JPH02145734A - High strength and high conductivity copper alloy having excellent adhesion of oxidized film - Google Patents

High strength and high conductivity copper alloy having excellent adhesion of oxidized film

Info

Publication number
JPH02145734A
JPH02145734A JP29618588A JP29618588A JPH02145734A JP H02145734 A JPH02145734 A JP H02145734A JP 29618588 A JP29618588 A JP 29618588A JP 29618588 A JP29618588 A JP 29618588A JP H02145734 A JPH02145734 A JP H02145734A
Authority
JP
Japan
Prior art keywords
strength
alloy
copper alloy
oxide film
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29618588A
Other languages
Japanese (ja)
Inventor
Takaaki Hatano
波多野 隆昭
Tamio Toe
東江 民夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP29618588A priority Critical patent/JPH02145734A/en
Publication of JPH02145734A publication Critical patent/JPH02145734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the strength, electrical conductivity and adhesion of an oxidized film in the title copper alloy by specifying Fe, P, Zn and Cu and regulating the surface roughness to prescribed one. CONSTITUTION:The title copper alloy is formed with the compsn. constituted of, by weight, 1 to 3.5% Fe, 0.001 to 0.1% P, 0.05 to 5% Zn and the balance Cu. Then, the surface roughness is regulated to <=0.2mum center line average height (Ra) and <=1.5mum center line maximum height (R max). The above copper alloy has high strength and high conductivity and has excellent adhesion of an oxidized film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はトランジスタや集積回路などの半4体機器のリ
ード材やコネクター、端子、リレー、スイッチなどの導
電性ばね材に適する銅合金に関し、特に酸化膜密着性に
優れた高力高導電銅合金に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a copper alloy suitable for conductive spring materials such as lead materials and connectors, terminals, relays, switches, etc. of semi-quaternary devices such as transistors and integrated circuits. In particular, it relates to a high-strength, high-conductivity copper alloy with excellent oxide film adhesion.

〔従来の技術〕[Conventional technology]

従来、半導体機器のリード材としては、熱膨張係数が低
く、素子及びセラミックとの接着及び封止性の良好なコ
バール(Fe−29Ni−16Co) 、 42合金(
Fe−42Ni)などの高ニッケル合金が好んで使われ
てきた。しかし、近年、半導体回路の集積度の向上に伴
い消費電力の高いICが多くなってきたことと、封止材
料として樹脂が多く使用され、かつ素子とリードフレー
ムの接着も改良が加えられたことにより、使用されるリ
ード材も放熱性のよい銅基合金が使われるようになって
きた。
Conventionally, lead materials for semiconductor devices include Kovar (Fe-29Ni-16Co) and 42 alloy (Fe-29Ni-16Co), which have a low coefficient of thermal expansion and have good adhesion and sealing properties with elements and ceramics.
High nickel alloys such as Fe-42Ni) have been preferred. However, in recent years, as the degree of integration of semiconductor circuits has improved, the number of ICs with high power consumption has increased, resins have been increasingly used as sealing materials, and improvements have been made to the bonding between elements and lead frames. As a result, copper-based alloys with good heat dissipation properties have come to be used as lead materials.

一般に半導体機器のリード材としては以下のような特性
が要求されている9 (1)  リードが電気信号伝達部であるとともに、パ
ッケージング工程中及び回路使用中に発生する熱を外部
に放出する機能を併せ持つことを要求される為、優れた
熱及び電気伝導性を示すもの。
In general, lead materials for semiconductor devices are required to have the following properties.9 (1) The lead serves as an electrical signal transmission part, and also has the ability to release heat generated during the packaging process and circuit use to the outside. Because it is required to have both, it exhibits excellent thermal and electrical conductivity.

(2)  リードとモールドとの密着性が半導体素子保
護の観点から重要であるため、リード材とモールド材の
熱膨張係数が近いこと。
(2) Since the adhesion between the lead and the mold is important from the viewpoint of protecting the semiconductor element, the thermal expansion coefficients of the lead material and the mold material should be similar.

(3)パッケージング時に種々の加熱工程が加わる為、
耐熱性が良好であること。
(3) Since various heating processes are added during packaging,
Good heat resistance.

(4)パッケージング時に種々の加熱工程が加わる際、
樹脂と素材の間に酸化膜が生ずる為、酸化膜密着性が良
好なこと。
(4) When various heating processes are added during packaging,
Good oxide film adhesion as an oxide film is formed between the resin and the material.

(5)  リードはリード材を抜き打ち加工し、又曲げ
加工して作製されるものがほとんどである為。
(5) Most leads are made by punching and bending lead material.

これらの加工性が良好なこと。These must have good workability.

(6)  リードは表面に貴金属のメツキを行う為、こ
れら貴金属とのメツキ密着性が良好であること。
(6) Since the surface of the lead is plated with precious metals, the plating adhesion to these precious metals must be good.

(7)パッケージング後に封止材の外に露出している、
いわゆるアウター・リード部に半田付けするものが多い
ので良好な半田付は性を示すこと。
(7) Exposed outside the sealing material after packaging;
Many items are soldered to the so-called outer leads, so good soldering is a sign of good soldering.

(8)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(8) Good corrosion resistance from the viewpoint of equipment reliability and lifespan.

(9)価格が低廉であること。(9) The price must be low.

又、従来電気機器用ばね、計測器用ばね、スイッチ、コ
ネクター等に用いられるばね用材料としては安価な黄銅
、優れたばね特性及び耐食性を有する洋白あるいは優れ
たばね特性を有するりん青銅が使用されていた6 〔発明が解決しようとする問題点〕 上述の半導体機器に対する各種の要求特性に対し、従来
より使用されている無酸素銅、錫入り銅、りん青銅、コ
バール、42合金はいずれも一長一短があり、これらの
特性をすべて満足するものではない、一方、Cu−Fs
−P合金は上記の要求特性をかなり満足するため、Cu
 −Fe −P合金やそれに若干の添加元素を加えた改
良合金が開発されてきている。
In addition, in the past, inexpensive brass, nickel silver, which has excellent spring properties and corrosion resistance, or phosphor bronze, which has excellent spring properties, were used as spring materials for electrical equipment springs, measuring instrument springs, switches, connectors, etc. 6 [Problems to be solved by the invention] Oxygen-free copper, tin-containing copper, phosphor bronze, Kovar, and 42 alloys that have been used conventionally all have advantages and disadvantages in meeting the various characteristics required for semiconductor devices as described above. However, Cu-Fs does not satisfy all of these characteristics.
-P alloy satisfies the above required properties to a large extent, so Cu
-Fe-P alloys and improved alloys with some additional elements have been developed.

しかし、近年半導体に対する信頼度の要求がより厳しく
なるとともに、小型化に対応した面付実装タイプが多く
なってきたため、従来問題とされていなかった酸化膜密
着性が非常に重要な特性項目となってきた。
However, in recent years, reliability requirements for semiconductors have become more stringent, and surface mounting types have become more popular in response to miniaturization, so oxide film adhesion, which was not considered an issue in the past, has become an extremely important characteristic item. It's here.

すなわち、リードフレームはパッケージングの過程で熱
が加わるため、酸化膜が必ず生成される。
That is, since heat is applied to the lead frame during the packaging process, an oxide film is inevitably generated.

樹脂等で封止された場合、樹脂と酸化膜、酸化膜と母材
との密着強度を比べると、酸化膜と母材の密着強度が一
般に低い。この場合、酸化膜と母材との間に剥離が生じ
ることがあり、そこから水分等が入り、ICの信頼性を
著しく低下させてしまう、従って、酸化膜密着性はリー
ドフレーム材等に用いられる高力高導電銅合金として最
も重要な特性の一つである。
When sealed with a resin or the like, the adhesion strength between the resin and the oxide film, and the oxide film and the base material are compared, and the adhesion strength between the oxide film and the base material is generally low. In this case, peeling may occur between the oxide film and the base material, allowing moisture etc. to enter from there, significantly reducing the reliability of the IC. This is one of the most important properties for a high-strength, high-conductivity copper alloy.

このような酸化膜密着性の厳しい要求に対し、現状まで
に開発されたCu −Fe −P合金では満足すること
ができず、酸化膜密着性を改善した高力高導電銅合金の
現出が待たれていた。
These strict requirements for oxide film adhesion cannot be met with the Cu-Fe-P alloys developed to date, and the development of high-strength, high-conductivity copper alloys with improved oxide film adhesion is required. It was waiting.

〔発明の構成〕[Structure of the invention]

本発明は、かかる点に鑑みなされたもので、特にCu−
Fe−P系合金を改良し、半導体機器のリード材として
好適な諸特性を有する銅合金を提供しようとするもので
ある。
The present invention was made in view of this point, and in particular, Cu-
The present invention aims to improve Fe--P alloys and provide copper alloys with various properties suitable as lead materials for semiconductor devices.

すなわち、本発明は、Fe 1.0〜3.5vt%、P
O1001〜0.10wt%、Zn0.05〜5.Ov
t%を含み、残部Cuおよび不可避的不純物からなり、
表面粗さが中心線平均粗さ(Ra)で0.20μm以下
、同最大高さ(Rmax)で1.50μ重以下であるこ
とを特徴とする酸化膜密着性に優れた高力高導電銅合金
及びFe 1,0〜3.5wt%、P 0.001〜0
.10wt%、Zn0.05〜5.0wt%、さらに副
成分としてA1.Be、 Cr、 Hf、 Mg、 M
n、 Ni、Sn、 Ti、Co、 Zrからなる群よ
り選択された1種又は2種以上を総量でo、oot〜3
.0wt%を含み、残部Cuおよび不可避的不純物から
なり、表面粗さが中心線平均粗さ(Ra)で0.20μ
m以下、同最大高さ(Rmax)で1.50μm以下で
あることを特徴とする酸化膜密着性に優れた高力高導電
銅合金に関する。
That is, in the present invention, Fe 1.0 to 3.5vt%, P
O1001~0.10wt%, Zn0.05~5. Ov
t%, the balance consists of Cu and unavoidable impurities,
High-strength, high-conductivity copper with excellent oxide film adhesion, characterized by surface roughness of 0.20 μm or less in center line average roughness (Ra) and 1.50 μm or less in maximum height (Rmax). Alloy and Fe 1.0-3.5wt%, P 0.001-0
.. 10wt%, Zn0.05-5.0wt%, and A1. Be, Cr, Hf, Mg, M
n, Ni, Sn, Ti, Co, and Zr in a total amount of one or more selected from the group consisting of o, oot~3
.. Contains 0wt%, the remainder consists of Cu and unavoidable impurities, and the surface roughness is 0.20μ in center line average roughness (Ra)
The present invention relates to a high-strength, high-conductivity copper alloy with excellent oxide film adhesion, characterized in that the maximum height (Rmax) is 1.50 μm or less.

〔発明の詳細な説明〕[Detailed description of the invention]

次に本発明合金を構成する合金成分の限定理由を説明す
る。
Next, the reason for limiting the alloy components constituting the alloy of the present invention will be explained.

Feは、時効処理を行うことにより、Pと金属間化合物
を形成し、強度及び耐熱性を向上させる成分であるが、
含有量を1.0〜3゜5tit%とする理由は、1.0
wt%未満では前述の効果がなく、3,5wt%を超え
ると加工性、半田付は性の劣化及び著しい導電率の低下
が起こるためである。
Fe is a component that forms an intermetallic compound with P and improves strength and heat resistance when subjected to aging treatment.
The reason why the content is set to 1.0 to 3°5 tit% is that 1.0
This is because if it is less than 3.5 wt%, the above-mentioned effect will not be obtained, and if it exceeds 3.5 wt%, there will be deterioration in workability and soldering properties, and a significant decrease in electrical conductivity.

PはFeと金属間化合物を形成する成分であるが、含有
量を0.OO1〜0.10wt%とする理由は、 0,
001wt%未満では前述の効果がなく、0.10νt
%を超えると半田耐熱剥離性、酸化膜密着性の劣化及び
著しい導電率の低下が起こるためである。
P is a component that forms an intermetallic compound with Fe, but the content is reduced to 0. The reason for setting OO1 to 0.10wt% is 0,
If it is less than 0.001wt%, the above-mentioned effect is not present, and 0.10νt
%, deterioration of solder heat resistance, oxide film adhesion, and significant decrease in electrical conductivity occur.

Zn含有量を0.05〜5,0wt%とする理由は、Z
n添加により半田耐熱剥離性は改善されるが、Zn含有
量が0.05νt%未満ではその効果が小さく、逆にZ
n含有量が5,0wt%を超えると導電率の低下が著し
くなるためである。
The reason for setting the Zn content to 0.05 to 5.0 wt% is that Z
Solder heat resistance is improved by adding n, but the effect is small when the Zn content is less than 0.05 νt%;
This is because when the n content exceeds 5.0 wt%, the conductivity decreases significantly.

また副成分としてA1、Be、 CI、Hf、 Mg、
 Mn、 Ni。
Also, as subcomponents A1, Be, CI, Hf, Mg,
Mn, Ni.

Sn、 Ti、 Co、 Zrからなる群より1種又は
2種以上を総量でo、ooi〜3 、 Ovt%含有す
る理由は、導電率を大きく低下させずに強度を向上させ
る効果が期待できるためで、添加量が総量で0.001
wt%未満では前述の効果が期待できず、逆に3.0w
t%を超えると著しい導電率の低下が起こるためである
The reason for containing one or more types from the group consisting of Sn, Ti, Co, and Zr in a total amount of o, ooi to 3, Ovt% is because it can be expected to have the effect of improving the strength without significantly reducing the electrical conductivity. So, the total amount added is 0.001
If it is less than 3.0 wt%, the above-mentioned effect cannot be expected;
This is because if it exceeds t%, a significant decrease in conductivity occurs.

さらに、表面粗さを中心線平均粗さ(Ra)で0.20
μ票以下、最大高さ(Rmax)で1.5μm以下とす
るのは2表面を平滑にすることにより酸化膜密着性を向
上させるためである。
Furthermore, the center line average roughness (Ra) of the surface roughness is 0.20.
The reason why the maximum height (Rmax) is 1.5 μm or less is to improve the adhesion of the oxide film by smoothing the two surfaces.

〔実施例〕〔Example〕

次に本発明を具体的に説明する。 Next, the present invention will be specifically explained.

第1表に示す本発明合金及び比較合金に係る各種成分組
成のインゴット(30m X 60++n X 120
m)を溶製し、インゴット固剤を行った後、850℃で
熱間圧延を行い、8+osの厚さとし、開削後1.5n
++まで冷間圧延した。その後850℃にて10分間溶
体化処理を行い、10℃/see以上の速度で冷却し、
酸洗後、厚さ0.25mまで冷間圧延を行った。これら
の供試材を真空焼鈍炉にて表面が酸化されない様に40
0℃にて所定時間時効処理を行った。なお、供試材の表
面粗さは、最終冷間圧延のロールの種類を換えることに
より調整した。
Ingots of various compositions related to the present invention alloy and comparative alloy shown in Table 1 (30m x 60++n x 120
After melting m) and solidifying the ingot, hot rolling was performed at 850°C to a thickness of 8+os, and the thickness was 1.5n after cutting.
Cold rolled to ++. Thereafter, solution treatment was performed at 850°C for 10 minutes, and cooling was performed at a rate of 10°C/see or higher.
After pickling, cold rolling was performed to a thickness of 0.25 m. These test materials were heated in a vacuum annealing furnace at 40°C to prevent the surface from being oxidized.
Aging treatment was performed at 0°C for a predetermined period of time. The surface roughness of the sample material was adjusted by changing the type of roll used in the final cold rolling.

リード材及びばね材としての評価項目として強度、伸び
を引張試験により、曲げ性を90°繰り返し曲げ試験に
より一往復を1回として破断までの曲げ回数を測定し、
電気伝導性(放熱性)を導電率(%IAC5)によって
示した。半田付は性は、垂直式浸漬法で230±5℃の
半田浴(錫60%、鉛40%)に5秒間浸漬し、半田の
ぬれの状態を目視w4察することにより評価した。メツ
キ密着性は試料に厚さ3μのAgメツキを施し、450
℃にて5分間加熱し、表面に発生するフクレの有無を目
視観察することにより評価した。
As evaluation items for lead materials and spring materials, strength and elongation were measured by a tensile test, and bendability was measured by a 90° repeated bending test, with each reciprocation being considered as one time, and the number of bends until breakage.
Electrical conductivity (heat dissipation) was shown by electrical conductivity (%IAC5). Solderability was evaluated by immersing the sample in a solder bath (60% tin, 40% lead) at 230±5° C. for 5 seconds using a vertical dipping method, and visually observing the wetting state of the solder w4. The plating adhesion was determined by applying Ag plating with a thickness of 3μ to the sample, and
The sample was heated at ℃ for 5 minutes, and the presence or absence of blisters generated on the surface was evaluated by visual observation.

ばね性の評価は、ばね限界値を測定することにより行っ
た。
The springiness was evaluated by measuring the spring limit value.

半田耐熱剥離性については、素材に5μの半田めっき(
60%Sn、40%pb)を施し、150℃の恒温槽に
2000hrまで保持し、100hr毎に取り出して9
0゜曲げ往復1回を施して半田の剥離の有無を調べた。
Regarding solder heat resistance and peelability, the material is coated with 5μ solder plating (
60%Sn, 40%PB) and kept in a constant temperature bath at 150°C for up to 2000hr, taking it out every 100hr and
The solder was bent back and forth once at 0°, and the presence or absence of peeling of the solder was examined.

酸化膜密着性については、素材を200℃〜500℃で
3分間大気中で加熱して表面に酸化膜を生成させ、その
酸化膜に粘着テープをはった後、−気にはがして酸化膜
の剥離の有無により評価を行った。
Regarding oxide film adhesion, heat the material at 200°C to 500°C for 3 minutes in the air to generate an oxide film on the surface, apply adhesive tape to the oxide film, and then carefully peel off the oxide film. Evaluation was made based on the presence or absence of peeling.

第1表から明らかなように本発明合金のNα1は基本合
金系のもので、引張強さ58.8kgf/ rm2.導
電率48.1%lAC3を有し、高強度と高導電を兼ね
備えている。また、表面粗さをRaで0.088μ厘、
Rmaxで0.275μmに調整しているため酸化膜の
密着性も良好である。さらに、半田耐熱剥離性を始め、
その他の特性についても優れていることがわかる。
As is clear from Table 1, Nα1 of the alloy of the present invention is a basic alloy type and has a tensile strength of 58.8 kgf/rm2. It has a conductivity of 48.1% lAC3, and has both high strength and high conductivity. In addition, the surface roughness is Ra: 0.088μrin,
Since the Rmax is adjusted to 0.275 μm, the adhesion of the oxide film is also good. Furthermore, including solder heat resistance and peelability,
It can be seen that other properties are also excellent.

本合金のNa3は基本合金系に副成分として0.82w
t%Co、0,36vt%Alを添加し、本発明合金の
Nα1に比べ、強度を若干向上させたものである。強度
を向上させた分、若干導電率が低下しているが、その他
の特性については本発明合金の走1とほぼ同等の特性を
有する。
Na3 in this alloy is 0.82w as a subcomponent in the basic alloy system.
By adding t% Co and 0.36vt% Al, the strength is slightly improved compared to Nα1 of the alloy of the present invention. Although the electrical conductivity is slightly lower due to the improved strength, other properties are almost the same as those of the alloy of the present invention, No. 1.

比較合金の&1はFe添加量が少ないため強度がつ・鉢
発明合金に比べ劣っている。比較合金のHa 2は基本
合金系のものであるが表面粗さが大きく、またN114
はPの添加量が多いため、どちらも酸化膜密着性が本発
明合金に比べ劣っている。比較合金の&3はFe添加量
が多いため、メツキ密着性、くり返し曲げ性、導電率が
本発明合金に比べ劣って、いる、また、比較合金の恥5
はZnを添加していないため、半田耐熱剥離性が本発明
合金に比べ劣っている。一方比較合金島6はZn添加量
が多いため、導電性が本発明合金に比べ劣っている。
Comparative alloy &1 has a small amount of added Fe, so its strength is inferior to the invented alloy. The comparative alloy Ha 2 is based on the basic alloy, but has a large surface roughness, and N114
Because of the large amount of P added, the oxide film adhesion of both alloys is inferior to that of the alloy of the present invention. Comparative alloy &3 has a large amount of Fe added, so its plating adhesion, repeated bending properties, and electrical conductivity are inferior to the invention alloy.
Since this alloy does not contain Zn, its solder heat peeling resistance is inferior to that of the alloy of the present invention. On the other hand, comparative alloy island 6 has a large amount of Zn added, so its conductivity is inferior to that of the alloy of the present invention.

本発明合金は高力高導電を有し、しかも、酸化膜密着性
に優れていることがわかる。また、半田耐熱剥離性を始
め、その他の特性についても良好である。
It can be seen that the alloy of the present invention has high strength and high conductivity, and also has excellent oxide film adhesion. In addition, other properties including solder heat resistance and peelability are also good.

〔発明の効果〕 本発明合金は半導体機器リード材等に用いる高力高導電
銅合金として好適である。
[Effects of the Invention] The alloy of the present invention is suitable as a high-strength, high-conductivity copper alloy used for semiconductor device lead materials and the like.

以下余白Margin below

Claims (2)

【特許請求の範囲】[Claims] (1)Fe1.0〜3.5wt%、P0.001〜0.
10wt%、Zn0.05〜5.0wt%を含み、残部
Cuおよび不可避的不純物からなり、表面粗さが中心線
平均粗さ(Ra)で0.20μm以下、同最大高さ(R
max)で1.50μm以下であることを特徴とする酸
化膜密着性に優れた高力高導電銅合金。
(1) Fe1.0-3.5wt%, P0.001-0.
10wt%, Zn0.05-5.0wt%, the balance consists of Cu and unavoidable impurities, the surface roughness is 0.20μm or less in centerline average roughness (Ra), and the same maximum height (R
A high-strength, high-conductivity copper alloy with excellent oxide film adhesion, characterized by a max) of 1.50 μm or less.
(2)Fe1.0〜3.5wt%、P0.001〜0.
10wt%、Zn0.05〜5.0wt%、さらに副成
分としてAl、Be、Cr、Hf、Mg、Mn、Ni、
Sn、Ti、Co、Zrからなる群より選択された1種
又は2種以上を総量で0.001〜3.0wt%を含み
、残部Cuおよび不可避的不純物からなり、表面粗さが
中心線平均粗さ(Ra)で0.20μm以下、同最大高
さ(Rmax)で1.50μm以下であることを特徴と
する酸化膜密着性に優れた高力高導電銅合金。
(2) Fe1.0-3.5wt%, P0.001-0.
10 wt%, Zn0.05 to 5.0 wt%, and further subcomponents such as Al, Be, Cr, Hf, Mg, Mn, Ni,
Contains one or more selected from the group consisting of Sn, Ti, Co, and Zr in a total amount of 0.001 to 3.0 wt%, the balance being Cu and unavoidable impurities, and the surface roughness is equal to the center line average. A high-strength, high-conductivity copper alloy with excellent oxide film adhesion, characterized by a roughness (Ra) of 0.20 μm or less and a maximum height (Rmax) of 1.50 μm or less.
JP29618588A 1988-11-25 1988-11-25 High strength and high conductivity copper alloy having excellent adhesion of oxidized film Pending JPH02145734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29618588A JPH02145734A (en) 1988-11-25 1988-11-25 High strength and high conductivity copper alloy having excellent adhesion of oxidized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29618588A JPH02145734A (en) 1988-11-25 1988-11-25 High strength and high conductivity copper alloy having excellent adhesion of oxidized film

Publications (1)

Publication Number Publication Date
JPH02145734A true JPH02145734A (en) 1990-06-05

Family

ID=17830269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29618588A Pending JPH02145734A (en) 1988-11-25 1988-11-25 High strength and high conductivity copper alloy having excellent adhesion of oxidized film

Country Status (1)

Country Link
JP (1) JPH02145734A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041584A1 (en) 2006-10-02 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electrical and electronic components
JP4608025B1 (en) * 2010-06-03 2011-01-05 三菱伸銅株式会社 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion
JP2012111999A (en) * 2010-11-25 2012-06-14 Mitsubishi Shindoh Co Ltd Cu-Fe-P SYSTEM COPPER ALLOY STRIP MATERIAL FOR ELECTRONIC APPARATUS EXCELLENT IN SURFACE ROUGHENING PROPERTY AND RESIN ADHESION PROPERTY
JP2014189852A (en) * 2013-03-27 2014-10-06 Kobe Steel Ltd Copper alloy strip for led lead frame

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041584A1 (en) 2006-10-02 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electrical and electronic components
US8063471B2 (en) 2006-10-02 2011-11-22 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic parts
EP2388347A1 (en) 2006-10-02 2011-11-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
EP2388349A1 (en) 2006-10-02 2011-11-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
EP2388348A1 (en) 2006-10-02 2011-11-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
JP4608025B1 (en) * 2010-06-03 2011-01-05 三菱伸銅株式会社 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion
JP2011252215A (en) * 2010-06-03 2011-12-15 Mitsubishi Shindoh Co Ltd Copper alloy strip material excellent in heat dissipation and adhesion and prepared for electronic apparatus
JP2012111999A (en) * 2010-11-25 2012-06-14 Mitsubishi Shindoh Co Ltd Cu-Fe-P SYSTEM COPPER ALLOY STRIP MATERIAL FOR ELECTRONIC APPARATUS EXCELLENT IN SURFACE ROUGHENING PROPERTY AND RESIN ADHESION PROPERTY
JP2014189852A (en) * 2013-03-27 2014-10-06 Kobe Steel Ltd Copper alloy strip for led lead frame

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPH0372691B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH04224645A (en) Copper alloy for electronic parts
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH0424417B2 (en)
JPH02145734A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPS6267144A (en) Copper alloy for lead frame
JPH02122035A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPS639574B2 (en)
JPS63125628A (en) Copper alloy for semiconductor device lead material
JPS6283441A (en) High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS63192834A (en) Copper alloy excellent in thermal peeling resistance of tin or tin-alloy coating layer
JPH02141551A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH02173248A (en) Manufacture of copper alloy improved in adhesive strength of oxide film
JPH03191034A (en) Copper alloy for lead material of semiconductor device excellent in adhesion for oxidized film
JPH03191035A (en) High strength and high conductivity copper alloy for electronic equipment