JPH03191043A - Manufacture of high strength and high conductivity copper alloy for electronic equipment - Google Patents

Manufacture of high strength and high conductivity copper alloy for electronic equipment

Info

Publication number
JPH03191043A
JPH03191043A JP1329584A JP32958489A JPH03191043A JP H03191043 A JPH03191043 A JP H03191043A JP 1329584 A JP1329584 A JP 1329584A JP 32958489 A JP32958489 A JP 32958489A JP H03191043 A JPH03191043 A JP H03191043A
Authority
JP
Japan
Prior art keywords
annealing
alloy
cold working
strength
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1329584A
Other languages
Japanese (ja)
Inventor
Takatsugu Hatano
隆紹 波多野
Hiroaki Watanabe
宏昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP1329584A priority Critical patent/JPH03191043A/en
Publication of JPH03191043A publication Critical patent/JPH03191043A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the high strength and high conductivity Cu alloy for electronic equipment excellent in strength and toughness by subjecting a Cu-Cr- Ti-Ni-Zn series alloy having a specified compsn. to hot rolling, cold working and annealing under specified conditions into a sheet material and thereafter executing final finish cold working and annealing. CONSTITUTION:A Cu alloy contg., by weight, 0.05 to 1.0% Cr, 0.02 to 0.6% Ti, 0.05 to 1.5% Ni and 0.01 to 3.0% Zn or furthermore contg. one or >=2 kinds among Al, Be, Co, Fe, Hf, In, Mg, Mn, P, Sn, Zr and Si is refined. The ingot of the Cu alloy is heated to 850 to 1000 deg.C for 0.5 to 5.0 hr, is thereafter hot- rolled, is immediately cooled at >=1 deg.C/sec cooling rate, is thereafter subjected to cold working at >=50% draft and is successively annealed at 300 to 600 deg.C for 0.5 to 20 hr. The ingot is furthermore subjected to cold working into a desired sheet material or the like and is subjected to final stress relieving annealing. The Cu alloy having high strength and high toughness suitable for electrical conductive spring materials such as lead wire rods, connectors, terminals, relays and switches of a semiconductor device can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、トランジスタや集積回路(IC)などの半導
体機器のリード材及びコネクター端子、リレー、スイッ
チ等の導電性ばね材に適する銅合金材の製造法に関し、
特に強度が強く、かつ、靭性の優れた電子機器用高力高
導電銅合金を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a copper alloy material suitable for lead materials for semiconductor devices such as transistors and integrated circuits (ICs), and conductive spring materials for connector terminals, relays, switches, etc. Regarding the manufacturing method of
The present invention provides a high-strength, high-conductivity copper alloy for electronic devices that is particularly strong and has excellent toughness.

[従来の技術] 従来半導体機器のリード材としては熱膨脹係数が低く、
素子及びセラミックとの接着及び封着性の良好なコバー
ル(F e −29Ni−L6Co)、42合金などの
高ニッケル合金が好んで使われてきた。しかし、近年、
半導体回路の集積度の向上に伴い消費電力の高いICが
多く使用されるようになってきたことと、封止材料とし
て樹脂力(多く使用されかつ素子とリードフレームの接
着も改良が加えられたことにより使用されるリード材も
放熱性のよい銅合金が使われるようになってきた。
[Conventional technology] Conventional lead materials for semiconductor devices have a low coefficient of thermal expansion;
High nickel alloys such as Kovar (Fe-29Ni-L6Co) and 42 alloy, which have good adhesion and sealing properties with elements and ceramics, have been preferably used. However, in recent years,
As the degree of integration of semiconductor circuits has increased, ICs with high power consumption have come to be used more frequently, and resins have been used more often as sealing materials, and improvements have also been made to the adhesion between elements and lead frames. As a result, copper alloys with good heat dissipation properties have come to be used as lead materials.

又、従来電気機器用はね、計lPj器用ばね、スイッチ
、コネクター等に用いられるばね用材料としては、安価
な黄銅、優れたばね特性及び耐食性を有する洋白、ある
いは優れたばね特性を有するりん青銅が使用されていた
In addition, the spring materials conventionally used for electrical equipment springs, mechanical springs, switches, connectors, etc. include inexpensive brass, nickel silver with excellent spring properties and corrosion resistance, and phosphor bronze with excellent spring properties. It was used.

[発明が解決しようとする課題] 一般に半導体機器のリード材としては以下のような特性
が要求されている。
[Problems to be Solved by the Invention] Generally, lead materials for semiconductor devices are required to have the following characteristics.

(1)リードが電気信号伝達部であるとともに、バラケ
ージング工程及び回路使用中に発生する熱を放出する機
能を併せもつことを要求されるため、優れた熱及び電気
伝導性を示すもの。
(1) The lead must exhibit excellent thermal and electrical conductivity, as it is required to act as an electrical signal transmission part and also to emit heat generated during the balacaging process and circuit use.

(2)リードとモールドとの密着性が半導体素子保護の
観点から重要であるため、リード材とモールド材の熱膨
脹係数が近いこと。
(2) Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material should be similar.

(3)パッケージング時に種々の加熱工程が加わるため
、耐熱性が良好であること。
(3) It must have good heat resistance since various heating processes are involved during packaging.

(4)リードはリード材を打ち抜き加工し、又曲げ加工
して作製されるものがほとんどであるため、これらの加
工性が良好であること。
(4) Since most leads are manufactured by punching or bending lead material, the workability of these materials must be good.

(5)リードは表面に貴金属のめっきを行うため、これ
ら貴金属とのめつき密着性が良好であること。
(5) Since the surface of the lead is plated with precious metals, the lead must have good plating adhesion to these precious metals.

(6)パッケージング後に封止材の外に露出している、
いわゆるアウター・リード部に半田付するものが多いの
で、良好な半田付を示すこと。
(6) exposed outside the sealing material after packaging;
Since many items are soldered to the so-called outer lead parts, good soldering must be demonstrated.

(7)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(7) Good corrosion resistance from the standpoint of equipment reliability and lifespan.

(g) D I P型からQuad型への移行に伴い、
これからのリード材には、異方性が少ないことが要求さ
れる。
(g) With the transition from DIP type to Quad type,
Future lead materials will be required to have low anisotropy.

(9)価格が低置であること。(9) Prices are low.

これら各種の要求特性に対し従来より使用されている無
酸素銅、錫入り銅、りん青銅、コノく一ル、42合金は
いずれも一長一短があり、これらの特性のすべてを必ず
しも満足しえるものではない。
Oxygen-free copper, tin-containing copper, phosphor bronze, Konokuichiru, and 42 alloys that have been conventionally used to meet these various required characteristics all have advantages and disadvantages, and they cannot necessarily satisfy all of these characteristics. do not have.

又、バネ材として用いられている黄銅は強度、ばね特性
が劣っており、又強度、ばね特性の優れた洋白、りん青
銅も洋白は18重量%のNi1りん青銅は8重量%のS
nを含むため、原料の面及び製造上熱間加工性が悪い等
の加工上の制約も加わり高価な合金であった。更には電
気機器用等に用いられる場合、電気伝導度が低いという
欠点を有していた。したがって、導電性が良好であり、
ばね特性にすぐれた安価な合金の現出が待たれていた。
In addition, brass used as a spring material has poor strength and spring properties, and nickel silver and phosphor bronze, which have excellent strength and spring properties, contain 18% Ni by weight for nickel silver and 8% S by weight for phosphor bronze.
Since this alloy contains n, it is an expensive alloy due to constraints on processing such as poor hot workability in terms of raw materials and production. Furthermore, when used for electrical equipment, etc., it has a drawback of low electrical conductivity. Therefore, the conductivity is good,
The emergence of an inexpensive alloy with excellent spring properties has been awaited.

Cu−Cr−Ti−Ni−Zn系合金は上記の要求特性
をかなり満足するものの、強度に関しては42合金、り
ん青銅と比べ見劣りするものであった。
Although the Cu-Cr-Ti-Ni-Zn alloy satisfies the above-mentioned required properties, its strength is inferior to that of the 42 alloy and phosphor bronze.

[課題を解決するための手段] 本発明は上記問題点を解決するためになされたもので、
Cu−Cr−T i −N 1−Zn系の合金のもつ欠
点を改良し、半導体機器のリード材及び導電性ばね材等
として好適な諸特性を有する銅合金を提供しようとする
ものである。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and
The present invention aims to improve the drawbacks of Cu-Cr-T i -N 1-Zn alloys and to provide a copper alloy having various properties suitable for use as lead materials for semiconductor devices, conductive spring materials, etc.

Cu−Cr−Ti−Ni−Zn系の強度を向上させる方
法として成分組成を変更することによって得ることも可
能であるが、成分組成を変更すると導電性、曲げ性等諸
特性が劣化し好ましくない。
It is possible to improve the strength of the Cu-Cr-Ti-Ni-Zn system by changing the component composition, but changing the component composition deteriorates various properties such as conductivity and bendability, which is not preferable. .

本発明は、上記のようなCu−Cr−TiN 1−Zn
系合金の優れた諸特性を維持しつつ、強度のみを改善す
べく、新規な製造方法を見出したものである。
The present invention provides Cu-Cr-TiN1-Zn as described above.
A new manufacturing method was discovered in order to improve only the strength while maintaining the excellent properties of the alloy.

すなわち、その第1発明はCr 0.05〜1,0νt
%、T i 0.02〜0.[i vt%、N i 0
.05〜1.5 wt%及びZ n 0.01〜3.0
wt%を含み、残部Cu及び不可避不純物からなる合金
を熱間加工、冷間加工、焼鈍する方法において、 (I)850℃〜1000℃の温度に0.5〜5.0時
間加熱後、熱間圧延を行い、熱間圧延終了直後、加工材
を1℃/sec以上の速度で冷却する、(II)冷却後
50%以上の冷間加工を施し、加工材を300〜600
℃の温度で0,5〜20.0時間焼鈍する、 (III)焼鈍後、冷間加工を施し、更に歪取焼鈍を行
う、 以上の(I)〜(III)の工程を順次行うことを特徴
とする高力高導電銅合金の製造方法である。
That is, the first invention has Cr 0.05 to 1,0νt
%, T i 0.02-0. [i vt%, N i 0
.. 05-1.5 wt% and Z n 0.01-3.0
(I) After heating to a temperature of 850°C to 1000°C for 0.5 to 5.0 hours, Immediately after hot rolling, the workpiece is cooled at a rate of 1°C/sec or more; (II) After cooling, the workpiece is cold-worked to a temperature of 300 to 600%.
Annealing at a temperature of 0.5 to 20.0 hours. (III) After annealing, cold working and further strain relief annealing are performed. The above steps (I) to (III) are performed in sequence. This is a method for manufacturing a high-strength, high-conductivity copper alloy.

又、第2発明は上記第1発明において合金組成に更にA
I%Be5Co、Fe、Hf、In。
Further, the second invention is the first invention, further including A in the alloy composition.
I%Be5Co, Fe, Hf, In.

M g SM n SP 、、S n s Z r s
 S iからなる群より選択された1種又は2種以上を
総量で0.O1〜1.0wt%を含むものであり、熱間
加工、冷間加工、焼鈍の各工程は第1発明と同じである
M g SM n SP ,, S n s Z r s
One or more selected from the group consisting of Si in a total amount of 0. It contains 1 to 1.0 wt% of O, and the steps of hot working, cold working, and annealing are the same as in the first invention.

各発明において合金成分を上記の如く限定した理由は次
のとおりである。
The reason why the alloy components in each invention are limited as described above is as follows.

Crは、微細なCr粒による析出硬化が期待でき、更に
それに伴う耐熱性が得られるために添加するもので、C
rの含有量を0.05〜1.0重−%とする理由は、C
「の含有量が0.05重量%未満では前述の効果が期待
できず、逆に1.0重量%を超えると、加工性、導電性
の低下が著しくなり、又半田付性も低下するためである
Cr is added because it can be expected to cause precipitation hardening due to fine Cr grains, and also to obtain heat resistance associated with it.
The reason for setting the content of r to 0.05 to 1.0% by weight is that C
If the content is less than 0.05% by weight, the above-mentioned effects cannot be expected, and if it exceeds 1.0% by weight, the processability and conductivity will be significantly reduced, and the solderability will also be reduced. It is.

Tiは時効処理を行うことにより、母材中にNiと金属
間化合物を形成し、強度、耐熱性、導電性の向上が図れ
るために添加するもので、特に導電性はT i −N 
iの金属間化合物を形成させることで、Ti単独添加に
比べ著しい改善がみられる。Tiの含有量が0.02v
t%未満では前述の効果が期待できず、逆に0.6wt
%を超えるとCrと同様溶体化処理後においても未溶解
のTiが母材中に残留し著しい加工性、導電性の低下が
起るためである。
Ti is added because it forms an intermetallic compound with Ni in the base material through aging treatment, improving strength, heat resistance, and electrical conductivity.
By forming an intermetallic compound of i, a remarkable improvement can be seen compared to the addition of Ti alone. Ti content is 0.02v
If it is less than t%, the above effect cannot be expected; on the other hand, if it is less than 0.6wt.
%, undissolved Ti remains in the base material even after solution treatment, similar to Cr, resulting in significant deterioration of workability and conductivity.

NiはTiと金属間化合物を形成させることにより、強
度及び導電性の向上が図れるために添加するもので、そ
の添加量が0.05wt%未満では前述の効果が期待で
きず、逆に1,5νt%を超えると導電性が劣化するた
めである。好ましくはT i / N iの比を0.2
5〜0.55程度にすることが推奨される。
Ni is added because it can improve strength and conductivity by forming an intermetallic compound with Ti.If the amount added is less than 0.05 wt%, the above effects cannot be expected; This is because if it exceeds 5vt%, the conductivity will deteriorate. Preferably the ratio of T i /N i is 0.2
It is recommended to set it to about 5 to 0.55.

Znは導電性を大きく低下させずに著しい半田耐熱剥離
性の改善が期待できるため添加するもので、その添加量
を0.O1〜3,0νt%とするのは、0.01vt%
未満では前述の効果が期待できず、逆に3.Dvt%を
超えると、著しい導電性の低下が起るためである。
Zn is added because it can be expected to significantly improve solder heat resistance and peelability without significantly reducing conductivity, and the amount of Zn added is 0. O1 to 3,0vt% is 0.01vt%
If it is less than 3, the above-mentioned effect cannot be expected, and conversely, if it is less than 3. This is because if it exceeds Dvt%, a significant decrease in conductivity occurs.

更に、副成分として、A1.、Be、CO%F e s
 Hf s  I n s M g % M n SP
 s S n sZr、Siからなる群より選択された
1種又は2種以上を総量で0.O1〜1.0wt%添加
するのは、導電性を大きく低下させずに、強度を向上さ
せる効果が期待できるためで、添加量が総量で0.01
vt%未満では前述の効果が期待できず、1.0νt%
を超えると、著しい導電性、加工性の劣化が起るためで
ある。
Furthermore, as a subcomponent, A1. , Be, CO% Fe s
Hf s I n s M g % M n SP
s S n sZr, one or more selected from the group consisting of Si in a total amount of 0. The reason for adding 1 to 1.0 wt% of O is that it can be expected to have the effect of improving strength without significantly reducing conductivity, and the total amount added is 0.01 wt%.
If it is less than vt%, the above-mentioned effect cannot be expected;
This is because if it exceeds this, significant deterioration of conductivity and workability will occur.

又、製造工程(1)〜(III)における条件の限定理
由は下記のとおりである。
Moreover, the reasons for limiting the conditions in manufacturing steps (1) to (III) are as follows.

工程1)l、:おいて、850〜1000”Cの温度に
0.5〜5.0時間加熱後、熱間圧延を行い、熱間圧延
終了直後、加工材をl”c/secの速度で冷却する理
由は、優れた強度及び導電率を得るためで、加熱温度が
850℃未満であると、著しい強度の低下が生じ、10
00℃を超えると一部液相が現れる可能性がある。又、
加熱時間が0.5時間未満であると、著しい強度の低下
が生じ、5,0時間を超えると経済的価値がなくなる。
Step 1) After heating to a temperature of 850 to 1000"C for 0.5 to 5.0 hours, hot rolling is carried out. Immediately after hot rolling, the workpiece is rolled at a speed of l"c/sec. The reason for cooling it at
If the temperature exceeds 00°C, a liquid phase may appear in some parts. or,
If the heating time is less than 0.5 hours, a significant decrease in strength will occur, and if it exceeds 5.0 hours, there will be no economic value.

更に熱間圧延終了後、加工材の冷却速度が1℃/sec
未満であると、著しい強度及び導電性の低下が生じるか
らである。
Furthermore, after hot rolling, the cooling rate of the processed material is 1℃/sec.
This is because if it is less than that, there will be a significant decrease in strength and conductivity.

工程(U)において、冷却後、50%以上の冷間加工を
施し、加工材を300〜[0℃の温度で0.5〜20.
0時間焼鈍するのは、強度、導電性の向上が期待できる
ためで、冷却後50%未満の冷間加工であると、焼鈍に
よる強度の向上が期待できなくなり、又、温度が300
℃未満でも、時間が0.5時間未満でも導電性の向上が
期待できず、温度が500℃を超えても、時間が20,
0時間を超えても、強度の向上が期待できなくなるから
である。そして最も好ましい熱処理条件は、350〜4
50℃の温度で1,0〜3.0時間である。
In step (U), after cooling, the workpiece is subjected to cold working of 50% or more, and the processed material is heated to a temperature of 300 to 0.5 to 20.
The reason for annealing for 0 hours is that it can be expected to improve strength and conductivity.If the cold working is less than 50% after cooling, no improvement in strength can be expected due to annealing, and if the temperature is 300
℃ or less than 0.5 hours, no improvement in conductivity can be expected, and even if the temperature exceeds 500℃ or the time is less than 0.5 hours,
This is because even if the time exceeds 0 hours, no improvement in strength can be expected. The most preferable heat treatment conditions are 350~4
1.0 to 3.0 hours at a temperature of 50°C.

工程(III)において、焼鈍後、冷間加工を施すのは
、著しい強度の向上が期待できるためである。又最後に
歪取焼鈍を行う理由は焼鈍後の冷間加工により、強度は
著しく向上するが、伸びが低下し、折り曲げ性が劣化す
るため、歪取焼鈍を行い、折り曲げ性を再び良好にする
ためである。
The reason why cold working is performed after annealing in step (III) is that a significant improvement in strength can be expected. The reason why strain relief annealing is performed at the end is that cold working after annealing significantly improves strength, but reduces elongation and deteriorates bendability, so strain relief annealing is performed to improve bendability again. It's for a reason.

[実施例] 次に本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

第1表に示した組成の合金を溶解し、厚さ30mmの鋳
塊を得、第1表に示した製造条件により供試材を作製し
た。これらの供試材について、引張強さ、伸び、導電率
を測定するとともに、90°繰返し曲げ試験を行い、−
往復を一回として破断までの曲げ回数をn1定した。半
田付性は、垂直式浸漬法によって、230± 5℃の半
田浴(Sn60%、Pb40%)に5秒間浸漬して半田
のぬれ状態を目視観察することによって評価した。又、
半田耐熱剥離性の評価は、素材に5μmの半田メツキ(
錫60%、鉛40%)を施し、150℃の恒温槽に20
00時間まで保持し、100時間毎に取り出して90°
曲げ往復1回を施して、半田の剥離の有無を調べた。こ
れらの結果を比較合金とともに第1表に示した。
An alloy having the composition shown in Table 1 was melted to obtain an ingot with a thickness of 30 mm, and a test material was produced under the manufacturing conditions shown in Table 1. For these test materials, the tensile strength, elongation, and electrical conductivity were measured, and a 90° repeated bending test was conducted.
The number of times of bending until breakage was determined as n1, with one round trip. Solderability was evaluated by vertical dipping method by immersing the product in a solder bath (60% Sn, 40% Pb) at 230±5° C. for 5 seconds and visually observing the wetting state of the solder. or,
Evaluation of solder heat resistance and peelability was performed by applying 5 μm solder plating to the material (
60% tin, 40% lead) and placed in a constant temperature bath at 150℃ for 20 minutes.
Hold until 00 hours, take out every 100 hours and hold at 90°
The sample was bent back and forth once, and the presence or absence of solder peeling was examined. These results are shown in Table 1 along with comparative alloys.

本1):圧延方向と平行サンプル H) i :圧延方向と垂直方向サンプル本3)良好二
半田付後の濡れ面積95%以上不良、半田付後の濡れ面
積95%未満 本発明例及び比較例について以下に説明を加える。
Book 1): Sample parallel to the rolling direction H) i: Sample perpendicular to the rolling direction Book 3) Good 2 Wet area after soldering 95% or more Poor, Wet area after soldering less than 95% Examples of the present invention and comparative examples An explanation is added below.

本発明例のNo、1〜5は本発明の成分の合金を本発明
の製造方法で製造したものであるが、いずれも強度、導
電率に優れており、その他の特性についても良好である
Inventive examples Nos. 1 to 5 are alloys of the components of the present invention manufactured by the manufacturing method of the present invention, and all of them are excellent in strength and conductivity, and also have good other properties.

比較例であるNo、6はCr含有量が低いためNo、8
はTi及びN1の含有量が低いため、本発明の製造方法
で製造したにもかかわらず、本発明例に比較して強度が
劣っている。
Comparative example No. 6 has a low Cr content, so No. 8
Because the content of Ti and N1 is low, the strength is inferior to the example of the present invention even though it was manufactured by the manufacturing method of the present invention.

又、No、lOはZn含有量が低いため半田耐熱剥離性
が劣っている。更にNo、7はCr含有量が高いため、
No、9はTi及びNiの含有量が高いため、No、1
1はZn含有量が高いため、本発明の製造方法で製造し
たにもかかわらず、導電性が本発明合金に比較して低く
、No、7は半田付は性も悪い。
Further, since the Zn content of No. and 1O is low, the solder heat resistance and peelability are poor. Furthermore, No. 7 has a high Cr content, so
No. 9 has a high content of Ti and Ni, so No. 1
No. 1 has a high Zn content, so even though it was manufactured using the manufacturing method of the present invention, its conductivity was lower than that of the alloy of the present invention, and No. 7 had poor soldering properties.

一方、No、12〜No、21は本発明の成分の合金で
あるが、N 0.12は鋳塊加熱温度が低いため、N 
0.13は鋳塊加熱時間が短いため、No、14は熱間
圧延終了後の冷却速度が小さいため、N o、15は焼
鈍前の加工度が小さいため、No、16は焼鈍温度が低
いため、No、17は焼鈍温度が高いため、No、18
は焼鈍時間が短いためNo、19は焼鈍時間が長いため
、No、20は焼鈍後に冷間加工を行っていないため、
強度が本発明例に比較して劣っている。更にNo、14
、No、16、No、18は導電性も低い。
On the other hand, No. 12 to No. 21 are alloys of the components of the present invention, but N 0.12 has a low ingot heating temperature, so N
0.13 has a short ingot heating time, No. 14 has a low cooling rate after hot rolling, No. 15 has a small degree of work before annealing, and No. 16 has a low annealing temperature. Therefore, No. 17 has a high annealing temperature, so No. 18
No. 19 because the annealing time is short, No. 20 because no cold working is performed after annealing,
The strength is inferior to the example of the present invention. Furthermore, No. 14
, No. 16, No. 18 have low conductivity.

又、N o、21は歪取焼鈍を行っていないため、折り
曲げ性が本発明例に比較して劣っている。
Further, since strain relief annealing was not performed on No. 21, the bendability was inferior to that of the examples of the present invention.

[発明の効果] 以上説明したとおり、本発明によれば特に強度が強く、
かつ靭性が優れ、その他の特性も劣化することのない高
力高導電銅合金が得られ、この合金は半導体機器に用い
る電子部品用材料として優れたものである。
[Effects of the Invention] As explained above, according to the present invention, the strength is particularly high;
A high-strength, high-conductivity copper alloy with excellent toughness and no deterioration in other properties can be obtained, and this alloy is excellent as a material for electronic parts used in semiconductor devices.

Claims (2)

【特許請求の範囲】[Claims] (1)Cr0.05〜1.0wt%、Ti0.02〜0
.6wt%、Ni0.05〜1.5wt%及びZn0.
01〜3.0wt%を含み、残部Cu及び不可避的不純
物からなる合金を熱間加工、冷間加工、焼鈍する方法に
おいて、 ( I )850℃〜1000℃の温度に0.5〜5.0
時間加熱後熱間圧延を行い、熱間圧延終了直 後、加工材を1℃/sec以上の速度で冷却する、 (II)冷却後50%以上の冷間加工を施し、加工材を3
00〜600℃の温度で0.5〜20.0時間焼鈍する
、 (III)焼鈍後、冷間加工を施し、更に歪取焼鈍を行う
、 以上の( I )〜(III)の工程を順次行うこ とを特徴とする電子機器用高力高導電銅合金の製造方法
(1) Cr0.05-1.0wt%, Ti0.02-0
.. 6wt%, Ni0.05-1.5wt% and Zn0.
In a method of hot working, cold working, and annealing an alloy containing 0.01 to 3.0 wt% and the remainder Cu and unavoidable impurities, (I) 0.5 to 5.0 wt% at a temperature of 850 to 1000 °C;
After heating for an hour, hot rolling is carried out, and immediately after hot rolling, the workpiece is cooled at a rate of 1°C/sec or more. (II) After cooling, cold working is performed by 50% or more, and the workpiece is
Annealing at a temperature of 00 to 600°C for 0.5 to 20.0 hours. (III) After annealing, perform cold working and further perform strain relief annealing. The above steps (I) to (III) are performed sequentially. A method for manufacturing a high-strength, high-conductivity copper alloy for electronic devices, characterized by:
(2)Cr0.05〜1.0wt%、Ti0.02〜0
.6wt%、Ni0.05〜1.5wt%、Zn0.0
1〜3.0wt%及びAl、Be、Co、Fe、Hf、
In、 Mg、Mn、P、Sn、Zr、Siからなる群より選択
された1種又は2種以上を総量で0.01〜1.0wt
%を含み、残部Cu及び不可避的不純物からなる合金を
熱間加工、冷間加工、焼鈍する方法において、 ( I )850℃〜1000℃の温度に0.5〜5.0
時間加熱後、熱間圧延を行い、熱間圧延終了 直後、加工材を1℃/sec以上の速度で冷却する、 (II)冷却後50%以上の冷間加工を施し、加工材を3
00〜600℃の温度で0.5〜20.0時間焼鈍する
、 (III)焼鈍後、冷間加工を施し、更に歪取焼鈍を行う
、 以上の( I )〜(III)の工程を順次行うこ とを特徴とする電子機器用高力高導電銅合金の製造方法
(2) Cr0.05-1.0wt%, Ti0.02-0
.. 6wt%, Ni0.05-1.5wt%, Zn0.0
1 to 3.0 wt% and Al, Be, Co, Fe, Hf,
One or more selected from the group consisting of In, Mg, Mn, P, Sn, Zr, and Si in a total amount of 0.01 to 1.0 wt.
(I) 0.5 to 5.0% at a temperature of 850°C to 1000°C.
After heating for a period of time, hot rolling is performed, and immediately after the hot rolling, the workpiece is cooled at a rate of 1°C/sec or more. (II) After cooling, cold working is performed by 50% or more, and the workpiece is
Annealing at a temperature of 00 to 600°C for 0.5 to 20.0 hours. (III) After annealing, perform cold working and further perform strain relief annealing. The above steps (I) to (III) are performed sequentially. A method for manufacturing a high-strength, high-conductivity copper alloy for electronic devices, characterized by:
JP1329584A 1989-12-21 1989-12-21 Manufacture of high strength and high conductivity copper alloy for electronic equipment Pending JPH03191043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1329584A JPH03191043A (en) 1989-12-21 1989-12-21 Manufacture of high strength and high conductivity copper alloy for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1329584A JPH03191043A (en) 1989-12-21 1989-12-21 Manufacture of high strength and high conductivity copper alloy for electronic equipment

Publications (1)

Publication Number Publication Date
JPH03191043A true JPH03191043A (en) 1991-08-21

Family

ID=18222984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1329584A Pending JPH03191043A (en) 1989-12-21 1989-12-21 Manufacture of high strength and high conductivity copper alloy for electronic equipment

Country Status (1)

Country Link
JP (1) JPH03191043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214882A (en) * 2011-03-29 2012-11-08 Kobe Steel Ltd Copper alloy material for electric and electronic parts, and copper alloy material for plated electric and electronic parts
CN112126816A (en) * 2020-10-21 2020-12-25 绵阳市胜源合金制造有限公司 Corrosion-resistant rare earth copper alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214882A (en) * 2011-03-29 2012-11-08 Kobe Steel Ltd Copper alloy material for electric and electronic parts, and copper alloy material for plated electric and electronic parts
CN112126816A (en) * 2020-10-21 2020-12-25 绵阳市胜源合金制造有限公司 Corrosion-resistant rare earth copper alloy

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPH0372691B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH03191043A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JPH03188246A (en) Production of high strength and high conductivity copper alloy
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH03199357A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPS63192835A (en) Lead material for ceramic package
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH09143597A (en) Copper alloy for lead frame and its production
JPH0441632A (en) High strength and high conductivity copper alloy for electronic equipment and its manufacture
JPH04141561A (en) Production of copper alloy for electronic appliance having high strength and electrical conductivity
JPH03191035A (en) High strength and high conductivity copper alloy for electronic equipment
JPH0225551A (en) Production of high tensile and high conductivity copper alloy for lead material of semiconductor device or conductivity spring material