JPS63262448A - Production of copper alloy having excellent peeling resistance of tin or tin alloy plating - Google Patents

Production of copper alloy having excellent peeling resistance of tin or tin alloy plating

Info

Publication number
JPS63262448A
JPS63262448A JP9621787A JP9621787A JPS63262448A JP S63262448 A JPS63262448 A JP S63262448A JP 9621787 A JP9621787 A JP 9621787A JP 9621787 A JP9621787 A JP 9621787A JP S63262448 A JPS63262448 A JP S63262448A
Authority
JP
Japan
Prior art keywords
copper alloy
tin
alloy
plating
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9621787A
Other languages
Japanese (ja)
Other versions
JPH08957B2 (en
Inventor
Hidehiko So
宗 秀彦
Masahiro Tsuji
正博 辻
Susumu Kawauchi
川内 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP62096217A priority Critical patent/JPH08957B2/en
Publication of JPS63262448A publication Critical patent/JPS63262448A/en
Publication of JPH08957B2 publication Critical patent/JPH08957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the thermal peeling resistance of tin (alloy) plating and to provide good strength, spring characteristics, heat resistance and electroconductivity together to the titled copper alloy by specifying the aging treatmental conditions of the copper alloy contg. specific ratios of Ni and Si. CONSTITUTION:The copper alloy contg. by weight, 0.4-4.0% Ni, 0.1-1.0% Si and the balance consisting of copper with inevitable impurities is subjected to the aging treatment at T deg.C. At this time, aging treatment is executed for longer times than the times at which the hardness H (Hv) expressed by the equation can be obtd. The copper alloy subjected to the above-mentioned aging treatment is preferably cold rolled as well at about >=5% working ratio and is annealed at about 350-800 deg.C if necessary. The total 0.001-3.0% of one or more kinds among Zn, P, Sn, As, Cr, Mg, Mn, Sb, Fe, Co, Al, Ti, Zr, Be, Ag, Pb, B, Hf, In and lanthanoids are furthermore added as the secondary component to said alloy at need.

Description

【発明の詳細な説明】 〔目 的〕 本発明は、l・ランジスタや集積回路(IC)などの半
導体機器のリード材、コネクター、端子、リレー、スイ
ッチ等の導電性ばね材に適する銅合金の製造方法に関す
るものである。特に半田耐熱剥離性(ここで耐熱剥離性
とは半田付けを行った材料が熱等の影響に対して耐剥離
効果を有する性質を意味する。)に優れた銅合金の製造
方法に関するものである。
[Detailed Description of the Invention] [Objective] The present invention provides a copper alloy suitable for lead materials of semiconductor devices such as transistors and integrated circuits (ICs), and conductive spring materials for connectors, terminals, relays, switches, etc. This relates to a manufacturing method. In particular, it relates to a method for producing a copper alloy that has excellent solder heat peeling resistance (here, heat peeling resistance refers to the property of the soldered material having a peeling resistant effect against the effects of heat, etc.). .

〔従来技術及び問題点〕 従来、半導体機器のリード材としては、熱膨張係数が低
く、素子及びセラミックとの接着及び封着性の良好なコ
バール(Fe−29Ni−16Co) 、42合金(F
e−42Ni)などの高ニッケル合金が好んで使われて
きた。しかし、近年、半導体回路の集積度の向上に伴い
消費電力の高いICが多くなってきたことと、封止材料
として樹脂が多く使用され、かつ素子とリードフレーム
の接着も改良が加えられたことにより、使用されるリー
ド材も放熱性のよい銅基合金が使われるようになってき
た。
[Prior art and problems] Conventionally, lead materials for semiconductor devices include Kovar (Fe-29Ni-16Co) and 42 alloy (F
High nickel alloys such as e-42Ni) have been preferred. However, in recent years, as the degree of integration of semiconductor circuits has improved, the number of ICs with high power consumption has increased, resins have been increasingly used as sealing materials, and improvements have been made to the bonding between elements and lead frames. As a result, copper-based alloys with good heat dissipation properties have come to be used as lead materials.

一般に半導体機器のリード材としては以下のような特性
が要求されている。
Generally, lead materials for semiconductor devices are required to have the following properties.

(1)リードが電気信号伝達部であるとともに、パッケ
ージング工程中及び回路使用中に発生する熱を外部に放
出する機能を併せ持つことを要求される為、優れた熱及
び電気伝導性を示すもの。
(1) Leads must exhibit excellent thermal and electrical conductivity, as they are required to act as an electrical signal transmission unit and also have the function of discharging heat generated during the packaging process and circuit use to the outside. .

(2)゛リードとモールドとの密着性が半導体素子保護
の観点から重要であるため、リード材とモールド材の熱
膨張係数が近いこと。
(2) Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material should be similar.

(3・)パッケージング時に種々の加熱工程が加わる為
、耐熱性が良好であること。
(3.) Good heat resistance as various heating processes are added during packaging.

(4)リードはリード材を抜き打ち加工し、又曲げ加工
して作製されるものがほとんどである為、これらの加工
性が良好なこと。
(4) Most leads are manufactured by punching or bending lead material, so the processability of these is good.

(5)リードは表面に貴金属のメッキを行う為、これら
貴金属とのメッキ密着性が良好であること。
(5) Since the surface of the lead is plated with precious metals, the plating adhesion with these precious metals must be good.

(6)パッケージング後に封止材の外に露出している。(6) Exposed outside the sealing material after packaging.

いわゆるアウター・リード部に半田付けするものが多い
ので良好な半田付は性を示すこと。
Many items are soldered to the so-called outer leads, so good soldering is a sign of good soldering.

(7)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(7) Good corrosion resistance from the standpoint of equipment reliability and lifespan.

(8)価格が低廉であること。(8) The price must be low.

これら各種の要求特性に対し、りん青銅及び若干の添加
元素を加えた改良合金が広く使われてきた。しかし、近
年、半導体に対する信頼度の要求がより厳しくなるとと
もに、小型化に対応した面付実装タイプが多くなってき
た為、従来問題とされていなかった半田耐熱剥離性が非
常に重要な特性項目となってきた。
Improved alloys containing phosphor bronze and some additional elements have been widely used to meet these various required properties. However, in recent years, reliability requirements for semiconductors have become more stringent, and surface mounting types that support miniaturization have become more common, so solder heat resistance and peelability, which had not been considered an issue in the past, has become an extremely important characteristic item. It has become.

すなわち、リードフレームとプリント基板とが半田付け
をされるが、使用中外的温度及び通電による発熱により
最高120℃程度までリードフレーム、及び半田付は部
が温度上昇する。このような温度に長時間さらされると
半田とリードフレームとの剥離が生じ、半導体が動作し
ない事が起こりえるため、寿命という観点から高信頼度
が要求される場合、この半田耐熱剥離性は最も重要な特
性の1つとなるわけである。とりわけ、FPP(FLA
T PLAS’jICPACKAGE)やP L CC
(PLASTICLEADIED CHIP CARR
IER)に代表される面付実装タイプはプリント基板に
装入するのではなく、面接触になる為、より半田耐熱剥
離性が重要になってくるわけである。
That is, the lead frame and the printed circuit board are soldered together, but during use, the temperature of the lead frame and the soldering area rises up to about 120° C. due to external temperatures and heat generated by energization. If exposed to such temperatures for a long period of time, the solder and lead frame may peel off, which may cause the semiconductor to malfunction. Therefore, when high reliability is required from the perspective of longevity, this solder heat peeling resistance is the best. This is one of the important characteristics. In particular, FPP (FLA
T PLAS'jICPACKAGE) and P L CC
(PLASTICLEADIED CHIP CARR
The surface mounting type represented by IER) is not inserted into the printed circuit board, but is in surface contact, so solder heat resistance and peelability are even more important.

又、従来、1!気機器用ばね、計測器用ばね、スイッチ
、コネクター等に用いられるばね用材料としては、安価
な黄銅、優れたばね特性及び耐食性を有する洋白、ある
いは優れたばね特性を有するりん青銅が使用されていた
。しかし、黄銅は強度、はね特性が劣っており、洋白は
導電性が悪い為。
Also, conventionally, 1! Cheap brass, nickel silver, which has excellent spring properties and corrosion resistance, and phosphor bronze, which has excellent spring properties, have been used as spring materials for springs for air equipment, springs for measuring instruments, switches, connectors, etc. However, brass has inferior strength and splash characteristics, and nickel silver has poor conductivity.

りん青銅が信頼性の高い材料として最も広く使用されて
いる。この導電性ばね材の分野でも、接触抵抗低減、耐
食性の向上等の理由でSn又は半田めっきが施され、又
、半田付けが実施される事が多い為、先に述べたような
半田耐熱剥離性が、近年の信頼性向上の要求から極めて
重要となってきている。
Phosphor bronze is the most widely used reliable material. Even in the field of conductive spring materials, Sn or solder plating is applied for reasons such as reducing contact resistance and improving corrosion resistance, and since soldering is often performed, solder heat-resistant peeling as mentioned above is applied. In recent years, reliability has become extremely important due to the demand for improved reliability.

こういった半田耐熱剥離性の厳しい要求に対して、現状
のりん青銅系合金ではこたえることができず、半田耐熱
剥離性を改善した高力高導電銅合金の現出が待たれてい
た。
Current phosphor bronze alloys cannot meet these strict requirements for heat-soldering peeling resistance, and the emergence of a high-strength, high-conductivity copper alloy with improved heat-soldering peeling resistance has been awaited.

〔発明の構成〕[Structure of the invention]

本発明は、かかる点に鑑みなされたもので、従来の銅基
合金のもつ欠点を改良し、半導体機器のリード材及び導
電性ばね材として好適な諸特性を有する銅合金の製造方
法を提供しようとするものである。
The present invention has been made in view of the above, and aims to provide a method for producing a copper alloy that improves the drawbacks of conventional copper-based alloys and has various properties suitable for use as lead materials and conductive spring materials for semiconductor devices. That is.

本発明は、Ni0.4〜4.0wt%、Sin。The present invention uses 0.4 to 4.0 wt% Ni and Sin.

1〜1.0wt%を含み、残部Cu及び不可避的不純物
からなる銅合金をT℃で時効処理する場合、下記0式で
定義される硬さH(IIv)が得られる時間より長時間
時効処理を行うことを特徴とする錫又は錫合金めっきの
耐熱剥離性に優れた銅合金の製造方法。
When aging a copper alloy containing 1 to 1.0 wt% and the remainder Cu and unavoidable impurities at T°C, the aging treatment is performed for a longer time than the time required to obtain hardness H (IIv) defined by the following formula 0. A method for producing a copper alloy with excellent heat peeling resistance of tin or tin alloy plating, the method comprising:

H=  H□ −(II 1−H。)Xo、25  ・
・・ ・・・ ・・・ ・・・ ・・・ [1]Ho;
  上記銅合金の時効処理前の硬さく1lv)H工; 
同銅合金を′1′℃で時効処理を行うことによって得ら
れた最高の硬さくl1 v)並びに」二記時効処理を行った銅合金を5%以上の
加工度で冷間圧延し、その後必要に応じ350〜800
℃の温度で焼鈍を行うことを特徴とする前記錫又は錫合
金めっきの耐熱剥離性に優れた銅合金の製造方法。
H= H□ -(II 1-H.)Xo, 25 ・
・・・ ・・・ ・・・ ・・・ [1]Ho;
Hardness of the above copper alloy before aging treatment 1lv) H work;
The highest hardness l1 v) obtained by aging the same copper alloy at 1'°C, and 350-800 depending on need
A method for producing a copper alloy with excellent heat peeling resistance of the tin or tin alloy plating, characterized in that annealing is performed at a temperature of °C.

そして、Ni0.4−4.0wt%、SiO,1〜1.
0wt%を含み、副成分として、Z0.P、Sn  、
  As、   Cr  %  Mg  %  M0.
   S’b、   r+”e  %  Go、Al、
Ti、Zr、Be、Ag、Pb、13゜Hf、I0.ラ
ンタノイド元素からなる1種又は2種以上を総量で0.
001〜3.Ow t%含み、残部Cu及び不可避的不
純物からなる銅合金をT℃で時効処理する場合、下記0
式で定義される硬さH(llv)が得られる時間より長
時間時効処理を行うことを特徴とする錫又は錫合金めっ
きの耐熱剥離性に優れた銅合金の製造方法。
And Ni0.4-4.0wt%, SiO, 1-1.
0 wt%, and Z0. P, Sn,
As, Cr% Mg% M0.
S'b, r+”e % Go, Al,
Ti, Zr, Be, Ag, Pb, 13°Hf, I0. The total amount of one or more lanthanoid elements is 0.
001-3. When aging a copper alloy consisting of Ow t% and the balance Cu and unavoidable impurities at T°C, the following 0
A method for producing a copper alloy with excellent heat-resistant peelability of tin or tin alloy plating, characterized by performing aging treatment for a longer time than the time required to obtain hardness H (llv) defined by the formula.

H=H,−(Hニー■(。)Xo、25・・・・・・・
・・・・・・・・[2]H,;  上記銅合金の時効処
理前の硬さく It v )【I工; 同銅合金をT”
Cで時効処理を行うことによって得られた最高の硬さ(
H v)並びに上記時効処理を行った銅合金を5%以上の加
工度で冷間圧延し、その後必要に応じ350〜800℃
の温度で焼鈍を行うことを特徴とする前記錫又は錫合金
めっきの耐熱剥離性に優れた銅合金の製造方法。
H=H, - (H knee ■ (.) Xo, 25...
・・・・・・・・・[2] H,; Hardness of the above copper alloy before aging treatment It v ) [I work; T”
The highest hardness obtained by aging treatment with C (
Hv) and the copper alloy subjected to the above aging treatment is cold rolled at a working degree of 5% or more, and then rolled at 350 to 800°C as necessary.
A method for producing a copper alloy with excellent heat peeling resistance of the tin or tin alloy plating, characterized in that annealing is performed at a temperature of .

そして、銅合金のO濃度がO,,0020wt%以下、
S濃度がO,0015wt%以下であることを特徴とす
る前記錫又は錫合金めっきの耐熱剥離性に優れた銅合金
の製造方法に関する。
And, the O concentration of the copper alloy is O,0020 wt% or less,
The present invention relates to a method for producing a copper alloy with excellent heat peeling resistance of the tin or tin alloy plating, characterized in that the S concentration is 0.0015 wt% or less.

〔発明の詳細な説明〕[Detailed description of the invention]

次に本発明の合金の製造方法を構成する合金成分の限定
理由を説明する。
Next, the reason for limiting the alloy components constituting the method for producing the alloy of the present invention will be explained.

Niの含有量を0.4〜4.0wt%とする理由は、N
iはCu中にSiと共添し、時効処理を行うことにより
、 Ni、Si等の金属間化合物を形成し、強度を向上
させる元素であるが、Ni含有量が0.4wt%未満で
はSiを共添しても・十分な強度が得られず、Ni含有
量が4.0wt%を超えると十分な強度は得られるが、
導電性が低下し、加工性も悪くなり、又価格も上昇する
ためである。
The reason for setting the Ni content to 0.4 to 4.0 wt% is that N
i is an element that is co-added with Si in Cu and when subjected to aging treatment forms intermetallic compounds such as Ni and Si to improve strength, but when the Ni content is less than 0.4 wt%, Si Even if Ni is co-added, sufficient strength cannot be obtained, and if the Ni content exceeds 4.0 wt%, sufficient strength can be obtained, but
This is because the conductivity decreases, the workability deteriorates, and the price also increases.

Si含有量0.1〜1.0wt%とする理由は、Niと
同様に、金属間化合物を形成し、強度を向上させるため
であるが、Si含有量がO,1wt%未満では十分な強
度は得られず、Si含有量が1.0wt%を超えると十
分な強度は得られるが、導電性が低下し、半田付は性が
悪くなるためである。又、NiとSiの成分比は、金属
間化合物(Ni3Si)の組成に近い方が導電性が向上
するため。
The reason why the Si content is set to 0.1 to 1.0 wt% is to form an intermetallic compound and improve strength, similar to Ni, but if the Si content is less than O, 1 wt%, sufficient strength is not achieved. However, if the Si content exceeds 1.0 wt%, sufficient strength can be obtained, but the conductivity decreases and the soldering properties become poor. Further, the conductivity is improved when the composition ratio of Ni and Si is closer to the composition of the intermetallic compound (Ni3Si).

Ni/5L=4/1とすることが望ましい。It is desirable that Ni/5L=4/1.

さらに副成分としてZ0.P、Sn%As、Cr、Mg
、M0.Sb、Fe、Go、Al、Ti。
Furthermore, Z0. P, Sn%As, Cr, Mg
, M0. Sb, Fe, Go, Al, Ti.

Zr、Be、Ag、Pb、、B、Hf、I0.ランタノ
イド元素からなる1種又は2種以上を総量で0.0O1
〜3.0wt%含む環110士、強度を向上させるため
であるが、総量が0.001wt%未満では強度の向上
は認められず、総量が3.0wt%を超えると強度は向
上するが、導電性が低下し、半EH付は性が劣化するた
めである。
Zr, Be, Ag, Pb, , B, Hf, I0. One or more lanthanoid elements in a total amount of 0.0O1
This is to improve the strength of the rings containing ~3.0 wt%, but no improvement in strength is observed when the total amount is less than 0.001 wt%, and the strength improves when the total amount exceeds 3.0 wt%. This is because the conductivity decreases and half-EH properties deteriorate.

これらの副成分の中でもZnは、Cu−Ni−8i系合
金の半[口又は錫めっき耐熱剥離性を良好にする添加元
素であり、O,1wt%以上添加することにより、絶大
なる効果があるため、1−ランジスタや集積回路(IC
)などの半導体機器のリード材、コネクター、端子、リ
レー、スイッチ等の導電性ばれ材に適する銅合金に使用
する場合は、是非0.1wt%以−ヒZnを添加するこ
とが推奨される。
Among these subcomponents, Zn is an additive element that improves the thermal peeling resistance of Cu-Ni-8i-based alloys or tin plating, and by adding 1 wt% or more of O, Zn has a great effect. Therefore, 1- transistors and integrated circuits (ICs)
), it is recommended to add 0.1 wt% or more of Zn when used in copper alloys suitable for conductive bulk materials such as lead materials for semiconductor devices, connectors, terminals, relays, switches, etc.

又、時効処理をT”Cで行う場合、下式で定義される硬
さHOIv)が得られる時間より長時間時効処理を行う
理由は、 H=H4−(HニーH,)xo、25 !■。; 上記銅合金の時効処理前の硬さくHV)Ho
; 同銅合金をT”Cで時効処理を行うことによって得
られた最高の硬さくllv’)この条件下で時効処理を
行うことにより、硬さ、導電率が」二昇すると、同時に
錫又は錫合金めっき(半[[1など)耐熱剥離性が向上
するが、時効処理がH(llv)という硬さが所定の時
間より短かいと、めっきした錫又は錫合金(半田等)は
加熱により短時間で剥離するためである。
In addition, when the aging treatment is performed at T''C, the reason why the aging treatment is performed for a longer time than the time required to obtain the hardness HOIv) defined by the following formula is as follows: H=H4-(Hnee H,)xo, 25! ■.; Hardness of the above copper alloy before aging treatment HV)Ho
The highest hardness obtained by aging the same copper alloy at T''C. Tin alloy plating (semi-[[1, etc.]) improves heat peeling resistance, but if the hardness of H (llv) is shorter than the specified aging time, the plated tin or tin alloy (solder, etc.) will be damaged by heating. This is because it can be peeled off in a short time.

そして、この様に時効処理を行った銅合金条を5%以上
の加工度で冷間圧延し、その後必要に応じて350〜8
00℃の温度で焼鈍を行う理由は、冷間圧延を行うこと
により1時効処理時に発生する内部歪を強制し、所定の
寸法、強度に調質し、焼鈍を行うことにより歪を除去し
、伸びを回復させて、曲げ性を良好にするためである。
The copper alloy strip that has been aged in this way is then cold-rolled to a working degree of 5% or more, and then, if necessary,
The reason for annealing at a temperature of 00°C is that by performing cold rolling, the internal strain that occurs during the aging process is forced, tempered to the specified dimensions and strength, and annealed to remove the strain. This is to recover elongation and improve bendability.

又、0ilji度を0.0020wt%以下とする理l
1口士、・0が存在するとSiと結合し酸化物となり、
いわゆる介在物となって鋼中に存在するようになるが、
0含有量が0.0020wt%を超えると介在物が多数
生成され、折り曲げ性、半田付は性、めっき性、エツチ
ング性が著しく低下するためである。
Also, the reason for keeping the 0ilji degree below 0.0020wt%
1. If 0 exists, it will combine with Si and become an oxide,
They become so-called inclusions that exist in steel,
This is because if the content exceeds 0.0020 wt%, a large number of inclusions will be generated, and the bending properties, soldering properties, plating properties, and etching properties will be significantly reduced.

S濃度をO,0015wt%以下とする理由は、Sが存
在す、ると、Siは非常にSと結合しやすく、容易に硫
化物になり鋼中に存在するようになるが、S含有量がO
,0015wt%を超えると硫化物が多数生成され、折
り曲げ性、半田付は性、めっき性、エツチング性が著し
く低下するためである。
The reason why the S concentration is set to 0,0015 wt% or less is that when S is present, Si is very easy to combine with S, easily becoming a sulfide and existing in steel, but the S content is O
This is because if the amount exceeds .0015 wt%, a large amount of sulfide is produced, and bending properties, soldering properties, plating properties, and etching properties are significantly reduced.

冷間圧延の加工度を5%以上とするのは、5%未満では
内部歪が完全には強制できないためである。又、その後
の焼鈍温度を350〜800℃とする加山は、350℃
より低い温度では、焼鈍を行うのに時間がかかり、経済
的でなく、800℃を超えると材料が溶体化され、強度
、導電性が劣化するためである。
The reason why the working degree of cold rolling is set to 5% or more is that if it is less than 5%, internal strain cannot be completely forced. In addition, Kayama where the subsequent annealing temperature is 350 to 800°C is 350°C.
This is because annealing at a lower temperature takes time and is not economical, and at a temperature exceeding 800° C., the material becomes a solution and its strength and conductivity deteriorate.

〔効 果〕〔effect〕

この様に本発明の製造方法はCu−Ni−8i系合金の
時効処理時間を規定することにより、錫又は錫合金めっ
きの耐熱剥離性を著しく改善することができ、電気電子
部品の高信頼化にこたえられるとともに、強度、ばね特
性、耐熱性と導電性を具備し、不純物としての0.Sを
限定することにより、今まで本合金の欠点であった折り
曲げ性、半EFI付は性、めっき性、エツチング性が著
しく改善した銅合金を提供することができる。
As described above, the manufacturing method of the present invention can significantly improve the heat peeling resistance of tin or tin alloy plating by regulating the aging treatment time of the Cu-Ni-8i alloy, thereby increasing the reliability of electrical and electronic components. It has strength, spring characteristics, heat resistance, and conductivity, and is free from impurities. By limiting the amount of S, it is possible to provide a copper alloy which has significantly improved bendability, semi-EFI properties, plating properties, and etching properties, which have been disadvantages of this alloy so far.

又、熱膨張係数はプラスチックに近く、半導体機器のリ
ード材としてはプラスチックパッケージ用に適している
。従って1本発明合金は半導体機器のリード材及び導電
性ばね材として好適な材料であり、先行技術の合金にお
いてこの様な総合的特性を兼備するものはない。
In addition, its coefficient of thermal expansion is close to that of plastic, making it suitable for plastic packages as a lead material for semiconductor devices. Therefore, the alloy of the present invention is suitable as a lead material for semiconductor devices and a conductive spring material, and no prior art alloy has such comprehensive properties.

以下に本発明材料を実施例をもって説明する。The material of the present invention will be explained below with reference to Examples.

〔実施例〕 第1表に示される本発明に係る各種合金成分組成のイン
ゴットを電気銅あるいは無酸素銅を〃1料として、高周
波溶解炉で大気、不活性又は還元性雰囲気中で溶解鋳造
した。次にこれを800℃で熱間圧延してノウさ4II
I11の板とした後、面削を行って冷間圧延でHさ1.
5■とした。これを800℃にて30分間焼鈍した後水
冷し、酸洗によりスケールを除去した後0.4mmの厚
さまで冷間圧延し、450℃にて所定時間時効処理を行
い、さらに酸洗によりスケールを除去し、0.25nm
の厚さまで冷間圧延し、脱脂後10102−2雰囲気中
で550℃にて所定時間焼鈍し、リード材としての評価
を行った。評価としては強度、伸びを引張試験により、
耐熱性を加熱時間60分における軟化温度により、電気
伝導性(放熱性)を導電率(%IAC5)によって示し
た。半田付は性は、垂直式浸漬法で230±5℃の半田
浴(すず60%、鉛40%)に5秒間浸漬し、半111
のぬれの状態を「1視観察することにより評価′した。
[Example] Ingots having various alloy compositions according to the present invention shown in Table 1 were melted and cast in a high frequency melting furnace in air, inert or reducing atmosphere, using electrolytic copper or oxygen-free copper as a raw material. . Next, this was hot-rolled at 800°C to obtain a
After forming a plate of I11, it was face-milled and cold-rolled to a H1.
It was set as 5■. This was annealed at 800°C for 30 minutes, cooled with water, removed scale by pickling, cold rolled to a thickness of 0.4 mm, aged at 450°C for a predetermined period of time, and further removed by pickling. removed, 0.25nm
After degreasing, it was annealed at 550° C. for a predetermined time in a 10102-2 atmosphere, and evaluated as a lead material. For evaluation, strength and elongation were measured by tensile tests.
The heat resistance was shown by the softening temperature at a heating time of 60 minutes, and the electrical conductivity (heat dissipation) was shown by the electrical conductivity (%IAC5). Soldering was performed by dipping in a solder bath (60% tin, 40% lead) at 230 ± 5°C for 5 seconds using the vertical dipping method.
The state of wetting was evaluated by visual observation.

メッキ密着性は試料に厚さ3μのΔgメッキを施し44
50℃にて5分間加熱し。
Plating adhesion was determined by applying Δg plating with a thickness of 3μ to the sample44.
Heat at 50°C for 5 minutes.

表面に発生するフクレの有無をH視観察することにより
評価した゛。これらの結果を比較合金とともに第1表に
示した。
The presence or absence of blisters occurring on the surface was evaluated by visual observation. These results are shown in Table 1 along with comparative alloys.

又、ばね材としての評価を行う為に、同一合金のノブさ
1.5mmの冷間圧延材を800℃にて30分間焼鈍し
た後水冷し、酸洗後0.4amの厚さまで冷間圧延し、
脱脂後10%Hz −Ni ’1!■気中で450℃に
て所定時間時効処理を行った合金条について、強度、伸
びを引張試験により評価し、ばね性をKb値により評価
した。これに電気伝導度の結果を加え、比較合金ととも
に第2表に示した。 本特許のポイントである半田耐熱
剥離性については。
In addition, in order to evaluate it as a spring material, a cold-rolled material of the same alloy with a knob size of 1.5 mm was annealed at 800°C for 30 minutes, water-cooled, pickled, and then cold-rolled to a thickness of 0.4 mm. death,
10%Hz -Ni '1 after degreasing! (2) The strength and elongation of the alloy strips subjected to aging treatment at 450° C. for a predetermined period of time in air were evaluated by a tensile test, and the springiness was evaluated by the Kb value. In addition to this, the results of electrical conductivity are shown in Table 2 along with comparative alloys. Regarding the solder heat resistance and peelability, which is the key point of this patent.

素材に5μの半田めっき(60メS0.40%Pb)を
施し、150℃の恒温槽に大気中で500hrまで保持
し。
The material was plated with 5μ solder (60mS0.40%Pb) and kept in a constant temperature oven at 150°C in the atmosphere for up to 500hr.

100hr毎に取り出して90”曲げ往復1回を施して
半田の剥離の有無を調べた。これらの結果を第1表及び
第2表に示した。
The samples were taken out every 100 hours and subjected to 90" bending and reciprocating once to check for peeling of the solder. These results are shown in Tables 1 and 2.

なお、本発明例(1)−(18)及び比較例(19)〜
(25)の時効前の硬さHい時効によるi&高到達硬さ
Hい0式又は0式で得られる硬さH及びI(の硬さが得
られる時効時間については、第3表に示す。
In addition, examples (1) to (18) of the present invention and comparative examples (19) to
Hardness H before aging of (25) i & high hardness achieved by aging H .

比較合金の(21)、 (22)は、本発明に係る合金
(1)の時効時間を短かくしたものである。゛第1図は
、−(1)、(21)、(22) ノ成分の合金を44
0”C4,:1”所定時間時効処理したときの硬さと導
電率である。
Comparative alloys (21) and (22) are alloys (1) according to the present invention with shorter aging times.゛Figure 1 shows alloys with the following components: -(1), (21), (22)
0"C4,:1" Hardness and electrical conductivity when subjected to aging treatment for a predetermined period of time.

図中矢印より左側のものは1時効時間が短がいため、1
50℃の加熱により(60%S0.40%Pb)半田め
っきは500時間以内に剥離したが、矢印より右側のも
のは、150℃にて5ooVfwJ加熱しても(60%
S0. 40%pb)半田は剥離しなかった。又、錫め
っきの耐熱剥離性においても同様な傾向があり、時効を
前述した通り本発明の4式によって定義される所定の硬
さが得られる時間より長時間時効処理を行うことにより
、錫めっき耐熱剥離性は良好となる。
The one on the left side of the arrow in the figure has a short aging time, so
The solder plating (60%S0.40%Pb) peeled off within 500 hours when heated at 50℃, but the one on the right side of the arrow did not peel off even after heating for 5ooVfwJ at 150℃ (60%
S0. 40% pb) The solder did not peel off. In addition, there is a similar tendency in the heat-resistant peeling property of tin plating, and as mentioned above, tin plating can be aged for a longer time than the time required to obtain the predetermined hardness defined by the formula 4 of the present invention. Heat-resistant peelability is improved.

これらの第1表、第2表及び第1図から、本発明の方法
により製造された合金は、半田又は錫めっき耐熱剥離性
が著しく改善され、電気電子部品の高゛信頼化にこたえ
られるとともに1強度、ばね特性、耐熱性と導電性を具
備し、不純物としてのo、Sを限定することにより、今
まで本合金の欠点であった折り曲げ性、半田付は性、め
っき性。
From these Tables 1 and 2 and Figure 1, it can be seen that the alloy produced by the method of the present invention has significantly improved heat peeling resistance of solder or tin plating, and can meet the requirements for increasing the reliability of electrical and electronic components. 1. It has strength, spring characteristics, heat resistance, and conductivity, and by limiting O and S as impurities, it improves bendability, solderability, and plating properties, which were the drawbacks of this alloy until now.

エツチング性が著しく改善されていることがわかる。It can be seen that the etching properties are significantly improved.

以下余白Below margin

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明例と比較例の(1)、(21)、(22
)の成分の合金を440℃にて所定時間時効処理したと
きの硬さと導電率の変化をそれぞれ示したものである。
Figure 1 shows (1), (21), (22) of the present invention example and comparative example.
) shows the changes in hardness and electrical conductivity when an alloy of the following components was aged at 440° C. for a predetermined period of time.

Claims (5)

【特許請求の範囲】[Claims] (1)Ni0.4〜4.0wt%、Si0.1〜1.0
wt%を含み、残部Cu及び不可避的不純物からなる銅
合金をT℃で時効処理する場合、下記[1]式で定義さ
れる硬さH(Hv)が得られる時間より長時間時効処理
を行うことを特徴とする錫又は錫合金めっきの耐熱剥離
性に優れた銅合金の製造方法。 H=H_1−(H_1−H_0)×0.25・・・・・
・・・・・・・・・・[1]H_0;上記銅合金の時効
処理前の硬さ(Hv)H_1;同銅合金をT℃で時効処
理を行うことによって得られた最高の硬さ(Hv)
(1) Ni0.4-4.0wt%, Si0.1-1.0
When aging a copper alloy consisting of wt% and the balance Cu and unavoidable impurities at T°C, the aging treatment is performed for a longer time than the time at which the hardness H (Hv) defined by the following formula [1] is obtained. A method for producing a copper alloy with excellent heat peeling resistance of tin or tin alloy plating, characterized by: H=H_1-(H_1-H_0)×0.25...
・・・・・・・・・・・・ [1] H_0: Hardness (Hv) of the above copper alloy before aging treatment H_1: The highest hardness obtained by aging the same copper alloy at T°C (Hv)
(2)時効処理を行った銅合金を5%以上の加工度で冷
間圧延し、その後必要に応じ350〜800℃の温度で
焼鈍を行うことを特徴とする特許請求の範囲第1項に記
載する錫又は錫合金めっきの耐熱剥離性に優れた銅合金
の製造方法。
(2) The aged copper alloy is cold rolled to a working degree of 5% or more, and then annealed at a temperature of 350 to 800°C as required. A method for producing a copper alloy with excellent heat peeling resistance for tin or tin alloy plating.
(3)Ni0.4〜4.0wt%、Si0.1〜1.0
wt%を含み、副成分として、Zn、P、Sn、As、
Cr、Mg、Mn、Sb、Fe、Co、Al、Ti、Z
r、Be、Ag、Pb、B、Hf、In、ランタノイド
元素からなる1種又は2種以上を総量で0.001〜3
.0wt%含み、残部Cu及び不可避的不純物からなる
銅合金をT℃で時効処理する場合、下記[2]式で定義
される硬さH(Hv)が得られる時間より長時間時効処
理を行うことを特徴とする錫又は錫合金めっきの耐熱剥
離性に優れた銅合金の製造方法。 H=H_1−(H_1−H_0)×0.25・・・・・
・・・・・・・・・・[2]H_0;上記銅合金の時効
処理前の硬さ(Hv)H_1;同銅合金をT℃で時効処
理を行うことによって得られた最高の硬さ(Hv)
(3) Ni0.4-4.0wt%, Si0.1-1.0
wt%, Zn, P, Sn, As, as subcomponents.
Cr, Mg, Mn, Sb, Fe, Co, Al, Ti, Z
One or more of r, Be, Ag, Pb, B, Hf, In, and lanthanide elements in a total amount of 0.001 to 3
.. When aging a copper alloy containing 0 wt% and the remainder Cu and unavoidable impurities at T°C, the aging treatment should be performed for a longer time than the time at which hardness H (Hv) defined by the following formula [2] is obtained. A method for producing a copper alloy with excellent heat peeling resistance of tin or tin alloy plating, characterized by: H=H_1-(H_1-H_0)×0.25...
・・・・・・・・・・・・ [2] H_0: Hardness (Hv) of the above copper alloy before aging treatment H_1: The highest hardness obtained by aging the same copper alloy at T°C (Hv)
(4)時効処理を行った銅合金を5%以上の加工度で冷
間圧延し、その後必要に応じ350〜800℃の温度で
焼鈍を行うことを特徴とする特許請求の範囲第3項に記
載する錫又は錫合金めっきの耐熱剥離性に優れた銅合金
の製造方法。
(4) Claim 3, characterized in that the aged copper alloy is cold rolled to a working degree of 5% or more, and then annealed at a temperature of 350 to 800°C as required. A method for producing a copper alloy with excellent heat peeling resistance for tin or tin alloy plating.
(5)銅合金のO濃度が0.0020wt%以下、S濃
度が0.0015wt%以下であることを特徴とする特
許請求の範囲第1項乃至第4項のそれぞれに記載する錫
又は錫合金めっきの耐熱剥離性に優れた銅合金の製造方
法。
(5) The tin or tin alloy described in each of claims 1 to 4, wherein the copper alloy has an O concentration of 0.0020 wt% or less and an S concentration of 0.0015 wt% or less. A method for producing a copper alloy with excellent heat-resistant plating peelability.
JP62096217A 1987-04-21 1987-04-21 Method for producing copper alloy having excellent heat-resistant peeling property with tin or tin alloy Expired - Lifetime JPH08957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62096217A JPH08957B2 (en) 1987-04-21 1987-04-21 Method for producing copper alloy having excellent heat-resistant peeling property with tin or tin alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62096217A JPH08957B2 (en) 1987-04-21 1987-04-21 Method for producing copper alloy having excellent heat-resistant peeling property with tin or tin alloy

Publications (2)

Publication Number Publication Date
JPS63262448A true JPS63262448A (en) 1988-10-28
JPH08957B2 JPH08957B2 (en) 1996-01-10

Family

ID=14159072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62096217A Expired - Lifetime JPH08957B2 (en) 1987-04-21 1987-04-21 Method for producing copper alloy having excellent heat-resistant peeling property with tin or tin alloy

Country Status (1)

Country Link
JP (1) JPH08957B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368734A (en) * 1989-08-07 1991-03-25 Yazaki Corp High strength conductive copper alloy excellent in bending resistance
JPH03162538A (en) * 1989-11-20 1991-07-12 Yazaki Corp High strength conductivity copper alloy having excellent flexibility
JPH03162539A (en) * 1989-11-20 1991-07-12 Yazaki Corp High strength conductivity copper alloy having excellent flexibility
JPH0428838A (en) * 1990-05-23 1992-01-31 Yazaki Corp High strength and high conductivity copper alloy excellent in bending resistance
JPH0741887A (en) * 1992-09-24 1995-02-10 Poongsan Corp Copper alloy for electric and electronic part and its preparation
US6205643B1 (en) * 1997-10-31 2001-03-27 Stolberger Metallwerke Gmbh & Co. Kg Method for manufacturing an electrically conductive metallic strip
US6638643B2 (en) * 2000-05-20 2003-10-28 Stolberger Metallwerke Gmbh & Co Kg Electrically conductive metal tape and plug connector made of it
US6641930B2 (en) * 2000-05-20 2003-11-04 Stolberger Metallwerke Gmbh & Co Kg Electrically conductive metal tape and plug connector
WO2005083137A1 (en) * 2004-02-27 2005-09-09 The Furukawa Electric Co., Ltd. Copper alloy
DE102007049383A1 (en) * 2007-10-15 2009-04-16 Wickeder Westfalenstahl Gmbh Composite material, in particular friction composite material and method for producing a composite material
JP2009144248A (en) * 2005-07-05 2009-07-02 Furukawa Electric Co Ltd:The Deposition type copper alloy material for electronic equipment, and method for production thereof
CN104388743A (en) * 2014-11-05 2015-03-04 无锡阳工机械制造有限公司 Brine corrosion resistant alloy
CN104388742A (en) * 2014-11-05 2015-03-04 无锡阳工机械制造有限公司 Brine corrosion resistant alloy
US20150240340A1 (en) * 2012-08-22 2015-08-27 Baoshida Swissmetal Ag Machinable copper alloys for electrical connectors
CN116411202A (en) * 2021-12-29 2023-07-11 无锡市蓝格林金属材料科技有限公司 Copper-tin alloy wire and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272339A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Lead material for electronic parts excelled in repeated bendability and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272339A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Lead material for electronic parts excelled in repeated bendability and its production

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368734A (en) * 1989-08-07 1991-03-25 Yazaki Corp High strength conductive copper alloy excellent in bending resistance
JPH0527699B2 (en) * 1989-08-07 1993-04-22 Yazaki Corp
JPH03162538A (en) * 1989-11-20 1991-07-12 Yazaki Corp High strength conductivity copper alloy having excellent flexibility
JPH03162539A (en) * 1989-11-20 1991-07-12 Yazaki Corp High strength conductivity copper alloy having excellent flexibility
JPH0530896B2 (en) * 1989-11-20 1993-05-11 Yazaki Corp
JPH0530895B2 (en) * 1989-11-20 1993-05-11 Yazaki Corp
JPH0428838A (en) * 1990-05-23 1992-01-31 Yazaki Corp High strength and high conductivity copper alloy excellent in bending resistance
JPH0741887A (en) * 1992-09-24 1995-02-10 Poongsan Corp Copper alloy for electric and electronic part and its preparation
US6205643B1 (en) * 1997-10-31 2001-03-27 Stolberger Metallwerke Gmbh & Co. Kg Method for manufacturing an electrically conductive metallic strip
US6638643B2 (en) * 2000-05-20 2003-10-28 Stolberger Metallwerke Gmbh & Co Kg Electrically conductive metal tape and plug connector made of it
US6641930B2 (en) * 2000-05-20 2003-11-04 Stolberger Metallwerke Gmbh & Co Kg Electrically conductive metal tape and plug connector
WO2005083137A1 (en) * 2004-02-27 2005-09-09 The Furukawa Electric Co., Ltd. Copper alloy
US8951371B2 (en) 2004-02-27 2015-02-10 The Furukawa Electric Co., Ltd. Copper alloy
JP2009144248A (en) * 2005-07-05 2009-07-02 Furukawa Electric Co Ltd:The Deposition type copper alloy material for electronic equipment, and method for production thereof
DE102007049383A1 (en) * 2007-10-15 2009-04-16 Wickeder Westfalenstahl Gmbh Composite material, in particular friction composite material and method for producing a composite material
US20150240340A1 (en) * 2012-08-22 2015-08-27 Baoshida Swissmetal Ag Machinable copper alloys for electrical connectors
CN104388743A (en) * 2014-11-05 2015-03-04 无锡阳工机械制造有限公司 Brine corrosion resistant alloy
CN104388742A (en) * 2014-11-05 2015-03-04 无锡阳工机械制造有限公司 Brine corrosion resistant alloy
CN116411202A (en) * 2021-12-29 2023-07-11 无锡市蓝格林金属材料科技有限公司 Copper-tin alloy wire and preparation method thereof

Also Published As

Publication number Publication date
JPH08957B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPH0372691B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
KR960010816B1 (en) Copper alloy lead frame material for semiconductor devices
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH0424417B2 (en)
JPS60245752A (en) High strength copper alloy having high electric conductivity
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS63125631A (en) High-tensile high-conductivity copper alloy
JPS639574B2 (en)
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPS6283441A (en) High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JP2683903B2 (en) High strength and high conductivity copper alloy with excellent solder heat resistance
JPH03188234A (en) High strength and high conductivity copper alloy having excellent thermal peeling resistance of solder
JPS6283443A (en) High strength copper alloy having high electric conductivity for lead material for semiconductor appratus of electrically conductive spring material
JPH03191035A (en) High strength and high conductivity copper alloy for electronic equipment
JPS6283442A (en) High strength copper alloy having high electric conductivity and superior resistance to stripping of solder by heat
JPH02173248A (en) Manufacture of copper alloy improved in adhesive strength of oxide film