JPH03199357A - Manufacture of high strength and high conductivity copper alloy for electronic equipment - Google Patents

Manufacture of high strength and high conductivity copper alloy for electronic equipment

Info

Publication number
JPH03199357A
JPH03199357A JP33659389A JP33659389A JPH03199357A JP H03199357 A JPH03199357 A JP H03199357A JP 33659389 A JP33659389 A JP 33659389A JP 33659389 A JP33659389 A JP 33659389A JP H03199357 A JPH03199357 A JP H03199357A
Authority
JP
Japan
Prior art keywords
annealing
strength
copper alloy
cold working
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33659389A
Other languages
Japanese (ja)
Inventor
Takatsugu Hatano
隆紹 波多野
Hiroaki Watanabe
宏昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP33659389A priority Critical patent/JPH03199357A/en
Publication of JPH03199357A publication Critical patent/JPH03199357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the strength, toughness, etc., of the copper alloy by subjecting a copper alloy contg. specified Cr, Sn, Ni, Zn and Cu to hot working, cold working and annealing under prescribed conditions. CONSTITUTION:A copper alloy constituted of, by weight, 0.05 to 1 % Cr, 0.05 to 0.7% Sn, 0.01 to 0.5% Ni, 0.01 to 3% Zn and the balance Cu is refined. The copper alloy is heated at 850 to 1000 deg.C for 0.5 to 5hr, is thereafter hot-rolled and is then cooled at >=1 deg.C/sec cooling rate. Next, the alloy is subjected to cold working at >=50% draft and is annealed at 300 to 600 deg.C for 0.5 to 20hr. After the annealing, the alloy is cold-worked and is furthermore subjected to stress relief annealing.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、トランジスタや集積回路(XCンなどの半導
体機器のリード材及びコネクター端子、リレー、スイッ
チ等の導電性ばね材に適する銅合金材の製造法に関し、
特に強度が強く、かつ、靭性の優れた電子機器用高力高
導電銅合金を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a copper alloy material suitable for lead materials of semiconductor devices such as transistors and integrated circuits (XC circuits), and conductive spring materials for connector terminals, relays, switches, etc. Regarding the manufacturing method of
The present invention provides a high-strength, high-conductivity copper alloy for electronic devices that is particularly strong and has excellent toughness.

[従来の技術] 従来半導体機器のリード材としては熱膨脹係数が低く、
素子及びセラミックとの接着及び封着性の良好なコバー
ル(F e −29Ni−16Co)、42合金などの
高ニッケル合金が好んで使われてきた。しかし、近年、
半導体回路の集積度の向上に伴い消費電力の高いICが
多く使用されるようになってきたことと、封止材料とし
て樹脂が多く使用されかつ素子とリードフレームの接着
も改良が加えられたことにより使用されるリード材も放
熱性のよい銅合金が使われるようになってきた。
[Conventional technology] Conventional lead materials for semiconductor devices have a low coefficient of thermal expansion;
High nickel alloys such as Kovar (F e -29Ni-16Co) and 42 alloy have been preferably used because of their good adhesion and sealing properties with elements and ceramics. However, in recent years,
With the increase in the degree of integration of semiconductor circuits, many ICs with high power consumption have come into use, and more resins have been used as sealing materials, and improvements have been made to the bonding between elements and lead frames. Copper alloys with good heat dissipation properties have come to be used as lead materials.

又、従来電気機器用ばね、計測器用ばね、スイッチ、コ
ネクター等に用いられるばね用材料としては、安価な黄
銅、優れたばね特性及び耐食性を有する洋白、あるいは
優れたばね特性を有するりん青銅が使用されていた。
Furthermore, as materials for springs conventionally used for electrical equipment springs, measuring instrument springs, switches, connectors, etc., inexpensive brass, nickel silver with excellent spring properties and corrosion resistance, or phosphor bronze with excellent spring properties have been used. was.

[発明が解決しようとする課題] 一般に半導体機器のリード材としては以下のような特性
が要求されている。
[Problems to be Solved by the Invention] Generally, lead materials for semiconductor devices are required to have the following characteristics.

(1)リードが電気信号伝達部であるとともに、バラケ
ージング工程及び回路使用中に発生する熱を放出する機
能を併せもつことを要求されるため、優れた熱及び電気
伝導性を示すもの。
(1) The lead must exhibit excellent thermal and electrical conductivity, as it is required to act as an electrical signal transmission part and also to emit heat generated during the balacaging process and circuit use.

(2)リードとモールドとの密着性が半導体素子保護の
観点から重要であるため、リード材とモールド材の熱膨
脹係数が近いこと。
(2) Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material should be similar.

(3)パッケージング時に種々の加熱工程が加わるため
、耐熱性が良好であること。
(3) It must have good heat resistance since various heating processes are involved during packaging.

(4〉 リードはリード材を打ち抜き加工し、又曲げ加
工して作製されるものがほとんどであるため、これらの
加工性が良好であること。
(4) Most leads are manufactured by punching or bending lead material, so the workability of these materials must be good.

(5)リードは表面に貴金属のめっきを行うため、これ
ら貴金属とのめつき密着性が良好であること。
(5) Since the surface of the lead is plated with precious metals, the lead must have good plating adhesion to these precious metals.

(6)パッケージング後に封止材の外に露出している、
いわゆるアウター・リード部に半田付するものが多いの
で、良好な半田付は性を示すこと。
(6) exposed outside the sealing material after packaging;
Many products are soldered to the so-called outer leads, so good soldering is a sign of good soldering.

(7〉機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(7) Good corrosion resistance from the viewpoint of equipment reliability and service life.

(8) D I P型からQuad型への移行に伴い、
これからのリード材には、異方性が少ないことが要求さ
れる。
(8) With the transition from DIP type to Quad type,
Future lead materials will be required to have low anisotropy.

(9)価格が低置であること。(9) Prices are low.

これら各種の要求特性に対し従来より使用されている無
酸素銅、錫入り銅、りん青銅、コノく−ル、42合金は
いずれも一長一短があり、これらの特性のすべてを必ず
しも満足しえるものではない。
Oxygen-free copper, tin-containing copper, phosphor bronze, Konol, and 42 alloy, which have been conventionally used to meet these various required properties, all have advantages and disadvantages, and they cannot necessarily satisfy all of these properties. do not have.

又、バネ材として用いられている黄銅は強度、ばね特性
が劣っており、又強度、ばね特性の優れた洋白、りん青
銅も洋白は18重量%のNi1りん青銅は8重量%のS
nを含むため、原料の面及び製造上熱間加工性が悪い等
の加工上の制約も加わり高価な合金であった。更には電
気機器用等に用いられる場合、電気伝導度が低いという
欠点を有していた。したがって、導電性が良好であり、
ばね特性にすぐれた安価な合金の現出が待たれていた。
In addition, brass used as a spring material has poor strength and spring properties, and nickel silver and phosphor bronze, which have excellent strength and spring properties, contain 18% Ni by weight for nickel silver and 8% S by weight for phosphor bronze.
Since this alloy contains n, it is an expensive alloy due to constraints on processing such as poor hot workability in terms of raw materials and production. Furthermore, when used for electrical equipment, etc., it has a drawback of low electrical conductivity. Therefore, the conductivity is good,
The emergence of an inexpensive alloy with excellent spring properties has been awaited.

Cu−Cr−5n−Ni−Zn系合金は上記の要求特性
をかなり満足するものの、強度に関しては42合金、り
ん青銅と比べ見劣りするものであった。
Although the Cu-Cr-5n-Ni-Zn alloy satisfies the above-mentioned required properties, its strength was inferior to that of the 42 alloy and phosphor bronze.

[課題を解決するための手段] 本発明は上記問題点を解決するためになされたもので、
Cu−Cr−5n−Ni−Zn系の合金のもつ欠点を改
良し、半導体機器のリード材及び導電性ばね材等として
好適な緒特性を有する銅合金を提供しようとするもので
ある。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and
The purpose of this invention is to improve the drawbacks of Cu-Cr-5n-Ni-Zn alloys and to provide a copper alloy that has properties suitable for use as lead materials for semiconductor devices, conductive spring materials, and the like.

Cu−Cr−8n−Ni−Zn系の強度を向上させる方
法として成分組成を変更することによって得ることも可
能であるが、成分組成を変更すると導電性、曲げ性等諸
特性が劣化し好ましくない。
It is possible to improve the strength of the Cu-Cr-8n-Ni-Zn system by changing the component composition, but changing the component composition deteriorates various properties such as conductivity and bendability, which is not preferable. .

本発明は、上記のようなCu−Cr−8n−Ni−Zn
系合金の優れた緒特性を維持しつつ、強度のみを改善す
べく、新規な製造方法を見出したものである。
The present invention provides Cu-Cr-8n-Ni-Zn as described above.
A new manufacturing method was discovered in order to improve only the strength while maintaining the excellent mechanical properties of the alloy.

すなわち、その第1発明はCr 0.05〜】、0νt
%、S n 0.05〜0.7 vt%、N i 0.
01〜0.5 vt%及びZ n 0.01〜3.0w
t%を含み、残部Cu及び不可避不純物からなる合金を
熱間加工、冷間加工、焼鈍する方法において、 (1) b 加熱後、熱間圧延を行い、熱間圧延終了直後、加工材を
1℃/sec以上の速度で冷却する、(II)冷却後5
0%以上の冷間加工を施し、加工材を300〜600℃
の温度で0.5〜20.0時間焼鈍する、 (III)焼鈍後、冷間加工を施し、更に歪取焼鈍を行
う、 以上の(1)〜(III)の工程を順次行うことを特徴
とする高力高導電銅合金の製造方法である。
That is, the first invention has Cr 0.05~], 0νt
%, Sn 0.05-0.7 vt%, Ni 0.
01-0.5 vt% and Z n 0.01-3.0w
In a method of hot working, cold working, and annealing an alloy containing Cu and unavoidable impurities, (1) b After heating, hot rolling is performed, and immediately after the hot rolling, the workpiece is Cooling at a rate of ℃/sec or more, (II) After cooling 5
0% or more cold working is applied to the processed material at 300 to 600℃.
(III) After annealing, cold working is performed and strain relief annealing is performed. The above steps (1) to (III) are performed in sequence. This is a method for producing a high-strength, high-conductivity copper alloy.

又、第2発明は上記第1発明において合金組成に更にA
I% Be、CO5Fe、Hf、In。
Further, the second invention is the first invention, further including A in the alloy composition.
I% Be, CO5Fe, Hf, In.

Mgs Mn%P% T is Z rからなる群より
選択された18又は2種以上を総量で0.01〜2.0
wt%を含むものであり、熱間加工、冷間加工、焼鈍の
各工程は第1発明と同じである。
18 or 2 or more selected from the group consisting of Mgs Mn%P% T is Z r in a total amount of 0.01 to 2.0
wt%, and the steps of hot working, cold working, and annealing are the same as in the first invention.

各発明において合金成分を上記の如く限定した理由は次
のとおりである。
The reason why the alloy components in each invention are limited as described above is as follows.

Crは、微細なCr粒による析出硬化が期待でき、更に
それに伴う耐熱性が得られるために添加するもので、C
rの含有量を0.05〜1.0重量%とする理由は、C
「の含有量が0.05重量%未満では前述の効果が期待
できず、逆に1.0重量%を超えると、加工性、導電性
の低下が著しくなり、又半田付性も低下するためである
Cr is added because it can be expected to cause precipitation hardening due to fine Cr grains, and also to obtain heat resistance associated with it.
The reason for setting the content of r to 0.05 to 1.0% by weight is that C
If the content is less than 0.05% by weight, the above-mentioned effects cannot be expected, and if it exceeds 1.0% by weight, the processability and conductivity will be significantly reduced, and the solderability will also be reduced. It is.

Snの含有量を0.05〜0.7 vt%、Niの含有
量を0.01〜0.5 vt%としたのは、これらの添
加元素のいずれかが下限未満では、所望の強度が得られ
ず、又、上限を超えると導電性の著しい低下が起るため
である。
The reason for setting the Sn content to 0.05 to 0.7 vt% and the Ni content to 0.01 to 0.5 vt% is because if any of these additive elements is below the lower limit, the desired strength will not be achieved. This is because if the upper limit is exceeded, the conductivity will be significantly lowered.

Znは導電性を大きく低下させずに著しい半田耐熱剥離
性の改善が期待できるため添加するもので、その添加量
を0,01〜3.0wt%とするのは、0.01wt%
未満では前述の効果が期待できず、逆に3 、0wt%
を超えると、著しい導電性の低下が起るためである。
Zn is added because it can be expected to significantly improve solder heat resistance and peelability without significantly reducing conductivity, and the amount of Zn added is 0.01 to 3.0 wt%.
If the content is less than 3.0wt%, the above-mentioned effect cannot be expected;
This is because if it exceeds this, a significant decrease in conductivity will occur.

更に、副成分として、A 1 %B e s Co ”
−Fe、Hf、I n、MgSMn、P、Ti。
Furthermore, as a subcomponent, A 1% B e s Co ”
-Fe, Hf, In, MgSMn, P, Ti.

Zrからなる群より選択された1種又は2種以上を総量
で0.O1〜2.0wt%添加するのは、導電性を大き
く低下させずに、強度を向上させる効果が期待できるた
めで、添加量が総量で0.01vt%未満では前述の効
果が期待できず、逆に2.0wt%を超えると、著しい
導電性、加工性の劣化が起るためである。
One or more selected from the group consisting of Zr in a total amount of 0. The reason for adding 1 to 2.0 wt% of O is that it can be expected to have the effect of improving the strength without significantly reducing the conductivity. If the total amount added is less than 0.01 wt%, the above-mentioned effect cannot be expected. On the other hand, if it exceeds 2.0 wt%, significant deterioration of conductivity and processability will occur.

又、製造工程(I)〜(III)における条件の限定理
由は下記のとおりである。
Moreover, the reasons for limiting the conditions in manufacturing steps (I) to (III) are as follows.

工程(I)において、850〜1000℃の温度に0.
5〜5.0時間加熱後、熱間圧延を行い、熱間圧延終了
直後、加工材を1℃/secの速度で冷却する理由は、
優れた強度及び導電率を得るためで、加熱温度が850
℃未満であると、著しい強度の低下が生じ、1000℃
を超えると一部液相が現れる可能性がある。又、加熱時
間が0.5時間未満であると、著しい強度の低下が生じ
、5.0時間を超えると経済的価値がなくなる。更に熱
間圧延終了後、加工材の冷却速度が1℃/sec未満で
あると、著しい強度及び導電性の低下が生じるからであ
る。
In step (I), the temperature of 850 to 1000°C is 0.
The reason for hot rolling after heating for 5 to 5.0 hours and cooling the workpiece at a rate of 1°C/sec immediately after the hot rolling is completed is as follows.
In order to obtain excellent strength and conductivity, the heating temperature is 850℃.
If the temperature is below 1000°C, there will be a significant decrease in strength.
If the temperature is exceeded, a liquid phase may partially appear. Moreover, if the heating time is less than 0.5 hours, the strength will be significantly reduced, and if it exceeds 5.0 hours, there will be no economic value. Furthermore, if the cooling rate of the processed material after hot rolling is less than 1° C./sec, a significant decrease in strength and conductivity will occur.

工程(II)において、冷却後、50%以上の冷間加工
を施し、加工材を300〜600℃の温度で0.5〜2
0.0時間焼鈍するのは、強度、導電性の向上が期待で
きるためで、冷却後50%未満の冷間加工であると、焼
鈍による強度の向上が期待できなくなり、又、温度が3
00℃未満でも、時間が0.5時間未満でも導電性の向
上が期待できず、温度が500℃を超えても、時間が2
0.0時間を超えても、強度の向上が期待できなくなる
からである。そして最も好ましい熱処理条件は、350
〜450℃の温度で1,0〜3.0時間である。
In step (II), after cooling, cold working is performed by 50% or more, and the processed material is heated to 0.5 to 2
The reason for annealing for 0.0 hours is that it can be expected to improve strength and conductivity.If the cold working is less than 50% after cooling, no improvement in strength can be expected due to annealing, and if the temperature is 3.
Even if the temperature is below 00℃ or the time is less than 0.5 hours, no improvement in conductivity can be expected, and even if the temperature exceeds 500℃, the time is less than 2 hours.
This is because even if it exceeds 0.0 hours, no improvement in strength can be expected. The most preferable heat treatment conditions are 350
1.0 to 3.0 hours at a temperature of ~450°C.

工程(III)において、焼鈍後、冷間加工を施すのは
、著しい強度の向上が期待できるためである。又最後に
歪取焼鈍を行う理由は焼鈍後の冷間加工により、強度は
著しく向上するが、伸びが低下し、折り曲げ性が劣化す
るため、歪取焼鈍を行い、折り曲げ性を再び良好にする
ためである。
The reason why cold working is performed after annealing in step (III) is that a significant improvement in strength can be expected. The reason why strain relief annealing is performed at the end is that cold working after annealing significantly improves strength, but reduces elongation and deteriorates bendability, so strain relief annealing is performed to improve bendability again. It's for a reason.

[実施例] 次に本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

第1表に示した組成の合金を溶解し、厚さ30+nmの
鋳塊を得、第1表に示した製造条件により供試材を作製
した。これらの供試材について、引張強さ、伸び、導電
率を測定するとともに、90”繰返し曲げ試験を行い、
−往復を一回として破断までの曲げ回数を測定した。半
田付性は、垂直式浸漬法によって、230± 5℃の半
田浴(Sn60%、Pb40%)に5秒間浸漬して半田
のぬれ状態を目視観察することによって評価した。又、
半田耐熱剥離性の評価は、素材に5μ層の半田メツキ(
5n60%、 Pb2O%)を施し、150℃の恒温槽
に1000時間まで保持し、100時間毎に取り出して
90@曲げ往復1回を施して、半田の剥離の有無を調べ
た。これらの結果を比較合金とともに第1表に示した。
An alloy having the composition shown in Table 1 was melted to obtain an ingot with a thickness of 30+ nm, and a test material was produced under the manufacturing conditions shown in Table 1. The tensile strength, elongation, and electrical conductivity of these test materials were measured, and a 90" repeated bending test was conducted.
- The number of bends until breakage was measured, with one round trip. Solderability was evaluated by vertical dipping method by immersing the product in a solder bath (60% Sn, 40% Pb) at 230±5° C. for 5 seconds and visually observing the wetting state of the solder. or,
The evaluation of solder heat resistance and peelability was performed by applying a 5μ layer of solder plating to the material (
5n60%, Pb2O%) and kept in a constant temperature bath at 150° C. for up to 1000 hours, taken out every 100 hours and subjected to 90@bending and reciprocating once to check for peeling of solder. These results are shown in Table 1 along with comparative alloys.

/ H)/ :圧延方向と平行サンプル 12) l :圧延方向と垂直方向サンプル*3〉良好
二半田付後の濡れ面積95%以上不良:半田付後の濡れ
面積95%未満 本発明例及び比較例について以下に説明を加える。
/H)/: Sample parallel to the rolling direction 12) l: Sample perpendicular to the rolling direction *3> Good 2 Wet area after soldering 95% or more Poor: Wet area after soldering less than 95% Examples of the present invention and comparison An explanation of the example is given below.

本発明例のNo、1〜5は本発明の成分の合金を本発明
の製造方法で製造したものであるが、いずれも強度、導
電性に優れており、その他の特性についても良好である
Inventive examples Nos. 1 to 5 are alloys of the components of the present invention manufactured by the manufacturing method of the present invention, and all of them are excellent in strength and conductivity, and have good other properties as well.

比較例であるNo、6はCr含有量が低いためNo、8
はSn含有量が低いため、No、10はNi含有量が低
いため、本発明の製造方法で製造したにもかかわらず、
本発明例に比較して強度が劣っている。
Comparative example No. 6 has a low Cr content, so No. 8
No. 10 has a low Sn content, and No. 10 has a low Ni content, so even though they were manufactured using the manufacturing method of the present invention,
The strength is inferior to the inventive example.

又、No、12はZn含有量が低いため半田耐熱剥離性
が劣っている。更にNo、7はCr含有量が高いため、
NO19はSn含有量が高いため、No、11はNi含
有量が高いため、No、13はZn含有量が高いため、
本発明の製造方法で製造したにもかかわらず、導電性が
本発明合金に比較して低く、No、7は半田付は性も悪
い。
In addition, No. 12 had a low Zn content, and therefore had poor solder heat resistance and peelability. Furthermore, No. 7 has a high Cr content, so
No. 19 has a high Sn content, No. 11 has a high Ni content, No. 13 has a high Zn content, so
Although manufactured by the manufacturing method of the present invention, the conductivity was lower than that of the alloy of the present invention, and No. 7 had poor soldering properties.

一方、No、14〜N o、23は本発明の成分の合金
であるが、N 0.14は鋳塊加熱温度が低いため、N
o、15は鋳塊加熱時間が短いため、No、16は熱間
終了後の冷却速度が小さいため、No、17は焼鈍前の
加工度が小さいため、No、18は焼鈍温度が低いため
、No、19は焼鈍温度が高いため、N o、20は焼
鈍温度が短いため、N o、21は焼鈍時間が長いため
、No、22は焼鈍後に冷間加工を行っていないため、
強度が本発明例に比較して劣っている。又、No、18
、N o、20は導電性も低い。
On the other hand, No. 14 to No. 23 are alloys of the components of the present invention, but N 0.14 has a low ingot heating temperature, so N
No. 15 has a short ingot heating time, No. 16 has a low cooling rate after hot heating, No. 17 has a small working degree before annealing, and No. 18 has a low annealing temperature. No. 19 has a high annealing temperature, No. 20 has a short annealing temperature, No. 21 has a long annealing time, and No. 22 has no cold working after annealing.
The strength is inferior to the example of the present invention. Also, No. 18
, No, 20 also has low conductivity.

更に、N o、23は歪取焼鈍を行っていないため、折
り曲げ性が本発明例に比較して劣っている。
Furthermore, since strain relief annealing was not performed on No. 23, the bendability was inferior to that of the examples of the present invention.

[発明の効果コ 以上説明したとおり、本発明によれば特に強度が強く、
かつ靭性が優れ、その他の特性も劣化することのない高
力高導電銅合金が得られ、この合金は半導体機器に用い
る電子部品用材料として優れたものである。
[Effects of the Invention] As explained above, according to the present invention, the strength is particularly high;
A high-strength, high-conductivity copper alloy with excellent toughness and no deterioration in other properties can be obtained, and this alloy is excellent as a material for electronic parts used in semiconductor devices.

Claims (2)

【特許請求の範囲】[Claims] (1)Cr0.05〜1.0wt%、Sn0.05〜0
.7wt%、Ni0.01〜0.5wt%及びZn0.
01〜3.0wt%を含み、残部Cu及び不可避不純物
からなる合金を熱間加工、冷間加工、焼鈍する方法にお
いて、 ( I )850℃〜1000℃の温度に0.5〜5.0
時間加熱後熱間圧延を行い、熱間圧延終了直 後、加工材を1℃/sec以上の速度で冷却する、 (II)冷却後50%以上の冷間加工を施し、加工材を3
00〜600℃の温度で0.5〜20.0時間焼鈍する
、 (III)焼鈍後、冷間加工を施し、更に歪取焼鈍を行う
、 以上の( I )〜(III)の工程を順次行うこ とを特徴とする電子機器用高力高導電銅合金の製造方法
(1) Cr0.05-1.0wt%, Sn0.05-0
.. 7wt%, Ni0.01-0.5wt% and Zn0.
In a method of hot working, cold working, and annealing an alloy containing 0.01 to 3.0 wt% and the balance consisting of Cu and unavoidable impurities, (I) 0.5 to 5.0 wt% at a temperature of 850 to 1000 °C;
After heating for an hour, hot rolling is carried out, and immediately after hot rolling, the workpiece is cooled at a rate of 1°C/sec or more. (II) After cooling, cold working is performed by 50% or more, and the workpiece is
Annealing at a temperature of 00 to 600°C for 0.5 to 20.0 hours. (III) After annealing, perform cold working and further perform strain relief annealing. The above steps (I) to (III) are performed sequentially. A method for manufacturing a high-strength, high-conductivity copper alloy for electronic devices, characterized by:
(2)Cr0.05〜1.0wt%、Sn0.05〜0
.7wt%、Ni0.01〜0.5wt%、Zn0.0
1〜3.0wt%及びAl、Be、Co、Fe、Hf、
In、 Mg、Mn、P、Ti、Zrからなる群より選択された
1種又は2種以上を総量で0.01〜2.0wt%を含
み、残部Cu及び不可避不純物からなる合金を熱間加工
、冷間加工、焼鈍する方法において、 ( I )850℃〜1000℃の温度に0.5〜5.0
時間加熱後、熱間圧延を行い、熱間圧延終了 直後、加工材を1℃/sec以上の速度で冷却する、 (II)冷却後50%以上の冷間加工を施し、加工材を3
00〜600℃の温度で0.5〜20.0時間焼鈍する
、 (III)焼鈍後、冷間加工を施し、更に歪取焼鈍を行う
、 以上の( I )〜(III)の工程を順次行うこ とを特徴とする電子機器用高力高導電銅合金の製造方法
(2) Cr0.05-1.0wt%, Sn0.05-0
.. 7wt%, Ni0.01-0.5wt%, Zn0.0
1 to 3.0 wt% and Al, Be, Co, Fe, Hf,
Hot working an alloy containing a total amount of 0.01 to 2.0 wt% of one or more selected from the group consisting of In, Mg, Mn, P, Ti, and Zr, and the balance being Cu and unavoidable impurities. In the method of cold working and annealing, (I) 0.5 to 5.0 at a temperature of 850 ° C to 1000 ° C.
After heating for a period of time, hot rolling is performed, and immediately after the hot rolling, the workpiece is cooled at a rate of 1°C/sec or more. (II) After cooling, cold working is performed by 50% or more, and the workpiece is
Annealing at a temperature of 00 to 600°C for 0.5 to 20.0 hours. (III) After annealing, perform cold working and further perform strain relief annealing. The above steps (I) to (III) are performed sequentially. A method for manufacturing a high-strength, high-conductivity copper alloy for electronic devices, characterized by:
JP33659389A 1989-12-27 1989-12-27 Manufacture of high strength and high conductivity copper alloy for electronic equipment Pending JPH03199357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33659389A JPH03199357A (en) 1989-12-27 1989-12-27 Manufacture of high strength and high conductivity copper alloy for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33659389A JPH03199357A (en) 1989-12-27 1989-12-27 Manufacture of high strength and high conductivity copper alloy for electronic equipment

Publications (1)

Publication Number Publication Date
JPH03199357A true JPH03199357A (en) 1991-08-30

Family

ID=18300756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33659389A Pending JPH03199357A (en) 1989-12-27 1989-12-27 Manufacture of high strength and high conductivity copper alloy for electronic equipment

Country Status (1)

Country Link
JP (1) JPH03199357A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679956B2 (en) * 1997-09-16 2004-01-20 Waterbury Rolling Mills, Inc. Process for making copper-tin-zinc alloys
US7248141B2 (en) * 2003-07-03 2007-07-24 Koa Kabushiki Kaisha Current fuse and method of making the current fuse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679956B2 (en) * 1997-09-16 2004-01-20 Waterbury Rolling Mills, Inc. Process for making copper-tin-zinc alloys
US7248141B2 (en) * 2003-07-03 2007-07-24 Koa Kabushiki Kaisha Current fuse and method of making the current fuse

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPH0372691B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH0424417B2 (en)
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH03199357A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JPH03191043A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPH03188246A (en) Production of high strength and high conductivity copper alloy
JPS63109132A (en) High-strength conductive copper alloy and its production
JPS63192835A (en) Lead material for ceramic package
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPH06235035A (en) High tensile strength and high conductivity copper alloy
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPH06184676A (en) High strength and high electric conductivity copper alloy
JPH03191035A (en) High strength and high conductivity copper alloy for electronic equipment
JPS6369933A (en) Copper alloy for electronic and electrical equipment and its production