JPH0230727A - Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material - Google Patents

Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material

Info

Publication number
JPH0230727A
JPH0230727A JP17826788A JP17826788A JPH0230727A JP H0230727 A JPH0230727 A JP H0230727A JP 17826788 A JP17826788 A JP 17826788A JP 17826788 A JP17826788 A JP 17826788A JP H0230727 A JPH0230727 A JP H0230727A
Authority
JP
Japan
Prior art keywords
strength
conductive spring
alloy
copper alloy
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17826788A
Other languages
Japanese (ja)
Inventor
Hidehiko So
宗 秀彦
Tamio Toe
東江 民夫
Hiroaki Watanabe
宏昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP17826788A priority Critical patent/JPH0230727A/en
Publication of JPH0230727A publication Critical patent/JPH0230727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Cu alloy for conductive spring material suitable for semiconductor equipment member by incorporating specific amounts of Mn and P and further specific auxiliary materials to Cu minimal in the contents of impurities such as oxygen and sulfur. CONSTITUTION:The title copper alloy is obtd. by incorporating 0.5-4.0wt.% Mn and 0.05-1.0wt.% P so that the value of P/Mn is 0.1-0.5, to Cu with high- purity quality in which the contents of oxygen and sulfur as impurities are limited to <=0.0020wt.% and <=0.0015wt.%, respectively, and further, 0.001-3.0wt.%, in total, of one or >=2 elements among Zn, Sn, As, Cr, Mg, In, Sb, Fe, Co, Al, Ti, Zr, Be, Ag, Pb, B, Ni, Si, Hf, Te, and Ga are incorporated as auxiliary materials to the above Cu. A hot rolled plate of the above Cu alloy is subjected to solution heat treatment, to cold rolling, and further to heat treatment at 700-800 deg.C to undergo grain size regulation to <=0.020mm, by which a Cu alloy material excellent in strength, bendability, solderbility, plating suitability, etc., and suitable for semiconductor equipment lead material or conductive spring material can be obtained.

Description

【発明の詳細な説明】 〔目 的〕 本発明は、トランジスタや集積回路(rc)などの半導
体機器のリード材、コネクター、端子、リレー、スイッ
チ等の導電性ばね材に適する銅合金に関するものである
[Detailed Description of the Invention] [Object] The present invention relates to a copper alloy suitable for lead materials for semiconductor devices such as transistors and integrated circuits (RC), and conductive spring materials for connectors, terminals, relays, switches, etc. be.

〔従来技術及び問題点〕[Prior art and problems]

従来、半導体機器のリード材としては、熱膨張係数が低
く、素子及びセラミックとの接着及び封着性の良好なコ
バール(Fe−29Ni−16Go) 、42合金(F
e−42Ni)などの高ニッケル合金が好んで使われて
きた。しかし、近年、半導体回路の集積度の向上に伴い
消費電力の高いICが多くなってきたことと、封止材料
として樹脂が多く使用され、かつ素子とリードフレーム
の接着も改良が加えられたことにより、使用されるリー
ド材も放熱性のよい銅基合金が使われるようになってき
た。
Conventionally, lead materials for semiconductor devices have been Kovar (Fe-29Ni-16Go) and 42 alloy (F
High nickel alloys such as e-42Ni) have been preferred. However, in recent years, as the degree of integration of semiconductor circuits has improved, the number of ICs with high power consumption has increased, resins have been increasingly used as sealing materials, and improvements have been made to the bonding between elements and lead frames. As a result, copper-based alloys with good heat dissipation properties have come to be used as lead materials.

一般に半導体機器のリード材としては以下のような特性
が要求されている。
Generally, lead materials for semiconductor devices are required to have the following properties.

(1)  リードが電気信号伝達部であるとともに、パ
ッケージング工程中及び回路使用中に発生する熱を外部
に放出する機能を併せ持つことを要求される為、優れた
熱及び電気伝導性を示すもの。
(1) Leads must exhibit excellent thermal and electrical conductivity, as they are required to act as an electrical signal transmission part and also have the function of discharging heat generated during the packaging process and circuit use to the outside. .

(2)  リードとモールドとの密着性が半導体素子保
護の観点から重要であるため、リード材とモールド材の
熱膨張係数が近いこと。
(2) Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material should be similar.

(3)パッケージング時の種々の加熱工程が加わる為、
耐熱性が良好であること。
(3) Due to the addition of various heating processes during packaging,
Good heat resistance.

(4)  リードはリード材を抜き打ち加工し、又曲げ
加工して作製されるものがほとんどである為、これらの
加工性が良好なこと。
(4) Most leads are manufactured by punching or bending lead material, so the workability of these materials should be good.

(5)  リードは表面に貴金属のメツキを行う為。(5) The lead is plated with precious metal on the surface.

これら貴金属とのメツキ密着性が良好であること。Good plating adhesion with these precious metals.

(6)パッケージング後に封止材の外に露出している、
いわゆるアウター・リード部に半田付けするものが多い
ので良好な半田付は性を示すこと。
(6) exposed outside the sealing material after packaging;
Many items are soldered to the so-called outer lead parts, so good soldering shows good soldering properties.

(7)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(7) Good corrosion resistance from the standpoint of equipment reliability and lifespan.

(8)錫又は半田めっきが長時間加熱されても剥離しな
いこと(めっき耐熱剥離性)。
(8) Tin or solder plating does not peel off even when heated for a long time (heat-resistant peelability of plating).

(9)価格が低床であること。(9) The price is low.

これら各種の要求特性に対し、従来から使用されている
合金は一長一短があり、満足すべきものは見い出されて
いない。
Alloys conventionally used have advantages and disadvantages with respect to these various required characteristics, and no one has been found that satisfies these requirements.

又、従来、電気機器用ばね、計測器用ばね、スイッチ、
コネクター等に用いられるばね用材料としては、安価な
黄銅、優れたばね特性及び耐食性を有する洋白、あるい
は優れたばね特性を有するりん青銅が使用されていた。
In addition, conventional springs for electrical equipment, springs for measuring instruments, switches,
As materials for springs used in connectors and the like, inexpensive brass, nickel silver, which has excellent spring properties and corrosion resistance, or phosphor bronze, which has excellent spring properties, have been used.

しかし、黄銅は強度、ばね特性が劣っており、又強度、
ばね特性の優れた洋白、りん青銅も洋白は18wt%の
Ni、りん青銅は8wt%のSnを含むため、原料の面
及び製造上熱間加工性が悪い等の加工上の制約も加わり
高価な合金であった。さらには電気機器用等に用いられ
る場合、電気伝導度が低いという欠点を有していた。従
って、導電性が良好であり、ばね特性に優れた安価な合
金の現出が待たれていた。
However, brass has inferior strength and spring characteristics;
Nickel silver and phosphor bronze, both of which have excellent spring properties, contain 18 wt% Ni and 8 wt% Sn, so there are also processing constraints such as poor hot workability in terms of raw materials and manufacturing. It was an expensive alloy. Furthermore, when used for electrical equipment, etc., it has a drawback of low electrical conductivity. Therefore, the emergence of an inexpensive alloy with good electrical conductivity and excellent spring properties has been awaited.

〔発明の構成〕[Structure of the invention]

本発明はかかる点に鑑みなされたもので、特にCu −
M n −P系合金を改良し、半導体機器のリード材及
び導電性ばね材として好適な諸特性を有する銅合金を提
供しようとするものである。
The present invention was made in view of this point, and in particular Cu-
The present invention aims to improve Mn-P alloys and provide copper alloys having various properties suitable for use as lead materials and conductive spring materials for semiconductor devices.

すなわち、Cu −M n −P系合金は優れた強度と
導電性を示し、半導体機器リード材としても導電性ばね
材としても優れた銅合金といえるが、折り曲げ性、半田
付は性、めっき性、エツチング性、めっき耐熱剥離性に
ついては十分満足できるものではなく改良の必要があっ
た。
In other words, the Cu-Mn-P alloy exhibits excellent strength and conductivity, and can be said to be an excellent copper alloy for both semiconductor device lead materials and conductive spring materials. However, it has poor bendability, soldering properties, and plating properties. However, the etching properties and heat-removability of the plating were not fully satisfactory and needed to be improved.

本発明者らは、強度向上およびこれらの特性低下要因を
種々検討したところ、特性低下要因は合金の結晶粒の粗
大化やMnの酸化物や硫化物がその原因であることがわ
かり、結晶粒度を調整することにより折り曲げ性の改善
がはかられ、さらに、合金中の0、Sの含有量を限定す
ることにより。
The present inventors investigated various factors for improving strength and deteriorating these properties, and found that the causes of deteriorating properties were coarsening of the crystal grains of the alloy and oxides and sulfides of Mn. The bendability can be improved by adjusting the , and further by limiting the content of 0 and S in the alloy.

これら諸特性の改善をはかれることを見い出したもので
ある。
It has been discovered that these properties can be improved.

また、Cu −M n −P系合金に副成分としてZn
、Sn、As、Cr、Mg、In、Sb、Fe、G0.
A1.Ti、Zr、Be、Ag、Pb、B、Ni、Si
、Hf、Te、Gaからなる1種又は2種を添加するこ
とにより、ばね用りん青銅と同程度以上の強度が得られ
、そして曲げ性も向上し、さらにめっき耐熱剥離性も向
上することを見い出したものである。
In addition, Zn is added as a subcomponent to the Cu-Mn-P alloy.
, Sn, As, Cr, Mg, In, Sb, Fe, G0.
A1. Ti, Zr, Be, Ag, Pb, B, Ni, Si
By adding one or two of Hf, Te, and Ga, it is possible to obtain strength equal to or higher than that of phosphor bronze for springs, improve bendability, and further improve plating heat peeling resistance. This is what I discovered.

すなわち本発明は、M n 0 、5〜4 、 Ow 
t%、P  O,05〜1.0wt%を含み、かつMn
とPの重量比がP/Mnで0.1〜0.5であり、さら
に副成分としてZn、Sn、As、Cr、Mg、In、
Sb、Fe、C0.Al、Ti、Zr、Be、Ag、P
b、B、Ni、Si、Hf、Te、Gaからなる1種又
は2種以上を総量で0.001〜3.0wt%含み、残
部Cu及び不可避的不純物からなることを特徴とする半
導体機器リード材又は導電性ばね材用高力高導電性銅合
金及びM n 0 。
That is, the present invention provides M n 0 , 5-4, Ow
t%, P O, 05 to 1.0 wt%, and Mn
The weight ratio of P/Mn is 0.1 to 0.5, and further contains Zn, Sn, As, Cr, Mg, In,
Sb, Fe, C0. Al, Ti, Zr, Be, Ag, P
A semiconductor device lead characterized by containing one or more of B, B, Ni, Si, Hf, Te, and Ga in a total amount of 0.001 to 3.0 wt%, with the balance being Cu and inevitable impurities. High-strength, high-conductivity copper alloy for material or conductive spring material and M n 0 .

5〜4.0wt%、P  O,05〜1,0wt%を含
み、かつMnとPの重量比がP/Mnで0.1〜0.5
であり、さらに副成分としてZn、Sn、As。
5 to 4.0 wt%, P O, 05 to 1.0 wt%, and the weight ratio of Mn and P is P/Mn of 0.1 to 0.5.
and further contains Zn, Sn, and As as subcomponents.

Cr、Mg、In、Sb、Fe、G0.A1、Ti、Z
r、Be、Ag、Pb、B、Ni、Si、Hf、Te、
Gaからなる1種又は2種以上を総量で0.001−3
.0wt%含み、残部Cu及び不可避的不純物からなり
、結晶粒度が0.020m以下であることを特徴とする
半導体機器リード材又は導電性ばね材用高力高導電性銅
合金及び不純物のうち、○の含有量が0.0020wt
%以下であることを特徴とする前記記載の半導体機器リ
ード材又は導電性ばね材用高力高導電性銅合金並びに不
純物のうち、Sの含有量が0.0015wt%以下であ
ることを特徴とする前記記載の半導体機器リード材又は
導電性ばね材用高力高導電性銅合金に関する。
Cr, Mg, In, Sb, Fe, G0. A1, Ti, Z
r, Be, Ag, Pb, B, Ni, Si, Hf, Te,
One or more types consisting of Ga in a total amount of 0.001-3
.. Among high-strength, high-conductivity copper alloys and impurities for semiconductor device lead materials or conductive spring materials that contain 0 wt%, the balance consists of Cu and unavoidable impurities, and have a crystal grain size of 0.020 m or less. The content of is 0.0020wt
% or less, the high-strength, high-conductivity copper alloy for semiconductor device lead material or conductive spring material as described above, and the impurity, characterized in that the content of S is 0.0015 wt% or less. The present invention relates to the high-strength, high-conductivity copper alloy for use in semiconductor device lead materials or conductive spring materials as described above.

〔発明の詳細な説明〕[Detailed description of the invention]

次に本発明合金を構成する合金成分の限定理由を説明す
る。
Next, the reason for limiting the alloy components constituting the alloy of the present invention will be explained.

MnはCu中にPと共添し、溶体化処理後時効処理を行
うことにより、M n 2P等の金属間化合物として析
出し、導電率を低下させずに強度を向上させるためであ
るが、0.5〜4 、 OLw t%添加する理由は、
0,5wt%未満では強度の向上は認められず、4.0
wt%を超えると導電性および加工性が低下するためで
ある。
This is because Mn is co-added with P in Cu and is precipitated as an intermetallic compound such as M n 2P by performing aging treatment after solution treatment to improve strength without reducing conductivity. The reason for adding 0.5 to 4 OL w t% is
At less than 0.5 wt%, no improvement in strength was observed, and 4.0
This is because if it exceeds wt%, the conductivity and workability will decrease.

Pも同様にMnと共添し、金属間化合物として析出する
ことにより、導電率を低下させずに強度を向上させる元
素であるが、0.05〜1.0wt%添加とする理由は
、0.05wt%未満では強度の向上は認められず、1
.0wt%を超えると導電性および加工性が低下するた
めである。
Similarly, P is an element that improves strength without reducing conductivity by co-adding with Mn and precipitating as an intermetallic compound, but the reason for adding 0.05 to 1.0 wt% is that At less than .05 wt%, no improvement in strength was observed;
.. This is because if it exceeds 0 wt%, the conductivity and workability will decrease.

MnとPの重量比をP/にnで0.1〜0.5とする理
由は、0.1未満では強度向上が認められず、0.5を
超えると金属間化合物として析出しないPが多くなり、
導電性および加工性が低下するためである。
The reason why the weight ratio of Mn and P is set to P/n of 0.1 to 0.5 is that if it is less than 0.1, no improvement in strength will be observed, and if it exceeds 0.5, P will not precipitate as an intermetallic compound. become more,
This is because conductivity and workability decrease.

さらに副成分として、Zn、Sn、As、Cr、Mg、
In、Sb、Fe、G0.Al、Ti。
Furthermore, as subcomponents, Zn, Sn, As, Cr, Mg,
In, Sb, Fe, G0. Al, Ti.

Zr、Be、Ag、Pb、B、Ni、Si、Hf、Te
、Gaからなる1種又は2種以上を 0.O01〜3.
0wt%添加するのは、強度を向上させるためであるが
、O,001wt%未満ではその効果はなく、3.0w
t%を超えると導電性、加工性が低下するためである。
Zr, Be, Ag, Pb, B, Ni, Si, Hf, Te
, one or more types consisting of Ga 0. O01-3.
The reason for adding 0wt% is to improve the strength, but if it is less than 0.001wt%, there is no effect, and 3.0w
This is because if it exceeds t%, the conductivity and workability will decrease.

特にこれらの副成分の中で、Mg、B、Ni、C01Z
r、Ag、Crは添加することにより結晶粒を微細化し
、また粒界を強化して折り曲げ性が向上する元素であり
、これらの元素を添加することにより、強度、そして折
り曲げ性が向上する。
Especially among these subcomponents, Mg, B, Ni, C01Z
r, Ag, and Cr are elements that refine crystal grains and strengthen grain boundaries to improve bendability, and addition of these elements improves strength and bendability.

また、副成分中のZn、Ni、C0.Gaは強度を向上
させるとともに、錫や半田めっきの耐熱剥離性を向上さ
せる元素である。
In addition, Zn, Ni, C0. Ga is an element that not only improves strength but also improves heat-resistant peelability of tin and solder plating.

結晶粒度を0.020ma+以下とする理由は、結晶粒
度が0.020mを超えると折り曲げ性が著しく悪くな
るためである。
The reason why the crystal grain size is set to 0.020 ma+ or less is that if the crystal grain size exceeds 0.020 m, the bendability will be significantly deteriorated.

なお、時効処理や歪取り焼鈍により結晶粒度が変わる熱
処理条件を選択する場合は、熱処理後の結晶粒度を0.
020m以下にする必要がある。
Note that when selecting heat treatment conditions that change the grain size due to aging treatment or strain relief annealing, the grain size after heat treatment should be set to 0.
020m or less.

○含有量を0.0020wt%以下とする理由は、○が
存在するとMnは酸素と結合しやすく容易に酸化物とな
り、いわゆる介在物となって鋼中に存在するようになる
が、○含有量が0.0020wt%を超えると介在物が
多数生成され、折り曲げ性、半田付は性、めっき性、エ
ツチング性が著しく低下するためである。
The reason for setting the ○ content to 0.0020 wt% or less is that when ○ exists, Mn easily combines with oxygen and easily becomes an oxide, becoming so-called inclusions that exist in steel. If it exceeds 0.0020 wt%, a large number of inclusions will be formed, and the bending properties, soldering properties, plating properties, and etching properties will be significantly reduced.

S含有量をO,0015wt%以下とする理由は、Sが
存在すると、Mnは非常にSと結合しやすく、容易に硫
化物になり鋼中に存在するようになるが、S含有量がO
,0015wt%を超えると硫化物が多数生成され、折
り曲げ性、半田付は性、めっき性、エツチング性が著し
く低下するためである。
The reason why the S content is set to 0,0015 wt% or less is that when S exists, Mn is very easy to combine with S, easily becoming a sulfide and existing in steel.
This is because if the amount exceeds .0015 wt%, a large amount of sulfide is produced, and bending properties, soldering properties, plating properties, and etching properties are significantly reduced.

以下に本発明材料を実施例をもって説明する。The material of the present invention will be explained below with reference to Examples.

〔実施例〕〔Example〕

第1表に示される本発明合金に係る各種成分組成のイン
ゴットを電気鋼あるいは無酸素銅を原料として、高周波
溶解炉で大気、不活性又は還元性雰囲気中で溶解鋳造し
た。電気銅を使用する場合は、還元性雰囲気中で溶解し
酸素含有量を低下させることが推奨される。Sについて
は本発明合金用としてS含有量0.0015wt%以下
の銅原料を用いた。
Ingots having various compositions of the alloys of the present invention shown in Table 1 were melted and cast using electric steel or oxygen-free copper as raw materials in a high-frequency melting furnace in air, an inert atmosphere, or a reducing atmosphere. If electrolytic copper is used, it is recommended to dissolve it in a reducing atmosphere to reduce the oxygen content. Regarding S, a copper raw material with an S content of 0.0015 wt% or less was used for the alloy of the present invention.

次に、これを800℃で熱間圧延して厚さ6mの、板と
した後、800℃×1時間の溶体化処理を行ない、面前
を行なって冷間圧延で厚さ1.51とした。これを70
0℃〜800℃で1分〜30分間熱処理して結晶粒度を
調整し、冷間圧延で厚さ0.3mとした。これを350
℃で2時間熱処理し、供試材とした。
Next, this was hot-rolled at 800°C to form a plate with a thickness of 6 m, and then subjected to solution treatment at 800°C for 1 hour, and then cold-rolled to a thickness of 1.51 mm. . This is 70
The crystal grain size was adjusted by heat treatment at 0° C. to 800° C. for 1 minute to 30 minutes, and then cold rolled to a thickness of 0.3 m. This is 350
It was heat treated at ℃ for 2 hours and used as a test material.

リード材及びばね材としての評価項目として、強度、伸
びを引張試験により評価し、ばね性をKb値により評価
した。電気伝導性(放熱性)は導電率(%IAC5)に
よって示した。折り曲げ性は曲げR0.3mmの折り曲
げ治具を用い、90°往復曲げを行い、破断までの回数
を測定した。
As evaluation items for lead materials and spring materials, strength and elongation were evaluated by a tensile test, and springiness was evaluated by Kb value. Electrical conductivity (heat dissipation) was shown by electrical conductivity (%IAC5). The bendability was determined by performing 90° reciprocating bending using a bending jig with a bending radius of 0.3 mm, and measuring the number of times until breakage.

半田付は性は、垂直式浸漬法で230±5℃の半田浴(
すず60%、鉛40%)に5秒間浸漬し、半田のぬれの
状態を目視1otaすることにより評価した。メツキ密
着性は試料に厚さ3μのAgメツキを施し、450℃に
て5分間加熱し、表面に発生するフクレの有無を目視w
4察することにより評価した。
Soldering is done using the vertical immersion method in a solder bath at 230±5℃ (
The solder was immersed in 60% tin, 40% lead for 5 seconds, and the state of solder wetting was evaluated visually. Plating adhesion was determined by applying Ag plating to a thickness of 3 μm to a sample, heating it at 450°C for 5 minutes, and visually checking for any blisters that occur on the surface.
Evaluation was made by observing the following four points.

めっき耐熱剥離性は、供試材に63n/4Pbはんだ溶
融めっきを施し、150℃の恒温槽中で1000hr加
熱し、100hr毎に取り出し906曲げ往復1回行な
い、曲げ部でのめっき剥離を調べた。
Plating heat peeling resistance was determined by applying 63n/4Pb solder hot-dip plating to the test material, heating it in a constant temperature bath at 150°C for 1000 hours, taking it out every 100 hours, performing 906 bending back and forth once, and checking for peeling of the plating at the bent part. .

これらの結果を比較合金とともに第1表に示した。These results are shown in Table 1 along with comparative alloys.

この表から本発明の合金は折り曲げ性、半田付は性、め
っき性、めっき耐熱剥離性が著しく改善されて、高力高
導電銅合金として優れた特性を有することが明らかであ
る。
From this table, it is clear that the alloy of the present invention has significantly improved bending properties, solderability, plating properties, and heat peeling resistance of plating, and has excellent properties as a high-strength, high-conductivity copper alloy.

〔効 果〕〔effect〕

この様に本発明合金はCu −M n −P系合金に副
成分を添加し、時効処理前の溶体化処理あるいは中間焼
鈍での結晶粒度を限定し、かつ不純物としてのO,Sを
限定することにより、強度を向上させ、折り曲げ性、半
田付は性、めっき性、エツチング性、めっき耐熱剥離性
が著しく改善することができた。
In this way, the alloy of the present invention adds subcomponents to the Cu-Mn-P alloy, limits the grain size during solution treatment or intermediate annealing before aging treatment, and limits O and S as impurities. As a result, the strength was improved, and the bendability, soldering properties, plating properties, etching properties, and heat-removability of the plating were significantly improved.

今日、望まれている半導体機器のリード材及び導電性ば
ね材として好適な材料である。
It is a suitable material for lead materials and conductive spring materials for semiconductor devices, which are desired today.

Claims (4)

【特許請求の範囲】[Claims] (1)Mn0.5〜4.0wt%、P0.05〜1.0
wt%を含み、かつMnとPの重量比がP/Mnで0.
1〜0.5であり、さらに副成分としてZn、Sn、A
s、Cr、Mg、In、Sb、Fe、Co、Al、Ti
、Zr、Be、Ag、Pb、B、Ni、Si、Hf、T
e、Gaからなる1種又は2種以上を総量で0.001
〜3.0wt%含み、残部Cu及び不可避的不純物から
なることを特徴とする半導体機器リード材又は導電性ば
ね材用高力高導電性銅合金。
(1) Mn0.5-4.0wt%, P0.05-1.0
wt%, and the weight ratio of Mn and P is P/Mn of 0.
1 to 0.5, and further contains Zn, Sn, and A as subcomponents.
s, Cr, Mg, In, Sb, Fe, Co, Al, Ti
, Zr, Be, Ag, Pb, B, Ni, Si, Hf, T
e, one or more types consisting of Ga in a total amount of 0.001
A high-strength, high-conductivity copper alloy for use in semiconductor device lead materials or conductive spring materials, characterized in that it contains ~3.0 wt%, with the remainder consisting of Cu and unavoidable impurities.
(2)Mn0.5〜4.0wt%、P0.05〜1.0
wt%を含み、かつMnとPの重量比がP/Mnで0.
1〜0.5であり、さらに副成分としてZn、Sn、A
s、Cr、Mg、In、Sb、Fe、Co、Al、Ti
、Zr、Be、Ag、Pb、B、Ni、Si、Hf、T
e、Gaからなる1種又は2種以上を総量で0.001
〜3.0wt%含み、残部Cu及び不可避的不純物から
なり、結晶粒度が0.020mm以下であることを特徴
とする半導体機器リード材又は導電性ばね材用高力高導
電性銅合金。
(2) Mn0.5-4.0wt%, P0.05-1.0
wt%, and the weight ratio of Mn and P is P/Mn of 0.
1 to 0.5, and further contains Zn, Sn, and A as subcomponents.
s, Cr, Mg, In, Sb, Fe, Co, Al, Ti
, Zr, Be, Ag, Pb, B, Ni, Si, Hf, T
e, one or more types consisting of Ga in a total amount of 0.001
A high-strength, high-conductivity copper alloy for use in semiconductor device lead materials or conductive spring materials, comprising ~3.0 wt%, the remainder consisting of Cu and unavoidable impurities, and having a crystal grain size of 0.020 mm or less.
(3)不純物のうち、Oの含有量が0.0020wt%
以下であることを特徴とする特許請求の範囲第1項又は
第2項記載の半導体機器リード材又は導電性ばね材用高
力高導電性銅合金。
(3) Among impurities, the content of O is 0.0020wt%
A high-strength, high-conductivity copper alloy for a semiconductor device lead material or a conductive spring material according to claim 1 or 2, characterized in that:
(4)不純物のうち、Sの含有量が0.0015wt%
以下であることを特徴とする特許請求の範囲第1項乃至
第3項のそれぞれに記載の半導体機器リード材又は導電
性ばね材用高力高導電性銅合金。
(4) Among impurities, the content of S is 0.0015wt%
A high-strength, high-conductivity copper alloy for a semiconductor device lead material or a conductive spring material according to each of claims 1 to 3, characterized in that:
JP17826788A 1988-07-19 1988-07-19 Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material Pending JPH0230727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17826788A JPH0230727A (en) 1988-07-19 1988-07-19 Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17826788A JPH0230727A (en) 1988-07-19 1988-07-19 Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material

Publications (1)

Publication Number Publication Date
JPH0230727A true JPH0230727A (en) 1990-02-01

Family

ID=16045497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17826788A Pending JPH0230727A (en) 1988-07-19 1988-07-19 Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material

Country Status (1)

Country Link
JP (1) JPH0230727A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660444A1 (en) * 1993-12-22 1995-06-28 CMC Carl Maier + Cie AG Low voltage distributor
JP2012087378A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Winding for micro speaker voice coil, and method for producing the same
JP2012087377A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Winding for speaker voice coil, and method for producing the same
CN102537162A (en) * 2012-01-06 2012-07-04 北京科技大学 Spring with stiffness coefficient controlled by magnitude field and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660444A1 (en) * 1993-12-22 1995-06-28 CMC Carl Maier + Cie AG Low voltage distributor
JP2012087378A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Winding for micro speaker voice coil, and method for producing the same
JP2012087377A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Winding for speaker voice coil, and method for producing the same
CN102537162A (en) * 2012-01-06 2012-07-04 北京科技大学 Spring with stiffness coefficient controlled by magnitude field and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2670670B2 (en) High strength and high conductivity copper alloy
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPH0372691B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH08957B2 (en) Method for producing copper alloy having excellent heat-resistant peeling property with tin or tin alloy
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH07331363A (en) High strength and high conductivity copper alloy
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS63125631A (en) High-tensile high-conductivity copper alloy
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPS63109132A (en) High-strength conductive copper alloy and its production
JPH06184676A (en) High strength and high electric conductivity copper alloy
JPH06235035A (en) High tensile strength and high conductivity copper alloy
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPH0225532A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS63125633A (en) High-tensile high-conductivity copper alloy
JPH06192768A (en) High electric conductivity copper alloy
JPH03191035A (en) High strength and high conductivity copper alloy for electronic equipment
JPS6283443A (en) High strength copper alloy having high electric conductivity for lead material for semiconductor appratus of electrically conductive spring material