JP2002339028A - Copper alloy for electric or electronic part, and electric or electronic part using the same - Google Patents

Copper alloy for electric or electronic part, and electric or electronic part using the same

Info

Publication number
JP2002339028A
JP2002339028A JP2001148047A JP2001148047A JP2002339028A JP 2002339028 A JP2002339028 A JP 2002339028A JP 2001148047 A JP2001148047 A JP 2001148047A JP 2001148047 A JP2001148047 A JP 2001148047A JP 2002339028 A JP2002339028 A JP 2002339028A
Authority
JP
Japan
Prior art keywords
electric
orientation
copper alloy
electronic parts
cube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001148047A
Other languages
Japanese (ja)
Other versions
JP3798260B2 (en
Inventor
Katsura Kajiwara
桂 梶原
Yasuhiro Ariga
康博 有賀
Yasuaki Sugizaki
康昭 杉崎
Yoshio Henmi
義男 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001148047A priority Critical patent/JP3798260B2/en
Publication of JP2002339028A publication Critical patent/JP2002339028A/en
Application granted granted Critical
Publication of JP3798260B2 publication Critical patent/JP3798260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Fe-containing copper alloy for electric or electronic parts which has better workability than the conventional Fe-containing copper alloy electronic parts, and to provide electric or electronic parts which have excellent quality. SOLUTION: [1] The Fe-containing copper alloy for electric or electronic parts in which a ratio between an X-ray diffraction intensity in the (200) plane and that in the (220) plane is 0.5 to 10, is provided. [2] The Fe-containing copper alloy for electric or electronic parts in which an orientation density in the Cube orientation is 1 to 50, is provided. [3] The Fe-containing copper alloy for electric or electronic parts in which a ratio between an orientation density (1 to 50) in the Cube orientation and that in the S orientation is 0.1 to 5, is provided. [4] The electric or electronic parts are consisting of those copper alloys.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気電子部品用銅
合金及び電気電子部品に関する技術分野に属し、特に
は、半導体用リードフレーム、端子、コネクター、ブス
バー等の電気電子部品用の銅合金であって、加工性に優
れた電気電子部品用銅合金に関する技術分野に属するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of copper alloys for electric and electronic parts and electric and electronic parts, and more particularly to copper alloys for electric and electronic parts such as semiconductor lead frames, terminals, connectors and bus bars. In addition, it belongs to the technical field of copper alloys for electric and electronic parts having excellent workability.

【0002】[0002]

【従来の技術】電子機器に用いられる半導体装置の大容
量化、小型化、高機能化に伴い、半導体装置に使用され
るリードフレームの小断面積化が進み、より一層の強
度、導電性、熱伝導性が要求されている。
2. Description of the Related Art With the increase in capacity, miniaturization, and functionality of semiconductor devices used in electronic equipment, lead frames used in semiconductor devices have become smaller in cross-sectional area, and have higher strength, conductivity, and the like. Thermal conductivity is required.

【0003】半導体用リードフレーム等の電気電子部品
材料としては、種々のFe含有銅合金(Feを含有する
銅合金)が用いられている。即ち、銅母相中にFe又は
Fe−P、Fe−Si、Fe−Ti等の金属間化合物を
析出させると、導電率および強度に優れる銅合金が比較
的簡単に得られるため、C19400(Cu−2.35
Fe−0.03P−0.12Zn)、C19500(C
u−1.5Fe−0.8Co−0.1P−0.6S
n)、C19700(Cu−0.6Fe−0.2P−
0.05Mg)、Cu−Fe−Si、Cu−Fe−Ti
等の多種のFe含有銅合金が半導体用リードフレーム、
端子、コネクター等の電気、電子部品材料として大量に
用いられている。
Various Fe-containing copper alloys (Fe-containing copper alloys) have been used as materials for electrical and electronic components such as lead frames for semiconductors. That is, when Fe or an intermetallic compound such as Fe-P, Fe-Si, or Fe-Ti is precipitated in the copper matrix, a copper alloy having excellent conductivity and strength can be obtained relatively easily, and therefore C19400 (Cu -2.35
Fe-0.03P-0.12Zn), C19500 (C
u-1.5Fe-0.8Co-0.1P-0.6S
n), C19700 (Cu-0.6Fe-0.2P-
0.05Mg), Cu-Fe-Si, Cu-Fe-Ti
Various Fe-containing copper alloys such as lead frames for semiconductors,
It is used in large quantities as a material for electrical and electronic components such as terminals and connectors.

【0004】しかし、これらの電気電子部品材料(Fe
含有銅合金)を加工、成形する場合において、冷間圧延
における板の波打ちや蛇行、残留応力の不均一、スリッ
ターした条の蛇行、スタンピング加工における曲がりや
バリの発生、リード曲げ加工部の肌荒れや割れ、製品で
の強度低下等の問題が発生することがあり、これが製品
の歩留まりや加工時の生産性を低下させていた。
However, these electric and electronic component materials (Fe
When processing and forming copper alloys, corrugation and meandering of the plate during cold rolling, uneven residual stress, meandering of slitted strips, occurrence of bending and burrs in stamping, roughening of the lead bending part, etc. Problems such as cracking and reduction in strength of the product may occur, which has reduced the product yield and the productivity during processing.

【0005】従来、電気電子部品材料としては前記のよ
うなFe含有銅合金が用いられているが、これらのFe
含有銅合金の特性の制御はFe、P、Zn等の主成分の
量の調整およびその他のSn、Mg等の微量添加元素に
よる制御が主であった。しかし、近年では、リードフレ
ーム用銅合金に対する更なる高品質化、特性向上が要求
されており、単なる成分制御だけでは、かかる要求を満
たすことができないことから、内部組織や析出状態の制
御による方法が提案され、開示されている。例えば、特
開平10−265873号公報には、圧延表面の板幅方
向の平均結晶粒径が3〜60μm で、且つ、その値の8
0〜120%の寸法の結晶粒の数が全結晶粒の70%以
上である電気電子部品用銅合金、即ち、このように結晶
粒径、混粒組織を制御することにより、加工性を制御し
た電気電子部品用銅合金が開示されている。
Conventionally, Fe-containing copper alloys as described above have been used as electric and electronic component materials.
The control of the properties of the contained copper alloy was mainly by adjusting the amounts of the main components such as Fe, P, and Zn, and by controlling the addition of trace elements such as Sn and Mg. However, in recent years, there has been a demand for higher quality and improved properties of copper alloys for lead frames, and such a requirement cannot be satisfied by mere component control alone. Have been proposed and disclosed. For example, Japanese Patent Application Laid-Open No. 10-265873 discloses that the average crystal grain size in the width direction of the rolled surface is 3 to 60 μm and the value is 8 μm.
A copper alloy for electric and electronic parts in which the number of crystal grains having a size of 0 to 120% is 70% or more of all crystal grains, that is, the workability is controlled by controlling the crystal grain size and the mixed grain structure in this way. The disclosed copper alloy for electric and electronic parts is disclosed.

【0006】[0006]

【発明が解決しようとする課題】以上よりわかる如く、
従来の電気電子部品用銅合金での特性の制御は、銅母相
中にFe及び/又はFe系金属間化合物を析出させるこ
と及び/又は再結晶粒の制御によるものである。
As can be seen from the above,
The control of the properties of the conventional copper alloy for electric and electronic parts is based on the precipitation of Fe and / or Fe-based intermetallic compounds in the copper matrix and / or the control of recrystallized grains.

【0007】このような制御は、析出挙動や再結晶挙動
の厳密な管理によって達成されていたが、その挙動を安
定的に制御することが難しく、特に、コイル内の加工性
がばらつき易いといった問題が生じる。
[0007] Such control has been achieved by strict control of the precipitation behavior and recrystallization behavior, but it is difficult to stably control the behavior, and in particular, the workability in the coil tends to vary. Occurs.

【0008】また、近年の益々の軽薄短小化に伴い、従
来の組織や析出物の制御では充分な加工性を満足させる
ことはできない。
[0008] Further, with the recent trend toward lighter, thinner and smaller sizes, it is not possible to satisfy sufficient workability by conventional control of the structure and precipitates.

【0009】そのため、加工性を更に安定的に向上させ
るためには、加工性、成形性の観点から、これらを支配
する組織的因子を本質的に解明し、別の観点での改善が
必要となっている。
Therefore, in order to more stably improve the workability, it is necessary to essentially clarify the structural factors governing these from the viewpoint of workability and formability, and to improve from another viewpoint. Has become.

【0010】そこで、本発明者らは、Fe含有銅合金の
加工性を支配する組織的因子について、鋭意検討を重ね
た。その結果、成形性の悪いものでは、その原因は集合
組織が十分に制御されていなかったことにあることを見
出した。即ち、結晶方位の違いにより、板材の塑性異方
性が変化し、プレス成形性が影響を受けることを見出
し、これまで集合組織(ある特定の結晶方位が集合した
組織)が制御されていなかったために、安定的な加工性
が得られなかったことがわかった。その集合組織の発達
度合により板材の部位による変形能の相違が大きくな
り、前記の如き冷間圧延における板の波打ちや蛇行、残
留応力の不均一、スリッターした条の蛇行、スタンピン
グ加工における曲がりやバリの発生、リード曲げ加工部
の肌荒れや割れ、製品での強度低下等の問題が発生する
ことがわかった。
Accordingly, the present inventors have conducted intensive studies on the systematic factors that govern the workability of the Fe-containing copper alloy. As a result, it was found that the cause of poor moldability was that the texture was not sufficiently controlled. That is, it was found that the plastic anisotropy of the sheet material was changed by the difference in the crystal orientation, and that the press formability was affected, and the texture (structure in which a specific crystal orientation was assembled) was not controlled so far. In addition, it was found that stable workability was not obtained. Depending on the degree of development of the texture, the difference in deformability between the parts of the sheet material becomes large, and the sheet is wavy and meandered in cold rolling as described above, uneven in residual stress, meandering of slitted strips, bending and burr in stamping processing. It was found that problems such as occurrence of cracks, roughening and cracking of the lead bending portion, and reduction in strength of the product occurred.

【0011】本発明は、このような知見に基づいてなさ
れたものであって、その目的は、前記従来の電気電子部
品用銅合金(Fe含有銅合金)が有する問題点を解消
し、加工性に優れた電気電子部品用銅合金および品質に
優れた電気電子部品を提供しようとするものである。
The present invention has been made based on such knowledge, and an object of the present invention is to solve the problems of the conventional copper alloy for electric and electronic parts (Fe-containing copper alloy) and to improve the workability. It is an object of the present invention to provide a copper alloy for electric and electronic parts excellent in quality and an electric and electronic part excellent in quality.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る電気電子部品用銅合金および電気電
子部品は、請求項1〜3記載の電気電子部品用銅合金、
請求項4記載の電気電子部品としており、それは次のよ
うな構成としたものである。
In order to achieve the above object, a copper alloy for an electric / electronic part and an electric / electronic part according to the present invention are provided as described above.
The electric and electronic component according to claim 4 has the following configuration.

【0013】即ち、請求項1記載の電気電子部品用銅合
金は、Feを含有する電気電子部品用銅合金であって、
(200)面のX線回折強度:I(200)と(22
0)面のX線回折強度:I(220)との比:I(20
0)/I(220)が0.5以上10以下であることを
特徴とする電気電子部品用銅合金である(第1発明)。
That is, the copper alloy for electric / electronic parts according to claim 1 is a copper alloy for electric / electronic parts containing Fe,
X-ray diffraction intensity of (200) plane: I (200) and (22)
0) X-ray diffraction intensity of plane: ratio to I (220): I (20)
0) / I (220) is 0.5 or more and 10 or less (1st invention).

【0014】請求項2記載の電気電子部品用銅合金は、
Feを含有する電気電子部品用銅合金であって、Cub
e方位の方位密度:D(Cube方位)が1以上50以
下であることを特徴とする電気電子部品用銅合金である
(第2発明)。
The copper alloy for electric and electronic parts according to claim 2 is
A copper alloy for electric and electronic parts containing Fe, wherein Cub
A copper alloy for electric and electronic parts, wherein the orientation density of the e orientation: D (Cube orientation) is 1 or more and 50 or less (second invention).

【0015】請求項3記載の電気電子部品用銅合金は、
Cube方位の方位密度:D(Cube方位)とS方位
の方位密度:D(S方位)との比:D(Cube方位)
/D(S方位)が0.1以上5以下である請求項1又は
2記載の電気電子部品用銅合金である(第3発明)。
[0015] The copper alloy for electric and electronic parts according to claim 3 is:
Ratio between azimuth density of Cube azimuth: D (Cube azimuth) and azimuth density of S azimuth: D (S azimuth): D (Cube azimuth)
The copper alloy for electric and electronic parts according to claim 1 or 2, wherein / D (S direction) is 0.1 or more and 5 or less (third invention).

【0016】請求項4記載の電気電子部品は、請求項
1、2又は3記載の電気電子部品用銅合金からなる電気
電子部品である(第4発明)。
According to a fourth aspect of the present invention, there is provided an electric / electronic part comprising the copper alloy for an electric / electronic part according to the first, second or third aspect (a fourth invention).

【0017】[0017]

【発明の実施の形態】本発明は、例えば次のような形態
で実施する。Fe含有銅合金(Feを含有する銅合金)
よりなる鋳塊を面削加工してスラブにし、これを加熱し
て熱間圧延した後、面削加工し、しかる後、冷間圧延と
中間焼鈍を繰り返して、電気電子部品用の板材を得る。
このとき、特に冷間圧延での加工率と中間焼鈍条件を調
整することにより、得られる板材の(200)面のX線
回折強度:I(200)と(220)面のX線回折強
度:I(220)との比:I(200)/I(220)
が0.5以上10以下となるようにする。あるいは、C
ube方位の方位密度:D(Cube方位)が1以上5
0以下となるようにする。そうすると、本発明に係る電
気電子部品用銅合金が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is embodied in the following manner, for example. Fe-containing copper alloy (Fe-containing copper alloy)
The ingot made into a slab by chamfering, heated and hot-rolled, then chamfered, and thereafter, cold rolling and intermediate annealing are repeated to obtain a sheet material for electric and electronic parts .
At this time, the X-ray diffraction intensity of the (200) plane: I (200) and the X-ray diffraction intensity of the (220) plane of the obtained sheet material are adjusted by adjusting the working ratio in cold rolling and the intermediate annealing conditions. Ratio to I (220): I (200) / I (220)
Is 0.5 or more and 10 or less. Or C
Orientation density of ube orientation: D (Cube orientation) is 1 or more and 5
0 or less. Then, the copper alloy for electric / electronic parts according to the present invention is obtained.

【0018】かかる形態で本発明に係る電気電子部品用
銅合金が得られる。そして、この電気電子部品用銅合金
を加工することにより、本発明に係る電気電子部品が得
られる。
In this manner, the copper alloy for electric / electronic parts according to the present invention is obtained. Then, by processing the copper alloy for an electric / electronic component, the electric / electronic component according to the present invention can be obtained.

【0019】以下、本発明について主にその作用効果を
説明する。
Hereinafter, the function and effect of the present invention will be mainly described.

【0020】通常の銅合金板の場合、主に、以下に示す
如きCube方位、Goss方位、Brass 方位(以下、B方位と
もいう)、Copper方位(以下、Cu方位ともいう)、S方
位等と呼ばれる集合組織を形成し、それらに応じた結晶
面が存在する。これらの集合組織のでき方は同じ結晶系
の場合でも加工、熱処理方法によって異なり、圧延によ
る板材の集合組織の場合は、圧延面と圧延方向で表され
ており、圧延面は{ABC}で表現され、圧延方向は<
DEF>で表現される。かかる表現に基づき、各方位は
下記の如く表現される。
In the case of a normal copper alloy sheet, mainly, Cube orientation, Goss orientation, Brass orientation (hereinafter also referred to as B orientation), Copper orientation (hereinafter also referred to as Cu orientation), S orientation, etc. A texture called the texture is formed, and a crystal plane corresponding to the texture exists. The formation of these textures differs depending on the processing and heat treatment method even in the case of the same crystal system. In the case of the texture of a rolled sheet material, the texture is expressed by the rolling surface and the rolling direction, and the rolling surface is expressed by {ABC} And the rolling direction is <
DEF>. Based on this expression, each direction is expressed as follows.

【0021】 Cube方位 {001}<100> Goss方位 {011}<100> Rotated-Goss方位 {011}<011> Brass 方位(B方位) {011}<211> Copper方位(Cu方位) {112}<111> (若しくはD方位{4 4 11}<11 11 8 > S方位 {123}<634> B/G方位 {011}<511> B/S方位 {168}<211> P方位 {011}<111>Cube orientation {001} <100> Goss orientation {011} <100> Rotated-Goss orientation {011} <011> Brass orientation (B orientation) {011} <211> Copper orientation (Cu orientation) {112} <111> (or D direction {4441} <11118> S direction {123} <634> B / G direction {011} <511> B / S direction {168} <211> P direction {011} <111>

【0022】本発明においては、基本的に、これらの結
晶面から±10°以内のずれのものは同一の結晶面に属
するものとする。ここで、B方位〜Cu方位〜S方位は各
方位間で連続的に変化するファイバー集合組織(β-fib
er)で存在している。
In the present invention, basically, those having a deviation of ± 10 ° from these crystal planes belong to the same crystal plane. Here, the B direction, the Cu direction, and the S direction are fiber textures (β-fib) that continuously change between the directions.
er).

【0023】これらの集合組織の評価、方位分布密度
(Orientation Density)の測定は、通常のX線回折法を
用いて行うことができる。X線回折強度比は、回折面の
強度、即ち(200) 面、(220) 面、(110) 面のX線回折強
度から求めることができる。更に、各方位の方位密度
は、(100) 、(110) 、(111) の完全極点図又は不完全極
点図(Pole Figure)を測定し、それから、結晶方位分布
関数(Orientation Distribution Function : ODF )を
用いて、各方位の強度ピーク値の合計に対する各方位の
強度ピークの割合を計算することによって求められる
(例えば、長島晋一編著「集合組織」,丸善株式会社
刊,1984,P8-44 や、金属学会セミナー「集合組織」,
日本金属学会編,1981,P3-7等)。あるいは、TEM によ
る電子線回折法、又は、SEM(Scanning Electron Micros
copy)-ECP(Electron Chaneling Pattern)法、或いは、S
EM-EBSP〔Electron Back Scattering(Scattered) Patte
rn 、若しくはEBSD(Diffraction) ともいう〕を用いて
測定したデータを基に結晶方位分布関数を用いて方位密
度を求めることができる。これらの方位分布は板厚方向
に変化しているため、板厚方向に何点か任意にとって平
均をとることによって求める方が好ましい。但し、リー
ドフレーム等の半導体用材料に用いられる銅合金板の場
合、板厚が0.1 〜0.3mmw程度であるため、そのままの板
厚で測定した値でも評価できる。
The evaluation of these textures and the measurement of the orientation distribution density (Orientation Density) can be carried out by using an ordinary X-ray diffraction method. The X-ray diffraction intensity ratio can be determined from the intensity of the diffraction plane, that is, the X-ray diffraction intensity of the (200) plane, the (220) plane, and the (110) plane. Further, the orientation density of each orientation is obtained by measuring a complete pole figure or a pole figure of (100), (110), and (111), and then obtaining a crystal orientation distribution function (Orientation Distribution Function: ODF). Is used to calculate the ratio of the intensity peak in each direction to the sum of the intensity peak values in each direction (for example, “Texture” edited by Shinichi Nagashima, Maruzen Co., 1984, P8-44, Metallurgy Society Seminar “Texture”,
Edited by The Japan Institute of Metals, 1981, P3-7). Alternatively, electron beam diffraction by TEM or SEM (Scanning Electron Micros
copy) -ECP (Electron Chaneling Pattern) method or S
EM-EBSP (Electron Back Scattering (Scattered) Patte
rn or EBSD (Diffraction)] can be used to determine the orientation density using a crystal orientation distribution function. Since these azimuth distributions change in the thickness direction, it is preferable to obtain the average by averaging some points in the thickness direction. However, in the case of a copper alloy plate used for a semiconductor material such as a lead frame, since the plate thickness is about 0.1 to 0.3 mmw, a value measured with the plate thickness as it is can be evaluated.

【0024】通常の銅合金板の集合組織は、上述のよう
に、かなり多くの方位因子からなるが、これらの構成比
率が変化すると板材の塑性異方性が変化し、加工性が変
化することが判明した。そして、その中でも、特にCube
方位の方位密度〔以下、D(Cube)ともいう〕を適正範囲
に制御することにより、加工性の向上と安定化とを達成
し得ることがわかった。
As described above, the texture of a normal copper alloy sheet is composed of a considerable number of orientation factors. However, if these constituent ratios change, the plastic anisotropy of the sheet material changes and the workability changes. There was found. And among them, especially Cube
It was found that by controlling the azimuth density (hereinafter, also referred to as D (Cube)) of the azimuth in an appropriate range, improvement in workability and stabilization can be achieved.

【0025】スタンピング加工等の加工の際、変形中に
均一変形することが望ましいが、Cube方位が強く発達し
過ぎ、D(Cube)が上記適正範囲よりも高くなると、板面
内の塑性異方性が強くなり、部分的に変形し易い個所と
変形し難い個所が発生し、前述の如きスタンピング加工
での曲がりやバリの発生等の問題が発生し易くなる。一
方、Cube方位が少なく、D(Cube)が上記適正範囲よりも
低くなると、これは他の結晶方位の発達が強くなること
を意味し、別の面内異方性により、上記と同様の問題が
発生する。このため、Cube方位粒の制御が重要である。
During processing such as stamping, it is desirable to deform uniformly during deformation, but if the Cube orientation develops too strongly and D (Cube) becomes higher than the appropriate range, the plastic anisotropy in the plate surface will increase. The strength is increased, and a portion which is easily deformed and a portion which is hardly deformed are generated, and the problem such as the bending and the occurrence of burrs in the stamping process as described above is likely to occur. On the other hand, if the Cube orientation is small and D (Cube) is lower than the appropriate range, this means that the development of other crystal orientations becomes stronger, and another in-plane anisotropy causes the same problem as above. Occurs. Therefore, it is important to control the Cube orientation grains.

【0026】上記D(Cube)の適正範囲は、1以上55以
下である。(200) 面のX線回折強度:I(200) と(220)
面のX線回折強度:I(220) との比:I(200) /I(22
0) が0.5以上10以下であるとき、ほぼD(Cube)は
1以上55以下となっている。ただし、I(200) /I(2
20) の値はCube方位以外の方位である(110) 面の強度に
よっても変化するので、I(200) /I(220) の値が本発
明の範囲内であっても、D(Cube)の値が本発明の範囲外
になることもある(逆の場合も同様である)。
The appropriate range of D (Cube) is from 1 to 55. X-ray diffraction intensity of (200) plane: I (200) and (220)
X-ray diffraction intensity of surface: ratio to I (220): I (200) / I (22
When (0) is 0.5 or more and 10 or less, D (Cube) is almost 1 or more and 55 or less. However, I (200) / I (2
Since the value of (20) varies depending on the strength of the (110) plane, which is an orientation other than the Cube orientation, even if the value of I (200) / I (220) is within the range of the present invention, D (Cube) May fall outside the scope of the invention (and vice versa).

【0027】そこで、本発明に係る電気電子部品用銅合
金は、Feを含有する電気電子部品用銅合金であって、
(200) 面のX線回折強度:I(200) と(220) 面のX線回
折強度:I(220) との比:I(200) /I(220) が0.5
以上10以下であることを特徴とするものであることと
している(第1発明)。この電気電子部品用銅合金は、
前記知見よりわかる如く、加工性に優れている。ここ
で、I(200) /I(220)が0.5以上10以下であるこ
ととしているのは、0.5未満の場合にはCube方位以外
の特定の結晶方位の発達が強くなり、異方性が強くな
り、ひいては加工性が低下して不充分となり、10超の
場合にはCube方位が強く発達し過ぎ、板面内の塑性異方
性が強くなり、ひいては加工性が低下して不充分となる
からである。
Therefore, the copper alloy for electric / electronic parts according to the present invention is a copper alloy for electric / electronic parts containing Fe,
The ratio of the X-ray diffraction intensity of the (200) plane: I (200) to the X-ray diffraction intensity of the (220) plane: I (220): I (200) / I (220) is 0.5
It is characterized by being not less than 10 and not more than 10 (first invention). This copper alloy for electric and electronic parts is
As can be seen from the above findings, the workability is excellent. Here, the reason that I (200) / I (220) is 0.5 or more and 10 or less is that when less than 0.5, the development of a specific crystal orientation other than the Cube orientation becomes strong, The anisotropy becomes stronger, and consequently, the workability is reduced and becomes insufficient. If it exceeds 10, the Cube orientation develops too strongly, the plastic anisotropy in the plane of the plate becomes stronger, and consequently the workability decreases. This is because it becomes insufficient.

【0028】上記I(200) /I(220) のより好ましい範
囲は0.6以上9以下である。この場合、より高水準の
加工性を有するものとなる。
The more preferable range of I (200) / I (220) is 0.6 or more and 9 or less. In this case, it has a higher level of workability.

【0029】また、前記D(Cube)のより好ましい範囲は
1以上50以下であり、この場合、D(Cube):1以上5
5以下の場合よりも、より高水準の加工性を有するもの
となることから、本発明に係る電気電子部品用銅合金
は、Feを含有する電気電子部品用銅合金であって、Cu
be方位の方位密度:D(Cube)が1以上50以下であるこ
とを特徴とするものであることとしている(第2発
明)。この電気電子部品用銅合金は、前記知見よりわか
る如く、加工性に優れている。ここで、D(Cube)が1以
上50以下であることとしているのは、1未満の場合に
はCube方位以外の特定の結晶方位の発達が強くなり、異
方性が強くなり、ひいては加工性が低下して不充分とな
り、50超の場合にはCube方位が強く発達し、板面内の
塑性異方性が強くなり、ひいては加工性が低下して不充
分となるからである。
The more preferable range of D (Cube) is 1 or more and 50 or less, and in this case, D (Cube) is 1 or more and 5 or less.
5 or less, the copper alloy for electric and electronic parts according to the present invention is a copper alloy for electric and electronic parts containing Fe,
The azimuth density of the be azimuth: D (Cube) is 1 to 50 (second invention). This copper alloy for electric / electronic parts has excellent workability, as can be seen from the above findings. Here, the reason that D (Cube) is not less than 1 and not more than 50 is that, when D (Cube) is less than 1, the development of a specific crystal orientation other than the Cube orientation becomes strong, the anisotropy becomes strong, and consequently the workability. This is because when the ratio exceeds 50, the Cube orientation is strongly developed, the plastic anisotropy in the plane of the plate becomes strong, and the workability is lowered to be insufficient.

【0030】前記Cube方位の方位密度:D(Cube 方位)
とS方位の方位密度:D(S方位)との比:D(Cube方
位) /D(S方位)が0.1以上5以下である場合に
は、より好ましい高水準の加工性を有するものとなる
(第3発明)。即ち、前述のことからわかる如く板材の
塑性異方性は各集合組織成分のバランスと深い関わりが
あり、特に、Cube方位とS方位の方位密度の割合を制御
することで、より好ましい加工性を得ることができ、D
(Cube方位) /D(S方位)を0.1〜5とすることに
より高水準の加工性を有するものとなる。ここで、D
(Cube方位) /D(S方位)を0.1未満にすると、Cu
be方位よりS方位が相対的に強くなり、D(Cube方位)
/D(S方位)を5超にすると、S方位よりCube方位が
相対的に強くなり、いずれの場合も異方性が強くなり、
加工性が低下する。更に、上記D(Cube方位) /D(S
方位)を0.2〜4.5とした場合には、より一層高水
準の加工性を有するものとなる。
The orientation density of the Cube orientation: D (Cube orientation)
When the ratio of the orientation density of D and the S orientation: D (S orientation): D (Cube orientation) / D (S orientation) is 0.1 or more and 5 or less, it has a more preferable high level of workability. (Third invention). That is, as can be seen from the above, the plastic anisotropy of the sheet material has a deep relationship with the balance of each texture component, and in particular, by controlling the ratio of the cubic density of the Cube orientation and the S orientation, a more preferable workability is obtained. Can be obtained, D
By setting (Cube orientation) / D (S orientation) to 0.1 to 5, a high level of workability can be obtained. Where D
If (Cube orientation) / D (S orientation) is less than 0.1, Cu
S direction becomes relatively stronger than be direction, D (Cube direction)
When / D (S direction) is more than 5, the Cube direction becomes relatively stronger than the S direction, and in each case, the anisotropy becomes stronger.
Workability decreases. Further, the above D (Cube orientation) / D (S
When the (azimuth) is 0.2 to 4.5, the workability becomes even higher.

【0031】本発明において、電気電子部品用銅合金は
Feを含有するが、その銅合金の成分や組成については特
には限定されない。しかし、本発明の効果をより一層発
揮させるため、あるいは、各種特性の点から、好ましい
成分組成の範囲が存在する。かかる成分組成の範囲につ
いて、以下に説明する。尚、各成分の含有量の単位に関
し質量%(重量%)は%と略して表示する。
In the present invention, the copper alloy for electric / electronic parts is
Although containing Fe, the components and compositions of the copper alloy are not particularly limited. However, there is a preferable range of component composition in order to further exert the effects of the present invention or from the viewpoint of various characteristics. The range of the component composition will be described below. In addition, regarding the unit of the content of each component, the mass% (% by weight) is abbreviated as%.

【0032】Fe量(含有量)が0.01%未満であると、Fe
又はFe基金属間化合物の析出量が少ないため、リードフ
レーム、端子、コネクター等に要求される最近の高強度
化に十分には応えることができず、また、特殊な加熱条
件を設定しなくても整粒組織が得ることができるように
するため、Fe量は0.01%以上とすることが望ましい。一
方、Fe量が4.0 %を超えると粗大なFeの晶出物が多量に
発生し、これらの晶出物は強度向上に殆ど寄与せず、か
えって曲げ加工性を劣化させ、プレス打抜き時に金型を
摩耗させるため、Fe量は4.0 %以下とすることが望まし
い。従って、Fe量は0.01〜4.0 %とすることが望まし
い。この範囲の中で、より好ましい範囲は0.05〜3.0 %
である。
If the Fe content (content) is less than 0.01%,
Or, since the precipitation amount of the Fe-based intermetallic compound is small, it cannot sufficiently respond to the recent increase in strength required for lead frames, terminals, connectors, etc., and without setting special heating conditions. In order to obtain a grain sized structure, the Fe content is desirably 0.01% or more. On the other hand, if the Fe content exceeds 4.0%, a large amount of coarse Fe crystallized substances are generated, and these crystallized substances hardly contribute to the improvement of the strength, but rather deteriorate the bending workability, and cause the die to die at the time of press punching. It is desirable that the amount of Fe be set to 4.0% or less in order to cause wear. Therefore, the amount of Fe is desirably 0.01 to 4.0%. Within this range, a more preferred range is 0.05 to 3.0%.
It is.

【0033】P,Si,TiはFeと安定な金属間化合物を形
成し、Cuの母相に析出して銅合金の耐力、耐熱性を向上
させる。金属間化合物を形成させるためにP,Si,Tiを
添加する場合は、これらの一種以上を用いる。PはFeと
Fe2P又はFe3Pを形成し、SiはFeとFe3Si, Fe5Si3 又はFe
Siを形成し、TiはFeとFe2Ti 又はFeTiを形成する。これ
らの含有量は、Pは0.0001〜0.7 %、Siは0.001 〜1.0
%、Tiは0.001 〜1.0%とすることが好ましく、それぞ
れ下限値より少ないと、耐力、耐熱性が向上せず、上限
値を超すと導電率が低下し、鋳造が難しくなり、熱延や
冷延時に割れが発生しやすくなる。
P, Si, and Ti form stable intermetallic compounds with Fe, and precipitate in the matrix of Cu to improve the yield strength and heat resistance of the copper alloy. When adding P, Si, or Ti to form an intermetallic compound, one or more of these are used. P is Fe
Fe 2 P or Fe 3 P is formed, Si is Fe and Fe 3 Si, Fe 5 Si 3 or Fe
Si forms, and Ti forms Fe and Fe 2 Ti or FeTi. The content of P is 0.0001 to 0.7%, and the content of Si is 0.001 to 1.0%.
% And Ti are preferably in the range of 0.001 to 1.0%. If each is less than the lower limit, the proof stress and heat resistance are not improved. If the upper limit is exceeded, the electrical conductivity is reduced, casting becomes difficult, and hot rolling and cold rolling are performed. Cracks easily occur during rolling.

【0034】Zn,Sn,Co,Mg,Mnは強度を向上させる。
Znはプレス加工性の向上(金型摩耗の低減)、マイグレ
ーションの防止、錫めっき及びはんだの耐熱剥離防止等
の効果を有する。Zn量が0.02%未満ではその効果が充分
でなく、5.0 %を超えると、はんだ濡れ性が低下するの
で、Zn量は0.02〜5.0 %とすることが好ましい。Snはバ
ネ限界値を向上させる。Sn量が0.01%未満ではその効果
が充分でなく、3.0 %を超えると導電率が低下するの
で、Sn量は0.01〜3.0 %とすることが好ましい。Coは耐
熱性を向上させる。Co量が0.01%未満ではその効果が充
分でなく、3.0 %を超えると導電率が低下するので、Co
量は0.01〜3.0 %とすることが好ましい。Mgはバネ限界
値及びプレス加工性(金型摩耗)を改善し、マイグレー
ションを防止する他、Sと化合してMgS を形成し、鋳塊
の熱間加工性を改善する。Mgが0.01%未満ではそれらの
効果が充分でなく、3.0 %を超えて含有されると導電率
を低下させ、鋳造が難しくなるので、Mg量は0.01〜3.0
%とすることが好ましい。Mnは耐熱性、鋳塊の熱間加工
性を向上させる。Mn量が0.01%未満ではそれらの効果が
充分でなく、1.5 %を超えると、はんだ濡れ性及び導電
率が低下し、鋳造が難しくなるので、Mn量は0.01〜1.5
%とすることが好ましい。なお、上記元素中、Co,Mnは
それぞれP,Siと化合物を形成するが、Fe−P、Fe−Si
化合物以外に、Co,Mnのりん化物又は/及び珪化物が形
成されても本発明に係る銅合金の効果を害するものでは
ない。
Zn, Sn, Co, Mg, and Mn improve the strength.
Zn has effects such as improvement of press workability (reduction of mold wear), prevention of migration, prevention of tin plating and heat peeling of solder. If the Zn content is less than 0.02%, the effect is not sufficient, and if it exceeds 5.0%, the solder wettability decreases. Therefore, the Zn content is preferably set to 0.02 to 5.0%. Sn improves the spring limit. If the amount of Sn is less than 0.01%, the effect is not sufficient, and if it exceeds 3.0%, the electrical conductivity is reduced. Therefore, the amount of Sn is preferably 0.01 to 3.0%. Co improves heat resistance. If the Co content is less than 0.01%, the effect is not sufficient, and if it exceeds 3.0%, the electrical conductivity is reduced.
Preferably, the amount is 0.01-3.0%. Mg improves the spring limit value and press workability (mold wear), prevents migration, and combines with S to form MgS, thereby improving the hot workability of the ingot. If the content of Mg is less than 0.01%, these effects are not sufficient, and if the content is more than 3.0%, the conductivity is lowered and casting becomes difficult.
% Is preferable. Mn improves heat resistance and hot workability of the ingot. If the Mn content is less than 0.01%, their effects are not sufficient. If the Mn content exceeds 1.5%, the solder wettability and the electrical conductivity decrease, and casting becomes difficult.
% Is preferable. In the above elements, Co and Mn form compounds with P and Si, respectively, but Fe-P and Fe-Si
The formation of phosphides and / or silicides of Co and Mn other than the compounds does not impair the effects of the copper alloy according to the present invention.

【0035】他の微量元素 Sn ,Pb,Ni,Mn,Cr,Al,
Mg,Ca,Be,Si,Zr,In,Ag,Se,Te,Sb,Bi,S等に
ついても、他の主特性である強度、導電率、めっき性等
を改善する目的で、1種類又は2種類以上を添加するこ
とがあり、これらの添加は製品の特性を阻害しない限り
許容される。
Other trace elements Sn, Pb, Ni, Mn, Cr, Al,
Mg, Ca, Be, Si, Zr, In, Ag, Se, Te, Sb, Bi, S, etc. are also used for improving the other main characteristics such as strength, conductivity, plating property, etc. Two or more types may be added, and these additions are acceptable as long as they do not interfere with the properties of the product.

【0036】従来の電気電子部品用銅合金の製造条件に
ついての考え方は、成分設計と最適焼鈍条件の組み合わ
せによる制御であった。これは加工性と強度の観点で、
析出物制御、結晶粒径の制御である。具体的な製造方法
は、焼鈍条件の制御だけであった。これに対し、本発明
は塑性異方性の改善という観点を集合組織の制御の観点
から検討を行い、それ等に基づきなされたものである。
集合組織の形成は、成分、加工条件、熱処理条件の単独
の条件だけで決まるものではなく、それらの組み合わせ
で変化し、形成されるものである。特に、本発明者ら
は、加工の前工程での組織状態の影響を大きく受けるこ
とを見出したため、従来の方法では実現できなかった、
組み合わせの条件により特性に影響を及ぼすCube方位の
制御を可能とし、加工性の向上を実現することができ
た。
The conventional concept of the production conditions for copper alloys for electric and electronic parts is to control by a combination of component design and optimum annealing conditions. This is from the viewpoint of workability and strength,
These are precipitation control and crystal grain size control. The specific manufacturing method was only control of the annealing conditions. On the other hand, the present invention has been studied from the viewpoint of controlling texture, from the viewpoint of improving plastic anisotropy, and has been made based on these.
The formation of the texture is determined not only by a single condition of the components, the processing conditions, and the heat treatment conditions, but is changed and formed by a combination thereof. In particular, the present inventors have found that it is greatly affected by the state of the structure in the pre-processing step, it could not be realized by the conventional method,
The control of the Cube orientation, which affects the characteristics depending on the conditions of the combination, was made possible, and the workability was improved.

【0037】本発明に係る電気電子部品用銅合金は、通
常は鋳造、均質化熱処理、熱間圧延及び冷間圧延と焼鈍
の繰り返しによる工程を経て製造されるが、化学成分や
各工程の設定条件により、得られる集合組織は変わるの
で、一連の製造工程として、総合的に条件を選択する必
要がある。目的とする集合組織が得られればよく、製造
方法は特には限定されるものではないが、熱間圧延及び
冷間圧延における製造条件の制御が特に重要である。
The copper alloy for electric / electronic parts according to the present invention is usually produced through steps of casting, homogenizing heat treatment, hot rolling, cold rolling and repeated annealing. Since the obtained texture varies depending on the conditions, it is necessary to comprehensively select the conditions as a series of manufacturing steps. The production method is not particularly limited as long as an intended texture can be obtained, but control of production conditions in hot rolling and cold rolling is particularly important.

【0038】本発明に係る電気電子部品用銅合金の製造
に際し、好ましい製造条件や重要な事項等について、以
下に具体的に説明する。
In the production of the copper alloy for electric and electronic parts according to the present invention, preferable production conditions and important matters will be specifically described below.

【0039】鋳造方法としては一般にCu系合金で採用さ
れている鋳造方法であればよく、連続鋳造が一般的であ
る。鋳造後の均質化熱処理は、鋳塊内に生じたマクロ偏
析を均質化する目的で行うため、900 〜1000℃程度の高
温で行うのが一般的である。但し、本発明においては、
ここでの固溶状態、析出物形態を所望の形態に制御する
ことが重要である。それは、ここで生じる析出物または
完全固溶せず残存した金属間化合物は、以降の熱処理過
程での再結晶方位の優先核生成サイトとして働き、どの
ような集合組織が形成されるかを支配するからである。
また、これらの析出物状態は、結晶粒径をも支配する。
添加元素によって、Cu母相中への各金属間化合物の固溶
温度は異なるため、最適均質化熱処理条件は添加元素に
応じて適宜選択することが望ましい。
As the casting method, any casting method generally used for Cu-based alloys may be used, and continuous casting is generally used. The heat treatment for homogenization after casting is generally performed at a high temperature of about 900 to 1000 ° C. in order to homogenize macrosegregation generated in the ingot. However, in the present invention,
It is important to control the solid solution state and precipitate form here to a desired form. That is, the precipitates or intermetallic compounds that remain without being completely solid-solutioned serve as preferential nucleation sites for the recrystallization orientation in the subsequent heat treatment process, and govern what kind of texture is formed. Because.
The state of these precipitates also controls the crystal grain size.
Since the solid solution temperature of each intermetallic compound in the Cu matrix differs depending on the added element, it is desirable that the optimum homogenization heat treatment condition is appropriately selected according to the added element.

【0040】均質化熱処理後の熱間圧延や冷間圧延の最
適条件は、均質化熱処理後に形成される固溶状態、金属
間化合物の分散状態によって変化するので、これらに応
じて適宜選択することが望ましい。
Optimum conditions for hot rolling and cold rolling after the homogenizing heat treatment vary depending on the solid solution state formed after the homogenizing heat treatment and the dispersion state of the intermetallic compound. Is desirable.

【0041】集合組織が形成される理由は、結晶には最
もすべりやすい結晶面が存在するため、圧延加工によ
り、ある特定の結晶方位に配向するからであり、その後
の焼鈍によって更に特定の方位が発達するからである。
本発明に係る銅合金の集合組織は、下記の如き圧延と焼
鈍の組み合わせによる厳密な制御によって得ることがで
きる。
The reason why the texture is formed is that the crystal has the most slippery crystal plane and is oriented to a specific crystal orientation by rolling, and further specific orientation is obtained by annealing. Because it develops.
The texture of the copper alloy according to the present invention can be obtained by strict control by a combination of rolling and annealing as described below.

【0042】熱間圧延については、その総加工率を80%
以上とすると共にパス数を5パス以上とすることが望ま
しい。熱間圧延の総加工率が80%未満の場合には、充分
な集合組織が発達せず、また、板厚方向にも集合組織の
不均一が生じ易く、特性ばらつきの面で好ましくない。
パス数は熱間加工のパス間で生じる回復・再結晶挙動に
よってCube方位を制御する効果があり、5パス未満では
充分ではない。
For hot rolling, the total working ratio is 80%.
It is desirable that the number of passes be 5 or more. If the total working ratio of the hot rolling is less than 80%, a sufficient texture is not developed, and the texture tends to be non-uniform in the thickness direction, which is not preferable in terms of characteristic variation.
The number of passes has the effect of controlling the Cube orientation by the recovery / recrystallization behavior occurring between passes of hot working, and less than 5 passes is not sufficient.

【0043】熱間圧延後の冷間圧延については、冷間加
工率50%以上の冷間圧延を行い、第1熱処理工程を施
し、この後、冷間加工率90%以下(0%を含む)の冷間
圧延を行い、第2熱処理工程を施した後、冷間加工率50
%以上95%以下の最終冷間圧延を行うことが望ましい。
途中の熱処理工程での熱処理温度は、合金成分における
析出相によって変化させることが好ましい。上記の如く
冷間加工率と熱処理(焼鈍)との組み合わせを制御する
ことによって、本発明に係る銅合金の集合組織に制御す
ることができる。
For the cold rolling after the hot rolling, cold rolling is performed at a cold working rate of 50% or more, a first heat treatment step is performed, and thereafter, the cold working rate is 90% or less (including 0%). ), And after the second heat treatment step, a cold working rate of 50
It is desirable to perform final cold rolling of not less than 95% and not more than 95%.
The heat treatment temperature in the heat treatment step in the middle is preferably changed depending on the precipitated phase in the alloy component. By controlling the combination of the cold working ratio and the heat treatment (annealing) as described above, the texture of the copper alloy according to the present invention can be controlled.

【0044】尚、各冷間圧延工程での冷間加工率が上記
冷間加工率の下限値になる場合は、Cube方位の方位密度
がコイル内で部分的に高くなり、特性にばらつきが生じ
易くなって好ましくない。一方、上記冷間加工率の上限
値を超える場合は、Cube方位の発達が充分ではなく、他
の圧延方位の発達が強くなり、塑性異方性が生じ易くな
って好ましくない。
When the cold working rate in each cold rolling step is at the lower limit of the above cold working rate, the cubic density of the Cube orientation becomes partially high in the coil, causing variations in characteristics. It is not preferable because it becomes easy. On the other hand, when the ratio exceeds the upper limit of the cold working ratio, the Cube orientation is not sufficiently developed, and the other rolling orientations are strongly developed, which tends to cause plastic anisotropy.

【0045】上記第1熱処理工程及び第2熱処理工程
は、基本的には、微細な析出物を出現させ、製品強度、
導電率のレベルを制御する効果があり、添加元素、析出
相の種類により、その析出温度は変化するため、熱処理
条件は一律に限定されるものではない。但し、微細な析
出物が多いほど、その後の冷間圧延工程で圧延集合組織
成分(S方位、B方位、Cu方位等)の発達が強くな
り、相対的にCube方位の量が低くなるため、最適に集合
組織を得るためには、熱処理工程と冷間圧延工程の組み
合わせにより制御することが重要である。
In the first heat treatment step and the second heat treatment step, basically, fine precipitates appear, and the product strength,
There is an effect of controlling the level of the conductivity, and the deposition temperature varies depending on the type of the added element and the type of the precipitated phase. Therefore, the heat treatment condition is not limited to a uniform one. However, the more fine precipitates, the stronger the development of rolling texture components (S orientation, B orientation, Cu orientation, etc.) in the subsequent cold rolling step, and the amount of Cube orientation becomes relatively low, In order to optimally obtain a texture, it is important to control by a combination of a heat treatment step and a cold rolling step.

【0046】本発明に係る電気電子部品用銅合金は、前
記の如く加工性に優れているので、半導体用リードフレ
ーム、端子、コネクター、ブスバー等の電気電子部品の
材料として好適に用いることができ、それにより得られ
る電気電子部品は品質特性に優れ、電子機器用半導体装
置の更なる大容量化、小型化、高機能化に寄与すること
ができる(第4発明)。
Since the copper alloy for electric / electronic parts according to the present invention is excellent in workability as described above, it can be suitably used as a material for electric / electronic parts such as semiconductor lead frames, terminals, connectors and bus bars. The electrical and electronic parts obtained thereby are excellent in quality characteristics, and can contribute to further increase in capacity, size, and function of semiconductor devices for electronic devices (a fourth invention).

【0047】[0047]

【実施例】本発明の実施例及び比較例を以下説明する。
尚、本発明はこの実施例に限定されるものではない。
EXAMPLES Examples and comparative examples of the present invention will be described below.
Note that the present invention is not limited to this embodiment.

【0048】表1に示す化学成分を有するFe含有銅合
金をコアレス炉にて溶解し、種々の厚さの鋳塊を半連続
鋳造法にて造塊した。次に、これらの鋳塊について表面
面削量を調整して面削加工し、種々の厚さのスラブ(厚
さ10mm〜300mm ×幅500mm ×長さ1000mm)スラブを得、
これらのスラブを900 〜1000℃で1時間加熱した後、熱
間圧延にて厚さ1〜20mmまで圧延した。このとき、熱間
圧延の入り側の厚さ(スラブの厚さ)を鋳塊サイズ及び
面削加工により調整し、熱間圧延で得る最終板の板厚を
制御することにより、総圧下率(加工率)及びパス数を
表2に示す如く変化させた。
An Fe-containing copper alloy having the chemical components shown in Table 1 was melted in a coreless furnace, and ingots of various thicknesses were formed by a semi-continuous casting method. Next, these ingots were surface-adjusted by adjusting the amount of surface shave to obtain slabs of various thicknesses (thickness 10 mm to 300 mm x width 500 mm x length 1000 mm),
After heating these slabs at 900 to 1000 ° C. for one hour, they were rolled to a thickness of 1 to 20 mm by hot rolling. At this time, the thickness on the entry side of hot rolling (thickness of the slab) is adjusted by the ingot size and facing, and by controlling the thickness of the final plate obtained by hot rolling, the total rolling reduction ( (Processing rate) and the number of passes were changed as shown in Table 2.

【0049】このようにして得られた熱間圧延板を面削
加工した後、冷間圧延と中間焼鈍を繰り返して、厚さ:
約0.25mmのリードフレーム用銅合金を製造した。このと
きの製造条件(初回冷間圧延での加工率、第1熱処理条
件、第1熱処理後の冷間圧延での加工率、第2熱処理条
件、第2熱処理後の最終冷間圧延での加工率)を表2に
示す。得られた銅合金はコイル状のものである。
After the hot-rolled sheet thus obtained was subjected to face milling, cold rolling and intermediate annealing were repeated to obtain a thickness:
A copper alloy for lead frames of about 0.25 mm was manufactured. Manufacturing conditions at this time (working rate in initial cold rolling, first heat treatment condition, working rate in cold rolling after first heat treatment, second heat treatment condition, working in final cold rolling after second heat treatment Table 2 shows the ratios. The obtained copper alloy is in the form of a coil.

【0050】このようにして得られたコイル状の銅合金
について、コイル内から任意に試験材を採取し、下記の
試験を行った。また、コイル内から任意に50mm角の板材
を採取し、この4つ角それぞれの硬さの測定を行った。
With respect to the coiled copper alloy thus obtained, a test material was arbitrarily sampled from the coil and subjected to the following test. Also, a 50 mm square plate material was arbitrarily sampled from inside the coil, and the hardness of each of the four corners was measured.

【0051】(X線回折強度、集合組織の測定)前記コ
イルから採取された試験材について、通常のX線回折法
により、ターゲットにCuを用い、管電圧50KV、管電流
200mA の条件で測定した。X線回折強度については、リ
ガク製X線回折装置を用いて、(200) 面〔=(100)
面〕、(220)面〔=(110) 面〕の回折強度を測定し、そ
れより、(200) 面/(220) 面のX線回折強度比を求め
た。また、Cube方位の方位密度:D(Cube)等の各方位密
度は、(100) 、(110) 、(111) の完全極点図を測定し、
それから、結晶方位分布関数を用いて、各方位の強度ピ
ーク値の合計に対する各方位の強度ピークの割合を計算
することによって求めた。ここで、理想の面指数から±
10°以内の方位のずれのものは同一の結晶面に属するも
のとした。
(Measurement of X-ray Diffraction Intensity and Texture) The test material collected from the coil was subjected to ordinary X-ray diffraction using Cu as a target, a tube voltage of 50 KV, and a tube current.
The measurement was performed under the condition of 200 mA. Regarding the X-ray diffraction intensity, using a Rigaku X-ray diffractometer, the (200) plane [= (100)
Plane) and (220) plane (= (110) plane), and the X-ray diffraction intensity ratio of the (200) plane / (220) plane was determined from the measured diffraction intensities. The azimuth density of Cube azimuth: For each azimuth density such as D (Cube), the complete pole figure of (100), (110), and (111) is measured.
Then, the ratio was calculated by calculating the ratio of the intensity peak in each direction to the sum of the intensity peak values in each direction using the crystal orientation distribution function. Here, ±
Those with a misorientation within 10 ° belonged to the same crystal plane.

【0052】(導電率の測定)前記コイルから採取され
た試験材をミーリング加工によって短冊状の試験片に加
工し、この試験片についてダブルブリッジ式抵抗測定装
置により導電率を測定した。
(Measurement of Conductivity) A test material collected from the coil was processed into a strip-shaped test piece by milling, and the conductivity of the test piece was measured by a double-bridge resistance measuring apparatus.

【0053】(プレス性の評価試験)前記コイルから採
取された試験材について機械式プレスにより0.3mm 幅の
リードを打ち抜き、打ち抜いたリードのばり高さを測定
し、プレス性を評価した。このとき、ばり高さは、10個
のリードのばり面を走査型電子顕微鏡で観察する方法に
より測定し、各最大ばり高さの平均値で示した。
(Evaluation test of pressability) A lead having a width of 0.3 mm was punched out of a test material collected from the coil by a mechanical press, and the burring height of the punched out lead was measured to evaluate pressability. At this time, the burr height was measured by a method of observing the burr surface of the ten leads with a scanning electron microscope, and indicated by an average value of each maximum burr height.

【0054】(曲げ加工性の評価試験)前記コイルから
採取された試験材について0.25mmRで90°曲げを行い、
曲げ部の外面側を光学顕微鏡で観察し、肌荒れの有無及
びクラックの有無で評価した。
(Evaluation test for bending workability) The test material sampled from the coil was bent at 90 ° at 0.25 mmR.
The outer surface side of the bent portion was observed with an optical microscope, and evaluated based on the presence or absence of rough skin and the presence or absence of cracks.

【0055】(50mm角の板材の4つ角の硬さの測定)前
記コイルから採取された50mm角の板材について、ビッカ
ース硬度計を用い、荷重500 gで4つ角それぞれの硬さ
の測定を行った。そして、4つ角それぞれの硬さ測定値
の中で、最高値と最低値の差でもって硬さのばらつきを
評価した。
(Measurement of Hardness of Four Squares of 50 mm Square Plate) The hardness of each of the four squares of the 50 mm square plate sampled from the coil was measured using a Vickers hardness meter under a load of 500 g. went. Then, among the hardness measured values of the four corners, the difference in hardness was evaluated by the difference between the highest value and the lowest value.

【0056】上記試験の結果を表3に示す。No.6〜
13のものは比較例に該当し、(200)面/(220) 面のX線
回折強度比:I(200) /I(220) が0.5 未満あるいは10
超であると共に、Cube方位の方位密度:D(Cube)が1未
満あるいは55超であり、このため、プレス性の評価試験
でのばり高さのコイル内での差が大きく、プレス加工性
のばらつきが大きい。これは、コイル内の加工性がばら
つき易く、安定していないことを示している。更に、こ
の比較例の中には、曲げ加工性の評価試験で肌荒れ又は
/及びクラックが発生するものがあり、これらは曲げ加
工性が悪い。
Table 3 shows the results of the above test. No. 6 ~
13 corresponds to the comparative example, and the X-ray diffraction intensity ratio of the (200) plane / (220) plane: I (200) / I (220) is less than 0.5 or 10
In addition to being super, the orientation density of the Cube orientation: D (Cube) is less than 1 or more than 55, so that the difference in the flash height in the coil in the pressability evaluation test is large, Large variation. This indicates that the workability in the coil tends to vary and is not stable. Further, in some of the comparative examples, roughening and / or cracks occur in the evaluation test of bending workability, and these have poor bending workability.

【0057】これに対し、No.4〜5のものは本発明
の実施例に該当し、I(200) /I(220) が0.5 〜10の範
囲内の値であると共に、D(Cube)が1〜55の範囲内の値
であり、このため、プレス性の評価試験でのばり高さの
コイル内での差が極めて小さく、プレス加工性のばらつ
きが著しく小さい。これは、コイル内の加工性がばらつ
き難く、安定していることを示している。更に、曲げ加
工性の評価試験で肌荒れもクラックも発生せず、曲げ加
工性に極めて優れている。
On the other hand, no. 4 to 5 correspond to the embodiments of the present invention, where I (200) / I (220) is a value in the range of 0.5 to 10, and D (Cube) is a value in the range of 1 to 55. For this reason, the difference in the burr height in the coil in the evaluation test of pressability is extremely small, and the variation in press workability is extremely small. This indicates that the workability in the coil is hard to vary and is stable. Further, in the evaluation test for bending workability, neither roughening nor cracking occurs, and the bending workability is extremely excellent.

【0058】No.1〜3のものは本発明の中の第3発
明の実施例に該当し、I(200) /I(220) が0.5 〜10の
範囲内の値であると共に、D(Cube)が1〜50の範囲内の
値であり、更にD(Cube)/D(S方位)が0.1 〜5の範
囲内の値である。このため、前記No.4〜5の場合よ
りも、プレス性の評価試験でのばり高さのコイル内での
差が極めて小さい。これは、前記No.4〜5の場合よ
りも、さらにコイル内の加工性がばらつき難く、安定し
ていることを示している。
No. 1 to 3 correspond to an embodiment of the third invention in the present invention, wherein I (200) / I (220) is a value in the range of 0.5 to 10, and D (Cube) is 1 to 3. It is a value in the range of 50, and D (Cube) / D (S direction) is a value in the range of 0.1 to 5. For this reason, the above-mentioned No. The difference in the height of the burrs in the evaluation test of pressability in the coil is extremely smaller than in the cases of 4 to 5. This is the same as the above No. This shows that the workability in the coil is less likely to vary and is more stable than in the cases of 4 and 5.

【0059】[0059]

【発明の効果】本発明に係る電気電子部品用銅合金は、
以上のように加工性に優れており、このため、電気電子
部品用銅合金として好適に用いることができ、電気電子
部品製造の際の製品歩留まりおよび加工時の生産性を向
上させることができるという顕著な作用効果を奏する。
The copper alloy for electric / electronic parts according to the present invention comprises:
As described above, it is excellent in workability, so that it can be suitably used as a copper alloy for electric / electronic parts, and it is possible to improve the product yield in the production of electric / electronic parts and the productivity in processing. Has a remarkable effect.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】[0062]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉崎 康昭 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 逸見 義男 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuaki Sugizaki 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Yoshio Hemi Takatsuka, Nishi-ku, Kobe City, Hyogo Prefecture 1-5-5 Daiko Kobe Steel, Ltd. Kobe Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Feを含有する電気電子部品用銅合金で
あって、(200)面のX線回折強度:I(200)と
(220)面のX線回折強度:I(220)との比:I
(200)/I(220)が0.5以上10以下である
ことを特徴とする電気電子部品用銅合金。
1. A copper alloy for electric and electronic parts containing Fe, wherein an X-ray diffraction intensity of the (200) plane: I (200) and an X-ray diffraction intensity of the (220) plane: I (220). Ratio: I
(200) / I (220) is 0.5 or more and 10 or less, The copper alloy for electric / electronic parts characterized by the above-mentioned.
【請求項2】 Feを含有する電気電子部品用銅合金で
あって、Cube方位の方位密度:D(Cube方位)
が1以上50以下であることを特徴とする電気電子部品
用銅合金。
2. A copper alloy for electric and electronic parts containing Fe, wherein the orientation density of Cube orientation: D (Cube orientation)
Is 1 or more and 50 or less.
【請求項3】 Cube方位の方位密度:D(Cube
方位)とS方位の方位密度:D(S方位)との比:D
(Cube方位)/D(S方位)が0.1以上5以下で
ある請求項1又は2記載の電気電子部品用銅合金。
3. An orientation density of Cube orientation: D (Cube
Azimuth) and azimuth density of S azimuth: D (S azimuth): D
3. The copper alloy for electric and electronic parts according to claim 1, wherein (Cube orientation) / D (S orientation) is 0.1 or more and 5 or less.
【請求項4】 請求項1、2又は3記載の電気電子部品
用銅合金からなる電気電子部品。
4. An electric / electronic part comprising the copper alloy for electric / electronic parts according to claim 1, 2 or 3.
JP2001148047A 2001-05-17 2001-05-17 Copper alloy for electric and electronic parts and electric and electronic parts Expired - Fee Related JP3798260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148047A JP3798260B2 (en) 2001-05-17 2001-05-17 Copper alloy for electric and electronic parts and electric and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148047A JP3798260B2 (en) 2001-05-17 2001-05-17 Copper alloy for electric and electronic parts and electric and electronic parts

Publications (2)

Publication Number Publication Date
JP2002339028A true JP2002339028A (en) 2002-11-27
JP3798260B2 JP3798260B2 (en) 2006-07-19

Family

ID=18993437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148047A Expired - Fee Related JP3798260B2 (en) 2001-05-17 2001-05-17 Copper alloy for electric and electronic parts and electric and electronic parts

Country Status (1)

Country Link
JP (1) JP3798260B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019035A1 (en) 2004-08-17 2006-02-23 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electric and electronic parts having bending workability
WO2007007517A1 (en) 2005-07-07 2007-01-18 Kabushiki Kaisha Kobe Seiko Sho Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
WO2008010378A1 (en) 2006-07-21 2008-01-24 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheets for electrical/electronic part
EP1882751A1 (en) 2006-07-28 2008-01-30 Kabushiki Kaisha Kobe Seiko Sho Copper alloy having high strength and high softening resistance
WO2008041584A1 (en) 2006-10-02 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electrical and electronic components
WO2009019990A1 (en) 2007-08-07 2009-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
JP2009185376A (en) * 2008-01-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
JP4608025B1 (en) * 2010-06-03 2011-01-05 三菱伸銅株式会社 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion
WO2011019042A1 (en) * 2009-08-10 2011-02-17 古河電気工業株式会社 Copper alloy material for electrical/electronic components
JP2011176260A (en) * 2010-01-30 2011-09-08 Mitsubishi Shindoh Co Ltd Method of bonding led chip and leadframe
JP2011208271A (en) * 2010-03-11 2011-10-20 Mitsubishi Shindoh Co Ltd Cu-Fe-P BASED COPPER ALLOY STRIP MATERIAL FOR ELECTRONIC EQUIPMENT HAVING EXCELLENT RESIN ADHESION
WO2012026610A1 (en) * 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and manufacturing method for same
JP2012107297A (en) * 2010-11-18 2012-06-07 Hitachi Cable Ltd Copper alloy for electric and electronic components, and method of manufacturing the same
JP2012243454A (en) * 2011-05-17 2012-12-10 Jx Nippon Mining & Metals Corp Rolled copper foil, and negative electrode collector using the same, negative electrode plate and secondary battery
KR101577877B1 (en) * 2010-08-31 2015-12-15 후루카와 덴키 고교 가부시키가이샤 Process for producing copper alloy sheet material
DE102004053346B4 (en) * 2003-11-05 2017-12-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) A method of forming a softening resistant copper alloy sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160043674A (en) * 2014-10-14 2016-04-22 주식회사 풍산 Copper alloy material for connectors with high strength, high thermal resistance and high corrosion resistance, and excellent bending processiblity, and method for producing same
KR101627696B1 (en) * 2015-12-28 2016-06-07 주식회사 풍산 Copper alloy material for car and electrical and electronic components and process for producing same

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053346B4 (en) * 2003-11-05 2017-12-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) A method of forming a softening resistant copper alloy sheet
US8715431B2 (en) 2004-08-17 2014-05-06 Kobe Steel, Ltd. Copper alloy plate for electric and electronic parts having bending workability
KR100876051B1 (en) 2004-08-17 2008-12-26 가부시키가이샤 고베 세이코쇼 Copper alloy sheet for electric and electronic parts with bending workability
WO2006019035A1 (en) 2004-08-17 2006-02-23 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electric and electronic parts having bending workability
US9976208B2 (en) 2005-07-07 2018-05-22 Kobe Steel, Ltd. Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
WO2007007517A1 (en) 2005-07-07 2007-01-18 Kabushiki Kaisha Kobe Seiko Sho Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
EP2439296A2 (en) 2005-07-07 2012-04-11 Kabushiki Kaisha Kobe Seiko Sho Copper alloy having high strength and superior bending workability, and method for manufacturing copper alloy plates
EP2339039A2 (en) 2006-07-21 2011-06-29 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
US9644250B2 (en) 2006-07-21 2017-05-09 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic part
WO2008010378A1 (en) 2006-07-21 2008-01-24 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheets for electrical/electronic part
EP2339038A2 (en) 2006-07-21 2011-06-29 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
US9631260B2 (en) 2006-07-21 2017-04-25 Kobe Steel, Ltd. Copper alloy sheets for electrical/electronic part
EP1882751A1 (en) 2006-07-28 2008-01-30 Kabushiki Kaisha Kobe Seiko Sho Copper alloy having high strength and high softening resistance
US8063471B2 (en) 2006-10-02 2011-11-22 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic parts
EP2388349A1 (en) 2006-10-02 2011-11-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
EP2388348A1 (en) 2006-10-02 2011-11-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
EP2388347A1 (en) 2006-10-02 2011-11-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
WO2008041584A1 (en) 2006-10-02 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electrical and electronic components
EP2695956A2 (en) 2007-08-07 2014-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
WO2009019990A1 (en) 2007-08-07 2009-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
EP2695958A2 (en) 2007-08-07 2014-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
EP2695957A2 (en) 2007-08-07 2014-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
JP2009185376A (en) * 2008-01-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
WO2011019042A1 (en) * 2009-08-10 2011-02-17 古河電気工業株式会社 Copper alloy material for electrical/electronic components
JP2011176260A (en) * 2010-01-30 2011-09-08 Mitsubishi Shindoh Co Ltd Method of bonding led chip and leadframe
JP2011208271A (en) * 2010-03-11 2011-10-20 Mitsubishi Shindoh Co Ltd Cu-Fe-P BASED COPPER ALLOY STRIP MATERIAL FOR ELECTRONIC EQUIPMENT HAVING EXCELLENT RESIN ADHESION
JP2011252215A (en) * 2010-06-03 2011-12-15 Mitsubishi Shindoh Co Ltd Copper alloy strip material excellent in heat dissipation and adhesion and prepared for electronic apparatus
JP4608025B1 (en) * 2010-06-03 2011-01-05 三菱伸銅株式会社 Copper alloy strip for electronic equipment with excellent heat dissipation and resin adhesion
KR101503185B1 (en) * 2010-08-27 2015-03-16 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and manufacturing method for same
WO2012026610A1 (en) * 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and manufacturing method for same
CN103069025A (en) * 2010-08-27 2013-04-24 古河电气工业株式会社 Copper alloy sheet and manufacturing method for same
KR101503208B1 (en) * 2010-08-27 2015-03-17 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and manufacturing method for same
JP2012177199A (en) * 2010-08-27 2012-09-13 Furukawa Electric Co Ltd:The Copper alloy sheet material and method for producing the same
CN103468999A (en) * 2010-08-27 2013-12-25 古河电气工业株式会社 Copper alloy sheet and a manufacturing method
KR101577877B1 (en) * 2010-08-31 2015-12-15 후루카와 덴키 고교 가부시키가이샤 Process for producing copper alloy sheet material
CN105671358A (en) * 2010-08-31 2016-06-15 古河电气工业株式会社 Copper alloy sheet material,copper alloy parts and connector
CN105671358B (en) * 2010-08-31 2018-01-02 古河电气工业株式会社 Copper alloy plate, copper alloy part and connector
JP2012107297A (en) * 2010-11-18 2012-06-07 Hitachi Cable Ltd Copper alloy for electric and electronic components, and method of manufacturing the same
JP2012243454A (en) * 2011-05-17 2012-12-10 Jx Nippon Mining & Metals Corp Rolled copper foil, and negative electrode collector using the same, negative electrode plate and secondary battery

Also Published As

Publication number Publication date
JP3798260B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US7182823B2 (en) Copper alloy containing cobalt, nickel and silicon
EP1803829B1 (en) Copper alloy plate for electric and electronic parts having bendability
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
KR100349934B1 (en) Copper alloy and process for obtaining same
JP3798260B2 (en) Copper alloy for electric and electronic parts and electric and electronic parts
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
TWI381397B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
TWI382097B (en) Cu-Ni-Si-Co-Cr alloy for electronic materials
JP6696769B2 (en) Copper alloy plate and connector
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
JP2008248333A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR
CN103443309B (en) Copper alloy sheet material and process for producing same
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP4041452B2 (en) Manufacturing method of copper alloy with excellent heat resistance
JP2006161148A (en) Copper alloy
CN112055756A (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP4280287B2 (en) Copper alloy for electrical and electronic parts with excellent heat resistance
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP6837541B2 (en) Electrical and electronic components with high strength and high electrical conductivity, copper alloys for semiconductors, and their manufacturing methods
JPWO2020152967A1 (en) Copper alloy plate material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3798260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees