JP4608025B1 - Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion - Google Patents

Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion Download PDF

Info

Publication number
JP4608025B1
JP4608025B1 JP2010127940A JP2010127940A JP4608025B1 JP 4608025 B1 JP4608025 B1 JP 4608025B1 JP 2010127940 A JP2010127940 A JP 2010127940A JP 2010127940 A JP2010127940 A JP 2010127940A JP 4608025 B1 JP4608025 B1 JP 4608025B1
Authority
JP
Japan
Prior art keywords
copper alloy
roughened
mass
alloy strip
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010127940A
Other languages
Japanese (ja)
Other versions
JP2011252215A (en
Inventor
健 櫻井
真一 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2010127940A priority Critical patent/JP4608025B1/en
Application granted granted Critical
Publication of JP4608025B1 publication Critical patent/JP4608025B1/en
Publication of JP2011252215A publication Critical patent/JP2011252215A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】樹脂密着性が良好であり、LEDチップ等の発熱を効率的に放散することが可能なチップオンボードでの放熱基板としての使用に適するCu−Fe−P系銅合金薄板を提供する。
【解決手段】Fe;1.5〜2.4質量%、P;0.008〜0.08質量%およびZn;0.01〜0.5質量%を含有し、残部がCu及び不可避不純物からなり、銅合金条材の表面より10μmまでの深さの範囲の結晶組織内のEBSD法にて測定したCube方位の方位密度が10〜20%であり、EBSD法にて測定した平均結晶粒径が12〜20μmであり、銅合金条材の表面が表面処理剤により粗化された部位の表面の最大高さRzが1.0〜2.0μmであり、粗化されていない部位の表面の算術平均粗さRaが0.02〜0.05μmであり、最大高さRzが0.20〜0.40μmであり、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.10〜0.25である。
【選択図】図1
Provided is a Cu-Fe-P copper alloy thin plate suitable for use as a heat dissipation substrate in a chip-on-board that has good resin adhesion and can efficiently dissipate heat generated by LED chips and the like. .
The alloy contains Fe; 1.5 to 2.4% by mass, P; 0.008 to 0.08% by mass, and Zn; 0.01 to 0.5% by mass, with the balance being Cu and inevitable impurities. The orientation density of the Cube orientation measured by the EBSD method in the crystal structure in the depth range of 10 μm from the surface of the copper alloy strip is 10 to 20%, and the average crystal grain size measured by the EBSD method 12 to 20 μm, the maximum height Rz of the surface of the portion where the surface of the copper alloy strip has been roughened by the surface treatment agent is 1.0 to 2.0 μm, and the surface of the portion that has not been roughened The arithmetic average roughness Ra is 0.02 to 0.05 μm, the maximum height Rz is 0.20 to 0.40 μm, and the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz is 0.00. 10-0.25.
[Selection] Figure 1

Description

本発明は、放熱性及び樹脂密着性に優れ、特にチップオンボードでの使用に適したCu−Fe−P系電子機器用銅合金条材に関する。   The present invention relates to a copper alloy strip for a Cu—Fe—P-based electronic device that is excellent in heat dissipation and resin adhesion, and is particularly suitable for use on a chip-on-board.

発光ダイオードを用いたLEDランプは、液晶ディスプレイ、携帯電話、情報端末などのバックライト、屋内外広告など、多方面への展開が飛躍的に進んでいる。また、LEDランプは、長寿命で信頼性が高く、低消費電力、耐衝撃性、高純度表示色、軽薄短小化の実現などの特徴を有することから、産業用途のみならず一般照明用途への適用も進み始めている。このようなLEDランプを種々の用途に適用する場合、白色発光を得ることが重要となり、更に、高輝度化及び放熱性を目的に、基板(ボード)の上に複数のLEDチップを搭載し、樹脂層により被覆したチップオンボード(COB)タイプのものも開発されている。   LED lamps using light emitting diodes have been dramatically expanded in various fields such as backlights for liquid crystal displays, mobile phones, information terminals, and indoor / outdoor advertisements. In addition, LED lamps have features such as long life, high reliability, low power consumption, impact resistance, high purity display color, lightness, thinness, and other features. Application is also beginning to progress. When applying such LED lamps to various applications, it is important to obtain white light emission, and for the purpose of increasing brightness and heat dissipation, a plurality of LED chips are mounted on a board (board). A chip-on-board (COB) type coated with a resin layer has also been developed.

特許文献1には、青色LEDチップのような発光素子と、近似した比重を有する2種類以上の蛍光体と、これらの蛍光体のうちで最も比重が大きい蛍光体の20%以上の比重を有する透明樹脂を含む蛍光体含有樹脂層とを備え、2種類以上の蛍光体は、互いに類似した形状を有し、さらに近似した平均粒径(D50が7〜20μm)を有する、複数のLEDランプ間などでの発光色のばらつきが抑制され、均一で安定した高効率の発光が得られる発光装置が開示されている。   Patent Document 1 has a light emitting element such as a blue LED chip, two or more kinds of phosphors having approximate specific gravity, and a specific gravity of 20% or more of the phosphor having the largest specific gravity among these phosphors. A phosphor-containing resin layer containing a transparent resin, and two or more kinds of phosphors have similar shapes to each other, and further have an approximate average particle diameter (D50 is 7 to 20 μm), between a plurality of LED lamps A light emitting device is disclosed in which variation in emission color is suppressed, and uniform, stable and highly efficient light emission can be obtained.

特許文献2には、放熱性基板上に複数個のLEDを略線状に配列させ、連続して配置される二個以上のLEDを一括して囲繞するリフレクタを基板上に配置し、さらにリフレク
タ上に導光板を配置してバックライト光源を構成した、高輝度かつ低発光ムラの光を生成
でき、かつ駆動安定性にも優れたバックライト装置(光源)が開示されている。
チップオンボード(COB)に使用される基板としてはアルミニウムが主であったが、近年、熱伝導性、プレス加工性、導電性、機械的強度とのバランスから銅合金が使用されている。特に、LEDチップの発熱を効率的に放熱させる熱伝導性が重要であり、また、粗化処理されて表面上に樹脂層(絶縁層)が形成されることから、樹脂密着性の良さも求められている。
In Patent Document 2, a plurality of LEDs are arranged in a substantially linear shape on a heat-dissipating substrate, and a reflector that collectively surrounds two or more LEDs that are continuously arranged is disposed on the substrate. There has been disclosed a backlight device (light source) in which a light source plate is disposed to constitute a backlight light source, which can generate light with high luminance and low light emission unevenness, and is excellent in driving stability.
Aluminum has been mainly used as a substrate used for chip-on-board (COB), but in recent years, a copper alloy has been used from the balance of thermal conductivity, press workability, conductivity, and mechanical strength. In particular, the thermal conductivity that efficiently dissipates the heat generated by the LED chip is important, and since a resin layer (insulating layer) is formed on the surface by roughening, good resin adhesion is also required. It has been.

この様なチップオンボードに使用される銅合金放熱基板には、熱伝導性、プレス加工性、導電性、機械的強度とのバランスが取れたリードフレーム用のCu−Fe−P系銅合金薄板及びその最表面に銀或いは錫めっきが施された薄板が多用されている。
特許文献3には、特定組成のCu−Fe−P系銅合金板の、引張試験により求められる、引張弾性率が120GPaを超えるものとするとともに、均一伸びと全伸びとの比、均一伸び/全伸びを0.50未満とし、特許文献3の図1に示すように測定される、せん断面率を低下させ、高強度で、かつ、スタンピング加工の際のプレス打ち抜き性を向上させたCu−Fe−P系銅合金板が開示されている。
The copper alloy heat dissipation board used for such chip-on-board is a Cu-Fe-P copper alloy thin plate for lead frames that has a good balance of thermal conductivity, press workability, conductivity, and mechanical strength. In addition, a thin plate having silver or tin plating on its outermost surface is often used.
In Patent Document 3, the tensile modulus of the Cu-Fe-P-based copper alloy plate having a specific composition, which is obtained by a tensile test, exceeds 120 GPa, and the ratio between uniform elongation and total elongation, uniform elongation / Cu- having a total elongation of less than 0.50, a reduced shear surface ratio, high strength, and improved press punchability during stamping as measured as shown in FIG. An Fe-P copper alloy sheet is disclosed.

特許文献4には、圧延面についてのX線回折により求まる積分強度比I{200}/I{111}が1.5以下であり、厚さ16μm以下の箔とすることが望ましく、具体的組成として、質量%で、Fe:0.045〜0.095%、P:0.010〜0.030%であり、Fe、P、Cu以外の元素の合計が1%未満、残部がCuからなり、および、質量%で、Ni:0.5〜3.0%、Sn:0.5〜2.0%、P:0.03〜0.10%であり、Ni、Sn、P、Cu以外の元素の合計が1%未満、残部がCuからなり、導電率は85%IACS以上でフレキシブル基板の導電部材に適した耐屈曲性に優れた銅合金が開示されている。
非特許文献1には、Fe;2.1〜2.6重量%、P;0.015〜0.15重量%およびZn;0.05〜0.20重量%を含む、熱伝導性、プレス加工性、導電性、機械的強度とのバランスが取れた銅合金条材が開示されている。
In Patent Document 4, the integrated intensity ratio I {200} / I {111} obtained by X-ray diffraction on the rolled surface is preferably 1.5 or less, and a foil having a thickness of 16 μm or less is desirable. As a mass%, Fe: 0.045-0.095%, P: 0.010-0.030%, and the total of elements other than Fe, P, and Cu is less than 1%, and the balance is Cu. In addition, Ni: 0.5 to 3.0%, Sn: 0.5 to 2.0%, P: 0.03 to 0.10%, and other than Ni, Sn, P, and Cu There is disclosed a copper alloy having a total of less than 1%, the balance being made of Cu, a conductivity of 85% IACS or more and excellent in bending resistance suitable for a conductive member of a flexible substrate.
Non-Patent Document 1 includes thermal conductivity, press, including Fe; 2.1 to 2.6% by weight, P; 0.015 to 0.15% by weight, and Zn; 0.05 to 0.20% by weight. A copper alloy strip having a balance between workability, conductivity, and mechanical strength is disclosed.

特開2009−277998号公報JP 2009-277998 A 特開2005−353507号公報JP 2005-353507 A 特開2008−88499号公報JP 2008-88499 A 特開2006−63431号公報JP 2006-63431 A

「TAMAC194」、 三菱伸銅株式会社、 2010年“TAMAC194”, Mitsubishi Shindoh Co., Ltd., 2010

チップオンボードに使用される従来のCu−Fe−P系銅合金では、樹脂層との密着性が充分ではなく、LEDチップ等の発熱を効率的に放熱する熱伝導性が不足気味であった。   Conventional Cu-Fe-P-based copper alloys used for chip-on-board have insufficient adhesion to the resin layer and lacked thermal conductivity to efficiently dissipate heat generated by LED chips and the like. .

本発明は、この様な事情に鑑みてなされたものであり、樹脂密着性が良好であり、LEDチップ等の発熱を効率的に放散することが可能なチップオンボードでの放熱基板としての使用に適するCu−Fe−P系銅合金薄板を提供する。   The present invention has been made in view of such circumstances, has good resin adhesion, and can be used as a heat dissipation substrate in a chip-on-board that can efficiently dissipate heat generated by LED chips and the like. A Cu—Fe—P-based copper alloy thin plate suitable for the above is provided.

本発明者らは、直径が15nm未満の非常に微細な析出物粒子(Fe−P系化合物)は、500℃といった高温領域においては、粒子の移動を拘束するピン止め効果が小さく再結晶化の抑制効果をあまり期待出来ないが、透過型電子顕微鏡観察において、1μm2あたりの析出物粒子の直径のヒストグラムにおけるピーク値が直径15〜35nmの範囲内でありかつ当該範囲内の直径の析出物粒子が総度数の50%以上の頻度で存在し、その半値幅が25nm以下である析出物粒子(Fe−P系化合物)は、500℃前後の高温領域での再結晶化抑制に非常に効果的であり、更なる耐熱性の向上に大きく寄与することを見出している。 The present inventors recrystallized very fine precipitate particles (Fe-P compounds) having a diameter of less than 15 nm with a small pinning effect for restraining the movement of particles in a high temperature region such as 500 ° C. Although the suppression effect cannot be expected so much, in transmission electron microscope observation, the peak value in the histogram of the diameter of the precipitate particles per 1 μm 2 is in the range of 15 to 35 nm in diameter, and the precipitate particles have a diameter in the range. Is present at a frequency of 50% or more of the total frequency, and the precipitate particle (Fe-P compound) having a half width of 25 nm or less is very effective in suppressing recrystallization in a high temperature region around 500 ° C. It has been found that it greatly contributes to further improvement of heat resistance.

更に鋭意検討の結果、本発明者らは、Fe;1.5〜2.4質量%、P;0.008〜0.08質量%およびZn;0.01〜0.5質量%を含有し、残部がCu及び不可避不純物からなる銅合金条材は、銅合金条材の表面より10μmまでの深さの範囲のEBSD法にて測定したCube方位の方位密度が10%〜20%であり、EBSD法にて測定した平均結晶粒径が12μm〜20μmであると、その銅合金条材の表面の析出物粒子(Fe−P系化合物)が非常に均質に分散されて、通常の表面処理剤により均質な粗化がなされ、更に、表面の表面粗さRzが1.0μm〜2.0μmであると、高温及び高湿度での樹脂密着性が特に優れていることを見出した。そこで、樹脂が密着される表面については、表面処理剤により粗化することとした。
一方、LEDチップが直接搭載される表面は、粗化しない方がよく、粗化されない部分の表面の算術平均粗さRaが0.02〜0.05μmであり、最大高さRzが0.20〜0.40μmであり、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.10〜0.25であると、その条材表面に直接的に搭載されるLED等の発熱素子との接触熱抵抗が小さくなり、チップオンボード用の放熱基板として優れた特性を発揮することも見出した。
As a result of further intensive studies, the present inventors contain Fe; 1.5 to 2.4% by mass, P; 0.008 to 0.08% by mass, and Zn; 0.01 to 0.5% by mass. The copper alloy strip consisting of Cu and inevitable impurities as the balance has an orientation density of Cube orientation of 10% to 20% measured by the EBSD method in a depth range from the surface of the copper alloy strip to 10 μm. When the average crystal grain size measured by the EBSD method is 12 μm to 20 μm, the precipitate particles (Fe—P-based compound) on the surface of the copper alloy strip are very homogeneously dispersed, and a normal surface treatment agent It was found that a uniform roughening is achieved, and that the surface roughness Rz of the surface is 1.0 μm to 2.0 μm, the resin adhesion at high temperature and high humidity is particularly excellent. Therefore, the surface to which the resin is adhered is roughened with a surface treatment agent.
On the other hand, the surface on which the LED chip is directly mounted should not be roughened, the arithmetic average roughness Ra of the surface of the unroughened part is 0.02 to 0.05 μm, and the maximum height Rz is 0.20. When the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz is 0.10 to 0.25, the heat generated from the LED or the like directly mounted on the surface of the strip It has also been found that the contact thermal resistance with the element is reduced and exhibits excellent characteristics as a heat dissipation substrate for chip-on-board.

本発明の放熱性及び樹脂密着性に優れた電子機器用銅合金条材は、Fe;1.5〜2.4質量%、P;0.008〜0.08質量%およびZn;0.01〜0.5質量%を含有し、残部がCu及び不可避不純物からなる銅合金条材において、前記銅合金条材の表面より10μmまでの深さの範囲の結晶組織内のEBSD法にて測定したCube方位の方位密度が10〜20%であり、EBSD法にて測定した平均結晶粒径が12〜20μmであり、前記銅合金条材の表面が表面処理剤により粗化された部位の表面の最大高さRzが1.0〜2.0μmであり、粗化されていない部位の表面の算術平均粗さRaが0.02〜0.05μmであり、最大高さRzが0.20〜0.40μmであり、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.10〜0.25であることを特徴とする。   The copper alloy strip for electronic equipment having excellent heat dissipation and resin adhesion of the present invention is Fe; 1.5 to 2.4 mass%, P; 0.008 to 0.08 mass%, and Zn; 0.01 In copper alloy strips containing ~ 0.5% by mass, the balance being Cu and inevitable impurities, measured by EBSD method in a crystal structure in a depth range of up to 10 μm from the surface of the copper alloy strip. The orientation density of the Cube orientation is 10 to 20%, the average crystal grain size measured by the EBSD method is 12 to 20 μm, and the surface of the copper alloy strip is roughened by the surface treatment agent. The maximum height Rz is 1.0 to 2.0 μm, the arithmetic average roughness Ra of the surface of the unroughened portion is 0.02 to 0.05 μm, and the maximum height Rz is 0.20 to 0 .40 μm, the ratio Rq / R of the root mean square roughness Rq to the maximum height Rz z is 0.10 to 0.25.

EBSD法にて測定したCube方位の方位密度が10%未満であると、表面処理剤による表面の粗化が充分になされず、方位密度が20%を超えると、銅合金条材表面の歪が生じ易くなり、均質な粗化が出来難くなる。
Cube方位とは、結晶の<001> 方向が圧延方向、圧延面法線および幅方向と平行になる方位であり、圧延面には(100)面が配向する。Cube方位が発達するにつれて、そのCube方位を有する結晶粒の存在比率は大きくなり、Cube方位が過度に発達すると、当該銅合金の強度は低下する。
EBSD法でのCube方位の方位密度は、試料表面に電子線を入射させ、この時に発生する反射電子から菊池パターン(Cube方位マッピング)を得る。この菊池パターンを解析すれば、電子線入射位置の結晶方位を知ることができる。そして、該電子線を試料表面に2次元で走査させ、所定ピッチ毎に結晶方位を測定すれば、試料表面の方位分布が測定出来る。
When the orientation density of the Cube orientation measured by the EBSD method is less than 10%, the surface is not sufficiently roughened by the surface treatment agent, and when the orientation density exceeds 20%, the strain on the surface of the copper alloy strip is It becomes easy to occur and it becomes difficult to perform uniform roughening.
The Cube orientation is an orientation in which the <001> direction of the crystal is parallel to the rolling direction, the rolling surface normal, and the width direction, and the (100) plane is oriented on the rolling surface. As the Cube orientation develops, the abundance ratio of crystal grains having the Cube orientation increases, and when the Cube orientation develops excessively, the strength of the copper alloy decreases.
The orientation density of the Cube orientation in the EBSD method is such that an electron beam is incident on the sample surface and a Kikuchi pattern (Cube orientation mapping) is obtained from the reflected electrons generated at this time. By analyzing this Kikuchi pattern, the crystal orientation at the electron beam incident position can be known. Then, if the electron beam is scanned two-dimensionally on the sample surface and the crystal orientation is measured at every predetermined pitch, the orientation distribution on the sample surface can be measured.

EBSD法にて測定した平均結晶粒径が12μm未満では、表面粗化の効果が飽和してコスト的に無駄である。平均結晶粒径が20μmを超えると、表面の均質な粗化に支障をきたす。
EBSD法での平均結晶粒径は、菊池パターン(Cube方位マッピング)を解析し、結晶粒径のヒストグラムと各面積比率のヒストグラムとから求めた。
When the average crystal grain size measured by the EBSD method is less than 12 μm, the effect of surface roughening is saturated and the cost is wasted. If the average crystal grain size exceeds 20 μm, it will hinder uniform surface roughening.
The average crystal grain size in the EBSD method was determined from a crystal grain size histogram and a histogram of each area ratio by analyzing the Kikuchi pattern (Cube orientation mapping).

樹脂密着される表面の粗化は、銅合金条材の表面より10μm以内の深さの範囲で充分であり、表面より10μmまでの深さの範囲のCube方位の方位密度、平均結晶粒径が上記数値範囲内であれば充足し、10μmを超えるのは製造コスト的に無駄である。
また、表面処理剤により粗化された表面の最大粗さRzが1.0μm未満では、樹脂密着性が不充分であり、最大粗さRzが2.0μmを超えても、粗大析出物粒子が残って樹脂密着性が不充分となり、特に高湿度時での密着性が悪くなる。
また、表面が粗化されていない部位の表面の算術平均粗さRaが0.05μm或いは最大高さRzが0.40μmを超えると、その表面に直接搭載されるLEDとの接触熱抵抗が大きくなり、Raを0.02μm或いはRzを0.20μm未満とするには、特殊な表面処理が必要となり製造コストが増加する。
また、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.25を超えると粗さの均質性が失われ、その条材表面に直接搭載されるLEDチップとの接触熱抵抗が大きくなる。Rq/Rzが0.10未満では効果が飽和してコスト的に無駄である。
The roughening of the surface to be in close contact with the resin is sufficient within the depth range of 10 μm or less from the surface of the copper alloy strip, and the orientation density of Cube orientation and the average crystal grain size within the depth range of up to 10 μm from the surface are If it is within the above numerical range, it is sufficient, and exceeding 10 μm is wasteful in terms of manufacturing cost.
Further, when the maximum roughness Rz of the surface roughened by the surface treatment agent is less than 1.0 μm, the resin adhesion is insufficient, and even if the maximum roughness Rz exceeds 2.0 μm, the coarse precipitate particles are not formed. Residual resin adhesion is insufficient, and adhesion at high humidity is deteriorated.
Further, when the arithmetic average roughness Ra of the surface where the surface is not roughened is 0.05 μm or the maximum height Rz exceeds 0.40 μm, the contact thermal resistance with the LED mounted directly on the surface is large. Therefore, in order to make Ra 0.02 μm or Rz less than 0.20 μm, a special surface treatment is required, which increases the manufacturing cost.
Further, when the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz exceeds 0.25, the roughness uniformity is lost, and the contact thermal resistance with the LED chip directly mounted on the surface of the strip material. Becomes larger. If Rq / Rz is less than 0.10, the effect is saturated and the cost is wasted.

更に、本発明の放熱性及び樹脂密着性に優れた電子機器用銅合金条材は、Ni;0.003〜0.5質量%及び/又はSn;0.003〜0.5質量%を含有していてもよい。
これらの元素は、電子機器用銅合金の特性を向上させる効果を有しており、用途にあわせて選択的に含有させることで特性を向上させることが可能となる。
Furthermore, the copper alloy strip for electronic equipment excellent in heat dissipation and resin adhesion of the present invention contains Ni; 0.003 to 0.5 mass% and / or Sn; 0.003 to 0.5 mass%. You may do it.
These elements have an effect of improving the characteristics of the copper alloy for electronic devices, and the characteristics can be improved by selectively containing them in accordance with the application.

更に、本発明の放熱性及び樹脂密着性に優れた電子機器用銅合金条材は、Al、Be、Ca、Cr、Mg及びSiのうちの少なくとも1種以上を含有し、その含有量が0.0007〜0.5質量%に設定されていてもよい。
これらの元素は、電子機器用銅合金の特性を向上させる効果を有しており、用途にあわせて選択的に含有させることで特性を向上させることが可能となる。
Furthermore, the copper alloy strip for electronic equipment excellent in heat dissipation and resin adhesion of the present invention contains at least one of Al, Be, Ca, Cr, Mg and Si, and the content is 0. 0007 to 0.5 mass% may be set.
These elements have an effect of improving the characteristics of the copper alloy for electronic devices, and the characteristics can be improved by selectively containing them in accordance with the application.

そして、本発明の放熱性及び樹脂密着性に優れた電子機器用銅合金条材は、前記表面が粗化された部位に絶縁層が形成され、前記表面が粗化されていない部位にLEDチップ素子が直接搭載される。
これにより、高輝度化及び放熱性を目的とした、複数のLEDチップを搭載し、樹脂層により被覆されたチップオンボード(COB)タイプの優れた特性を有するLEDパッケージの製造が可能となる。
In the copper alloy strip for electronic equipment having excellent heat dissipation and resin adhesion according to the present invention, an insulating layer is formed on a portion where the surface is roughened, and an LED chip is provided on a portion where the surface is not roughened. The element is directly mounted.
Accordingly, it is possible to manufacture an LED package having excellent characteristics of a chip-on-board (COB) type in which a plurality of LED chips are mounted and coated with a resin layer for the purpose of increasing brightness and heat dissipation.

更に、本発明の放熱性及び樹脂密着性に優れた電子機器用銅合金条材は、複数の厚肉部と薄肉部とが幅方向に交互に並んだ異形断面を有していてもよく、前記粗化された部位が薄肉部であり、前記表面が粗化されていない部位が厚肉部とされる。
本発明の異形断面の電子機器用銅合金条材を使用することにより、種々のバリエーションの優れた特性を有するLEDパッケージの製造が可能となる。
Furthermore, the copper alloy strip for electronic equipment excellent in heat dissipation and resin adhesion of the present invention may have a modified cross section in which a plurality of thick portions and thin portions are alternately arranged in the width direction, The roughened portion is a thin portion, and the portion where the surface is not roughened is a thick portion.
By using the copper alloy strip for electronic equipment having an irregular cross section according to the present invention, it is possible to manufacture an LED package having excellent characteristics of various variations.

本発明により、樹脂密着性が良好であり、LEDチップ等の発熱を効率的に放散することが可能なチップオンボードでの使用に適したCu−Fe−P系電子機器用銅合金条材を提供することができる。   According to the present invention, a copper alloy strip for a Cu-Fe-P electronic device suitable for use in a chip-on-board that has good resin adhesion and can efficiently dissipate heat generated by an LED chip or the like. Can be provided.

本発明の実施形態である電子機器用銅合金条材にLEDチップを直接搭載した一例を示す断面図である。It is sectional drawing which shows an example which mounted LED chip directly in the copper alloy strip for electronic devices which is embodiment of this invention. 本発明の実施形態である異形断面の電子機器用銅合金条材にLEDチップを直接搭載した一例を示す断面図である。It is sectional drawing which shows an example which mounted LED chip directly in the copper alloy strip for electronic devices of the odd-shaped cross section which is embodiment of this invention. 本発明の実施形態である電子機器用銅合金条材の熱抵抗性を測定する装置の概略図である。It is the schematic of the apparatus which measures the thermal resistance of the copper alloy strip for electronic devices which is embodiment of this invention.

以下、本発明の一実施形態である電子機器用銅合金について詳細を説明する。
[銅合金条の成分組成]
本発明の一実施形態のCu−Fe−P系銅合金条は、Fe;1.5〜2.4質量%、P;0.008〜0.08質量%およびZn;0.01〜0.5質量%を含有し、残部がCu及び不可避不純物からなる基本組成を有する。この基本組成に対し、後述するSn、Ni等の元素を更に選択的に含有させても良い。
(Fe)
Feは銅の母相中に分散する析出物粒子を形成して強度及び耐熱性を向上させる効果があるが、その含有量が1.5質量%未満では析出物の個数が不足し、その効果を奏功せしめることができない。一方、2.4質量%を超えて含有すると、強度及び耐熱性の向上に寄与しない粗大な析出物粒子が存在してしまい、耐熱性に効果のある析出物粒子が不足してしまうことになる。このため、Feの含有量は1.5〜2.4質量%の範囲内とすることが好ましい。
Hereinafter, the copper alloy for electronic devices which is one Embodiment of this invention is demonstrated in detail.
[Component composition of the copper alloy strips]
The Cu—Fe—P-based copper alloy strip according to an embodiment of the present invention includes Fe; 1.5 to 2.4% by mass, P; 0.008 to 0.08% by mass, and Zn; It contains 5% by mass and the balance has a basic composition consisting of Cu and inevitable impurities. You may further selectively contain elements, such as Sn and Ni mentioned later, with respect to this basic composition.
(Fe)
Fe has the effect of improving the strength and heat resistance by forming precipitate particles dispersed in the copper matrix, but if its content is less than 1.5% by mass, the number of precipitates is insufficient, and the effect It can not be allowed to successful a. On the other hand, when the content exceeds 2.4% by mass, coarse precipitate particles that do not contribute to improvement in strength and heat resistance exist, and the precipitate particles effective in heat resistance are insufficient. . For this reason, it is preferable to make content of Fe into the range of 1.5-2.4 mass%.

(P)
PはFeと共に銅の母相中に分散する析出物粒子を形成して強度及び耐熱性を向上させる効果があるが、その含有量が0.008質量%未満では析出物粒子の個数が不足し、その効果を奏功せしめることができない。一方、0.08質量%を超えて含有すると、強度及び耐熱性の向上に寄与しない粗大な析出物が存在してしまい、耐熱性に効果のあるサイズの析出物粒子が不足してしまうことになると共に導電率及び加工性が低下してしまう。このため、Pの含有量は0.008〜0.08質量%の範囲内とすることが好ましい。
(Zn)
Znは銅の母相中に固溶して半田耐熱剥離性を向上させる効果を有しており、0.01質量%未満ではその効果を奏功せしめることができない。一方、0.5質量%を超えて含有しても、更なる効果を得ることが出来なくなると共に母層中への固溶量が多くなって導電率の低下をきたす。このため、Znの含有量は0.01〜0.5質量%の範囲内とすることが好ましい。
(P)
P has the effect of improving the strength and heat resistance by forming precipitate particles dispersed in the copper matrix with Fe, but if the content is less than 0.008% by mass, the number of precipitate particles is insufficient. , You can not make the effect. On the other hand, if the content exceeds 0.08% by mass, coarse precipitates that do not contribute to improvement in strength and heat resistance exist, and precipitate particles having a size effective for heat resistance are insufficient. At the same time, the conductivity and workability are reduced. For this reason, it is preferable to make content of P into the range of 0.008-0.08 mass%.
(Zn)
Zn has the effect of improving the heat resistance peelability of the solder by solid solution in the copper matrix, and if it is less than 0.01% by mass, the effect cannot be achieved. On the other hand, even if the content exceeds 0.5% by mass, further effects cannot be obtained, and the amount of solid solution in the mother layer increases, resulting in a decrease in conductivity. For this reason, it is preferable to make content of Zn into the range of 0.01-0.5 mass%.

(Ni)
Niは母相中に固溶して強度を向上させる効果を有しており、0.003質量%未満ではその効果を奏功せしめることができない。一方、0.5質量%を超えて含有すると導電率の低下をきたす。このため、Niを含有する場合には、0.003〜0.5質量%の範囲内とすることが好ましい。
(Sn)
Snは母相中に固溶して強度を向上させる効果を有しており、0.003質量%未満ではその効果を奏功せしめることができない。一方、0.5質量%を超えて含有すると導電率の低下をきたす。このため、Snを含有する場合には、0.003〜0.5質量%の範囲内とすることが好ましい。
なお、本発明の銅合金は、Al,Be,Ca,Cr,Mg及びSiのうちの少なくとも1種以上が0.0007〜0.5質量%含有されていても良い。これらの元素は、銅合金の様々な特性を向上させる役割を有しており、用途に応じて選択的に添加することが好ましい。
(Ni)
Ni has an effect of improving the strength by dissolving in the matrix, and if it is less than 0.003 mass%, the effect cannot be achieved. On the other hand, if the content exceeds 0.5% by mass, the conductivity is lowered. For this reason, when it contains Ni, it is preferable to set it as the range of 0.003-0.5 mass%.
(Sn)
Sn has an effect of improving the strength by dissolving in the matrix, and if it is less than 0.003 mass%, the effect cannot be achieved. On the other hand, if the content exceeds 0.5% by mass, the conductivity is lowered. For this reason, when it contains Sn, it is preferable to set it as the range of 0.003-0.5 mass%.
In addition, the copper alloy of this invention may contain 0.0007-0.5 mass% of at least 1 sort (s) among Al, Be, Ca, Cr, Mg, and Si. These elements have a role of improving various properties of the copper alloy, and are preferably added selectively depending on the application.

[銅合金条の表面より10μmまでの深さの範囲のCube方位の方位密度と平均結晶粒径]
本発明の樹脂密着性に優れた電子機器用銅合金条材は、銅合金条材の表面より深さ10μmまでの範囲の結晶組織内のEBSD法にて測定したCube方位の方位密度が10%〜20%であり、EBSD法にて測定した平均結晶粒径が12μm〜20μmであり、その銅合金条材の表面は、表面処理剤により均質に粗化された部位と、粗化されていない部位とを有する。
EBSD法にて測定したCube方位の方位密度が10%未満であると、表面処理による表面の粗化が充分ではなく、方位密度が20%を超えると、表面の歪が大きくなり均質な粗化が出来難くなる。
Cube方位とは、結晶の<001> 方向が圧延方向、圧延面法線および幅方向と平行になる方位であり、圧延面には(100)面が配向する。Cube方位が発達するにつれて、そのCube方位を有する結晶粒の存在比率は大きくなり、Cube方位が過度に発達すると、当該銅合金の強度は低下する。
EBSD法でのCube方位の方位密度は、試料表面に電子線を入射させ、この時に発生する反射電子から菊池パターン(Cube方位マッピング)を得る。この菊池パターンを解析すれば、電子線入射位置の結晶方位を知ることができる。そして、該電子線を試料表面に2次元で走査させ、所定ピッチ毎に結晶方位を測定すれば、試料表面の方位分布を測定出来る。
EBSD法にて測定した平均結晶粒径が12μm未満では、表面の粗化の効果が飽和してコスト的に無駄である。平均結晶粒径が20μmを超えると、粗大析出物粒子の残留により、表面の均質な粗化に支障をきたす。
EBSD法での平均結晶粒径は、菊池パターン(Cube方位マッピング)を解析し、結晶粒径のヒストグラムと各面積比率のヒストグラムとから求めた。
樹脂密着される表面の粗化は、銅合金条材の表面より深さ10μm以内がなされれば充分であり、表面より10μmまでの深さの範囲のCube方位の方位密度、平均結晶粒径が上記数値範囲内であれば充分であり、10μmを超えるのは製造コスト的に無駄である。
[Orientation density and average crystal grain size of Cube orientation in a depth range from the surface of the copper alloy strip to 10 μm]
The copper alloy strip for electronic equipment excellent in resin adhesion of the present invention has an orientation density of Cube orientation of 10% measured by the EBSD method in a crystal structure in a depth range of 10 μm from the surface of the copper alloy strip. The average crystal grain size measured by the EBSD method is 12 to 20 μm, and the surface of the copper alloy strip is uniformly roughened by the surface treatment agent and is not roughened. Part.
If the orientation density of the Cube orientation measured by the EBSD method is less than 10%, the surface is not sufficiently roughened by the surface treatment, and if the orientation density exceeds 20%, the surface strain becomes large and uniform roughening. It becomes difficult to do.
The Cube orientation is an orientation in which the <001> direction of the crystal is parallel to the rolling direction, the rolling surface normal, and the width direction, and the (100) plane is oriented on the rolling surface. As the Cube orientation develops, the abundance ratio of crystal grains having the Cube orientation increases, and when the Cube orientation develops excessively, the strength of the copper alloy decreases.
The orientation density of the Cube orientation in the EBSD method is such that an electron beam is incident on the sample surface and a Kikuchi pattern (Cube orientation mapping) is obtained from the reflected electrons generated at this time. By analyzing this Kikuchi pattern, the crystal orientation at the electron beam incident position can be known. Then, if the electron beam is scanned two-dimensionally on the sample surface and the crystal orientation is measured at every predetermined pitch, the orientation distribution on the sample surface can be measured.
If the average crystal grain size measured by the EBSD method is less than 12 μm, the effect of roughening the surface is saturated and the cost is wasted. If the average crystal grain size exceeds 20 μm, the coarse precipitate particles remain, which hinders uniform surface roughening.
The average crystal grain size in the EBSD method was determined from a crystal grain size histogram and a histogram of each area ratio by analyzing the Kikuchi pattern (Cube orientation mapping).
The roughening of the surface to be in close contact with the resin is sufficient if the depth is within 10 μm from the surface of the copper alloy strip. If it is in the said numerical range, it is enough, and exceeding 10 micrometers is useless in terms of manufacturing cost.

[銅合金条材の表面粗さと樹脂密着性、接触抵抗性]
前述したように、銅合金条材の表面は、表面処理剤により粗化された部位と、粗化されていない部位とが存在し、粗化された部位の表面に樹脂が成形され、粗化されていない部位の表面にLEDチップ素子が直接搭載される。
表面処理剤に粗化された表面は、その表面粗さ(最大高さ)Rzが1.0μm〜2.0μmである。最大高さRzが1.0μm未満では、樹脂密着性が不充分であり、最大高さRzが2.0μmを超えても、粗大析出物粒子が残って樹脂密着性が不充分となり、特に高湿度時での密着性が悪くなる。
一方、粗化されていない部位の表面は、算術平均粗さRaが0.02μm〜0.05μmであり、最大高さRzが0.20μm〜0.40μmであり、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.10〜0.25である。
表面が粗化されていない部位の表面の算術平均粗さRaが0.05μm或いは最大高さRzが0.40μmを超えると、その表面に直接搭載されるLEDとの接触熱抵抗が大きくなり、Raを0.02μm或いはRzを0.20μm未満とするには、特殊な表面処理が必要となり製造コストが増加する。
また、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.25を超えると粗さの均質性が失われ、その条材表面に直接搭載されるLEDチップとの接触熱抵抗が大きくなる。Rq/Rzが0.10未満では効果が飽和してコスト的に無駄である。
[Surface roughness and resin adhesion, contact resistance of copper alloy strip]
As described above, the surface of the copper alloy strip has a portion roughened by the surface treatment agent and a portion not roughened, and a resin is molded on the roughened surface to roughen the surface. The LED chip element is directly mounted on the surface of the part that is not made.
The surface roughened to the surface treatment agent has a surface roughness (maximum height) Rz of 1.0 μm to 2.0 μm. If the maximum height Rz is less than 1.0 μm, the resin adhesion is insufficient, and even if the maximum height Rz exceeds 2.0 μm, coarse precipitate particles remain and the resin adhesion becomes insufficient. Adhesion at humidity is poor.
On the other hand, the surface of the unroughened portion has an arithmetic average roughness Ra of 0.02 μm to 0.05 μm, a maximum height Rz of 0.20 μm to 0.40 μm, and a root mean square roughness Rq. The ratio Rq / Rz of the maximum height Rz is 0.10 to 0.25.
When the arithmetic average roughness Ra of the surface of the portion where the surface is not roughened is 0.05 μm or the maximum height Rz exceeds 0.40 μm, the contact thermal resistance with the LED directly mounted on the surface increases, In order to reduce Ra to 0.02 μm or Rz to less than 0.20 μm, a special surface treatment is required, which increases the manufacturing cost.
Further, when the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz exceeds 0.25, the roughness uniformity is lost, and the contact thermal resistance with the LED chip directly mounted on the surface of the strip material. Becomes larger. If Rq / Rz is less than 0.10, the effect is saturated and the cost is wasted.

[製造方法]
次に、本発明の析出物粒子(Fe−P系化合物)を有するCu−Fe−P系銅合金の製造条件について以下に説明する。析出物粒子を銅合金条材の表面より10μmまでの深さの範囲の結晶組織内に均質に分散させる為の冷間圧延、低温焼鈍の各条件を除き、通常の製造工程自体を大きく変えることは不要である。
先ず、上記の好ましい成分範囲に調整された銅合金を溶解鋳造し、鋳塊を面削後、圧延率を60%以上にて熱間圧延を施し、次に、900〜950℃にて20〜300秒の溶体化処理を行う。
(時効処理)
溶体化処理後の銅合金板を450〜575℃にて3〜12時間の時効処理を行い、広範な粒度分布を有する析出物粒子を析出させ、最終の目的とする構成の析出物粒子を得るための素地をつくる。450℃以下或いは3時間以下では析出物粒子が充分に析出せず、575℃以上或いは12時間以上では銅合金組織が軟化する。
[Production method]
Next, manufacturing conditions for the Cu—Fe—P based copper alloy having the precipitate particles (Fe—P based compound) of the present invention will be described below. Except for cold rolling and low-temperature annealing conditions to uniformly disperse the precipitate particles in the crystal structure within a depth range of 10 μm from the surface of the copper alloy strip, the normal manufacturing process itself is greatly changed. Is unnecessary.
First, a copper alloy adjusted to the above-mentioned preferable component range is melt cast, and after chamfering the ingot, hot rolling is performed at a rolling rate of 60% or more, and then at 900 to 950 ° C. do of 300 seconds to a solution treatment.
(Aging treatment)
The copper alloy plate after solution treatment is subjected to aging treatment at 450 to 575 ° C. for 3 to 12 hours to precipitate precipitate particles having a wide particle size distribution, thereby obtaining precipitate particles having a final target configuration. create a foundation for. Precipitate particles do not sufficiently precipitate at 450 ° C. or less or 3 hours or less, and the copper alloy structure softens at 575 ° C. or more or 12 hours or more.

(第1冷間圧延)
時効処理後の銅合金板を加工率(圧延率)60〜70%で冷間圧延し、析出物の粒径を小さくすると共に更なる析出物粒子の析出を促進させる。析出相の優先核形成サイトが核生成の駆動力的に有利な転位セル境界となるため、核生成頻度が促進される。加工率が60%未満では析出物粒子の粒径を小さくするには不十分であり、70%を超えると核生成頻度の促進効果に支障を来たす。
(第1低温焼鈍)
第1冷間圧延後の銅合金板を270〜320℃にて40〜110分の低温焼鈍を行い、析出物粒子の直径を一定の範囲値内にシフトさせ、表面から深さ10μm以内の範囲の結晶組織内のEBSD法にて測定したCube方位の方位密度が10%〜20%であり、EBSD法にて測定した平均結晶粒径が12〜20μmとし、表面処理剤により、銅合金条材の表面が均質に粗化されるようにする。270℃未満或いは40分未満では効果がなく、320℃或いは110分を超えると析出物粒子の粗大化に繋がりピン止め効果の発揮に支障をきたし、表面状態の均質性をなくす。
この1回の低温焼鈍のみでは、析出物粒子の直径を一定の範囲値内にシフトさせ、表面から深さ10μm以内の範囲の方位密度、平均結晶粒径を所定範囲値内に入れるのは無理であり、更なる冷間圧延及び低温焼鈍が必要となる。
(First cold rolling)
The copper alloy sheet after the aging treatment is cold-rolled at a processing rate (rolling rate) of 60 to 70% to reduce the particle size of the precipitate and promote the precipitation of further precipitate particles. Since the preferential nucleation site of the precipitation phase becomes a dislocation cell boundary that is advantageous in terms of driving force for nucleation, the nucleation frequency is promoted. If the processing rate is less than 60%, it is insufficient to reduce the particle size of the precipitate particles, and if it exceeds 70%, the effect of promoting the nucleation frequency is hindered.
(First low temperature annealing)
The copper alloy sheet after the first cold rolling is subjected to low temperature annealing at 270 to 320 ° C. for 40 to 110 minutes, the diameter of the precipitate particles is shifted within a certain range value, and the depth is within 10 μm from the surface. The orientation density of the Cube orientation measured by the EBSD method in the crystal structure is 10% to 20%, the average crystal grain size measured by the EBSD method is 12 to 20 μm, and the surface treatment agent is used to form a copper alloy strip. The surface is uniformly roughened. If it is less than 270 ° C. or less than 40 minutes, there is no effect, and if it exceeds 320 ° C. or 110 minutes, it leads to coarsening of the precipitate particles, hindering the achievement of the pinning effect, and the homogeneity of the surface state is lost.
With this single low temperature annealing alone, it is impossible to shift the diameter of the precipitate particles within a certain range value and to bring the orientation density and average crystal grain size within a range of 10 μm depth from the surface within the predetermined range value. And further cold rolling and low temperature annealing are required.

(第2冷間圧延)
第1低温焼鈍後の銅合金板を加工率20〜35%で冷間圧延し、析出物粒子を目的とする直径の範囲内にシフトさせる素地を作製する。加工率が35%を超えると全体としての圧延率が高くなり、再結晶化を促すことに繋がり、また、強度、導電率、ビッカース硬度にも悪影響を及ぼす。加工率が20%未満では殆んど効果はない。
(第2低温焼鈍)
第2冷間圧延後の銅合金板を270〜320℃にて20〜90分の低温焼鈍を行うことにより、析出粒子の1μm2あたりの析出物粒子の直径を一定の範囲値内にシフトさせ、表面から深さ10μm以内の範囲の結晶組織内のEBSD法にて測定したCube方位の方位密度が10%〜20%であり、EBSD法にて測定した平均結晶粒径が12μm〜20μmとする。270℃或いは30分未満では効果がなく、350℃或いは100分を超えると析出物粒子の粗大化に繋がりピン止め効果の発揮に支障をきたし、表面状態の均質性をなくす。
この第2低温焼鈍にて、析出粒子の1μm2あたりの析出物粒子の直径を一定の範囲値内にシフトさせ、表面から深さ10μm以内の範囲の結晶組織内のEBSD法にて測定したCube方位の方位密度が10%〜20%であり、EBSD法にて測定した平均結晶粒径が12μm〜20μmとならなければ、更に冷間圧延及び低温焼鈍を上記の加工率、熱処理条件にて繰返すことが必要となる。この場合、冷間圧延或いは低温焼鈍を単独で繰り返しても意味はなく、冷間圧延の後に低温焼鈍を行うことが重要である。
前述の様な構成とされた本実施形態の電子機器用銅合金は、容易に均質な粗化処理がなされて樹脂密着に優れ、更に、放熱性の良好なCu−Fe−P系の銅合金条材となる。
(Second cold rolling)
The copper alloy sheet after the first low-temperature annealing is cold-rolled at a processing rate of 20 to 35% to produce a substrate that shifts the precipitate particles within a target diameter range. When the processing rate exceeds 35%, the rolling ratio as a whole increases, which leads to promoting recrystallization, and also adversely affects strength, conductivity, and Vickers hardness. If the processing rate is less than 20%, there is almost no effect.
(The second low-temperature annealing)
By subjecting the copper alloy sheet after the second cold rolling to low temperature annealing at 270 to 320 ° C. for 20 to 90 minutes, the diameter of the precipitate particles per 1 μm 2 of the precipitate particles is shifted within a certain range value. The orientation density of the Cube orientation measured by the EBSD method in the crystal structure within a depth of 10 μm from the surface is 10% to 20%, and the average crystal grain size measured by the EBSD method is 12 μm to 20 μm. . If it is less than 270 ° C. or less than 30 minutes, there is no effect, and if it exceeds 350 ° C. or more than 100 minutes, it leads to coarsening of the precipitate particles, hindering the achievement of the pinning effect, and the homogeneity of the surface state is lost.
In this second low-temperature annealing, the diameter of the precipitate particles per 1 μm 2 of the precipitate particles is shifted within a certain range value, and the Cube measured by the EBSD method in the crystal structure within the depth of 10 μm from the surface. If the orientation density of the orientation is 10% to 20% and the average crystal grain size measured by the EBSD method is not 12 μm to 20 μm, cold rolling and low-temperature annealing are further repeated at the above processing rate and heat treatment conditions. It will be necessary. In this case, there is no point in repeating cold rolling or low temperature annealing alone, and it is important to perform low temperature annealing after cold rolling.
The copper alloy for electronic devices according to the present embodiment having the above-described configuration is a Cu-Fe-P-based copper alloy that is easily subjected to uniform roughening treatment, has excellent resin adhesion, and has good heat dissipation. Become a strip.

[表面の粗化処理]
上記のようにして得られたCu−Fe−P系の銅合金条材を所望の形状に打ち抜き加工した後、LEDチップが搭載される部位にマスキングし、エッチング液等の表面処理剤に浸漬することにより、マスキングを施した部位以外の部位を粗化処理する。
粗化された部位の表面は、その表面粗さ(最大高さ)Rzが1.0μm〜2.0μmとされ、マスキングにより粗化されなかった部位の表面は、算術平均粗さRaが0.02μm〜0.05μm、最大高さRzが0.20μm〜0.40μm、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.10〜0.25とされる。
[Surface roughening]
The Cu-Fe-P-based copper alloy strip obtained as described above is punched into a desired shape, masked at the site where the LED chip is mounted, and immersed in a surface treatment agent such as an etchant. Thus, a portion other than the portion subjected to masking is roughened.
The surface of the roughened portion has a surface roughness (maximum height) Rz of 1.0 μm to 2.0 μm, and the surface of the portion not roughened by masking has an arithmetic average roughness Ra of 0. 02 μm to 0.05 μm, the maximum height Rz is 0.20 μm to 0.40 μm, and the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz is 0.10 to 0.25.

[チップオンボードの使用形態]
本発明の実施形態である電子機器用銅合金条材にLEDチップを直接搭載してなるLEDパッケージの一例を図1に示す。
このLEDパッケージは、実施形態の銅合金条材からなる基板1の表面の一部に絶縁層2Aと導電層(回路パターン)2Bが形成され、LEDチップ3が基板1に直接搭載されて電気的に接続されており、他方、導電層2Bとの間がボンディングワイヤ4によって接続されている。また、基板1の上にはLEDチップ3を囲むように円錐状凹部を有するリフレクタブロック5が設けられており、そのリフレクタブロック5の円錐状凹部の内面が反射面として機能している。このリフレクタブロック5はポリブチレンテレフタレートやポリカーボネート等の樹脂により形成され、基板1上に一体に成形されている。また、このリフレクタブロック5の円錐状凹部内は、LEDチップ3を埋設状態とする封止樹脂6が設けられている。
そして、前述したように、基板1において、LEDチップ3が搭載されている部位を除いて、その表面が表面処理剤によって粗化され、その粗化された表面上にリフレクタブロック5や封止樹脂6が固着されており、LEDチップ3が搭載されている部位の表面は粗化されていない表面とされ、その粗化されていない表面にLEDチップ3が直接固着されている。
Use the form of a chip-on-board]
FIG. 1 shows an example of an LED package in which LED chips are directly mounted on a copper alloy strip for electronic equipment according to an embodiment of the present invention.
In this LED package, an insulating layer 2A and a conductive layer (circuit pattern) 2B are formed on a part of the surface of the substrate 1 made of the copper alloy strip of the embodiment, and the LED chip 3 is directly mounted on the substrate 1 for electrical On the other hand, the conductive layer 2 </ b> B is connected by a bonding wire 4. A reflector block 5 having a conical recess is provided on the substrate 1 so as to surround the LED chip 3, and the inner surface of the conical recess of the reflector block 5 functions as a reflection surface. The reflector block 5 is formed of a resin such as polybutylene terephthalate or polycarbonate, and is integrally formed on the substrate 1. In addition, a sealing resin 6 that fills the LED chip 3 is provided in the conical recess of the reflector block 5.
As described above, the surface of the substrate 1 is roughened by the surface treatment agent except for the portion where the LED chip 3 is mounted, and the reflector block 5 and the sealing resin are formed on the roughened surface. 6 is fixed, and the surface of the portion on which the LED chip 3 is mounted is a non-roughened surface, and the LED chip 3 is directly fixed to the non-roughened surface.

一方、図2は、本発明の実施形態である異形断面の電子機器用銅合金条材にLEDチップを直接搭載した一例を図2示す。
図2は、図1におけるLEDチップの部分の縦断面に相当する断面図であり、基板11が厚肉部12とその両側の薄肉部13とを幅方向に並べてなる異形断面条材から形成され、その厚肉部12の上にLEDチップ3が搭載されて電気的に接続されている。そして、この図2に示す例では、基板11の厚肉部12の上面のLEDチップ3が搭載される部位を除いて、表面が粗化されており、その粗化された表面に樹脂が固着され、LEDチップ3が搭載される厚肉部12の上面が粗化されていない部位とされ、その粗化されていない表面にLEDチップ3が直接固着されている。
いずれの例においても、粗化された表面は、その表面粗さ(最大高さ)Rzが1.0μm〜2.0μmであり、粗化されていない部位の表面は、算術平均粗さRaが0.02μm〜0.05μmであり、最大高さRzが0.20μm〜0.40μmであり、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.10〜0.25である。
On the other hand, FIG. 2 shows an example in which an LED chip is directly mounted on a copper alloy strip for electronic equipment having an irregular cross section according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view corresponding to a vertical cross section of the LED chip portion in FIG. 1, in which the substrate 11 is formed from a deformed cross-section strip in which a thick portion 12 and thin portions 13 on both sides thereof are arranged in the width direction. The LED chip 3 is mounted on the thick portion 12 and electrically connected thereto. In the example shown in FIG. 2, the surface is roughened except for the portion where the LED chip 3 on the upper surface of the thick portion 12 of the substrate 11 is mounted, and the resin adheres to the roughened surface. Then, the upper surface of the thick portion 12 on which the LED chip 3 is mounted is a portion that is not roughened, and the LED chip 3 is directly fixed to the non-roughened surface.
In any example, the roughened surface has a surface roughness (maximum height) Rz of 1.0 μm to 2.0 μm, and the surface of the unroughened portion has an arithmetic average roughness Ra. 0.02 μm to 0.05 μm, the maximum height Rz is 0.20 μm to 0.40 μm, and the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz is 0.10 to 0.25. is there.

以下、本発明の実施例について比較例を含めて詳細に説明する。
下記表1に示す組成の銅合金(添加元素以外の成分はCu及び不可避不純物)を、電気炉により還元性雰囲気下で溶解し、厚さが30mm、幅が100mm、長さが250mmの鋳塊を作製した。この鋳塊を730℃にて1時間加熱した後、圧延率67%にて熱間圧延を行って厚さ10mmに仕上げ、その表面をフライスで板厚8mmになるまで面削した後、920℃にて60秒間の溶体化処理を行った後、板厚1.5mmまで冷間圧延を行った。次に、450〜575℃にて3〜12時間の時効処理を行った後、表1に示す条件にて第1冷間圧延、第1低温焼鈍、第2冷間圧延、第2低温焼鈍を順次行い、表1の実施例1〜11、比較例1〜9に示す0.3mmの銅合金薄板を得た。
Hereinafter, examples of the present invention will be described in detail including comparative examples.
An ingot having a thickness of 30 mm, a width of 100 mm, and a length of 250 mm, which is obtained by melting a copper alloy having the composition shown in Table 1 below (components other than additive elements are Cu and inevitable impurities) in a reducing atmosphere using an electric furnace Was made. The ingot was heated at 730 ° C. for 1 hour, then hot-rolled at a rolling rate of 67%, finished to a thickness of 10 mm, and the surface was chamfered to a plate thickness of 8 mm by milling, and then 920 ° C. After performing the solution treatment for 60 seconds, cold rolling was performed to a plate thickness of 1.5 mm. Next, after performing an aging treatment for 3 to 12 hours at 450 to 575 ° C., the first cold rolling, the first low temperature annealing, the second cold rolling, and the second low temperature annealing are performed under the conditions shown in Table 1. It carried out sequentially and obtained the 0.3 mm copper alloy thin plate shown in Examples 1-11 of Table 1, and Comparative Examples 1-9.

Figure 0004608025
Figure 0004608025

得られた銅合金薄板から組織観察用の試験片を採取し、機械研磨およびバフ研磨を行った後、電解研磨して表面を調整した。得られた各試験片について、日立ハイテク社製のSEM 型番「S−3400N」)と、TSL社製のEBSD測定・解析システムOIM(Orientation Imaging Macrograph)を用いて300μm×300μmの領域を1μmの間隔で測定した。その後、同システムの解析ソフト(ソフト名「OIM Analysis」)を用いて、Cube方位の方位密度(理想方位から15°以内)と平均結晶粒径(隣接するピクセル間の方位差が15°である境界を結晶粒界とみなした)を求めた。これらの銅合金薄板のEBSD測定に基づき求められた、Cube方位の方位密度と平均結晶粒径を表2に示す。
また、これらの銅合金薄板の試験片の表面粗さRa、Rz、Rqを、レーザー顕微鏡(オリンパス社製OLS300)を用いて測定した。これらの測定の結果を表2に示す。
また、これらの銅合金薄板の試験片の一部をマスキングした状態とし、H2SO4:70.5g/L(0.72mol/L)、H22:34g/L(1mol/L)からなる組成のマイクロエッチング剤に35℃で1分間浸漬して表面の粗化を行い、各試料片につき、マスキングした部分の表面粗さRa,Rz,Rq/Rz及び粗化された部分の表面粗さRzを、レーザー顕微鏡(オリンパス社製OLS300)を用いて測定した。これらの測定の結果を表2に示す。
A specimen for observing the structure was collected from the obtained copper alloy thin plate, subjected to mechanical polishing and buff polishing, and then subjected to electrolytic polishing to adjust the surface. About each obtained test piece, the SEM model number "S-3400N" made by Hitachi High-Tech Co., Ltd. and the EBSD measurement / analysis system OIM (Orientation Imaging Macrograph) made by TSL are used to separate regions of 300 μm × 300 μm at intervals of 1 μm. Measured with Then, using the analysis software of the system (software name “OIM Analysis”), the orientation density of the Cube orientation (within 15 ° from the ideal orientation) and the average crystal grain size (the orientation difference between adjacent pixels is 15 °) The boundary was regarded as a grain boundary). Table 2 shows the orientation density of the Cube orientation and the average crystal grain size determined based on the EBSD measurement of these copper alloy thin plates.
Moreover, the surface roughness Ra, Rz, Rq of the test piece of these copper alloy thin plates was measured using the laser microscope (OLS300 by Olympus). The results of these measurements are shown in Table 2.
Further, a state in which a part masked were specimens of copper alloy sheet, H 2 SO 4: 70.5g / L (0.72mol / L), H 2 O 2: 34g / L (1mol / L) The surface is roughened by immersion for 1 minute at 35 ° C. in a microetching agent having the following composition: the surface roughness Ra, Rz, Rq / Rz of the masked portion and the surface of the roughened portion for each sample piece The roughness Rz was measured using a laser microscope (OLS300 manufactured by Olympus). The results of these measurements are shown in Table 2.

Figure 0004608025
Figure 0004608025

次に、樹脂との密着性の評価は、各試料から切り出した各試験片の粗化面に、フィルムタイプのエポキシ系樹脂接着剤(東レ社製TSA−66)を用いて試験冶具を接着した後、室温にてせん断試験を実施し、樹脂の破壊モードを検査した。この時、破壊モードが樹脂内破壊のものを○、一部界面剥離を△、完全界面剥離のものを×とした。これらの測定結果を表3に示す。   Next, evaluation of adhesiveness with resin was performed by bonding a test jig to the roughened surface of each test piece cut out from each sample using a film-type epoxy resin adhesive (TSA-66 manufactured by Toray Industries, Inc.). Thereafter, a shear test was performed at room temperature to inspect the fracture mode of the resin. At this time, when the fracture mode was in-resin fracture, ○, partial interface peeling was indicated by Δ, and complete interface peeling was indicated by ×. These measurement results are shown in Table 3.

また、接触熱抵抗性、引張強さ、ビッカース硬さ、導電率の測定結果を表3に示す。
接触熱抵抗性は、図3に示すように、各試料21を寸法50mm×50mm×0.1mmとし、その表面の粗化されていない部位に抵抗素子とダイオードが組み込まれたSi半導体デバイス22を圧着し、これをスタンド23に支持して300mm×300mm×300mmのアクリルケース24の中心部に固定し、無風状態でSi半導体デバイス22を加熱し、Si半導体デバイス22と銅合金薄板21の温度を測定し、下記(1)式より算出した。
Rth=(Tj−Tx)/P …(1)
Tx;Si半導体デバイスが接合している銅合金薄板の裏面中央部の温度(K)
Tj;Si半導体デバイスに与えられる銅合金薄板と接する面の温度Tj(K)
P;Si半導体デバイスに与えられる全熱損失量P(W)
Table 3 shows the measurement results of contact thermal resistance, tensile strength, Vickers hardness, and conductivity.
As shown in FIG. 3, the contact thermal resistance is obtained by measuring each sample 21 with a dimension of 50 mm × 50 mm × 0.1 mm, and a Si semiconductor device 22 in which a resistance element and a diode are incorporated in a non-roughened portion of the surface. It is crimped and supported on a stand 23 and fixed to the center of an acrylic case 24 of 300 mm × 300 mm × 300 mm. The Si semiconductor device 22 is heated in a windless state, and the temperature of the Si semiconductor device 22 and the copper alloy thin plate 21 is increased. It measured and computed from the following (1) formula.
Rth = (Tj−Tx) / P (1)
Tx: Temperature at the center of the back surface of the copper alloy thin plate to which the Si semiconductor device is bonded (K)
Tj: Temperature Tj (K) of the surface in contact with the copper alloy thin plate applied to the Si semiconductor device
P: Total heat loss amount P (W) given to the Si semiconductor device

引張強さは、試験片を長手方向に圧延方向に平行としたJIS5号片を作製して測定した。
ビッカース硬さは、10mm×10mmの試験片を作製し、松沢精機社製のマイクロビッカース硬度計(商品名「微小硬度計」)を用いて0.5kgの荷重を加えて4箇所硬さ測定を行い、硬さはそれらの平均値とした。
導電率は、ミーリングにより10mm×30mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定し、平均断面法により算出した。
The tensile strength was measured by preparing a JIS No. 5 piece with the test piece parallel to the rolling direction in the longitudinal direction.
Vickers hardness is 10 mm x 10 mm test piece, and 0.5 kg load is measured using a micro Vickers hardness meter (trade name "micro hardness meter") manufactured by Matsuzawa Seiki Co., Ltd. The hardness was taken as the average value.
The electrical conductivity was calculated by an average cross section method by processing a strip-shaped test piece of 10 mm × 30 mm by milling, measuring electric resistance with a double bridge type resistance measuring device.

Figure 0004608025
Figure 0004608025

表3より、本発明のCu−Fe−P系の銅合金条材は、通常の表面処理剤により、容易に均質な粗化処理がなされ、優れた樹脂密着性を有し、LEDチップ等の発熱を効率的に放散することが可能であり、引張強さ、ビッカース硬さ、導電率も良好あり、チップオンボードでの使用に適していることがわかる。
以上、本発明の実施形態について説明したが、本発明はこの記載に限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能であり、例えば、光沢及び耐熱性の観点から、銅条材の表面が粗化されていない部位の表面に電解めっき方法により、錫或いは銀めっき処理が施されていても良い。
From Table 3, the Cu-Fe-P-based copper alloy strip of the present invention is easily subjected to uniform roughening treatment with an ordinary surface treatment agent, has excellent resin adhesion, It can be seen that the heat generation can be efficiently dissipated and the tensile strength, Vickers hardness, and electrical conductivity are good, and it is suitable for use on a chip-on-board.
As mentioned above, although embodiment of this invention was described, this invention is not limited to this description, In the range which does not deviate from the technical idea of the invention, it can change suitably, for example, a viewpoint of glossiness and heat resistance. Therefore, tin or silver plating treatment may be applied to the surface of the portion where the surface of the copper strip is not roughened by an electrolytic plating method.

1 基板
2A 絶縁層
2B 導電層
3 LEDチップ
4 ボンディングワイヤ
5 リフレクタブロック
6 封止樹脂
11 基板
12 厚肉部
13 薄肉部
DESCRIPTION OF SYMBOLS 1 Board | substrate 2A Insulating layer 2B Conductive layer 3 LED chip 4 Bonding wire 5 Reflector block 6 Sealing resin 11 Board | substrate 12 Thick part 13 Thin part

Claims (5)

Fe;1.5〜2.4質量%、P;0.008〜0.08質量%およびZn;0.01〜0.5質量%を含有し、残部がCu及び不可避不純物からなる銅合金条材において、前記銅合金条材の表面より10μmまでの深さの範囲の結晶組織内のEBSD法にて測定したCube方位の方位密度が10〜20%であり、EBSD法にて測定した平均結晶粒径が12〜20μmであり、前記銅合金条材の表面が表面処理剤により粗化された部位の表面の最大高さRzが1.0〜2.0μmであり、粗化されていない部位の表面の算術平均粗さRaが0.02〜0.05μmであり、最大高さRzが0.20〜0.40μmであり、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.10〜0.25であることを特徴とする放熱性及び樹脂密着性に優れた電子機器用銅合金条材。   Copper alloy strip containing Fe; 1.5-2.4 mass%, P; 0.008-0.08 mass% and Zn; 0.01-0.5 mass%, with the balance being Cu and inevitable impurities In the material, the orientation density of the Cube orientation measured by the EBSD method in the crystal structure in the depth range of 10 μm from the surface of the copper alloy strip is 10 to 20%, and the average crystal measured by the EBSD method The particle size is 12 to 20 μm, the maximum height Rz of the surface where the surface of the copper alloy strip is roughened by the surface treatment agent is 1.0 to 2.0 μm, and the surface is not roughened The surface has an arithmetic average roughness Ra of 0.02 to 0.05 μm, a maximum height Rz of 0.20 to 0.40 μm, and a ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz. Is 0.10 to 0.25, heat dissipation and resin dense Copper alloy strip for electronic equipment with excellent wearability. Ni;0.003〜0.5質量%及び/又はSn;0.003〜0.5質量%を含有することを特徴とする請求項1に記載の放熱性及び樹脂密着性に優れた電子機器用銅合金条材。 The electronic device excellent in heat dissipation and resin adhesion according to claim 1, characterized by containing Ni; 0.003-0.5 mass% and / or Sn; 0.003-0.5 mass%. Copper alloy strips. Al、Be、Ca、Cr、Mg及びSiのうちの少なくとも1種以上を含有し、その含有量が0.0007〜0.5質量%に設定されていることを特徴とする請求項1又は請求項2に記載の放熱性及び樹脂密着性に優れた電子機器用銅合金条材。   It contains at least one or more of Al, Be, Ca, Cr, Mg and Si, and its content is set to 0.0007 to 0.5 mass%. Item 3. A copper alloy strip for electronic equipment having excellent heat dissipation and resin adhesion. 前記表面が粗化された部位に絶縁層が形成され、前記表面が粗化されていない部位にLEDチップ素子が直接搭載されたことを特徴とする請求項1から請求項3の何れか1項に記載の放熱性及び樹脂密着性優れた電子機器用銅合金条材。 The insulating layer is formed in the part where the surface is roughened, and the LED chip element is directly mounted on the part where the surface is not roughened. heat radiation and resin adhesion excellent copper alloy strip material for electronic device according to. 複数の厚肉部と薄肉部とが幅方向に交互に並んだ異形断面を有しており、前記粗化された部位が薄肉部であり、前記表面が粗化されていない部位が厚肉部であることを特徴とする請求項1から請求項4の何れか1項に記載の放熱性及び樹脂密着性優れた電子機器用銅合金条材。 A plurality of thick portions and thin portions have an irregular cross section alternately arranged in the width direction, the roughened portion is a thin portion, and the surface is not roughened is a thick portion The copper alloy strip for an electronic device according to any one of claims 1 to 4, which is excellent in heat dissipation and resin adhesion.
JP2010127940A 2010-06-03 2010-06-03 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion Active JP4608025B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127940A JP4608025B1 (en) 2010-06-03 2010-06-03 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127940A JP4608025B1 (en) 2010-06-03 2010-06-03 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion

Publications (2)

Publication Number Publication Date
JP4608025B1 true JP4608025B1 (en) 2011-01-05
JP2011252215A JP2011252215A (en) 2011-12-15

Family

ID=43566555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127940A Active JP4608025B1 (en) 2010-06-03 2010-06-03 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion

Country Status (1)

Country Link
JP (1) JP4608025B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111999A (en) * 2010-11-25 2012-06-14 Mitsubishi Shindoh Co Ltd Cu-Fe-P SYSTEM COPPER ALLOY STRIP MATERIAL FOR ELECTRONIC APPARATUS EXCELLENT IN SURFACE ROUGHENING PROPERTY AND RESIN ADHESION PROPERTY
CN107429323A (en) * 2015-03-27 2017-12-01 株式会社神户制钢所 Heat dissipation element copper alloy plate and heat dissipation element
CN111074094A (en) * 2019-12-30 2020-04-28 河南师范大学 Preparation method of high-strength cube-texture copper-based alloy baseband

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5436349B2 (en) * 2010-01-30 2014-03-05 三菱伸銅株式会社 Bonding method of LED chip and lead frame
JP5525369B2 (en) * 2010-03-11 2014-06-18 三菱伸銅株式会社 Cu-Fe-P copper alloy strips for electronic equipment with excellent resin adhesion
JP5687976B2 (en) * 2011-09-09 2015-03-25 株式会社Shカッパープロダクツ Manufacturing method of copper alloy for electric and electronic parts
JP2014019907A (en) * 2012-07-18 2014-02-03 Sh Copper Products Corp Copper alloy for electric-electronic component
CN104073677B (en) 2013-03-27 2017-01-11 株式会社神户制钢所 Copper alloy strip for lead frame of led
JP6026934B2 (en) * 2013-03-27 2016-11-16 株式会社神戸製鋼所 Copper alloy strip for LED lead frame
JP6149528B2 (en) * 2013-06-17 2017-06-21 住友電気工業株式会社 Lead material
JP6141708B2 (en) * 2013-07-09 2017-06-07 三菱伸銅株式会社 Plated copper alloy plate with excellent gloss
JP5851000B1 (en) 2014-08-22 2016-02-03 株式会社神戸製鋼所 Copper alloy strip for LED lead frame
JP2016156056A (en) 2015-02-24 2016-09-01 株式会社神戸製鋼所 Copper alloy sheet strip for lead frame of led

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145734A (en) * 1988-11-25 1990-06-05 Nippon Mining Co Ltd High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH02170935A (en) * 1988-12-24 1990-07-02 Nippon Mining Co Ltd Copper alloy having superior direct bonding property
JPH07326698A (en) * 1994-06-01 1995-12-12 Hitachi Cable Ltd Manufacture of stripe-plated strip
JPH0846116A (en) * 1994-07-28 1996-02-16 Mitsubishi Denki Metetsukusu Kk Lead frame and its manufacture
JP2002339028A (en) * 2001-05-17 2002-11-27 Kobe Steel Ltd Copper alloy for electric or electronic part, and electric or electronic part using the same
JP2005139501A (en) * 2003-11-05 2005-06-02 Kobe Steel Ltd Copper alloy having excellent heat resistance, and its production method
JP2005340474A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Lead frame and manufacturing method thereof
JP2008187045A (en) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd Lead frame for semiconductor device, manufacturing method therefor, and the semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145734A (en) * 1988-11-25 1990-06-05 Nippon Mining Co Ltd High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH02170935A (en) * 1988-12-24 1990-07-02 Nippon Mining Co Ltd Copper alloy having superior direct bonding property
JPH07326698A (en) * 1994-06-01 1995-12-12 Hitachi Cable Ltd Manufacture of stripe-plated strip
JPH0846116A (en) * 1994-07-28 1996-02-16 Mitsubishi Denki Metetsukusu Kk Lead frame and its manufacture
JP2002339028A (en) * 2001-05-17 2002-11-27 Kobe Steel Ltd Copper alloy for electric or electronic part, and electric or electronic part using the same
JP2005139501A (en) * 2003-11-05 2005-06-02 Kobe Steel Ltd Copper alloy having excellent heat resistance, and its production method
JP2005340474A (en) * 2004-05-26 2005-12-08 Matsushita Electric Ind Co Ltd Lead frame and manufacturing method thereof
JP2008187045A (en) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd Lead frame for semiconductor device, manufacturing method therefor, and the semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111999A (en) * 2010-11-25 2012-06-14 Mitsubishi Shindoh Co Ltd Cu-Fe-P SYSTEM COPPER ALLOY STRIP MATERIAL FOR ELECTRONIC APPARATUS EXCELLENT IN SURFACE ROUGHENING PROPERTY AND RESIN ADHESION PROPERTY
CN107429323A (en) * 2015-03-27 2017-12-01 株式会社神户制钢所 Heat dissipation element copper alloy plate and heat dissipation element
CN111074094A (en) * 2019-12-30 2020-04-28 河南师范大学 Preparation method of high-strength cube-texture copper-based alloy baseband
CN111074094B (en) * 2019-12-30 2021-08-20 河南师范大学 Preparation method of high-strength cube-texture copper-based alloy baseband

Also Published As

Publication number Publication date
JP2011252215A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP4608025B1 (en) Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion
KR101528998B1 (en) Copper alloy plate having superior heat dissipation and repeated bending workability
CN104718616B (en) The power module substrate that carries radiator, the power model for carrying radiator and carry radiator power module substrate manufacture method
EP2339038B1 (en) Copper alloy sheet for electric and electronic part
EP3041043B1 (en) Assembly and power-module substrate
US20150190985A1 (en) Chassis and method for manufacturing chassis
JP6226511B2 (en) Copper alloy sheet with excellent heat dissipation and repeated bending workability
JP2013108122A (en) Copper alloy sheet excellent in heat radiating property and repeated bending workability
CN1647267A (en) Circuit board, process for producing the same and power module
JP4168077B2 (en) Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
JP2017075396A (en) Copper alloy sheet excellent in heat release property and repeated flexure processability
JP5370460B2 (en) Semiconductor module
WO2015075994A1 (en) Copper alloy plate having excellent electroconductivity, moldability, and stress relaxation properties
JP2011146567A (en) Method for connecting led chip, and lead frame
JP5067817B2 (en) Cu-Fe-P-based copper alloy plate excellent in conductivity and heat resistance and method for producing the same
CN109641323A (en) Solderable material
EP3664585B1 (en) Ceramic circuit board
JP5710225B2 (en) Cu-Fe-P copper alloy strip for electronic equipment with excellent surface roughening and resin adhesion
JP2017092500A (en) Lead frame for led, optical semiconductor device, and method of manufacturing lead frame for led
JP2013145862A (en) Board for mounting led element, method for manufacturing the same, and semiconductor device with board for mounting led element
JP5069485B2 (en) Metal base circuit board
KR100380214B1 (en) Lead frame and copper alloy to be used for lead frame
US20060286358A1 (en) Heat spreader for use with light emitting diode
JP5525369B2 (en) Cu-Fe-P copper alloy strips for electronic equipment with excellent resin adhesion
JP4617884B2 (en) Connecting lead wire and manufacturing method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Ref document number: 4608025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250