JPH02141551A - High strength and high conductivity copper alloy having excellent adhesion for oxidized film - Google Patents

High strength and high conductivity copper alloy having excellent adhesion for oxidized film

Info

Publication number
JPH02141551A
JPH02141551A JP29364988A JP29364988A JPH02141551A JP H02141551 A JPH02141551 A JP H02141551A JP 29364988 A JP29364988 A JP 29364988A JP 29364988 A JP29364988 A JP 29364988A JP H02141551 A JPH02141551 A JP H02141551A
Authority
JP
Japan
Prior art keywords
alloy
copper alloy
strength
oxide film
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29364988A
Other languages
Japanese (ja)
Inventor
Hiroaki Watanabe
宏昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP29364988A priority Critical patent/JPH02141551A/en
Publication of JPH02141551A publication Critical patent/JPH02141551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide the title copper alloy with high strength and high electric conductivity and to improve its adhesion for an oxidized film by incorporating specific amounts of Fe, Co and P into a copper alloy and regulating the surface roughness of the alloy to the specific value or below. CONSTITUTION:The compsn. of the high strength and high conductivity copper alloy is formed with, by weight, 0.2 to 4.0% Fe, 0.2 to 2.5% Co, 0.001 to 0.2% P and the balance Cu with inevitable impurities. The alloy having the compsn. is refined into an ingot, which is rolled to regulate the surface roughness to <=0.2mum in the center line average roughness Ra and to <=1.50mum in the maximum height Rmax. In this way, high strength and high conductivity copper alloy having excellent adhesion of an oxidized film can be obtd. If required, as auxiliary components, 0.001 to 3.0wt.% total amounts of one or more kinds selected from Al, Be, Cr, Hf, Mg, Mn, Ni, Sn, Ti, Zn and Zr are incorporated into the alloy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はトランジスタや集積回路などの半導体機器のリ
ード材やコネクター、端子、リレー、スイッチなどの導
電性ばね材に適する銅合金に関し、特に酸化膜密着性に
優れた高力高導電銅合金に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a copper alloy suitable for lead materials of semiconductor devices such as transistors and integrated circuits, and conductive spring materials such as connectors, terminals, relays, and switches. This invention relates to a high-strength, high-conductivity copper alloy with excellent film adhesion.

〔従来の技術〕[Conventional technology]

従来、半導体機器のリード材としては、熱膨張係数が低
く、素子及びセラミックとの接着及び封止性の良好なコ
バール(Fe−29Ni−16Co) 、 42合金(
Fe−42Ni)などの高ニッケル合金が好んで使われ
てきた。しかし、近年、半心体回路の集積度の向上に伴
い消費電力の高いICが多くなってきたことと、封止材
料として樹脂が多く使用され、かつ素子とリードフレー
ムの接着も改良が加えられたことにより、使用されるリ
ード材も放熱性のよい銅基合金が使われるようになって
きた。
Conventionally, lead materials for semiconductor devices include Kovar (Fe-29Ni-16Co) and 42 alloy (Fe-29Ni-16Co), which have a low coefficient of thermal expansion and have good adhesion and sealing properties with elements and ceramics.
High nickel alloys such as Fe-42Ni) have been preferred. However, in recent years, the number of ICs with high power consumption has increased due to the improvement in the degree of integration of half-core circuits, resins are often used as sealing materials, and improvements have been made to the bonding between elements and lead frames. As a result, copper-based alloys with good heat dissipation properties have come to be used as lead materials.

一般に半導体機器のリード材としては以下のような特性
が要求されている。
Generally, lead materials for semiconductor devices are required to have the following properties.

(1)  リードが電気信号伝達部であるとともに、パ
ッケージング工程中及び回路使用中に発生する熱を外部
に放出する機能を併せ持つことを要求される為、優れた
熱及び電気伝導性を示すもの。
(1) Leads must exhibit excellent thermal and electrical conductivity, as they are required to act as an electrical signal transmission part and also have the function of discharging heat generated during the packaging process and circuit use to the outside. .

(2)  リードとモールドとの密着性が半導体素子保
護の観点から重要であるため、リード椙とモールド材の
熱膨張係数が近いこと。
(2) Since the adhesion between the lead and the mold is important from the perspective of protecting the semiconductor element, the coefficient of thermal expansion of the lead and the mold material should be similar.

(3)パッケージング時に種々の加熱工程が加わる為、
耐熱性が良好であること。
(3) Since various heating processes are added during packaging,
Good heat resistance.

(4)パッケージング時に種々の加熱工程が加わる際、
樹脂と素材の間に酸化膜が生ずる為、酸化膜密着性が良
好なこと。
(4) When various heating processes are added during packaging,
Good oxide film adhesion as an oxide film is formed between the resin and the material.

(5)  リードはリード材を抜き打ち加工し、又曲げ
加工して作製されるものがほとんどである為、これらの
加工性が良好なこと。
(5) Most leads are manufactured by punching or bending lead material, so the workability of these materials should be good.

(6)  リードは表面に貴金属のメツキを行う為、こ
れら貴金属とのメツキ密着性が良好であること。
(6) Since the surface of the lead is plated with precious metals, the plating adhesion to these precious metals must be good.

(7)パッケージング後に封止材の外に露出している、
いわゆるアウター・リード部に半田付けするものが多い
ので良好な半田付は性を示すこと。
(7) Exposed outside the sealing material after packaging;
Many items are soldered to the so-called outer leads, so good soldering is a sign of good soldering.

(8)機器の信頼性及び寿命の観点から耐食性が良好な
こと。
(8) Good corrosion resistance from the viewpoint of equipment reliability and lifespan.

(9)価格が低置であること。(9) Prices are low.

又、従来電気機器用ばね、計測器用ばね、スイッチ、コ
ネクター等に用いられるばね用材料としては安価な黄銅
、優れたばね特性及び耐食性を有する洋白あるいは優れ
たばね特性を有するりん青銅が使用されていた。
In addition, in the past, inexpensive brass, nickel silver, which has excellent spring properties and corrosion resistance, or phosphor bronze, which has excellent spring properties, were used as spring materials for electrical equipment springs, measuring instrument springs, switches, connectors, etc. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の半導体機器に対する各種の要求特性に対し、従来
より使用されている無酸素銅、錫入り銅、りん青銅、コ
バール、42合金は、いずれも一長一短があり、これら
の特性をすべて満足するものではない。一方、Cu −
Fe −P合金は、上記の要求特性をかなり満足するた
め、Cu −Fe −P合金やそれに若干の添加元素を
加えた改良合金が開発されてきている。
Oxygen-free copper, tin-containing copper, phosphor bronze, Kovar, and 42 alloys that have been used conventionally all have advantages and disadvantages in meeting the various characteristics required for semiconductor devices as described above, and none of them can satisfy all of these characteristics. do not have. On the other hand, Cu −
Since the Fe-P alloy satisfies the above-mentioned required properties to a large extent, Cu-Fe-P alloys and improved alloys with some additive elements added thereto have been developed.

しかし、近年、半導体に対する信頼度の要求がより厳し
くなるとともに、小型化に対応した面付実装タイプが多
くなってきたため、従来問題とされていなかった酸化膜
密着性が非常に重要な特性項目となってきた。
However, in recent years, reliability requirements for semiconductors have become more stringent, and surface mounting types have become more popular in response to miniaturization, so oxide film adhesion, which had not been considered an issue in the past, has become an extremely important characteristic. It has become.

すなわち、リードフレームはパッケージングの過程で熱
が加わるため、酸化膜が必ず生成される。
That is, since heat is applied to the lead frame during the packaging process, an oxide film is inevitably generated.

樹脂等で封止された場合、樹脂と酸化膜、酸化膜と母材
との密着強度を比べると、酸化膜と母材の密着強度が一
般に低い。この場合、酸化膜と母材との間に剥離が生じ
ることがあり、そこから水分等が入り、ICの信頼性を
著しく低下させてしまう。従って、酸化膜密着性はリー
ドフレーム材等に用いられる高力高導電銅合金として最
も重要な特性の一つである。
When sealed with a resin or the like, the adhesion strength between the resin and the oxide film, and the oxide film and the base material are compared, and the adhesion strength between the oxide film and the base material is generally low. In this case, peeling may occur between the oxide film and the base material, allowing moisture and the like to enter therefrom, significantly reducing the reliability of the IC. Therefore, oxide film adhesion is one of the most important properties for a high-strength, high-conductivity copper alloy used for lead frame materials and the like.

このような酸化膜密着性の厳しい要求に対し、現゛状ま
でに開発されたCu −Fe −P合金では満足するこ
とができず、酸化膜密着性を改善した高力高導電合金の
現出が待たれていた。
These strict requirements for oxide film adhesion cannot be met with the Cu-Fe-P alloys developed to date, and the development of a high-strength, high-conductivity alloy with improved oxide film adhesion is required. was awaited.

〔発明の構成〕[Structure of the invention]

本発明は、かかる点に鑑みなされたもので、特にCu 
−Fe −P系合金を改良し、半導体機器のリード材と
して好適な諸特性を有する銅合金を提供しようとするも
のである。
The present invention was made in view of this point, and in particular,
The objective is to improve the -Fe-P alloy and provide a copper alloy that has various properties suitable as a lead material for semiconductor devices.

すなわち、Fe 0.2〜4.0wt%、Co 0.2
〜2.5wt%、P 0.001〜0.2%+1%を含
み、残部Cuおよび不可避的不純物からなり、表面粗さ
が中心線平均粗さ(Ra)で0.20μm以下、同最大
高さ(Rmax)で1.50μm以下であることを特徴
とする酸化膜密着性に優れた高力高導電銅合金及びFe
 0.2〜4.0wt%、Co 0.2〜2.5wt%
、P0.0O1−0,2wt%、さらに副成分としてA
1. Be、 Cr、 Hf、 Mg、 Mn、 Ni
、 Sn、 Ti、 Zn、 Zrからなる群より選択
された1種又は2種以上を総量で0.001〜3.0w
t%を含み、残部Cuおよび不可避的不純物からなり、
表面粗さが中心線平均粗さ(Ra)で0.20μm以下
、同最大高さ(Rmax)で1.50μ+i以下である
ことを特徴とする酸化膜密着性に優れた高力高導電鋼合
金にある。
That is, Fe 0.2-4.0wt%, Co 0.2
~2.5wt%, P 0.001~0.2%+1%, the balance consists of Cu and unavoidable impurities, the surface roughness is 0.20μm or less in center line average roughness (Ra), the same maximum height High-strength, high-conductivity copper alloy and Fe with excellent oxide film adhesion characterized by an Rmax of 1.50 μm or less
0.2-4.0wt%, Co 0.2-2.5wt%
, P0.0O1-0.2wt%, and A as a subcomponent
1. Be, Cr, Hf, Mg, Mn, Ni
, Sn, Ti, Zn, and one or more selected from the group consisting of Zr in a total amount of 0.001 to 3.0w
t%, the balance consists of Cu and unavoidable impurities,
A high-strength, high-conductivity steel alloy with excellent oxide film adhesion, characterized by a surface roughness of 0.20 μm or less in center line average roughness (Ra) and 1.50 μ+i or less in maximum height (Rmax). It is in.

〔発明の詳細な説明〕[Detailed description of the invention]

次に、本発明合金を構成する合金成分の限定理由を説明
する。
Next, the reasons for limiting the alloy components constituting the alloy of the present invention will be explained.

Feは時効処理を行うことにより、Pと金属間化合物を
形成し、強度及び耐熱性を向上させる成分であるが、含
有量を0.2〜4.0wt%とする理由は、0.2wt
%未満では前述の効果がなく、4.0t1t%を超える
と加工性、メツキ密着性の劣化及び著しい導電率の低下
が起こるためである。COもFeと同様に、時効処理を
行うことにより、Pと金属間化合物を形成し、強度及び
耐熱性を向上させる成分であるが、含有量を0.2〜2
 、5vt%とする理由は、0.2wt%未満では前述
の効果がなく、2.5νt%を超えると加工性が劣化し
、導電率が著しく低下するためである。Pは、Fe及び
COと金属間化合物を形成する成分であるが、含有量を
0.001〜0.2wt%とする理由は、0.001w
t%未満では前述の効果がなく、0.2wt%を超える
と半田付は性、酸化膜密着性の劣化及び導電率が低下す
るためである。
Fe is a component that forms an intermetallic compound with P through aging treatment and improves strength and heat resistance, but the reason for setting the content to 0.2 to 4.0 wt% is that
If it is less than 4.0t1t%, the above-mentioned effect will not be obtained, and if it exceeds 4.0t1t%, deterioration of workability, plating adhesion, and significant decrease in electrical conductivity will occur. Like Fe, CO is a component that forms an intermetallic compound with P and improves strength and heat resistance when subjected to aging treatment.
, 5vt% is because if it is less than 0.2wt%, the above-mentioned effect will not be obtained, and if it exceeds 2.5vt%, the workability will deteriorate and the electrical conductivity will drop significantly. P is a component that forms an intermetallic compound with Fe and CO, but the reason why the content is set to 0.001 to 0.2 wt% is that 0.001w
This is because if it is less than t%, the above-mentioned effect will not be obtained, and if it exceeds 0.2wt%, solderability, oxide film adhesion will deteriorate, and electrical conductivity will decrease.

また、副成分としてA1. Be、 Cr、 Hf、 
Mg、 Mn、Ni、 Sn、 Ti、 Zn、 Zr
からなる群より選択された1種又は2種以上を総量で0
.001〜3.(ht%含有する理由は、導電率を大き
く低下させずに強度を向上させる効果が期待できるため
で、添加量が総量で0.001wt%未満では前述の効
果が期待できず、逆に3.0wt% を超えると著しい
導電率の低下が起こるためである。なお、これらの副成
分中、ZnとMnは、添加することにより半田耐熱剥離
性が向上する元素であり、Zn、Mnのどちらかもしく
は両方を0.01〜1 、0wt%添加することが推奨
される。
In addition, A1. Be, Cr, Hf,
Mg, Mn, Ni, Sn, Ti, Zn, Zr
The total amount of one or more selected from the group consisting of 0
.. 001-3. (The reason for adding ht% is that it can be expected to have the effect of improving the strength without significantly reducing the conductivity. If the total amount added is less than 0.001wt%, the above-mentioned effect cannot be expected, and on the contrary, 3. This is because if the content exceeds 0 wt%, a significant decrease in electrical conductivity will occur.Among these subcomponents, Zn and Mn are elements that improve solder heat resistance and peelability when added. Alternatively, it is recommended to add 0.01 to 1.0 wt% of both.

また、表面粗さを中心線平均粗さ(Ra)で0.20μ
m以下、最大高さ(Rmax)で1.5μm以下とする
のは表面を平滑にすることにより酸化膜密着性を向上さ
せるためである。
In addition, the surface roughness is 0.20μ in center line average roughness (Ra).
The reason for setting the maximum height (Rmax) to be 1.5 μm or less is to improve oxide film adhesion by smoothing the surface.

〔実施例〕〔Example〕

次に、本発明を具体的に説明する。第1表に示す本発明
合金及び比較合金に係る各種成分組成のインゴット(3
0mn X 60mn X 120nwn )を溶製し
、インゴット面前を行った後、850℃で熱間圧延を行
い8nnの厚さとし、固剤後1.5mmまで冷間圧延し
たその後、850℃にて10分間溶体化処理を行い、1
0’T:/see以上の速度で冷却し、酸洗後厚さ0.
25nm+まで冷間圧延を行った。これらの供試材を真
空焼鈍炉にて表面が酸化されない様に400℃にて所定
時間時効処理を行った。なお、供試材の表面粗さは最終
冷間圧延のロールの種類を換えることにより調整した。
Next, the present invention will be specifically explained. Ingots (3
0mm x 60mn x 120nwn) was melted, the ingot was prepared, hot rolled at 850°C to a thickness of 8nn, solidified and cold rolled to a thickness of 1.5mm, and then heated at 850°C for 10 minutes. Perform solution treatment, 1
Cool at a rate of 0'T:/see or higher, and after pickling, the thickness is 0.
Cold rolling was performed to 25 nm+. These test materials were aged in a vacuum annealing furnace at 400° C. for a predetermined period of time to prevent surface oxidation. The surface roughness of the sample material was adjusted by changing the type of roll used in the final cold rolling.

リード材及びばね材としての評価項目として強度、伸び
を引張試験により、曲げ性を90°繰り返し曲げ試験に
より一往復を1回として破断までの曲げ回数を測定し、
電気伝導性(放熱性)を導電率(%IACS)によって
示した。半田付は性は、垂直式浸漬法で230±5℃の
半田浴(錫60%、釦40%)に5秒間浸漬し、半田の
ぬれの状態を目視[1することにより評価した。メツキ
密着性は試料に厚さ3μのAgメツキを施し、450℃
にて5分間加熱し、表面に発生するフクレの有無を目視
amす4、ことにより評価した。
As evaluation items for lead materials and spring materials, strength and elongation were measured by a tensile test, and bendability was measured by a 90° repeated bending test, with each reciprocation being considered as one time, and the number of bends until breakage.
Electrical conductivity (heat dissipation) was shown by electrical conductivity (%IACS). Solderability was evaluated by immersing the product in a solder bath (60% tin, 40% button) at 230±5° C. for 5 seconds using a vertical dipping method, and visually observing the state of solder wetting. The plating adhesion was determined by applying Ag plating with a thickness of 3μ to the sample at 450°C.
The sample was heated for 5 minutes, and the presence or absence of blisters on the surface was evaluated visually.

ばね性の評価は、ばね限界値を測定することにより行っ
た。
The springiness was evaluated by measuring the spring limit value.

酸化膜密着性については、素材を200〜500℃で3
分間大気中で加熱して表面に酸化膜を生成させ、その酸
化膜に粘着テープをはった後、−気に、はがして酸化膜
の剥離の有無により評価を行った。
Regarding oxide film adhesion, the material was heated at 200 to 500℃ to
An oxide film was formed on the surface by heating in the air for a minute, and an adhesive tape was attached to the oxide film, and then it was peeled off and evaluated based on whether or not the oxide film peeled off.

第1表から明らかなように、本発明合金の&1は基本合
金系のもので、引張強さ59.1kgf/WIs2、導
電率48.2%IACSを有し、高強度と高導電を兼ね
備えている。また、表面粗さRaで0.082μ−、R
maxで0.283μmに調整しているため酸化膜の密
着性も良好である。さらに、その他の特性についても優
れていることが分かる。本発明合金のNα3は基本合金
系に副成分として0.21wt%h、0.11wt%B
eを添加し、本発明合金のNα1に比べ強度を若干向上
させたものである。強度を向上させた分、若干導電率が
低下しているが、その他の特性については、本発明合金
の&1と同等の特性を有する。
As is clear from Table 1, the alloy of the present invention &1 is a basic alloy type, and has a tensile strength of 59.1 kgf/WIs2 and an electrical conductivity of 48.2% IACS, and has both high strength and high electrical conductivity. There is. In addition, the surface roughness Ra is 0.082 μ-, R
Since the maximum thickness is adjusted to 0.283 μm, the adhesion of the oxide film is also good. Furthermore, it can be seen that other properties are also excellent. Nα3 of the alloy of the present invention is 0.21wt%h and 0.11wt%B as subcomponents in the basic alloy system.
This alloy has a slightly improved strength compared to Nα1, which is the alloy of the present invention. Although the electrical conductivity is slightly lower due to the improved strength, other properties are equivalent to &1 of the invention alloy.

比較合金のNα1はFeの添加量が少なく、また比較合
金の&6はPを添加していないため、どちらも強度が本
発明合金に比べ劣っている。比較合金の&2は基本合金
系のものであるが、表面粗さが大きく、また比較合金&
4はPの添加量が多いため、どちらも酸化膜密着性が本
発明合金に比べ劣っている。比較合金の勲3はFeの添
加量が多いため、メツキ密着性、くり返し曲げ性、導電
率が本発明合金に比べ劣っている。また、比較合金のN
a5はCo添加量が多いため、くり返し曲げ性、導電率
が本発明合金に比べ劣っている。
The comparative alloy Nα1 has a small amount of Fe added, and the comparative alloy &6 does not have P added, so both have inferior strength compared to the invention alloy. Comparative alloy &2 is based on the basic alloy, but has a large surface roughness, and
Since No. 4 has a large amount of P added, both have inferior oxide film adhesion compared to the invention alloy. Since the comparative alloy Isao 3 has a large amount of Fe added, its plating adhesion, repeated bending properties, and electrical conductivity are inferior to the alloys of the present invention. In addition, the comparison alloy N
Since a5 has a large amount of Co added, its repeated bendability and electrical conductivity are inferior to those of the alloy of the present invention.

本発明合金は、高強度、高導電を有し、しかも酸化膜密
着性に優れていることが分かる。また、その他の特性に
ついても良好である。
It can be seen that the alloy of the present invention has high strength and high conductivity, and has excellent oxide film adhesion. In addition, other properties are also good.

〔発明の効果〕〔Effect of the invention〕

本発明合金は、半導体機器のリード材や高力高導電銅合
金として好適である。
The alloy of the present invention is suitable as a lead material for semiconductor devices or a high-strength, high-conductivity copper alloy.

以下余白 =11−Margin below =11-

Claims (2)

【特許請求の範囲】[Claims] (1)Fe 0.2〜4.0wt%、Co 0.2〜2
.5wt%、P 0.001〜0.2wt%を含み、残
部Cuおよび不可避的不純物からなり、表面粗さが中心
線平均粗さ(Ra)で0.20μm以下、同最大高さ(
Rmax)で1.50μm以下であることを特徴とする
酸化膜密着性に優れた高力高導電銅合金。
(1) Fe 0.2-4.0wt%, Co 0.2-2
.. 5 wt%, P 0.001 to 0.2 wt%, the remainder consists of Cu and unavoidable impurities, the surface roughness is 0.20 μm or less in center line average roughness (Ra), and the same maximum height (
A high-strength, high-conductivity copper alloy with excellent oxide film adhesion, characterized by an Rmax) of 1.50 μm or less.
(2)Fe 0.2〜4.0wt%、Co 0.2〜2
.5wt%、P 0.001〜0.2wt%、さらに副
成分としてAl、Be、Cr、Hf、Mg、Mn、Ni
、Sn、Ti、Zn、Zrからなる群より選択された1
種又は2種以上を総量で0.001〜3.0wt%を含
み、残部Cuおよび不可避的不純物からなり、表面粗さ
が中心線平均粗さ(Ra)で0.20μm以下、同最大
高さ(Rmax)で1.50μm以下であることを特徴
とする酸化膜密着性に優れた高力高導電銅合金。
(2) Fe 0.2-4.0wt%, Co 0.2-2
.. 5wt%, P 0.001 to 0.2wt%, and further subcomponents such as Al, Be, Cr, Hf, Mg, Mn, Ni
, Sn, Ti, Zn, and Zr.
Contains 0.001 to 3.0 wt% of the species or two or more species in total, the balance consists of Cu and unavoidable impurities, and the surface roughness is 0.20 μm or less in center line average roughness (Ra), and the same maximum height A high-strength, high-conductivity copper alloy with excellent oxide film adhesion, characterized in that (Rmax) is 1.50 μm or less.
JP29364988A 1988-11-22 1988-11-22 High strength and high conductivity copper alloy having excellent adhesion for oxidized film Pending JPH02141551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29364988A JPH02141551A (en) 1988-11-22 1988-11-22 High strength and high conductivity copper alloy having excellent adhesion for oxidized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29364988A JPH02141551A (en) 1988-11-22 1988-11-22 High strength and high conductivity copper alloy having excellent adhesion for oxidized film

Publications (1)

Publication Number Publication Date
JPH02141551A true JPH02141551A (en) 1990-05-30

Family

ID=17797446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29364988A Pending JPH02141551A (en) 1988-11-22 1988-11-22 High strength and high conductivity copper alloy having excellent adhesion for oxidized film

Country Status (1)

Country Link
JP (1) JPH02141551A (en)

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPH0372691B2 (en)
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH0372045A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPH0424417B2 (en)
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS60245752A (en) High strength copper alloy having high electric conductivity
JPH02122035A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS6267144A (en) Copper alloy for lead frame
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPS639574B2 (en)
JPH02145734A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS6283441A (en) High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat
JPH02141551A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63192834A (en) Copper alloy excellent in thermal peeling resistance of tin or tin-alloy coating layer
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPH0230727A (en) Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material
JPH02173248A (en) Manufacture of copper alloy improved in adhesive strength of oxide film
JPS6283443A (en) High strength copper alloy having high electric conductivity for lead material for semiconductor appratus of electrically conductive spring material