JPH02118037A - High tensile and high conductivity copper alloy having excellent adhesion of oxidized film - Google Patents

High tensile and high conductivity copper alloy having excellent adhesion of oxidized film

Info

Publication number
JPH02118037A
JPH02118037A JP27083688A JP27083688A JPH02118037A JP H02118037 A JPH02118037 A JP H02118037A JP 27083688 A JP27083688 A JP 27083688A JP 27083688 A JP27083688 A JP 27083688A JP H02118037 A JPH02118037 A JP H02118037A
Authority
JP
Japan
Prior art keywords
weight
less
copper alloy
oxide film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27083688A
Other languages
Japanese (ja)
Inventor
Yasuo Hirano
康雄 平能
Tamio Toe
東江 民夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP27083688A priority Critical patent/JPH02118037A/en
Publication of JPH02118037A publication Critical patent/JPH02118037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the title copper alloy by specifying the surface roughness of a copper alloy having specific compsn. constituted of Mg, P and Cu. CONSTITUTION:The high tensile and high conductivity copper alloy contains, by weight, 0.1 to 2.0% Mg and 0.001 to 0.04% P, furthermore contains as auxiliary components, at need, 0.001 to 3.0% of one or more kinds among Be, Al, Si, Ti, Cr, Mn, Fe, Co, Ni, Zn, Zr, Mo, Ag, Cd, Pb, In, Sn and B and the balance Cu with inevitable impurities. The alloy has <=0.20mum surface roughness in the center line average roughness (Ra) and <=1.5mum one in the maximum height (R max) and has excellent adhesion of an oxidized film and furthermore has various characteristics preferably suitable as a lead material for a semiconductor apparatus.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明はトランジスタや集積回路(rc)などの半導体
機器のリード材、コネクター、端子、リレー。
[Detailed Description of the Invention] C. Industrial Application Field] The present invention relates to lead materials, connectors, terminals, and relays for semiconductor devices such as transistors and integrated circuits (RC).

スイッチ等に用いられる、特に酸化膜密着性に優れた高
力高導電性銅合金に関するものである。
This invention relates to a high-strength, high-conductivity copper alloy that is used in switches and the like and has particularly excellent oxide film adhesion.

[従来の技術〕 従来、半導体機器のリード材としては、熱膨張係数が低
く、素子及びセラミックスの接着及び封着性の良好なコ
バール(Fe−29Ni−16Co) 、 42合金(
Fe−42Ni)などの高ニッケル合金が好んで使われ
てきた。しかし、近年、半導体回路の集積度の向上に伴
い消費電力の高いICが多くなってきたことと、封止材
料として樹脂が多く使用され、かつ素子とリードフレー
11の接着も改良が加えられたことにより、使用される
リード材も放熱性のよい銅基合金が使われるようになっ
てきた。
[Prior Art] Conventionally, lead materials for semiconductor devices include Kovar (Fe-29Ni-16Co) and 42 alloy (Fe-29Ni-16Co), which have a low coefficient of thermal expansion and have good adhesion and sealing properties between elements and ceramics.
High nickel alloys such as Fe-42Ni) have been preferred. However, in recent years, as the degree of integration of semiconductor circuits has improved, the number of ICs with high power consumption has increased, resins have been increasingly used as sealing materials, and improvements have been made to the adhesion between elements and lead frames 11. As a result, copper-based alloys with good heat dissipation properties have come to be used as lead materials.

又、従来、電気機器用ばね、計at+1器用ばね、スイ
ッチ、コネクター等に用いられるばね用材料としては、
安価な黄銅、優れたばね特性及び耐食性を有する洋白、
あるいは優れたばね特性を有するりん青銅が使用されて
いた。
In addition, conventional spring materials used for electrical equipment springs, AT+1 springs, switches, connectors, etc.
Cheap brass, nickel silver with excellent spring properties and corrosion resistance,
Alternatively, phosphor bronze, which has excellent spring properties, was used.

一方、Cu −Mg −P系銅合金もまた、強度、ばね
性、導電性、耐熱性、半田付は性、プレス成形性、半田
の耐熱剥離性、めっき密着性等に優れた材料として半導
体機器のリード材、端子、コネクター。
On the other hand, Cu-Mg-P copper alloys are also used as materials for semiconductor devices, with excellent strength, spring properties, conductivity, heat resistance, solderability, press formability, heat-resistant peeling properties of solder, and plating adhesion. lead materials, terminals, and connectors.

リレー等に用いられるようになってきている。It has come to be used in relays, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

と述の半導体機器特にリード材に対する各種の要求特性
に対し、従来より使用されている無酸素銅、錫入り銅、
りん青銅、コバール、42合金はいずれも一長一短があ
り、これらの特性をすべて満足するものではない。一方
、Cu −Mg −P系合金はE記の要求特性をかなり
満足するため、Cu−Mg−P系合金やそれに若干の添
加元素を加えた改良合金が開発されてきた。しかし、近
年半導体に対する信頼度の要求がより厳しくなるととも
に、小型化に対応した面付実装タイプが多くなってきた
ため、従来問題とされていなかった酸化膜密着性が非常
に重要な特性項目となってきた。
Oxygen-free copper, tin-containing copper,
Phosphor bronze, Kovar, and 42 alloy all have advantages and disadvantages, and do not satisfy all of these characteristics. On the other hand, since the Cu-Mg-P alloy satisfies the required properties listed in E, Cu-Mg-P alloys and improved alloys made by adding some additive elements have been developed. However, in recent years, reliability requirements for semiconductors have become more stringent, and surface mounting types have become more popular in response to miniaturization, so oxide film adhesion, which was not considered an issue in the past, has become an extremely important characteristic item. It's here.

すなわち、リードフレームはパンケージングの過程で熱
が加わるため、酸化膜が必ず生成される。
That is, since heat is applied to the lead frame during the pancaging process, an oxide film is inevitably generated.

樹脂等で封止された場合、樹脂と酸化膜、酸化膜゛と母
材との密着強度を比べると、酸化膜と母材の密着強度が
一般に低い。この場合、酸化膜と母材との間に剥離が生
じることがあり、そこから水分等が入り、ICの信頼性
を著しく低下させてしまう。従って、酸化膜密着性はリ
ードフレーム材等に用いられる高力高導電性銅合金とし
て最も重要な特性の一つである。
When sealed with a resin or the like, when comparing the adhesion strength between the resin and the oxide film, and between the oxide film and the base material, the adhesion strength between the oxide film and the base material is generally low. In this case, peeling may occur between the oxide film and the base material, allowing moisture and the like to enter therefrom, significantly reducing the reliability of the IC. Therefore, oxide film adhesion is one of the most important properties for a high-strength, high-conductivity copper alloy used for lead frame materials and the like.

このような酸化膜密着性の厳しい要求に対し、現状のC
u −Mg −P系合金では満足することができず、酸
化膜密着性を改善した高力高導電性銅合金の現出が待た
れていた。
In response to such strict requirements for oxide film adhesion, the current C
Since the u-Mg-P alloys were not satisfactory, a high-strength, high-conductivity copper alloy with improved oxide film adhesion was awaited.

〔発明の構成〕[Structure of the invention]

本発明はかかる点に鑑みなされたもので、特にCu −
Mg −P系合金を改良し、半導体機器のリード材とし
て好適な諸特性を有する銅合金を提供しようとするもの
である。
The present invention was made in view of this point, and in particular Cu-
The aim is to improve the Mg--P alloy and provide a copper alloy that has various properties suitable as a lead material for semiconductor devices.

すなわち、本発明は、 Mg 0.1重量%以上、2゜
O重量′糸以下、 P 0.001重量%以上、0.0
4重量%以下を含み、残部Cuおよび不可避的不純物か
らなり、表面粗さが、中心線平均粗さ(Ila)で0.
20μm以下、最大高さ(Rmax)で1.5μm以下
であることを特徴とする酸化膜密着性に優れた高カニ′
1°fJ導電性銅合金及びM、、0.1重量%以上、2
.0市は%以ド、l) 0.001重量%以上、0.0
4ffl量%以下を含み、さらに、副成分として、Be
−A1. Si、 Ti、 Cr、阿n、 Fe、 C
o、Ni、 Zn、 Zr、 Mo、 Ag、Cd、 
Pb、In、Sn、13からなる群より選択された1種
又は2種以りを総量で0.001重量%以上、3.0重
量%以下を含み、残部Cuおよび不可避的不純物からな
り1表面粗さが、中゛ 心線平均粗さ(Ra)で0.2
0μm以下、最大高さ(Rmax)で1.5μm以下で
あることを特徴とする酸化膜密着性に優れた高力高導電
性銅合金を提供しようとするものである。
That is, the present invention provides the following conditions: Mg 0.1% by weight or more, 2°O weight % or less, P 0.001% by weight or more, 0.0
4% by weight or less, with the remainder consisting of Cu and unavoidable impurities, and the surface roughness is 0.5% in terms of centerline average roughness (Ila).
20μm or less, maximum height (Rmax) is 1.5μm or less, and has excellent oxide film adhesion.
1°fJ conductive copper alloy and M, 0.1% by weight or more, 2
.. 0 city is less than %, l) 0.001% by weight or more, 0.0
Contains 4ffl amount% or less, and further contains Be as a subcomponent.
-A1. Si, Ti, Cr, An, Fe, C
o, Ni, Zn, Zr, Mo, Ag, Cd,
One surface contains one or more selected from the group consisting of Pb, In, Sn, and 13 in a total amount of 0.001% by weight or more and 3.0% by weight or less, the balance being Cu and unavoidable impurities. Roughness is medium. Core average roughness (Ra) is 0.2
The present invention aims to provide a high-strength, high-conductivity copper alloy with excellent oxide film adhesion, which is characterized by a maximum height (Rmax) of 0 μm or less and a maximum height (Rmax) of 1.5 μm or less.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、に1本発明合金を構成する合金成分の限定理由を
説明する。
The reasons for limiting the alloy components constituting the alloy of the present invention will be explained below.

Mg 0.1重量%以上、2.0重量%以下とするのは
、時効処理の際MgはPと微細なMg−P化合物による
析出硬化が期待でき、さらに、それに伴い耐熱性、めっ
き密着性、プレス成形性が向上するためであり、Mgの
含有量が0.1重量%未満ではそのような効果が期待で
きず、又2.0重量%を超えると未析出状態で固溶した
Mgにより導電率が低下するためである。
The reason for setting Mg to 0.1% by weight or more and 2.0% by weight or less is that Mg can be expected to undergo precipitation hardening due to P and fine Mg-P compounds during aging treatment, and this will also improve heat resistance and plating adhesion. This is because the press formability is improved, and if the Mg content is less than 0.1% by weight, such an effect cannot be expected, and if it exceeds 2.0% by weight, Mg dissolved in a solid solution in an unprecipitated state This is because the conductivity decreases.

P 0.001重量%以上、0.04重量%以下とする
のは、Pの含有量が0.001重量%未満ではMgとの
化合物の析出は不十分で、強度の向上は期待できず、0
.04重量%を超えると強度は向上するものの、酸化膜
密着性が著しく劣化するためである。
The P content is set at 0.001% by weight or more and 0.04% by weight or less because if the P content is less than 0.001% by weight, precipitation of compounds with Mg is insufficient and no improvement in strength can be expected. 0
.. This is because if it exceeds 0.4% by weight, the strength will improve, but the oxide film adhesion will deteriorate significantly.

さらに副成分として、 Be、A1. Si、 Ti、
 Cr、Mn、Fe、Co、Ni、 Zn、Zr、 M
o、Ag、Cd、 Pb、In、Sn、Bから成る群よ
り1種又は2種以上の元素を添加するのは、これらの添
加により導電率を大きく低下させずに強度を向上させる
ことができるためであり、添加量を総量で0.001重
量%以上、3.0重量%以下とするのは、0.001重
量%未満ではそのような効果は期待できず、3.0重量
%を超えると導電性が著しく低下するためである。
Further, as subcomponents, Be, A1. Si, Ti,
Cr, Mn, Fe, Co, Ni, Zn, Zr, M
Adding one or more elements from the group consisting of O, Ag, Cd, Pb, In, Sn, and B is because these additions can improve the strength without significantly reducing the electrical conductivity. Therefore, the reason why the total amount added is 0.001% by weight or more and 3.0% by weight or less is that such an effect cannot be expected if it is less than 0.001% by weight, and if it exceeds 3.0% by weight. This is because the conductivity decreases significantly.

表面粗さを中心線平均粗さ(Ra)で0.20μm以下
、最大高さ(RIIax)で1.5μm以下とするのは
、表面を平滑にすることにより酸化膜密着性を向上させ
るためである。
The reason why the surface roughness is set to 0.20 μm or less in center line average roughness (Ra) and 1.5 μm or less in maximum height (RIIax) is to improve oxide film adhesion by smoothing the surface. be.

次に本発明を実施例により具体的に説明する。Next, the present invention will be specifically explained using examples.

〔実施例〕〔Example〕

第1表に示す本発明合金に係る各種成分組成のインゴッ
トを、電気銅あるいは!!酸素銅を原料として高周波溶
解炉で、大気、又は不活性あるいは還元性雰囲気中で溶
解・鋳造を行った。次に、これらインゴットの面削を行
った後、850℃−で1時間加熱し、熱間圧延で5mの
板とした。この厚さ51mの板を950℃で1時間の溶
体化処理を行った後、冷間圧延で厚さ0.25nnの板
とし、350〜600℃の温度範囲で時効処理を適宜行
い供試材とした。
Electrolytic copper or! ! Oxygenated copper was used as a raw material and melted and cast in a high-frequency melting furnace in air or an inert or reducing atmosphere. Next, these ingots were subjected to face cutting, heated at 850° C. for 1 hour, and hot rolled into a 5 m plate. This 51 m thick plate was solution-treated at 950°C for 1 hour, then cold rolled into a 0.25 nn thick plate, and appropriately aged in the temperature range of 350 to 600°C to provide the sample material. And so.

リード材及びばね材としての評価項目として強度、引張
強さ、伸び−1ばね限界値により評価した。
The evaluation items for lead material and spring material were strength, tensile strength, and elongation-1 spring limit value.

電気伝導性(放熱性)は導flsJ!、(%IAC3)
によって示した。繰り返し曲げ性は曲げRo、25mm
の折り曲げ治具を用い、90°往復曲げを行い破断まで
の回数をill’l定した。
Electrical conductivity (heat dissipation) is conductivity! , (%IAC3)
It was shown by Repeated bendability is bending Ro, 25mm
Using a bending jig, 90° reciprocating bending was performed to determine the number of times until breakage.

半!’TI付は性は、垂直式浸漬法によって、230±
5℃の半Ell浴(Sn60%、Pb40%)に5秒間
浸漬して、半田のぬれの状態を目視1111r%するこ
とにより評価した。半田の耐熱剥離性は、上記の方法で
半田付けした試料を大気中150℃、500時間加熱後
、 0.25mRの90°曲げを行い剥離の有無を評価
した。
half! 'TI attached is 230± by vertical immersion method.
The solder wetting condition was visually evaluated by immersing it in a half-El bath (60% Sn, 40% Pb) for 5 seconds at 5° C. and checking the wettability of the solder at 1111r%. The heat peeling property of the solder was determined by heating a sample soldered by the above method at 150° C. for 500 hours in the air, and then bending it at 90° at 0.25 mR to evaluate the presence or absence of peeling.

メツキ密着性は試料に厚さ3μのAgメツキを施し、4
50℃にて5分間加熱し、表面に発生するフクレの有無
を目視観察することにより評価した。
The plating adhesion was determined by applying Ag plating with a thickness of 3μ to the sample.
The sample was heated at 50° C. for 5 minutes, and the presence or absence of blisters generated on the surface was visually observed to evaluate.

プレス成形性は打ち抜き加工後のプレス破面を観亭する
ことにより評価した。
Press formability was evaluated by observing the press fracture surface after punching.

耐熱性は加熱時間5分における軟化温度により評価した
Heat resistance was evaluated based on the softening temperature at a heating time of 5 minutes.

酸化膜密着性は試料を200〜500℃の温度にて3分
間大気中で加熱して表面に酸化膜を生成させ、試料表面
に粘着テープをはり、テープを試料から一気にはがして
酸化膜の剥離の有無により評価を行った。酸化膜が剥離
し始める温度を第1表に示す。
Oxide film adhesion is determined by heating the sample in the air at a temperature of 200 to 500°C for 3 minutes to form an oxide film on the surface, then applying adhesive tape to the sample surface and peeling off the tape from the sample at once to remove the oxide film. Evaluation was made based on the presence or absence of Table 1 shows the temperatures at which the oxide film begins to peel off.

第1表から明らかなように、本発明合金は、比較合金N
o12.15.16のりん青銅系合金と比べてみると酸
化膜密着性が優れていることがわかる。本発明合金No
3.4は比較合金No17.18と同一組成であるが、
表面粗さ、Ra、 Rm’axが小さいため酸化膜密着
性が優れている。また、比較合金N013は強度が低く
、比較合金N014は半田の耐熱剥離性が劣っている。
As is clear from Table 1, the alloy of the present invention is the comparative alloy N
When compared with the phosphor bronze alloy of o12.15.16, it can be seen that the oxide film adhesion is excellent. Invention alloy No.
3.4 has the same composition as comparative alloy No. 17.18, but
Excellent oxide film adhesion due to low surface roughness, Ra, and Rm'ax. Further, comparative alloy No. 013 has low strength, and comparative alloy No. 014 has poor solder heat peeling properties.

本発明合金は比較合金に比べ、半導体機器のリード材、
また端子、コネクター用材料として、バランスのとれた
良好な特性を有している。
Compared to comparative alloys, the alloy of the present invention can be used as a lead material for semiconductor devices.
It also has well-balanced properties as a material for terminals and connectors.

〔発明の効果〕〔Effect of the invention〕

本発明合金は酸化膜密着性が著しく改善され、リードフ
レーム等に用いる高力高導電性銅合金として好適である
The alloy of the present invention has significantly improved oxide film adhesion and is suitable as a high-strength, high-conductivity copper alloy for use in lead frames and the like.

以下余白Margin below

Claims (2)

【特許請求の範囲】[Claims] (1)Mg0.1重量%以上、2.0重量%以下、P0
.001重量%以上、0.04重量%以下を含み、残部
Cuおよび不可避的不純物からなり、表面粗さが、中心
線平均粗さ(Ra)で0.20μm以下、最大高さ(R
max)で1.5μm以下であることを特徴とする酸化
膜密着性に優れた高力高導電性銅合金。
(1) Mg 0.1% by weight or more, 2.0% by weight or less, P0
.. 0.001% by weight or more and 0.04% by weight or less, the balance consists of Cu and unavoidable impurities, and the surface roughness is 0.20μm or less in center line average roughness (Ra), maximum height (R
A high-strength, high-conductivity copper alloy with excellent oxide film adhesion, characterized by a max) of 1.5 μm or less.
(2)Mg0.1重量%以上、2.0重量%以下、P0
.001重量%以上、0.04重量%以下を含み、さら
に、副成分として、Be、Al、Si、Ti、Cr、M
n、Fe、Co、Ni、Zn、Zr、Mo、Ag、Cd
、Pb、In、Sn、Bからなる群より選択された1種
又は2種以上を総量で0.001重量%以上、3.0重
量%以下を含み、残部Cuおよび不可避的不純物からな
り、表面粗さが、中心線平均粗さ(Ra)で0.20μ
m以下、最大高さ(Rmax)で1.5μm以下である
ことを特徴とする酸化膜密着性に優れた高力高導電性銅
合金。
(2) Mg 0.1% by weight or more, 2.0% by weight or less, P0
.. 001% by weight or more and 0.04% by weight or less, and further contains Be, Al, Si, Ti, Cr, M as subcomponents.
n, Fe, Co, Ni, Zn, Zr, Mo, Ag, Cd
, Pb, In, Sn, and B in a total amount of 0.001% by weight or more and 3.0% by weight or less, and the remainder is Cu and unavoidable impurities, and the surface Roughness is 0.20μ in center line average roughness (Ra)
A high-strength, highly conductive copper alloy with excellent oxide film adhesion, characterized in that the maximum height (Rmax) is 1.5 μm or less.
JP27083688A 1988-10-28 1988-10-28 High tensile and high conductivity copper alloy having excellent adhesion of oxidized film Pending JPH02118037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27083688A JPH02118037A (en) 1988-10-28 1988-10-28 High tensile and high conductivity copper alloy having excellent adhesion of oxidized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27083688A JPH02118037A (en) 1988-10-28 1988-10-28 High tensile and high conductivity copper alloy having excellent adhesion of oxidized film

Publications (1)

Publication Number Publication Date
JPH02118037A true JPH02118037A (en) 1990-05-02

Family

ID=17491687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27083688A Pending JPH02118037A (en) 1988-10-28 1988-10-28 High tensile and high conductivity copper alloy having excellent adhesion of oxidized film

Country Status (1)

Country Link
JP (1) JPH02118037A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482276B2 (en) 2000-04-10 2002-11-19 The Furukawa Electric Co., Ltd. Copper alloy with punchability, and a manufacturing method thereof
US6893514B2 (en) 2000-12-15 2005-05-17 The Furukawa Electric Co., Ltd. High-mechanical strength copper alloy
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
US7172662B2 (en) 2000-07-25 2007-02-06 The Furukawa Electric Co., Ltd. Copper alloy material for parts of electronic and electric machinery and tools
US7727344B2 (en) 2000-04-28 2010-06-01 The Furukawa Electric Co., Ltd. Copper alloy suitable for an IC lead pin for a pin grid array provided on a plastic substrate
CN103388089A (en) * 2013-04-25 2013-11-13 刘春忠 Electric current making-breaking metal material and application thereof
CN104169448A (en) * 2012-07-02 2014-11-26 古河电气工业株式会社 Copper-alloy wire rod and manufacturing method therefor
CN112159911A (en) * 2020-10-26 2021-01-01 有研工程技术研究院有限公司 High-strength high-conductivity fatigue-resistant copper alloy and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482276B2 (en) 2000-04-10 2002-11-19 The Furukawa Electric Co., Ltd. Copper alloy with punchability, and a manufacturing method thereof
US7727344B2 (en) 2000-04-28 2010-06-01 The Furukawa Electric Co., Ltd. Copper alloy suitable for an IC lead pin for a pin grid array provided on a plastic substrate
US7172662B2 (en) 2000-07-25 2007-02-06 The Furukawa Electric Co., Ltd. Copper alloy material for parts of electronic and electric machinery and tools
US6893514B2 (en) 2000-12-15 2005-05-17 The Furukawa Electric Co., Ltd. High-mechanical strength copper alloy
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
CN104169448A (en) * 2012-07-02 2014-11-26 古河电气工业株式会社 Copper-alloy wire rod and manufacturing method therefor
CN103388089A (en) * 2013-04-25 2013-11-13 刘春忠 Electric current making-breaking metal material and application thereof
CN103388089B (en) * 2013-04-25 2015-06-17 刘春忠 Electric current making-breaking metal material and application thereof
CN112159911A (en) * 2020-10-26 2021-01-01 有研工程技术研究院有限公司 High-strength high-conductivity fatigue-resistant copper alloy and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS6254048A (en) Copper alloy for lead frame
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPS6314056B2 (en)
JPS6396237A (en) Material for electrically conductive parts of electronic and electrical appliance
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPS59145745A (en) Copper alloy for lead material of semiconductor apparatus
JPS6267144A (en) Copper alloy for lead frame
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPS594493B2 (en) Copper alloy for lead material of semiconductor equipment
JPH02122035A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS639574B2 (en)
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS63125628A (en) Copper alloy for semiconductor device lead material
JPS6283441A (en) High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat
JPH02145734A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS6157379B2 (en)
JPH02173248A (en) Manufacture of copper alloy improved in adhesive strength of oxide film