alloy satisfying all of them in good balance has been found. Met.

【0005】一方、端子,コネクタ−,リレ−又はスイ
ッチといったばね材に対しては、従来、安価な“黄
銅”,優れたばね特性を有する“りん青銅”或いは優れ
たばね特性と耐食性を有する“洋白”が適用されてい
た。ところが、黄銅は強度及びばね特性が劣っており、
また、ばね特性が優れるりん青銅は多量のSnを含むた
め、そして強度及びばね特性が共に優れる洋白は多量の
Niを含むために何れも原料コストが高い上、熱間加工性
の悪化から製造時に加工上の制約が加わる等の問題もあ
って製品価格の不利を余儀無くされるものであった。し
かも、要求性能が益々高度化しつつある電子機器部材へ
の適用を考えた場合には、これらの材料は電気伝導度の
点で必ずしも満足できるとは言えず、またコネクタ−と
しての性能面からは「接触部において応力緩和特性が悪
い」という欠点が指摘されていた。
On the other hand, for spring materials such as terminals, connectors, relays or switches, conventionally, inexpensive "brass", "phosphor bronze" having excellent spring characteristics or "white silver" having excellent spring characteristics and corrosion resistance has been used. Was applied. However, brass is inferior in strength and spring characteristics,
Also, phosphor bronze, which has excellent spring properties, contains a large amount of Sn, and nickel white silver, which has both excellent strength and spring properties, contains a large amount of Sn.
In addition to containing Ni, the raw material cost is high, and there is a problem that the hot workability deteriorates and processing restrictions are added during manufacturing. In addition, when considering application to electronic equipment members whose required performance is becoming more and more sophisticated, these materials are not always satisfactory in terms of electrical conductivity, and in terms of performance as a connector. It has been pointed out that there is a drawback that "the stress relaxation property is poor at the contact portion".

【0006】特に、近年、電子機器類及びその部品の小
型化,薄肉化傾向に伴って材料の加工性が一段と重要視
されるようになり、中でも曲げ性(曲げ加工性)のより
優れたものが要求されるようになってきているが、この
ため、優れた導電性を有することは勿論、ばね特性や曲
げ性にも優れた安価な電子機器用合金の出現が待たれて
いた。
Particularly, in recent years, the workability of materials has become more and more important due to the tendency toward miniaturization and thinning of electronic devices and parts thereof, and in particular, those having better bendability (bending workability). However, for this reason, the advent of an inexpensive alloy for electronic devices, which has not only excellent conductivity but also excellent spring characteristics and bendability, has been awaited.

【0007】ただ、このような中にあって、“Cu−Ti系
合金”或いは“Cu−Cr系合金”は上述した電子機器材料
としての要求特性をかなりの程度で満足することから、
これに第3,第4の元素を添加して特性の更なる改善を
図った新合金も幾つか開発された。
However, in such a situation, the "Cu-Ti alloy" or "Cu-Cr alloy" satisfies the above-mentioned required characteristics as a material for electronic devices to a considerable extent.
Several new alloys were also developed in which the third and fourth elements were added to this to further improve the properties.

【0008】しかし、最近、半導体回路の高集積度化,
高信頼度化は従来にも増して加速度的に進行しており、
それに伴いリ−ドフレ−ムはより多ピン化され、薄肉化
されつつあるため、リ−ドフレ−ム材に要求される強度
レベルは一層高度化する様相を見せている。また、例え
ばコネクタ−に目を注いだ場合にも、その信頼性及び放
熱性の向上といった観点からベリリウム銅にも匹敵する
高強度材が要求され始めている(つまり、 放熱性の向上
に薄肉化も有効な手段となるからである)。従って、Cu
−Ti系やCu−Cr系を基にした新しい銅合金が幾つか開発
されたものの、これまで開発された銅合金では上記要求
を十分に満たすに至らなかった。
However, recently, high integration of semiconductor circuits
Higher reliability is accelerating more than ever before,
Along with this, the lead frame has been made to have more pins and thinner, so that the strength level required for the lead frame material is likely to be further enhanced. Also, for example, when attention is paid to connectors, high-strength materials comparable to beryllium copper are beginning to be demanded from the viewpoint of improving their reliability and heat dissipation (that is, improving heat dissipation also requires thinning). Because it will be an effective means). Therefore, Cu
Although some new copper alloys based on -Ti system and Cu-Cr system have been developed, the copper alloys developed up to now have not fully met the above requirements.

【0009】このようなことから、本発明が目的とした
のは、導電性に優れることは勿論、高強度ばね材に匹敵
する強度を有していてリ−ドフレ−ムの多ピン化にも十
分対応することができ、しかも従来の電子機器用銅合金
と同等かそれ以上の応力緩和特性及び曲げ性等を示す安
価な電子機器用の高導電性銅合金を提供することであっ
た。
In view of the above, the object of the present invention is not only excellent in conductivity but also having strength comparable to that of a high-strength spring material and capable of increasing the number of lead frames. It was an object of the present invention to provide an inexpensive high-conductivity copper alloy for electronic devices, which can sufficiently cope with the above-mentioned problems and which exhibits stress relaxation characteristics and bendability equivalent to or higher than those of conventional copper alloys for electronic devices.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意研究を重ねた結果、「合金成分として
厳密に制限された特定の割合でTi,Cr,Zr及びMgを含有
させると共に、 溶体化処理時の条件選定等により平均結
晶粒径を特に35〜100μmの範囲内に調整した銅合
金は、強度,導電性,曲げ性,応力緩和性等の諸特性を
今後の電子機器用として望まれる高いレベルでバランス
良く兼備する上、 これに適量のZn,Sn,In,Mn,P及び
Siを添加すれば半田付け特性や強度特性の更なる改善も
可能である」との新しい知見を得ることができた。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention have found that "the alloying components contain Ti, Cr, Zr and Mg in a specific ratio strictly limited. In addition, the copper alloy whose average crystal grain size is adjusted within the range of 35 to 100 μm by selecting the conditions during solution treatment has various characteristics such as strength, conductivity, bendability, and stress relaxation property in the future. In addition to having a good balance at a high level desired for equipment, a suitable amount of Zn, Sn, In, Mn, P and
It is possible to further improve the soldering characteristics and strength characteristics by adding Si. "

【0011】本発明は、上記知見事項等を基にして完成
されたものであり、 「電子機器用高力高導電銅合金を、 Ti:0.01〜 4.0%(以降、 成分割合を表す%は重量%と
する),Cr:0.05〜 0.8%, Zr:0.05〜 0.4%, Mg:
0.005%以上0.05%未満 を含むか、 或いは更に Zn:0.05〜 2.0%,Sn,In,Mn,P及びSiの1種以上:
総量で0.01〜 1.0% のうちの1種又は2種以上をも含有すると共に、 残部が
Cu及び不可避的不純物から成る成分組成とし、 かつ平均
結晶粒径が35〜100μmに調整された構成とするこ
とにより、 高導電性,高強度,優れた曲げ性や応力緩和
特性,良好な半田付け性等を兼備せしめた点」に大きな
特徴を有している。
The present invention has been completed on the basis of the above findings and the like. "A high-strength and high-conductivity copper alloy for electronic equipment is provided with Ti: 0.01 to 4.0% (hereinafter,% representing a component ratio is a weight). %), Cr: 0.05 to 0.8%, Zr: 0.05 to 0.4%, Mg:
Contains 0.005% or more and less than 0.05%, or further Zn: 0.05 to 2.0%, one or more of Sn, In, Mn, P and Si:
It contains one or more of 0.01-1.0% of the total amount, and the balance is
High conductivity, high strength, excellent bendability and stress relaxation characteristics, and good soldering by using a composition consisting of Cu and unavoidable impurities and adjusting the average crystal grain size to 35 to 100 μm. It has a great feature in that it has both sex and the like. "

【0012】以下、本発明合金の成分組成並びに結晶粒
度を前記の如くに数値限定した理由を、その作用と共に
詳述する。
The reason why the component composition and crystal grain size of the alloy of the present invention are numerically limited as described above will be described in detail together with its action.

【作用】[Action]

A) 成分割合Ti Tiには、合金を時効処理した際にスピノ−ダル分解を起
こして母材中に濃度の変調構造を作り、これにより非常
に高い強度を確保する作用があるが、その含有量が0.01
%未満では前記作用による所望の効果が期待できず、一
方 4.0%を超えてTiを含有させると粒界反応型の析出を
起こしやすくなって逆に強度低下を招いたり、加工性を
劣化したりすることから、Ti含有量は0.01〜 4.0%と定
めた。
A) Component ratio Ti Ti has the effect of causing a spinodal decomposition when the alloy is aged to create a concentration-modulated structure in the base material, which ensures very high strength. Amount 0.01
If less than 4.0%, the desired effect due to the above action cannot be expected, while if more than 4.0% of Ti is contained, precipitation of grain boundary reaction type is likely to occur, conversely leading to strength reduction and deterioration of workability. Therefore, the Ti content was set to 0.01 to 4.0%.

【0013】Cr Crは、合金を時効処理した時に単独で母材中に析出する
ほか、Tiと共に上記のようなスピノ−ダル分解を起こす
化合物を析出して合金の強度及び耐熱性を向上させる作
用を発揮するが、その含有量が0.05%未満では前記作用
による所望の効果が期待できず、一方 0.8%を超えてCr
を含有させると溶体化処理後にも未固溶Crが母材中に残
留するようになって導電率及び加工性を著しく低下させ
ることから、Cr含有量は0.05〜 0.8%と定めた。
Cr Cr acts not only to precipitate in the base metal when the alloy is aged, but also to precipitate a compound that causes the above spinodal decomposition together with Ti to improve the strength and heat resistance of the alloy. However, if the content is less than 0.05%, the desired effect due to the above action cannot be expected, while if it exceeds 0.8%, the Cr content exceeds
If Cr is contained, undissolved Cr remains in the base metal even after solution treatment, and the conductivity and workability are significantly reduced. Therefore, the Cr content was set to 0.05 to 0.8%.

【0014】Zr Zrには、時効処理によりCuと化合物を形成して母材中に
析出しこれを強化する作用があるが、その含有量が0.05
%未満では前記作用による所望の効果が得られず、一方
0.4%を超えてZrを含有させると、溶体化処理後にも未
固溶Zrが母材中に残留するようになって導電率及び加工
性の著しい低下を招くことから、Zr含有量は0.05〜 0.4
%と定めた。
Zr Zr has a function of forming a compound with Cu by the aging treatment and precipitating it in the base material to strengthen it, but its content is 0.05
If it is less than%, the desired effect due to the above action cannot be obtained.
If Zr is contained in excess of 0.4%, undissolved Zr will remain in the base material even after solution treatment, resulting in a significant decrease in conductivity and workability. 0.4
Defined as%.

【0015】Mg Mgは、微量の添加によっても応力緩和特性を著しく改善
する作用を有しているが、その含有量が 0.005%未満で
あると前記作用による所望の効果を期待できなくなり、
一方、0.05%以上含有させてもその効果が飽和してしま
うばかりか、逆に電気伝導性の劣化を招くようになるこ
とから、Mg含有量は 0.005%以上0.05%未満の範囲と定
めた。
Mg Mg has the effect of remarkably improving the stress relaxation characteristics even when added in a trace amount, but if the content is less than 0.005%, the desired effect due to the above effect cannot be expected,
On the other hand, if the content of 0.05% or more is not only saturated but also the electrical conductivity is deteriorated, the Mg content is defined as 0.005% or more and less than 0.05%.

【0016】Zn Znは半田の耐剥離性を向上させる作用を有しているため
必要により添加される成分であるが、その含有量が0.05
%未満では前記作用による所望の効果が得られず、一方
2.0%を超えてZnを含有させると電気伝導性並びに応力
緩和特性が劣化することから、Zn含有量は0.05〜2.0%
と定めた。
Zn Zn is a component added as necessary because it has a function of improving the peeling resistance of solder, but its content is 0.05
If it is less than%, the desired effect due to the above action cannot be obtained.
If the Zn content exceeds 2.0%, the electrical conductivity and stress relaxation characteristics deteriorate, so the Zn content is 0.05-2.0%.
I decided.

【0017】Sn,In,Mn,P及びSi これらの成分は、何れも合金の導電性を大きく低下させ
ずに主として固溶強化により強度を向上させる作用を有
しており、従って必要により1種又は2種以上の添加が
なされるが、その含有量が総量で0.01%未満であると前
記作用による所望の効果が得られず、一方、総量で 1.0
%を超える含有量になると合金の導電性及び加工性を著
しく劣化する。このため、単独添加或いは2種以上の複
合添加がなされるSn,In,Mn,P及びSiの含有量は総量
で0.01〜 1.0%と定めた。
Sn, In, Mn, P and Si All of these components have the effect of improving the strength mainly by solid solution strengthening without greatly reducing the conductivity of the alloy, and therefore, if necessary, one kind may be used. Or, two or more kinds are added, but if the total content is less than 0.01%, the desired effect due to the above action cannot be obtained, while the total amount is 1.0%.
When the content exceeds%, the conductivity and workability of the alloy are significantly deteriorated. Therefore, the total content of Sn, In, Mn, P and Si, which is added singly or in combination of two or more, is set to 0.01 to 1.0%.

【0018】B) 結晶粒度(平均結晶粒径) 合金の組織を平均結晶粒径が35〜100μmのものと
限定したのは、曲げ性及び応力緩和特性を勘案してのこ
とである。一般に、曲げ性の観点からは結晶粒度が小さ
いほど好ましく、一方、応力緩和特性の観点からは結晶
粒度は大きい方が望ましいとされている。しかるに、本
発明に係わる成分組成の銅合金では、結晶粒度が平均結
晶粒径で35〜100μmの範囲内に調整されると優れ
た曲げ性と優れた応力緩和特性とが同時に発揮されるよ
うになる。即ち、平均結晶粒径が35μm未満では曲げ
性は更に良好になるが応力緩和が起こりやすくなり、ま
た平均結晶粒径が100μmを超えると逆に応力緩和は
しにくくなるものの曲げ性が劣化し、何れも電子機器用
としての特性に劣るようになる。
B) Grain size (average grain size) The reason why the alloy structure is limited to those having an average grain size of 35 to 100 μm is in consideration of bendability and stress relaxation characteristics. Generally, the smaller the crystal grain size is, the more preferable from the viewpoint of bendability, while the larger crystal grain size is preferable from the viewpoint of stress relaxation characteristics. However, in the copper alloy having the component composition according to the present invention, when the crystal grain size is adjusted within the range of 35 to 100 μm in terms of average crystal grain size, excellent bendability and excellent stress relaxation property are simultaneously exhibited. Become. That is, if the average crystal grain size is less than 35 μm, the bendability is further improved, but stress relaxation is likely to occur. If the average crystal grain size exceeds 100 μm, on the contrary, stress relaxation is difficult but the bendability deteriorates. Both are inferior in characteristics for electronic devices.

【0019】なお、合金の結晶粒度調整は溶体化処理時
に実施するのが良く、処理温度や処理時間等の調節によ
って適宜の粒度を実現することができる。
The grain size of the alloy is preferably adjusted during the solution heat treatment, and an appropriate grain size can be achieved by adjusting the treatment temperature, treatment time and the like.

【0020】続いて、本発明の効果を実施例により更に
具体的に説明する。
Next, the effects of the present invention will be described more specifically by way of examples.

【実施例】まず、電気銅或いは無酸素銅を原料とし、高
周波溶解炉にて表1に示す各種成分組成の銅合金インゴ
ット(厚さ30mm)を不活性雰囲気中溶製した。次に、
これら各インゴットに熱間圧延,溶体化処理及び冷間圧
延の各処理を順次施し、その後400℃で時効処理して
から再び冷間圧延及び歪取り焼鈍を施して板材を得た。
EXAMPLES First, electrolytic copper or oxygen-free copper was used as a raw material, and copper alloy ingots (thickness 30 mm) having various component compositions shown in Table 1 were melted in an inert atmosphere in a high frequency melting furnace. next,
Each of these ingots was successively subjected to hot rolling, solution treatment and cold rolling, and then subjected to an aging treatment at 400 ° C. and then subjected to cold rolling and strain relief annealing again to obtain a plate material.

【0021】[0021]

【表1】 [Table 1]

【0022】そして、得られた板材から各種の試験片を
採取して材料試験を行い、“リ−ドフレ−ム材”及び
“ばね材”としての特性を評価した。なお、“リ−ドフ
レ−ム材”並びに“ばね材”としての特性は、 「強度」,
「伸び」, 「導電性(放熱性)」, 「ばね性」, 「半田耐熱剥
離性」, 「曲げ性」 及び 「応力緩和特性」 を調査すること
によって評価した。
Then, various test pieces were sampled from the obtained plate material and a material test was conducted to evaluate the characteristics as a "lead frame material" and a "spring material". The characteristics of "lead frame material" and "spring material" are "strength",
It was evaluated by investigating "elongation", "conductivity (heat dissipation)", "spring property", "solder heat-resistant peeling property", "bendability" and "stress relaxation property".

【0023】そして、 「強度」 並びに 「伸び」 は引張試
験により測定し、 「導電性」 は導電率(%IACS)を測定
して求めた。また、「ばね性」についてはばね限界値(K
b)を測定した。
The "strength" and "elongation" were measured by a tensile test, and the "conductivity" was determined by measuring the conductivity (% IACS). Regarding the "springiness", the spring limit value (K
b) was measured.

【0024】「半田耐熱剥離性」の調査は、素材に5μ
m厚の半田(90%Sn−10%Pb)メッキを施した後、150℃
の高温槽に1000時間まで保持し、この間100時間
毎に取り出して90°曲げ往復1回を施して半田剥離の
開始時間を調べる手法によった。なお、1000時間ま
で剥離のなかったものは調査結果を「1000hr」と表
示した。
The investigation of "solder heat resistance peeling resistance" was conducted with a material of 5μ
After applying m-thick solder (90% Sn-10% Pb) plating, 150 ℃
It was held in the high temperature tank up to 1000 hours, taken out every 100 hours during this time, and subjected to 90 ° bending reciprocation once to examine the start time of solder peeling. In addition, in the case of no peeling up to 1000 hours, the investigation result was displayed as "1000 hr".

【0025】「曲げ性」については、W曲げ試験機によ
って曲げ加工を施し、その曲げ部を目視観察することに
より“肌荒れの程度”及び“割れの有無”を調査して評
価した。なお、評価結果は、 ○:肌荒れ及び割れの発生なし, ×:肌荒れ又は割れが発生, で表示した。
The "bendability" was evaluated by conducting a bending process using a W bending tester and visually observing the bent portion to examine the "degree of skin roughening" and "presence of cracks". The evaluation results are indicated by ○: no rough skin and cracks occurred, ×: rough skin or cracks occurred.

【0026】「応力緩和特性」については、短冊状試験
片の一旦を固定すると共に他端に応力を負荷して曲げ応
力を加え、この状態で150°に1000時間保持した
後、応力を開放した際にもなお残留する歪を測定した。
これらの調査結果を表2に示す。
Regarding the "stress relaxation characteristics", the strip-shaped test piece was once fixed and a stress was applied to the other end to apply a bending stress, and this state was maintained at 150 ° for 1000 hours, and then the stress was released. The residual strain was measured.
The results of these investigations are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示される結果からは次のことが明ら
かである。即ち、本発明合金1〜18は、何れも強度,導
電性,曲げ性,応力緩和特性が共に優れており、またそ
の他の特性についても十分に良好な評価が得られるもの
である。
From the results shown in Table 2, the following is clear. That is, the alloys 1 to 18 of the present invention are all excellent in strength, conductivity, bendability, and stress relaxation characteristics, and sufficiently good evaluations of other characteristics can be obtained.

【0029】これに対して、比較合金19はZr含有量が十
分でないため強度が劣っており、また比較合金21はTi含
有量が、比較合金24はZn含有量及びMg含有量がそれぞれ
の上限値を超えているため電気伝導性が劣っている。ま
た、比較合金25はTi含有量及びCr含有量が十分でない
上、Zr含有量及びMg含有量がそれぞれの上限値を超えて
いるため、強度,導電性とも著しく劣った結果となって
いる。
On the other hand, the comparative alloy 19 is inferior in strength because the Zr content is not sufficient, and the comparative alloy 21 has a Ti content, and the comparative alloy 24 has a Zn content and an Mg content, respectively. Since it exceeds the value, the electrical conductivity is poor. Further, since the comparative alloy 25 does not have sufficient Ti content and Cr content and the Zr content and the Mg content exceed the respective upper limit values, the strength and the conductivity are remarkably inferior.

【0030】そして、比較合金22,23及び24は、結晶粒
度(平均結晶粒径)が下限値より小さく、それ故に曲げ
性は良好であるけれども応力緩和特性が劣る結果となっ
ている。逆に、比較合金19,20,21及び26は、結晶粒度
が上限値より大きいので曲げ性が劣る結果を示してい
る。
The comparative alloys 22, 23 and 24 have a crystal grain size (average crystal grain size) smaller than the lower limit value. Therefore, although the bendability is good, the stress relaxation characteristics are inferior. On the contrary, the comparative alloys 19, 20, 21 and 26 show the result that the bendability is poor because the grain size is larger than the upper limit value.

【0031】[0031]

【効果の総括】以上に説明した如く、この発明によれ
ば、強度,導電性,曲げ性,応力緩和特性等が共に優れ
ていてリ−ドフレ−ム材やばね材等の電子機器部材用と
して好適な高力高導電銅合金を実現することができ、電
子機器類の性能向上に大きく寄与し得るなど、産業上極
めて有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, strength, conductivity, bendability, stress relaxation characteristics, etc. are all excellent, and it is used for electronic equipment members such as lead frame materials and spring materials. It is possible to realize a suitable high-strength and high-conductivity copper alloy, and it is possible to make a great contribution to the performance improvement of electronic devices.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて Ti:0.01〜 4.0%, Cr:0.05〜 0.8%, Zr:0.
05〜 0.4%,Mg: 0.005%以上0.05%未満 を含有すると共に、残部がCu及び不可避的不純物で構成
され、かつ平均結晶粒径が35〜100μmに調整され
て成ることを特徴とする、曲げ性及び応力緩和特性の優
れた電子機器用高力高導電性銅合金。
1. By weight ratio, Ti: 0.01 to 4.0%, Cr: 0.05 to 0.8%, Zr: 0.
05-0.4%, Mg: 0.005% or more and less than 0.05%, the balance is composed of Cu and unavoidable impurities, and the average crystal grain size is adjusted to 35-100 μm. High-strength and high-conductivity copper alloy for electronic devices with excellent properties and stress relaxation characteristics.
【請求項2】 重量割合にて Ti:0.01〜 4.0%, Cr:0.05〜 0.8%, Zr:0.
05〜 0.4%,Mg: 0.005%以上0.05%未満, Zn:0.
05〜 2.0% を含有すると共に、残部がCu及び不可避的不純物で構成
され、かつ平均結晶粒径が35〜100μmに調整され
て成ることを特徴とする、曲げ性及び応力緩和特性の優
れた電子機器用高力高導電性銅合金。
2. Ti: 0.01 to 4.0%, Cr: 0.05 to 0.8%, Zr: 0.
05 to 0.4%, Mg: 0.005% to less than 0.05%, Zn: 0.
An electron having excellent bendability and stress relaxation characteristics, characterized by containing 05 to 2.0%, the balance being composed of Cu and unavoidable impurities, and having an average crystal grain size adjusted to 35 to 100 μm. High strength and high conductivity copper alloy for equipment.
【請求項3】 重量割合にて Ti:0.01〜 4.0%, Cr:0.05〜 0.8%, Zr:0.
05〜 0.4%,Mg: 0.005%以上0.05%未満 を含み、更に Sn,In,Mn,P及びSiの1種以上:総量で0.01〜 1.0% をも含有すると共に、残部がCu及び不可避的不純物で構
成され、かつ平均結晶粒径が35〜100μmに調整さ
れて成ることを特徴とする、曲げ性及び応力緩和特性の
優れた電子機器用高力高導電性銅合金。
3. Ti: 0.01 to 4.0%, Cr: 0.05 to 0.8%, and Zr: 0.
05-0.4%, Mg: 0.005% or more but less than 0.05%, and one or more of Sn, In, Mn, P and Si: 0.01-1.0% in total, with the balance Cu and unavoidable impurities. The high-strength and high-conductivity copper alloy for electronic equipment, which is excellent in bendability and stress relaxation characteristics, characterized in that the average crystal grain size is adjusted to 35 to 100 μm.
【請求項4】 重量割合にて Ti:0.01〜 4.0%, Cr:0.05〜 0.8%, Zr:0.
05〜 0.4%,Mg: 0.005%以上0.05%未満, Zn:0.
05〜 2.0% を含み、更に Sn,In,Mn,P及びSiの1種以上:総量で0.01〜 1.0% をも含有すると共に、残部がCu及び不可避的不純物で構
成され、かつ平均結晶粒径が35〜100μmに調整さ
れて成ることを特徴とする、曲げ性及び応力緩和特性の
優れた電子機器用高力高導電性銅合金。
4. Ti: 0.01 to 4.0%, Cr: 0.05 to 0.8%, and Zr: 0.
05 to 0.4%, Mg: 0.005% to less than 0.05%, Zn: 0.
05 to 2.0%, and also one or more of Sn, In, Mn, P and Si: 0.01 to 1.0% in total, with the balance being Cu and inevitable impurities, and having an average grain size. Is adjusted to 35 to 100 μm, and a high-strength and high-conductivity copper alloy for electronic devices, which is excellent in bendability and stress relaxation characteristics.
JP23386491A 1991-08-21 1991-08-21 High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property Pending JPH0551672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23386491A JPH0551672A (en) 1991-08-21 1991-08-21 High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23386491A JPH0551672A (en) 1991-08-21 1991-08-21 High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property

Publications (1)

Publication Number Publication Date
JPH0551672A true JPH0551672A (en) 1993-03-02

Family

ID=16961769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23386491A Pending JPH0551672A (en) 1991-08-21 1991-08-21 High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property

Country Status (1)

Country Link
JP (1) JPH0551672A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0666931A1 (en) * 1992-11-04 1995-08-16 Olin Corporation Copper alloy having high strength and conductivity and method of manufacturing thereof
US5565045A (en) * 1992-11-04 1996-10-15 Olin Corporation Copper base alloys having improved bend formability
US6344171B1 (en) 1999-08-25 2002-02-05 Kobe Steel, Ltd. Copper alloy for electrical or electronic parts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0666931A1 (en) * 1992-11-04 1995-08-16 Olin Corporation Copper alloy having high strength and conductivity and method of manufacturing thereof
EP0666931A4 (en) * 1992-11-04 1995-09-27
US5565045A (en) * 1992-11-04 1996-10-15 Olin Corporation Copper base alloys having improved bend formability
US5601665A (en) * 1992-11-04 1997-02-11 Olin Corporation Process for improving the bend formability of copper alloys
US6344171B1 (en) 1999-08-25 2002-02-05 Kobe Steel, Ltd. Copper alloy for electrical or electronic parts

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPH0551671A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
KR950004935B1 (en) Copper alloy for electronic instruments
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH08957B2 (en) Method for producing copper alloy having excellent heat-resistant peeling property with tin or tin alloy
JPH0653901B2 (en) Copper alloy for electronic and electrical equipment
JPH0551673A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPS59170231A (en) High tension conductive copper alloy
JPH0551674A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH07331363A (en) High strength and high conductivity copper alloy
JPH0987814A (en) Production of copper alloy for electronic equipment
JPH0551672A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH0551670A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH01159337A (en) High tensile and high electric conductive copper alloy
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPH06235035A (en) High tensile strength and high conductivity copper alloy
JPH06184676A (en) High strength and high electric conductivity copper alloy
JPH03162536A (en) High strength and high conductivity copper alloy having improved thermal peeling resistance in plating
JPH06184666A (en) High strength and high electric conductivity copper alloy
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material