JPH01139742A - Manufacture of high-strength and high-conductivity copper alloy - Google Patents

Manufacture of high-strength and high-conductivity copper alloy

Info

Publication number
JPH01139742A
JPH01139742A JP29733487A JP29733487A JPH01139742A JP H01139742 A JPH01139742 A JP H01139742A JP 29733487 A JP29733487 A JP 29733487A JP 29733487 A JP29733487 A JP 29733487A JP H01139742 A JPH01139742 A JP H01139742A
Authority
JP
Japan
Prior art keywords
annealing
weight
strength
hot rolling
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29733487A
Other languages
Japanese (ja)
Inventor
Hiroaki Watanabe
宏昭 渡辺
Masahiro Tsuji
正博 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP29733487A priority Critical patent/JPH01139742A/en
Publication of JPH01139742A publication Critical patent/JPH01139742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a high-strength and high-conductivity copper alloy excellent in strength and toughness by subjecting a Cu alloy containing specific amounts ot Cr and Zr or further other elements to hot rolling, cold working, and heat treatment under respectively specified conditions. CONSTITUTION:An ingot, etc., of Cu alloy which has a composition containing, by weight, 0.1-1.5% Cr and 0.05-1.0% Zr or further containing 0.01-1.0% Si or one or >=2 elements among Al, Be, Fe, Hf, Mg, Ni, P, Sn, Ti, and Zn independently or in combination are heated at 850-1000 deg.C for 0.5-5.0hr and hot-rolled. Directly after the above hot rolling, the resulting hot-rolled stock is cooled at >=1 deg.C/sec cooling rate and cold-worked into the desired shape and then subjected to annealing at 300-600 deg.C for 0.5-20hr, successively to finish cold working, and to annealing treatment for relieving stress established at the time of the above working, by which the high-strength and high-conductivity copper alloy excellent in strength and toughness can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、トランジスタや集積回路(IC)などの半導
体機器のリード材及びコネクター、端子、リレー、スイ
ッチ等の導電性ばね材に適する銅合金材の製造法に関し
、特に強度が強く、かつ靭性の優れた高力高導電合金を
提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a copper alloy suitable for lead materials for semiconductor devices such as transistors and integrated circuits (ICs), and conductive spring materials for connectors, terminals, relays, switches, etc. Regarding the manufacturing method of the material, the present invention provides a high-strength, high-conductivity alloy that is particularly strong and has excellent toughness.

[従来の技術] 従来半導体機器のリード材としては熱膨張係数が低く、
素子及びセラミックとの接着および封着性の良好なコバ
ール(Fe−29Ni−16Co) 、42合金などの
高ニッケル合金が好んで使われてきた。しかし、近年、
半導体回路の集積度の向上に伴い消費電力の高いICが
多く使用されるようになってきたことと、封止材料とし
て樹脂が多く使用されかつ素子とリードフレームの接着
も改良が加えられたことにより使用されるリード材も放
熱性の良い銅合金が使われるようになってきた。
[Conventional technology] Conventional lead materials for semiconductor devices have a low coefficient of thermal expansion;
High nickel alloys such as Kovar (Fe-29Ni-16Co) and 42 alloy have been preferably used because of their good adhesion and sealing properties with elements and ceramics. However, in recent years,
With the increase in the degree of integration of semiconductor circuits, many ICs with high power consumption have come into use, and more resins have been used as sealing materials, and improvements have been made to the bonding between elements and lead frames. As a result, copper alloys with good heat dissipation properties have come to be used as lead materials.

又、従来電気機器用ばね、計測器用ばね、スイッチ、コ
ネクター等に用いられるばね用材料としては、安価な黄
銅、優れたばね特性及び耐食性を有する洋白、あるいは
優れたばね特性を有するりん青銅が使用されていた。
Furthermore, as materials for springs conventionally used for electrical equipment springs, measuring instrument springs, switches, connectors, etc., inexpensive brass, nickel silver with excellent spring properties and corrosion resistance, or phosphor bronze with excellent spring properties have been used. was.

[発明が解決しようとする問題点] 一般に半導体機器のリード材としては以下のような特性
が要求されている。
[Problems to be Solved by the Invention] Generally, lead materials for semiconductor devices are required to have the following characteristics.

(1)リードが電気信号伝達部であるとともに、パッケ
ージング工程及び回路使用中に発生する熱を放出する機
能を併せもつことを要求されるため、優れた熱及び電気
伝導性を示すもの。
(1) Leads must exhibit excellent thermal and electrical conductivity, as they are required to act as an electrical signal transmission unit and also have the function of discharging heat generated during the packaging process and circuit use.

]2]リードとモールドとの密着性か半導体素子保護の
観点から重要であるため、リード材とモールド材の熱膨
張係数が近いこと。
]2] Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material should be similar.

(3)パッケージング時に種々の加熱工程が加わるため
、耐熱性が良好であること。
(3) It must have good heat resistance since various heating processes are involved during packaging.

]4)リードはリード材はを打ち扱き加工し、また曲げ
加工して作製されるものかほとんどであるため、これら
の加工性が良好であること。
] 4) Most leads are manufactured by punching, processing, or bending the lead material, so the workability of these materials must be good.

(5)リードは表面に貴金属のめっきを行うため、これ
ら貴金属とのめつき密着性が良好でおること。
(5) Since the surface of the lead is plated with precious metals, the plating adhesion to these precious metals must be good.

(6)パッケージング後に封止材の外に露出している、
いわゆるアウター・リード部に半田付するものが多いの
で、良好な半田付を示すこと。
(6) exposed outside the sealing material after packaging;
Since many items are soldered to the so-called outer lead parts, good soldering must be demonstrated.

(′?1機器の信頼性及び寿命の観点から耐食性が良好
なこと。
('?1) Good corrosion resistance from the viewpoint of equipment reliability and service life.

(B)DIP型からQIJad型への移行に伴い、これ
からのリード材には、異方性が少ないことが要求される
(B) With the transition from the DIP type to the QIJad type, future lead materials will be required to have less anisotropy.

(9)価格が低廉であること。(9) The price must be low.

これら各種の要求特性に対し従来より使用ざれている無
酸素銅、錫入り銅、りん青銅、コバール、42合金はい
ずれも一長一短があり、これらの特性のすべてを必ずし
も満足しえるものではない。
Oxygen-free copper, tin-containing copper, phosphor bronze, Kovar, and 42 alloy, which have been conventionally used to meet these various required characteristics, all have advantages and disadvantages, and cannot necessarily satisfy all of these characteristics.

又、バネ材として用いられている黄銅は強度、ばね性が
劣ってあり、又強度、ばね特性の優れた洋白、りん青銅
も洋白は18重量%のNi1りん青銅は8重量%のSn
を含むため、原料の面及び製造上熱間加工性が悪い等の
加工上の制約も加わり高価な合金であった。さらには電
気機器用等に用いられる場合、電気伝導度が低いという
欠点を有していた。したがって、導電性が良好であり、
ばね特性にすぐれた安価な合金の現出が侍たれていた。
Brass used as a spring material has poor strength and spring properties, and nickel silver and phosphor bronze, which have excellent strength and spring properties, contain 18% Ni by weight for nickel silver and 8% Sn by weight for phosphor bronze.
This made it an expensive alloy due to the constraints on raw materials and manufacturing, such as poor hot workability. Furthermore, when used for electrical equipment, etc., it has a drawback of low electrical conductivity. Therefore, the conductivity is good,
The advent of an inexpensive alloy with excellent spring properties was awaited.

Cu−Cr−2r系合金は、上記の要求特性をかなり満
足するものの、強度に関しては、42合金、りん青銅と
比べ見劣りするものであった。
Although the Cu-Cr-2r alloy satisfies the above-mentioned required properties, its strength is inferior to that of the 42 alloy and phosphor bronze.

1問題を解決するための手段] 本発明は上記問題点を解決するためになされたもので、
CtJ−Cr−Zr系の合金のもつ欠点を改良し、半導
体機器のリード材及び導電性ばね材等として好適な緒特
性を有する銅合金を提供しようとするものである。
Means for Solving Problem 1] The present invention has been made to solve the above problems,
The present invention aims to improve the drawbacks of CtJ-Cr-Zr alloys and to provide a copper alloy that has properties suitable for use as lead materials for semiconductor devices, conductive spring materials, and the like.

Cu−Cr−Zr系の強度を向上させる方法として成分
組成を変更することによって得ることも可能でおるが、
成分組成を変更すると導電性、曲げ性等諸特性が劣化し
好ましくない。
Although it is possible to improve the strength of the Cu-Cr-Zr system by changing the component composition,
Changing the component composition is undesirable because various properties such as conductivity and bendability deteriorate.

本発明は、上記のようなCu−Cr’−Zr系合金の優
れた緒特性を維持しつつ、強度のみを改善すべく、新規
な製造方法を見出したものである。
The present invention has discovered a new manufacturing method in order to improve only the strength while maintaining the excellent mechanical properties of the Cu-Cr'-Zr alloy as described above.

すなわち、その第1発明は、Cr0.1〜1.5重量%
及びZr0.05〜1.0重量%を含み、残部Cu及び
不可避不純物からなる合金を熱間加工、冷間加工、焼鈍
する方法において、 (III)  850℃〜1ooo℃の温度に0.5〜
5゜0時間加熱後、熱間圧延を行ない、熱間圧延終了直
後、加工材を1°C/see以上の速度で冷却する、 (n)冷却後50%以上の冷間加工を施し、加工材を3
00〜600″Cの温度で0.5〜20.0時間焼鈍す
る、 (III)焼鈍後、冷間加工を施し、さらに歪取焼鈍を
行なう、 以上の(III)〜(I[I)の工程を順次行うことを
特徴とする高力高導電銅合金の製造方法である。
That is, in the first invention, 0.1 to 1.5% by weight of Cr
(III) In a method of hot working, cold working, and annealing an alloy containing 0.05 to 1.0% by weight of Zr and the balance consisting of Cu and unavoidable impurities,
After heating for 5°0 hours, hot rolling is performed, and immediately after hot rolling, the workpiece is cooled at a rate of 1°C/see or more. (n) After cooling, cold working is performed by 50% or more, and processing is performed. 3 pieces of wood
Annealing at a temperature of 0.00 to 600"C for 0.5 to 20.0 hours; (III) After annealing, cold working and further strain relief annealing; (III) to (I[I) above; This is a method for manufacturing a high-strength, high-conductivity copper alloy, which is characterized in that the steps are performed sequentially.

又、第2発明は、上記第1発明において、合金組成にさ
らにSi0.01〜1.0重量%含むものでおり、第3
発明は、上記第1発明において、合金組成にさらにAl
、Be、 Co、 Fe、 HfSHg、 Ni。
Further, a second invention is one in which the alloy composition further includes 0.01 to 1.0% by weight of Si in the first invention, and
In the first invention, the invention further includes Al in the alloy composition.
, Be, Co, Fe, HfSHg, Ni.

P 、 Sn、 Ti、 70からなる群より選択され
た1種又は2種以上を総量で0.01〜1.0重量%含
むものであり、さらに第4発明は、第1発明において、
第2発明のSi 0.01〜1.0重量%と第3発明の
Al、Be、 Co、 Fe、 Hf、 )l(1、N
i、 P 、 Sn。
The fourth invention is one that contains one or more selected from the group consisting of P, Sn, Ti, and 70 in a total amount of 0.01 to 1.0% by weight, and the fourth invention is the first invention,
Si 0.01 to 1.0% by weight of the second invention and Al, Be, Co, Fe, Hf, )l(1, N
i, P, Sn.

Ti、 Znからなる群より選択された1種又は2種以
上を総量でo、 oi〜1.0重量%を同時に含むもの
でおり、いずれも、熱間加工、冷間加工、焼鈍の各工程
は第1発明と同じでおる。
It simultaneously contains one or more selected from the group consisting of Ti and Zn in a total amount of o, oi to 1.0% by weight, and all of them are used in each step of hot working, cold working, and annealing. is the same as the first invention.

各発明において、合金成分を上記の如く限定した理由は
つぎのとありである。
The reasons for limiting the alloy components as described above in each invention are as follows.

Crの含有量を0.1〜1.5重量%とする理由は、微
細なCr粒による析出硬化が期待でき、さらにそれに伴
う耐熱性が得られるためである。crの含有量が0.1
重量%未満では前述の効果が期待できず、逆に1.5重
量%を超えると、加工性、導電性の低下が著しくなり、
また半田付性も低下するためである、 zrの含有量を0.05〜1.0重量%とする理由は、
析出硬化を促進させ、それに伴う耐熱性を得るためであ
る。Zrの含有量が0.05重重咄未満では前述の効果
が期待できず、逆に1,0%重重量を超えると加工性、
導電性の低下が著しくなるためでおる。
The reason why the Cr content is set to 0.1 to 1.5% by weight is that precipitation hardening due to fine Cr grains can be expected and heat resistance associated with this can be obtained. Cr content is 0.1
If it is less than 1.5% by weight, the above-mentioned effects cannot be expected, and if it exceeds 1.5% by weight, the processability and conductivity will be significantly reduced.
The reason why the content of zr is set to 0.05 to 1.0% by weight is that the solderability also decreases.
This is to promote precipitation hardening and obtain heat resistance associated with it. If the Zr content is less than 0.05% by weight, the above-mentioned effects cannot be expected, and conversely, if it exceeds 1.0% by weight, workability,
This is because the conductivity decreases significantly.

Siの含有量を0.01〜1.0重量%とする理由は、
析出硬化を促進させ、それに伴う耐熱性を得るためであ
る。Siの含有量が0.01重量%未満では前述の効果
が期待できず、逆に1.0重量%を超えると導電性の低
下が著しくなり、また半田付性も低下するためである。
The reason why the Si content is set to 0.01 to 1.0% by weight is as follows.
This is to promote precipitation hardening and obtain heat resistance associated with it. This is because if the Si content is less than 0.01% by weight, the above-mentioned effects cannot be expected, whereas if it exceeds 1.0% by weight, the conductivity will be significantly lowered and the solderability will also be lowered.

さらに、Al、Be5Co、Fe、 Hf、 Hg、N
i、 P 。
Furthermore, Al, Be5Co, Fe, Hf, Hg, N
i, P.

sn、 r;、 lnからなる群より選択された1種又
は2種以上を添加するのは、これらの添加によって、導
電率を大きく低下させずに、強度、耐熱性を向上させる
効果が期待できるためで、含有量を総量でo、 oi重
量%以上1.0重量%以下とするのは、o、 oi重重
量未満では前述の効果が期待できず、1.0重量%を超
えると導電率が著しく低下するからである。
The addition of one or more selected from the group consisting of sn, r; and ln is expected to have the effect of improving strength and heat resistance without significantly reducing electrical conductivity. Therefore, the reason why the total amount of content should be at least 1.0% by weight is that if the content is less than 1.0% by weight, the above-mentioned effect cannot be expected, and if it exceeds 1.0% by weight, the conductivity will decrease. This is because the amount decreases significantly.

又、製造工程(1)〜(I[I)における条件の限定理
由は下記のとおりである。
Moreover, the reasons for limiting the conditions in manufacturing steps (1) to (I[I) are as follows.

工程(I>において、850〜1000℃の温度に0.
5〜5.0時間加熱後、熱間圧延を行い、熱間圧延終了
直後、加工材を1℃/sec以上の速度で冷却する理由
は、優れた強度及び導電率を得るためで、加熱温度が8
50℃未満であると、著しい強度の低下が生じ、100
0℃を超えると一部液相が現れる可能性がある。また、
加熱時間が0.5時間未満であると、著しい強度の低下
が生じ、5.0時間を超えると経済的価値がなくなる。
In step (I>), the temperature is 850 to 1000°C.
After heating for 5 to 5.0 hours, hot rolling is performed, and the reason for cooling the workpiece at a rate of 1°C/sec or more immediately after the hot rolling is completed is to obtain excellent strength and conductivity, and the heating temperature is 8
If the temperature is less than 50°C, a significant decrease in strength will occur, and the
If the temperature exceeds 0°C, a liquid phase may appear in some parts. Also,
If the heating time is less than 0.5 hours, a significant decrease in strength will occur, and if it exceeds 5.0 hours, there will be no economic value.

さらに熱間圧延終了後、加工材の冷却速度が1℃/se
c未満であると、著しい強度及び導電率の低下が生じる
からである。
Furthermore, after hot rolling, the cooling rate of the processed material is 1℃/sec.
This is because if it is less than c, there will be a significant decrease in strength and electrical conductivity.

工程(II)において、冷却後、50%以上の冷間加工
を施し、加工材を300〜eoo ’cの温度で0.5
〜20.0時間焼鈍するのは、強度、導電率の向上が期
待できるためで、冷却後50%未満の冷間加工でおると
、焼鈍による強度の向上が期待できなくなり、また、温
度が300 ℃未満でも、時間が0.5時間未満でも導
電率の向上が期待できず、温度が500℃を超えても、
時間が20.0時間を超えても、強度の向上が期待でき
なくなるからである。そして最も好ましい熱処理条件は
、350〜450 ℃の温度で1.0〜3.0時間であ
る。
In step (II), after cooling, cold working is performed by 50% or more, and the processed material is heated to a temperature of 300 to 0.5
The reason for annealing for ~20.0 hours is that it can be expected to improve strength and electrical conductivity.If cold working is performed by less than 50% after cooling, no improvement in strength can be expected due to annealing. ℃ or less than 0.5 hours, no improvement in conductivity can be expected, and even if the temperature exceeds 500℃,
This is because even if the time exceeds 20.0 hours, no improvement in strength can be expected. The most preferable heat treatment conditions are a temperature of 350 to 450°C for 1.0 to 3.0 hours.

工程(III)において、焼鈍後、冷間加工を施すのは
、著しい強度の向上が期待できるためで必る。又最後に
歪取焼鈍を行う理由は焼鈍後の冷間加工により、強度は
著しく向上するが、伸びが低下し、折り曲げ性が劣化す
るため、歪取焼鈍を行い、折り曲げ性を再び良好にする
ためである。
In step (III), cold working is performed after annealing because a significant improvement in strength can be expected. The reason why strain relief annealing is performed at the end is that cold working after annealing significantly improves strength, but reduces elongation and deteriorates bendability, so strain relief annealing is performed to improve bendability again. It's for a reason.

[実施例] 次に本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

第1表に示した組成の合金を溶解し、 厚さ30mmの
鋳塊を得、第1表に示した製造条件により供試材を作製
した。これらの供試材について、引張強ざ、伸び、導電
率を測定するとともに、90°繰返し曲げ試験を行い、
−往復を一回として破断までの曲げ回数を測定した。半
田付性は、垂直式浸漬法によって、230±5℃の半田
浴(5n60%、Pb40%)に5秒間浸漬して半田の
ぬれ状態を目視観察することによって評価した。
An alloy having the composition shown in Table 1 was melted to obtain an ingot with a thickness of 30 mm, and test materials were produced under the manufacturing conditions shown in Table 1. The tensile strength, elongation, and electrical conductivity of these test materials were measured, and a 90° repeated bending test was conducted.
- The number of bends until breakage was measured, with one round trip. Solderability was evaluated by vertical dipping method by dipping the sample in a solder bath (5N60%, Pb40%) at 230±5° C. for 5 seconds and visually observing the wetting state of the solder.

これらの結果を比較合金とともに第1表に示した。These results are shown in Table 1 along with comparative alloys.

第1表から明らかなように、本発明の製造方法を施した
ものは、比較例に比べ強度が向上し、42合金並みとな
っており、異方性も少なく、しかも他の特性についても
劣化させないことがわかる。
As is clear from Table 1, the products produced using the manufacturing method of the present invention have improved strength compared to the comparative example, comparable to that of 42 alloy, less anisotropy, and no deterioration in other properties. I know that I won't let you.

[発明の効果] 以上説明したとおり、本発明によれば特に強度が強く、
かつ靭性が優れ、その他の特性も劣化することのない高
力高導電銅合金が得られ、この半導体機器に用いる電子
部品用材料として優れた合金材である。
[Effects of the Invention] As explained above, according to the present invention, the strength is particularly high;
A high-strength, high-conductivity copper alloy with excellent toughness and no deterioration in other properties can be obtained, and is an excellent alloy material as a material for electronic parts used in semiconductor devices.

Claims (4)

【特許請求の範囲】[Claims] (1)Cr0.1〜1.5重量%及びZr0.05〜1
.0重量%を含み、残部Cu及び不可避不純物からなる
合金を熱間加工、冷間加工、焼鈍する方法において、(
I )850℃〜1000℃の温度に0.5〜5.0時
間加熱後熱間圧延を行い、熱間圧延終了直後、加工材を
1℃/sec以上の速度で冷却する、(II)冷却後50
%以上の冷間加工を施し、加工材を300〜600℃の
温度で0.5〜20.0時間焼鈍する、 (III)焼鈍後、冷間加工を施し、さらに歪取焼鈍を行
なう、 以上の( I )〜(III)の工程を順次行うことを特徴と
する高力高導電銅合金の製造方法。
(1) Cr0.1-1.5% by weight and Zr0.05-1
.. In a method of hot working, cold working, and annealing an alloy containing 0% by weight and the remainder consisting of Cu and unavoidable impurities,
I) Hot rolling is performed after heating to a temperature of 850°C to 1000°C for 0.5 to 5.0 hours, and immediately after hot rolling, the workpiece is cooled at a rate of 1°C/sec or more, (II) Cooling 50 more
(III) After annealing, cold working is performed and strain relief annealing is performed. A method for producing a high-strength, high-conductivity copper alloy, comprising sequentially performing steps (I) to (III).
(2)Cr0.1〜1.5重量%、Zr0.05〜1.
0重量%及びSi0.01〜1.0重量%を含み、残部
Cu及び不可避不純物からなる合金を熱間加工、冷間加
工、焼鈍する方法において、 ( I )850℃〜1000℃の温度に0.5〜5.0
時間加熱後、熱間圧延を行い、熱間圧延終了直 後、加工材を1℃/sec以上の速度で冷却する、 (II)冷却後50%以上の冷間加工を施し、加工材を3
00〜600℃の温度で0.5〜20.0時間焼鈍する
、 (III)焼鈍後、冷間加工を施し、さらに歪取焼鈍を行
なう、 以上の( I )〜(III)の工程を順次行うことを特徴と
する高力高導電合金の製造方法。
(2) Cr0.1-1.5% by weight, Zr0.05-1.
In a method of hot working, cold working, and annealing an alloy containing 0% by weight and 0.01 to 1.0% by weight of Si, and the balance consisting of Cu and unavoidable impurities, (I) .5-5.0
After heating for a period of time, hot rolling is performed, and immediately after the hot rolling, the workpiece is cooled at a rate of 1°C/sec or more. (II) After cooling, cold working is performed by 50% or more, and the workpiece is
Annealing at a temperature of 00 to 600°C for 0.5 to 20.0 hours. (III) After annealing, perform cold working and further perform strain relief annealing. The above steps (I) to (III) are performed sequentially. A method for producing a high-strength, high-conductivity alloy.
(3)Cr0.1〜1.5重量%及びZr0.05〜1
.0重量%及びAl、Be、Co、Fe、Hf、Mg、
Ni、P、Sn、Ti、Znからなる群より選択された
1種又は2種以上を総量で0.01〜1.0重量%を含
み、残部Cu及び不可避不純物からなる合金を熱間加工
、冷間加工、焼鈍する方法において、 ( I )850℃〜1000℃の温度に0.5〜5.0
時間加熱後、熱間圧延を行い、熱間圧延終了直 後、加工材を1℃/sec以上の速度で冷却する、 (II)冷却後50%以上の冷間加工を施し加工材を30
0〜600℃の温度で0.5〜20.0時間焼鈍する、 (III)焼鈍後、冷間加工を施し、さらに歪取焼鈍を行
なう、 以上の( I )〜(III)の工程を順次行うことを特徴と
する高力高導電合金の製造方法。
(3) Cr0.1-1.5% by weight and Zr0.05-1
.. 0% by weight and Al, Be, Co, Fe, Hf, Mg,
Hot working an alloy containing a total amount of 0.01 to 1.0% by weight of one or more selected from the group consisting of Ni, P, Sn, Ti, and Zn, and the balance being Cu and unavoidable impurities; In the method of cold working and annealing, (I) 0.5 to 5.0 at a temperature of 850 ° C to 1000 ° C.
After heating for an hour, hot rolling is performed, and immediately after hot rolling, the workpiece is cooled at a rate of 1°C/sec or more. (II) After cooling, the workpiece is cold worked by 50% or more to reduce
Annealing at a temperature of 0 to 600°C for 0.5 to 20.0 hours. (III) After annealing, perform cold working and further perform strain relief annealing. The above steps (I) to (III) are performed sequentially. A method for producing a high-strength, high-conductivity alloy.
(4)Cr0.1〜1.5重量%、Zr0.05〜1.
0重量%、Si0.01〜1.0重量%及びAl、Be
、Co、Fe、Hf、Mg、Ni、P、Sn、Ti、Z
nからなる群より選択された1種又は2種以上を総量で
0.01〜1.0重量%を含み、残部Cu及び不可避不
純物からなる合金を熱間加工、冷間加工、焼鈍する方法
において、 ( I )850℃〜1000℃の温度に0.5〜5.0
時間加熱後、熱間圧延を行い、熱間圧延終了直 後、加工材を1℃/sec以上の速度で冷却する、 (II)冷却後50%以上の冷間加工を施し加工材を30
0〜600℃の温度で0.5〜20.0時間焼鈍する、 (III)焼鈍後、冷間加工を施し、さらに歪取焼鈍を行
なう、 以上の( I )〜(III)の工程を順次行うことを特徴と
する高力高導電合金の製造方法。
(4) Cr0.1-1.5% by weight, Zr0.05-1.
0% by weight, Si0.01-1.0% by weight, Al, Be
, Co, Fe, Hf, Mg, Ni, P, Sn, Ti, Z
In a method of hot working, cold working and annealing an alloy containing a total amount of 0.01 to 1.0% by weight of one or more selected from the group consisting of n, the balance being Cu and unavoidable impurities. , (I) 0.5 to 5.0 at a temperature of 850℃ to 1000℃
After heating for an hour, hot rolling is performed, and immediately after hot rolling, the workpiece is cooled at a rate of 1°C/sec or more. (II) After cooling, the workpiece is cold worked by 50% or more to reduce
Annealing at a temperature of 0 to 600°C for 0.5 to 20.0 hours. (III) After annealing, perform cold working and further perform strain relief annealing. The above steps (I) to (III) are performed sequentially. A method for producing a high-strength, high-conductivity alloy.
JP29733487A 1987-11-27 1987-11-27 Manufacture of high-strength and high-conductivity copper alloy Pending JPH01139742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29733487A JPH01139742A (en) 1987-11-27 1987-11-27 Manufacture of high-strength and high-conductivity copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29733487A JPH01139742A (en) 1987-11-27 1987-11-27 Manufacture of high-strength and high-conductivity copper alloy

Publications (1)

Publication Number Publication Date
JPH01139742A true JPH01139742A (en) 1989-06-01

Family

ID=17845174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29733487A Pending JPH01139742A (en) 1987-11-27 1987-11-27 Manufacture of high-strength and high-conductivity copper alloy

Country Status (1)

Country Link
JP (1) JPH01139742A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268573A (en) * 1994-03-25 1995-10-17 Nikko Kinzoku Kk Production of high strength and high conductivity copper alloy for electronic equipment
US5916386A (en) * 1996-11-07 1999-06-29 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
JP2009132965A (en) * 2007-11-30 2009-06-18 Hitachi Cable Ltd Copper alloy material for electrical and electronic parts
JP2014015657A (en) * 2012-07-06 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy rolled foil for secondary battery collector and its manufacturing method
JP2015052143A (en) * 2013-09-06 2015-03-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
CN111519116A (en) * 2020-04-23 2020-08-11 宁波金田铜业(集团)股份有限公司 Preparation method of large-length solderless copper-chromium-zirconium contact line

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268573A (en) * 1994-03-25 1995-10-17 Nikko Kinzoku Kk Production of high strength and high conductivity copper alloy for electronic equipment
US5916386A (en) * 1996-11-07 1999-06-29 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
JP2009132965A (en) * 2007-11-30 2009-06-18 Hitachi Cable Ltd Copper alloy material for electrical and electronic parts
JP2014015657A (en) * 2012-07-06 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy rolled foil for secondary battery collector and its manufacturing method
JP2015052143A (en) * 2013-09-06 2015-03-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
CN111519116A (en) * 2020-04-23 2020-08-11 宁波金田铜业(集团)股份有限公司 Preparation method of large-length solderless copper-chromium-zirconium contact line
CN111519116B (en) * 2020-04-23 2021-10-15 宁波金田铜业(集团)股份有限公司 Preparation method of large-length solderless copper-chromium-zirconium contact line

Similar Documents

Publication Publication Date Title
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPS60245753A (en) High strength copper alloy having high electric conductivity
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPH01162737A (en) Copper alloy for electronic parts
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPS60245752A (en) High strength copper alloy having high electric conductivity
JPH0424417B2 (en)
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JPH01159337A (en) High tensile and high electric conductive copper alloy
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH03188246A (en) Production of high strength and high conductivity copper alloy
JPH03191043A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JPH03199357A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JPS63192835A (en) Lead material for ceramic package
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPS6369933A (en) Copper alloy for electronic and electrical equipment and its production
JPH06235035A (en) High tensile strength and high conductivity copper alloy
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPH0441632A (en) High strength and high conductivity copper alloy for electronic equipment and its manufacture