JPS6283441A - High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat - Google Patents

High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat

Info

Publication number
JPS6283441A
JPS6283441A JP22368085A JP22368085A JPS6283441A JP S6283441 A JPS6283441 A JP S6283441A JP 22368085 A JP22368085 A JP 22368085A JP 22368085 A JP22368085 A JP 22368085A JP S6283441 A JPS6283441 A JP S6283441A
Authority
JP
Japan
Prior art keywords
weight
solder
heat
strength
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22368085A
Other languages
Japanese (ja)
Inventor
Masahiro Tsuji
正博 辻
Hidehiko So
宗 秀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP22368085A priority Critical patent/JPS6283441A/en
Publication of JPS6283441A publication Critical patent/JPS6283441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a high strength Cu alloy having high electric conductivity and superior resistance to the stripping of solder by heat by adding specified amounts of Sn, P and Mn to Cu. CONSTITUTION:The composition of a Cu alloy is composed of, by weight, 2-10% Sn, 0.005-0.08% P, 0.05-1% Mn and the balance Cu with inevitable impurities. The composition may further contain 0.05-1% Ni or 0.05-1% one or more among Al, Be, Co, Cr, Fe, Hf, In, Mo, Mg, Pb, Si, Te, Ti, Zn and Zr.

Description

【発明の詳細な説明】 〔目 的〕 本発明は、トランジスタや集積回路(IC)などの半導
体機器のリード材、コネクター、端子、リレー、スイッ
チ等の導電性ばね材に適する銅合金に関するものである
。特に半田耐熱剥離性(ここで耐熱剥離性とは半田付け
を行った材料が熱等の影響に対して耐剥離効果を有する
性質を意味する。)に優れた銅合金に関するものである
[Detailed Description of the Invention] [Object] The present invention relates to a copper alloy suitable for lead materials for semiconductor devices such as transistors and integrated circuits (ICs), and conductive spring materials for connectors, terminals, relays, switches, etc. be. In particular, it relates to a copper alloy that has excellent solder heat peeling resistance (here, heat peeling resistance refers to the property of a soldered material having a peeling resistant effect against the effects of heat, etc.).

〔従来技術及び問題点〕[Prior art and problems]

従来、半導体機器のリード材としては、熱膨張係数が低
く、素子及びセラミックとの接着及び封着性の良好なコ
バール(Fe−29Ni46Co) 、4.2合金(F
e−42Ni)などの高ニッケル合金が好んで使われて
きた。しかし、近年、半導体回路の集積度の向上に伴い
消費電力の高いICが多くなってきたことと、封止材料
として樹脂が多く使用され、かつ素子とリードフレーム
の接着も改良が加えられたことにより、使用されるリー
ド材も放熱性のよい銅基合金が使われるようになってき
た。
Conventionally, lead materials for semiconductor devices include Kovar (Fe-29Ni46Co) and 4.2 alloy (F
High nickel alloys such as e-42Ni) have been preferred. However, in recent years, as the degree of integration of semiconductor circuits has improved, the number of ICs with high power consumption has increased, resins have been increasingly used as sealing materials, and improvements have been made to the bonding between elements and lead frames. As a result, copper-based alloys with good heat dissipation properties have come to be used as lead materials.

一般に半導体機器のリード材としては以下のような特性
が要求されている。
Generally, lead materials for semiconductor devices are required to have the following properties.

(1)リードが電気信号伝達部であるとともに、パッケ
ージング工程中及び回路使用中に発生する熱を外部に放
出する機能を併せ持つことを要求される為、優れた熱及
び電気伝導性を示すもの。
(1) Leads must exhibit excellent thermal and electrical conductivity, as they are required to act as an electrical signal transmission unit and also have the function of discharging heat generated during the packaging process and circuit use to the outside. .

(2)リードとモールドとの密着性が半導体素子保護の
観点から重要であるため、リード材とモールド材の熱膨
張係数が近いこと。
(2) Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material should be similar.

(3)パッケージング時に種々の加熱工程が加わる為、
耐熱性が良好であること。
(3) Since various heating processes are added during packaging,
Good heat resistance.

(4)リードはリード材を抜き打ち加工し、又曲げ加工
して作製されるものがほとんどである為、これらの加工
性が良好なこと。
(4) Most leads are manufactured by punching or bending lead material, so the processability of these is good.

(5)リードは表面に貴金属のメッキを行う為、これら
貴金属とのメッキ密着性が良好であること。
(5) Since the surface of the lead is plated with precious metals, the plating adhesion with these precious metals must be good.

(6)パッケージング後に封止材の外に露出している、
いわゆるアウター・リード部に半田付けするものが多い
ので良好な半田付は性を示すこと。
(6) exposed outside the sealing material after packaging;
Many items are soldered to the so-called outer leads, so good soldering is a sign of good soldering.

(7)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(7) Good corrosion resistance from the standpoint of equipment reliability and lifespan.

(8)価格が低廉であること。(8) The price must be low.

これら各種の要求特性に対し、りん青銅及び若干の添加
元素を加えた改良合金が広く使われてきた。しかし、近
年、半導体に対する信頼度の要求がより厳しくなるとと
もに、小型化に対応した面付実装タイプが多くなってき
た為、従来問題とされていなかった半田耐熱剥離性が非
常に重要な特性項目となってきた。
Improved alloys containing phosphor bronze and some additional elements have been widely used to meet these various required properties. However, in recent years, reliability requirements for semiconductors have become more stringent, and surface mounting types that support miniaturization have become more common, so solder heat resistance and peelability, which had not been considered an issue in the past, has become an extremely important characteristic item. It has become.

すなわち、リードフレームとプリント基板とが半田付け
をされるが、使用中外的温度及び通電による発熱により
最高120℃程度までリードフレーム、及び半田付は部
が温度上昇する。このような温度に長時間さらされると
半田とリードフレームとの剥離が生じ、半導体が動作し
ない事が起こりえるため、寿命という観点から高信頼度
が要求される場合、この半田耐熱剥離性は最も重要な特
性の1つとなるわけである。とりわけ、PPP(FLA
T  PLAST丁CPACKAGE)  やP  L
 CC(PLAST丁CLEADED CHIP CA
RRIER)に代表される面付実装タイプはプリント基
板に装入するのではなく、面接触になる為、より半田耐
熱剥離性が重要になってくるわけである。
That is, the lead frame and the printed circuit board are soldered together, but during use, the temperature of the lead frame and the soldering area rises up to about 120° C. due to external temperatures and heat generated by energization. If exposed to such temperatures for a long period of time, the solder and lead frame may peel off, which may cause the semiconductor to malfunction. Therefore, when high reliability is required from the perspective of longevity, this solder heat peeling resistance is the best. This is one of the important characteristics. In particular, PPP (FLA
T PLAST CPACKAGE) and PLAST
CC (PLAST CLEADED CHIP CA)
The surface mounting type represented by RRIER) is not inserted into the printed circuit board, but is surface-contacted, so solder heat resistance and peelability are even more important.

又、従来、電気機器用ばね、計測器用ばね、スイッチ、
コネクター等に用いられるばね用材料としては、安価な
黄銅、優れたばね特性及び耐食性を有する洋白、あるい
は優れたばね特性を有するりん青銅が使用されていた。
In addition, conventional springs for electrical equipment, springs for measuring instruments, switches,
As materials for springs used in connectors and the like, inexpensive brass, nickel silver, which has excellent spring properties and corrosion resistance, or phosphor bronze, which has excellent spring properties, have been used.

しかし、黄銅は強度、−4= ばね特性が劣っており、洋白は導電性が悪い為、りん青
銅が信頼性の高い材料として最も広く使用されている。
However, brass has poor strength and spring characteristics, and nickel silver has poor conductivity, so phosphor bronze is the most widely used material with high reliability.

この導電性ばね材の分野でも、接触抵抗低減、耐食性の
向上等の理由でSn又は半田めっきが施され、又、半田
付けが実施される事が多い為、先に述べたような半田耐
熱剥離性が、近年の信頼性向上の要求から極めて重要と
なってきている。
Even in the field of conductive spring materials, Sn or solder plating is applied for reasons such as reducing contact resistance and improving corrosion resistance, and since soldering is often performed, solder heat-resistant peeling as mentioned above is applied. In recent years, reliability has become extremely important due to the demand for improved reliability.

こういった半田耐熱剥離性の厳しい要求に対して、現状
のりん青銅系合金ではこたえることができず、半田耐熱
剥離性を改善した高力高導電銅合金の現出が待たれてい
た。
Current phosphor bronze alloys cannot meet these strict requirements for heat-soldering peeling resistance, and the emergence of a high-strength, high-conductivity copper alloy with improved heat-soldering peeling resistance has been awaited.

〔発明の構成〕[Structure of the invention]

本発明はかかる点に鑑みなされたもので、従来の銅基合
金のもつ欠点を改良し、半導体機器のリード材及び導電
性ばね材として好適な諸特性を有する銅合金を提供しよ
うとするものである。
The present invention has been made in view of the above, and aims to improve the drawbacks of conventional copper-based alloys and provide a copper alloy that has various properties suitable for use as lead materials and conductive spring materials for semiconductor devices. be.

本発明は、 (1)Sn2.O超〜10,0重量%、P0.005−
0.08重量%、M n 0 、05−1 、0重量%
を含み、残部がCu及び不可避的不純物から成ることを
特徴とする半田耐熱剥離性に優れた高力高導電銅合金。
The present invention provides: (1) Sn2. O >10.0% by weight, P0.005-
0.08% by weight, M n 0 , 05-1, 0% by weight
A high-strength, high-conductivity copper alloy with excellent solder heat resistance and peelability, characterized in that the remainder consists of Cu and unavoidable impurities.

(2)Sn2.0超〜10,0重量%、P0.005〜
0.08重量%、Nj0.05〜1.0重量%、M n
 0 、05〜1. 、 Q重量%を含み、残部がCu
及び不可避的不純物から成ることを特徴とする半田耐熱
剥離性に優れた高力高導電銅合金。
(2) Sn over 2.0~10.0% by weight, P0.005~
0.08% by weight, Nj 0.05-1.0% by weight, Mn
0, 05-1. , Q% by weight, the balance being Cu
A high-strength, high-conductivity copper alloy with excellent solder heat resistance and peelability, which is characterized by comprising: and unavoidable impurities.

(3)Sn 2.0超〜10,0重量%、P0.005
−0.08重量%、M n 0 、05〜1 、0重量
%、及びAl、Be、C0.Cr、Fe、Hf、In、
M0.Mg、Pb、Si、Te、Ti、Zn、Zrの1
種又は2種以上を0.05−1゜0重量%含み、残部が
Cu及び不可避的不純物から成ることを特徴とする半田
耐熱剥離性に優れた高力高導電銅合金。
(3) Sn over 2.0 to 10.0% by weight, P0.005
-0.08% by weight, M n 0 , 05-1, 0% by weight, and Al, Be, C0. Cr, Fe, Hf, In,
M0. 1 of Mg, Pb, Si, Te, Ti, Zn, Zr
A high-strength, high-conductivity copper alloy with excellent solder heat resistance and peelability, characterized in that it contains 0.05-1.0% by weight of one or more species, and the remainder consists of Cu and unavoidable impurities.

(4)Sn2.0超〜10,0重量%、P 0.005
〜0.08重量%、Ni0.05〜1.0重量%、M 
n 0 、05−1 、0重量%、及びAl、Be、C
0.Cr、Fe、Hf、I n、M0.Mg、Pb、S
i、Te、Ti、Zn、Zrの1種又は2種以上を0.
05〜1.0重量%含み、残部がCu及び不可避的不純
物から成ることを特徴とする半田耐熱剥離性に優れた高
力高導電銅合金。
(4) Sn over 2.0 to 10.0% by weight, P 0.005
~0.08% by weight, Ni0.05-1.0% by weight, M
n 0 , 05-1, 0% by weight, and Al, Be, C
0. Cr, Fe, Hf, In, M0. Mg, Pb, S
i, Te, Ti, Zn, and Zr.
1. A high-strength, high-conductivity copper alloy with excellent solder heat resistance and peelability, characterized by containing 0.05 to 1.0% by weight, and the remainder consisting of Cu and unavoidable impurities.

であり、半導体機器のリード材用銅合金及び導電性ばね
材として優れた電気及び熱伝導性、耐熱性、加]:性、
メッキ密着性、半田付は性、耐食性、ばね特性を有する
ばかりでなく、半田耐熱剥離性をも著しく改良したこと
を特徴とするものである。
It has excellent electrical and thermal conductivity, heat resistance, and heat resistance as a copper alloy for semiconductor device lead materials and as a conductive spring material.
It is characterized by not only good plating adhesion, solderability, corrosion resistance, and spring characteristics, but also markedly improved solder heat resistance and peelability.

〔発明の詳細な説明〕[Detailed description of the invention]

次に本発明合金を構成する合金成分の限定理由を説明す
る。
Next, the reason for limiting the alloy components constituting the alloy of the present invention will be explained.

Snの含有量を2.0超〜10.0重量%とする理由は
、Sn含有量が2.0重量%以下ではPの共添を伴って
も十分な強度が得られず、逆にSn含有量が10.0重
量%を超えると、加工性の低下が著しく、価格も上昇す
るためである。P含有量を0.005〜0.08重量%
とじた理由は、P含有量が0.0.05重量%未満では
P含有による一7= 強度と耐熱性の向上は顕著ではなく、P含有量が060
8重量%をこえると半田耐熱剥離性が著しく劣化する為
である。従来のりん青銅は通常0゜1〜0.15重量%
前後であるが、半田耐熱剥離性に及ぼす影響を種々検討
したところ0.08重量%を超えたところで急激に悪影
響を及ぼす事がわかった為、」二限を0.08重量%と
じたものである。
The reason why the Sn content is set to more than 2.0 to 10.0% by weight is that if the Sn content is less than 2.0% by weight, sufficient strength cannot be obtained even with the co-addition of P; This is because if the content exceeds 10.0% by weight, the processability will be significantly reduced and the price will also increase. P content 0.005-0.08% by weight
The reason for this is that when the P content is less than 0.0.05% by weight, the improvement in strength and heat resistance is not significant;
This is because if it exceeds 8% by weight, the solder heat resistance and peelability will deteriorate significantly. Conventional phosphor bronze usually has a content of 0°1 to 0.15% by weight.
However, after various studies on the effect on solder heat resistance and peelability, it was found that there was a sudden negative effect when the amount exceeded 0.08% by weight. be.

Mn含有量を0.05〜]−00重重景とする理由は、
Mn添加により半田耐熱剥離性は非常に改善され、P含
有量の規定により著しく改善された半田耐熱剥離性をさ
らに著しく改善できるということが判明したが、Mn含
有量が0.05重量%未満ではその効果は小さく、逆に
Mn含有量が1゜0重量%を超えると導電率の低下が著
しくなるためである。なお、Mnを添加して、強度も上
昇させようとする場合には、0.2重量%を超える量を
添加するのが望ましい。
The reason why the Mn content is set to 0.05~]-00 is as follows.
It was found that the addition of Mn greatly improved the solder heat resistance and that it was possible to further improve the solder heat resistance that had been significantly improved by specifying the P content, but when the Mn content was less than 0.05% by weight, This effect is small, and conversely, if the Mn content exceeds 1.0% by weight, the conductivity decreases significantly. Note that when adding Mn to increase the strength, it is desirable to add it in an amount exceeding 0.2% by weight.

Ni含有量を0.05〜1.0重量%とする理由は、N
i含有量が0.05重重景未満では期待する強度が得ら
れず、かつ半田耐熱剥離性を改良する効果が得られない
為であり、1.0重量%を超えると導電率の低下が著し
いためである。さらに副成分としてAl、Be、C0.
Cr、Fe、Hf、In、M0.Mg、Pb、Si、、
Te、Ti、Zn、Zrの1種又は2種以上を含有する
と強度、ばね特性を向上させるが、その含有量が0.0
5重量%未満では効果があまり期待できず、又、1.0
重量%を超えると導電率の低下が著しくなることから0
.05〜1.0重量%とじた。前記副成分のZnも所定
量の添加において半田耐熱剥離性が良好となる。この半
田耐熱剥離性を特に良好にせしめるためにはZn含有量
を0.1〜0.6重量%とすることが望ましい。
The reason for setting the Ni content to 0.05 to 1.0% by weight is that N
This is because if the i content is less than 0.05% by weight, the expected strength will not be obtained and the effect of improving solder heat peeling resistance will not be obtained, and if it exceeds 1.0% by weight, the electrical conductivity will decrease significantly. It's for a reason. Further, as subcomponents Al, Be, C0.
Cr, Fe, Hf, In, M0. Mg, Pb, Si,...
Containing one or more of Te, Ti, Zn, and Zr improves strength and spring characteristics, but when the content is 0.0
If it is less than 5% by weight, little effect can be expected;
If it exceeds 0% by weight, the conductivity will decrease significantly.
.. 05 to 1.0% by weight. When the subcomponent Zn is added in a predetermined amount, the solder heat resistance and peelability become good. In order to particularly improve this solder heat resistance and peelability, it is desirable that the Zn content be 0.1 to 0.6% by weight.

〔効 果〕〔effect〕

このように本発明合金は、りん青銅系の成分を限定する
ことにより、又、Mnの微量添加により従来考えられな
かったような半田耐熱剥離性の著しい改善がはかられ、
電気・電子機器部品の高信頼化要求にこたえられるとと
もに、りん青銅のもつ優れた強度、ばね特性、耐熱性と
電気伝導性を具備し、半田付は性、メッキ密着性も良好
な銅合金である。なお、メッキ密着性は不純物中の酸素
含有量を低くする事により、改善される。本合金系では
好ましくは重量%で20ppm以下にすることが推奨さ
れる。又、熱膨張係数はプラスチックに近く、半導体機
器のリード材としてはプラスチックパッケージ用に適し
ている。従って、本発明合金は半導体機器のリード材及
び導電性ばね材として好適な材料であり、先行技術の合
金においてこのような総合的特性を兼備するものはない
In this way, the alloy of the present invention achieves a remarkable improvement in solder heat resistance and peelability, which was previously unimaginable, by limiting the phosphor bronze-based components and by adding a small amount of Mn.
In addition to meeting the demands for high reliability of electrical and electronic equipment parts, this copper alloy has the excellent strength, spring characteristics, heat resistance, and electrical conductivity of phosphor bronze, and also has good solderability and plating adhesion. be. Note that plating adhesion can be improved by lowering the oxygen content in impurities. In this alloy system, it is recommended that the content be preferably 20 ppm or less by weight. In addition, its coefficient of thermal expansion is close to that of plastic, making it suitable for plastic packages as a lead material for semiconductor devices. Therefore, the alloy of the present invention is suitable as a lead material and a conductive spring material for semiconductor devices, and no prior art alloy has such comprehensive properties.

以下に本発明材料を実施例をもって説明する。The material of the present invention will be explained below with reference to Examples.

〔実施例〕〔Example〕

第1表に示される本発明合金に係る各種成分組成のイン
ゴットを電気銅あるいは無酸素銅を原料として、高周波
溶解炉で大気、不活性又は還元性雰囲気中で溶解鋳造し
た。次にこれを800℃で熱間圧延して厚さ4mの板と
した後、固剤を行って冷間圧延で厚さ1.0mmとした
。これを500℃にて1一時間焼鈍したのち、冷間圧延
で0.8mmの板とし、リード材としての評価を行った
。評価としては強度、伸びを引張試験により、耐熱性を
加熱時間5分における軟化温度により、電気伝導性(放
熱性)を導電率(%IAC8)によって示した。 半田
付は性は、垂直式浸漬法で230±5℃の半田浴(すず
60%、鉛40%)に5秒間浸漬し、半田のぬれの状態
を目視観察することにより評価した。メッキ密着性は試
料に厚さ3μのA gメッキを施し、450℃にて5分
間加熱し、表面に発生するフクレの有無を目視観察する
ことにより評価した。これらの結果を比較合金とともに
第1表に示した。
Ingots having various compositions of the alloy of the present invention shown in Table 1 were melted and cast using electrolytic copper or oxygen-free copper as a raw material in a high-frequency melting furnace in air, an inert atmosphere, or a reducing atmosphere. Next, this was hot rolled at 800° C. to form a 4 m thick plate, and then solidified and cold rolled to a thickness of 1.0 mm. After annealing this at 500° C. for 11 hours, it was cold rolled into a 0.8 mm plate and evaluated as a lead material. For evaluation, strength and elongation were shown by a tensile test, heat resistance was shown by softening temperature at a heating time of 5 minutes, and electrical conductivity (heat dissipation) was shown by electrical conductivity (%IAC8). Solderability was evaluated by immersing the sample in a solder bath (60% tin, 40% lead) at 230±5° C. for 5 seconds using a vertical dipping method, and visually observing the state of solder wetting. Plating adhesion was evaluated by applying Ag plating to a thickness of 3 μm to a sample, heating it at 450° C. for 5 minutes, and visually observing the presence or absence of blisters on the surface. These results are shown in Table 1 along with comparative alloys.

又、ばね材としての評価を行う為に、同一合金の1.0
mm材を500℃にて1時間焼鈍したのち、冷間圧延で
厚さ0.5mmの板とし、これを150〜500℃の各
種温度で歪とり焼鈍を行い、強度、伸びを引張試験によ
り評価し、ばね性をKb値により評価した。これに電気
伝導度の結果を加え、比較合金とともに第2表に示した
In addition, in order to evaluate the material as a spring material, 1.0
After annealing the mm material at 500°C for 1 hour, cold rolling it into a 0.5mm thick plate, annealing it at various temperatures from 150 to 500°C to remove strain, and evaluating the strength and elongation using a tensile test. The spring properties were evaluated using the Kb value. In addition to this, the results of electrical conductivity are shown in Table 2 along with comparative alloys.

11一 本特許のポイントである半田耐熱剥離性については、素
材に5μの半田めっき(60%Sn、40%pb)を施
し、150℃の恒温槽に2000hrまで保持し、10
0hr毎に取り出して90°曲げ往復1回を施して半田
の剥離の有無を調べた。これらの結果を第1表及び第2
表に示した。
11 Regarding heat-resistant solder peeling, which is a key point of this patent, the material was plated with 5μ solder (60% Sn, 40% PB), kept in a constant temperature bath at 150°C for up to 2000 hours, and
It was taken out every 0 hours and bent at 90° and reciprocated once to check for peeling of the solder. These results are shown in Tables 1 and 2.
Shown in the table.

これらの第1表及び第2表から本発明の合金は半田耐熱
剥離性が著しく改善されて半田の安定性が向上し、高力
高導電銅合金として優れた特性を有することが明らかで
ある。
From these Tables 1 and 2, it is clear that the alloy of the present invention has significantly improved solder heat peeling resistance, improved solder stability, and has excellent properties as a high-strength, high-conductivity copper alloy.

以下余白Margin below

Claims (4)

【特許請求の範囲】[Claims] (1)Sn2.0超〜10.0重量%、P0.005〜
0.08重量%、Mn0.05〜1.0重量%を含み、
残部がCu及び不可避的不純物から成ることを特徴とす
る半田耐熱剥離性に優れた高力高導電銅合金。
(1) Sn over 2.0 ~ 10.0 wt%, P 0.005 ~
0.08% by weight, Mn 0.05-1.0% by weight,
A high-strength, high-conductivity copper alloy with excellent solder heat resistance and peelability, characterized in that the remainder consists of Cu and unavoidable impurities.
(2)Sn2.0超〜10.0重量%、P0.005〜
0.08重量%、Ni0.05〜1.0重量%、Mn0
.05〜1.0重量%を含み、残部がCu及び不可避的
不純物から成ることを特徴とする半田耐熱剥離性に優れ
た高力高導電銅合金。
(2) Sn over 2.0 ~ 10.0% by weight, P 0.005 ~
0.08% by weight, Ni0.05-1.0% by weight, Mn0
.. A high-strength, high-conductivity copper alloy having excellent solder heat resistance and peelability, characterized in that it contains 0.05 to 1.0% by weight, and the remainder consists of Cu and unavoidable impurities.
(3)Sn2.0超〜10.0重量%、P0.005〜
0.08重量%、Mn0.05〜1.0重量%、及びA
l、Be、Co、Cr、Fe、Hf、In、Mo、Mg
、Pb、Si、Te、Ti、Zn、Zrの1種又は2種
以上を0.05〜1.0重量%含み、残部がCu及び不
可避的不純物から成ることを特徴とする半田耐熱剥離性
に優れた高力高導電銅合金。
(3) Sn over 2.0 ~ 10.0% by weight, P 0.005 ~
0.08% by weight, Mn 0.05-1.0% by weight, and A
l, Be, Co, Cr, Fe, Hf, In, Mo, Mg
, Pb, Si, Te, Ti, Zn, and Zr in an amount of 0.05 to 1.0% by weight, with the remainder consisting of Cu and unavoidable impurities. Excellent high strength and high conductivity copper alloy.
(4)Sn2.0超〜10.0重量%、P0.005〜
0.08重量%、Ni0.05〜1.0重量%、Mn0
.05〜1.0重量%、及びAl、Be、Co、Cr、
Fe、Hf、In、Mo、Mg、Pb、Si、Te、T
i、Zn、Zrの1種又は2種以上を0.05〜1.0
重量%含み、残部がCu及び不可避的不純物から成るこ
とを特徴とする半田耐熱剥離性に優れた高力高導電銅合
金。
(4) Sn over 2.0 ~ 10.0% by weight, P 0.005 ~
0.08% by weight, Ni0.05-1.0% by weight, Mn0
.. 05 to 1.0% by weight, and Al, Be, Co, Cr,
Fe, Hf, In, Mo, Mg, Pb, Si, Te, T
0.05 to 1.0 of one or more of i, Zn, and Zr
A high-strength, high-conductivity copper alloy with excellent solder heat resistance and peelability, characterized in that the balance consists of Cu and unavoidable impurities.
JP22368085A 1985-10-09 1985-10-09 High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat Pending JPS6283441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22368085A JPS6283441A (en) 1985-10-09 1985-10-09 High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22368085A JPS6283441A (en) 1985-10-09 1985-10-09 High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat

Publications (1)

Publication Number Publication Date
JPS6283441A true JPS6283441A (en) 1987-04-16

Family

ID=16801964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22368085A Pending JPS6283441A (en) 1985-10-09 1985-10-09 High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat

Country Status (1)

Country Link
JP (1) JPS6283441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156242A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Copper-base alloy
US5024815A (en) * 1989-05-23 1991-06-18 Yazaki Corporation Copper alloy with phosphorus and iron
JPH06207233A (en) * 1986-04-10 1994-07-26 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment and its production
CN105695793A (en) * 2016-04-20 2016-06-22 苏州市相城区明达复合材料厂 High-performance bronze alloy for casting machining

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156242A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Copper-base alloy
JPH06207233A (en) * 1986-04-10 1994-07-26 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment and its production
US5024815A (en) * 1989-05-23 1991-06-18 Yazaki Corporation Copper alloy with phosphorus and iron
CN105695793A (en) * 2016-04-20 2016-06-22 苏州市相城区明达复合材料厂 High-performance bronze alloy for casting machining

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPH0372691B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH04224645A (en) Copper alloy for electronic parts
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH0424417B2 (en)
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPS6267144A (en) Copper alloy for lead frame
JPS6283441A (en) High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS639574B2 (en)
JPH02122035A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS6283443A (en) High strength copper alloy having high electric conductivity for lead material for semiconductor appratus of electrically conductive spring material
JP2683903B2 (en) High strength and high conductivity copper alloy with excellent solder heat resistance
JPS6283442A (en) High strength copper alloy having high electric conductivity and superior resistance to stripping of solder by heat
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPS63192834A (en) Copper alloy excellent in thermal peeling resistance of tin or tin-alloy coating layer
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH03191035A (en) High strength and high conductivity copper alloy for electronic equipment
JPH02173248A (en) Manufacture of copper alloy improved in adhesive strength of oxide film
JPS63125633A (en) High-tensile high-conductivity copper alloy